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Abstract: Pertussis is a highly contagious respiratory infection caused by Bordetella pertussis bacterium.
The mainstay of treatment is macrolide antibiotics that reduce transmissibility, shorten the duration
of symptoms and decrease mortality in infants. Recently, the macrolide resistance of B. pertussis
has been reported globally but is especially widespread in mainland China. In this review, we aim
to summarise the current understanding of the epidemiology, resistance mechanisms and clinical
implications of B. pertussis macrolide resistance. Since the first appearance of macrolide-resistant B.
pertussis in Arizona, USA, in 1994, only sporadic cases have been reported outside China. In certain
parts of China, on the other hand, up to 70–100% of the recent clinical isolates have been found to
be macrolide resistant. Reasons for macrolide resistance being centred upon China during the last
decade can only be speculated on, but the dominant B. pertussis lineage is different between China
and most of the high-income countries. It seems evident that efforts to increase awareness, guide
molecular epidemiological surveillance and carry out systematic screening of B. pertussis positive
samples for macrolide resistance should be implemented globally. In addition, practices to improve
the clinical care of infants with pertussis caused by resistant strains should be studied vigorously.

Keywords: Bordetella pertussis; pertussis; whooping cough; macrolides; macrolide resistance; ery-
thromycin; azithromycin; clarithromycin

1. Introduction

Pertussis, or whooping cough, is a highly contagious respiratory infection caused by
Bordetella pertussis, a small Gram-negative rod bacterium. Despite extensive vaccinations,
whooping cough is resurging in many countries including USA, UK and China [1]. The
disease can manifest as a severe life-threatening illness, especially in unvaccinated young
infants. A cornerstone of the clinical management of infants with recent onset of pertussis
infection is, in addition to supportive care, antibiotic management by macrolide antibiotics.
Macrolide treatment might ameliorate the disease when started early after infection onset,
before the appearance of paroxysmal cough [2].

Macrolides (erythromycin (ERY), clarithromycin (CHL) and azithromycin (AZT)] are
the first line antimicrobials used to treat pertussis patients. Several studies have shown
their efficacy in vitro, and in clinical settings for clearance of B. pertussis [3–6].

The first B. pertussis strain with decreased sensitivity to macrolide antibiotics was
detected in Arizona, USA in 1994 [7]. Since then, macrolide resistant B. pertussis has been
detected in several countries, although it is rare. However, macrolide resistant B. pertussis
has been increasingly reported in China during past decade, raising the concern of its
potential transmission to other regions and countries. In this review, we aim to describe
the epidemiological features, main resistance mechanism, issues with rapid diagnostics,
and clinical implications of macrolide resistant B. pertussis. Search strategy: We searched
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PubMed and Google Scholar for articles published before 20 October 2022, by use of the
terms: “pertussis” AND “macrolide” AND “resistance”, and reference lists of identified
studies. Only articles written in English were included. Finally, only the most relevant
papers for this review were citated.

2. Pertussis Diagnostics

Pertussis diagnostics can be divided into three main approaches: (1) culture, (2) nucleic
acid detection (PCR) and (3) serology. Patient age, vaccination history and onset of the
symptoms should be considered when choosing the correct diagnostic method [8]. Culture
can be performed up to 2 weeks after the symptoms have appeared, before the bacteria
is cleared by the immune defence. Specimen from freshly obtained nasopharyngeal (NP)
samples should be cultured on Regan-Lowe (RL, charcoal) or Bordet-Gengou (BG, blood)
agar containing cephalexin. Suspected B. pertussis specific colonies are further cultured
on RL/BG agar (without cephalexin), and identified with e.g., slide agglutination test
with specific anti-B. pertussis and anti-B. parapertussis sera or MALDI-TOF [8–10]. Specific
nucleic acid identification (targeting IS481/ptxp) with PCR requires only a small amount of
DNA for detection and identification of the bacterium and is therefore far more sensitive
than culture. Furthermore, it can be used even three to four weeks after the onset of
symptoms. Therefore, PCR-based approaches are more widely used than culture, especially
with infants and small children. For school children and adults, serology is commonly used
as there is less interference in antibodies induced from previous vaccinations and the only
symptom may have been a prolonged cough (>3–4 weeks, culture nor PCR can be used).
Serological diagnosis should be made based on the measurement of serum IgG antibodies
against pertussis toxin [11]. Furthermore, laboratory confirmation of B. pertussis from
clinical samples is needed before antimicrobial susceptibility testing (AST) is performed.

3. Epidemiology

The first macrolide resistant B. pertussis strain was identified in a 2-month-old infant
from Yuma, Arizona, US in 1994 [7]. The isolate was highly resistant to erythromycin
with a minimum inhibitory concentration (MIC) > 64 µg/mL. However, the origin of this
isolate was not known. Breakpoints to detect antimicrobial resistance of clinical B. pertussis
isolates were not standardized but the reported resistant strains had MICs of >256 µg/mL
with erythromycin (ERY) and clarithromycin (CHL) by Etest method suggesting macrolide
resistance. Concurrently, seven additional B. pertussis isolates from the same area were
tested, but macrolide resistance was not detected in these cases. In a review of 47 B. pertussis
isolates from children in Utah, US, in 1985–1997, one isolate from January 1997 was resistant
against erythromycin [12].

Since the first appearance of macrolide-resistant B. pertussis, macrolide susceptibility
has been tested in thousands of cultured isolates all over the world (Table 1, Figure 1). In a
study of 1030 isolates collected from various parts of the the US, five (0.5%) isolates were
erythromycin resistant. Four out of five isolates were from Arizona (1994–1995) and one
from Georgia (1995). All isolates initially showed the growth inhibition of B. pertussis by
disc diffusion method, but after 5–7 days of incubation, novel bacterial colonies appeared
on the plate inside the growth inhibition area, demonstrating heterogeneous phenotype [13].
In a review of 38 B. pertussis isolates from France in 2003, none of them were resistant to
erythromycin [14]. However, nine years later in 2012, the first patient in Europe with
macrolide-resistant B. pertussis was diagnosed in Lyon, France [15]. A three-week-old
neonate with severe pertussis was treated repeatedly with macrolides before the detection
of the resistant isolate. Of the three serial isolates from the patient, the first two were
sensitive, but the third one turned to be resistant, suggesting that the B. pertussis isolate
acquired the mutation leading to macrolide resistance during the macrolide treatment.
Sporadic cases of macrolide-resistant B. pertussis isolates were also reported from Iran in
2009 [16].
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Figure 1. Countries where B. pertussis antimicrobial susceptibility studies have been performed
(created with MapChart).

In Asia, studies from Cambodia, Japan, Taiwan and Vietnam have found some
macrolide-resistant B. pertussis isolates that seem to be related to resistant strains in main-
land China [17–19]. In northern Vietnam, of NP swab samples from 184 patients with
pertussis diagnosed during 2016–2020, 24 (13.0%) were found to be resistant. In Japan, the
first isolation of a macrolide-resistant strain was from a 2-month-old baby in 2018. The
MICs of the isolate showed > 256 µg/mL for ERY and CHL and >32 µg/mL for AZT. The
complete genome sequence of the macrolide resistant B. pertussis strain from Japan has been
published [20]. It confirms that the isolate has a homogeneous A2047G mutation in each of
the three copies of its 23S rRNA gene and that it belongs to the genotype that is common in
Chinese macrolide resistant B. pertussis isolates. The issue of macrolide-resistant B. pertussis
is greater and reported in more detail in China than in anywhere else in the world. The first
macrolide-resistant isolates from Shandong Province in China were reported in 2011 in two
asymptomatic pupils [21]. No macrolide resistance has been detected in historical isolates
in China from 2008 or earlier [22,23]. More recent reports show very high prevalence of
macrolide resistance among B. pertussis isolates in different parts of China (Table 1).

Until recently, macrolide resistance in B. pertussis in China has been associated almost
exclusively with the ptxP1 lineage of the bacterium [22,27,29–32,37]. However, a recent
cross-sectional study describes two ptxP3 isolates from eastern China that had acquired
the A2047G mutation in their 23S rRNA gene [40]. The ptxP3 lineage is currently the
dominating B. pertussis circulating in most of the high-income countries that have switched
to acellular pertussis vaccine in recent decades [51,52]. It has been hypothesized that the
replacement of the whole-cell pertussis vaccine with co-purified acellular pertussis vaccine
in the national immunization programme, the liberal use of macrolides in children with
respiratory infections, and high population densities could have contributed to the effective
spread of macrolide-resistant B. pertussis in China [53].
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Table 1. Global frequencies of macrolide-resistant Bordetella pertussis.

Country Region/City Year Resistant Isolates Identified
(Frequency %) Reference

Australia New South Wales, Perth 1971–2010 0/120 (0.0) [24,25]
Cambodia Whole country 2017–2020 1/71 (1.4) [19]
Canada Ontario 2011–2013 0/275 (0.0) [26]

China

Xi’an 2012–2020 274/299 (91.6) [27–31]
Shandong 2011 2/2 (100.0) [21]
Northern 1970–2014 ** 91/124 ** (91.9) [22]
Shanghai 2016–2017 81/141 (57.5) [32]
Zhejiang 2016–2020 271/381 (71.1) [33–35]
Beijing, Jinan, Nanjing, Shenzhen 2014–2016 292/335 (87.2) [36]
Midwest 2012–2015 163/167 (97.6) [37]
Whole country 1950–2018 316/388 (81.4) [23]
Hunan 2017–2018 27/55 (49.1) [38]
Shenzhen 2015–2017 51/105 (48.6) [39]
Whole country 2017–2019 265/311 (85.2) [40]

Czech republic Whole country 1967–2015 0/135 (0.0) [41]
Finland Whole country 2006–2017 0/148 (0.0) [42]
France Bordeaux & Lyon 2003 and 2012 1/41 (2.4) [10,11]
Iran Whole country 2009–2010 2/11 (18.2) [16,43]
Italy Rome 2012–2015 0/18 (0.0) [44]
Japan Whole country 2017–2019 1/33 (3.0) [17,19]
Taiwan Whole country 2003–2007 2/76 (2.6) [19,23]
United Kingdom Whole country 2001–2009 0/582 (0.0) [45]

United States

Colorado, Maryland, Oklahoma, Wisconsin 1986 0/75 (0.0) [46]
Arizona—Yuma County 1994 1/1 (100.0) [47]
Utah 1985–1997 1/47 (2.1) [12]
Northern California 1998–1999 0/36 (0.0) [48]
Phoenix, Oakland *, San Diego N/A *** 1/48 (2.1) [49]
California, New York, Minnesota,
Massachusetts, Illinois, Arizona, Georgia 1994–2000 5/1030 **** (0.5) [13]

Minnesota 1997–1999 1/8 (12.5) [50]
Vietnam Hanoi, Ha Nam, Thai Binh 2016–2020 24/184 (13.0) [18,19]

* Hill et al. included a control B. pertussis strain, resistant to macrolides. This strain has been isolated in Oakland
but not officially published elsewhere. ** Divided into three time periods: 1970s, 2000–2008 and 2013–2014. All
isolates (N = 25) collected in 1970–2008 were macrolide sensitive. *** N/A = Not available. **** Notified 5 to
7 days after incubation. Four from Arizona, one from Georgia.

4. Mechanisms behind Macrolide Resistance in B. pertussis

Macrolide resistance can be caused by three distinct mechanisms. The most common
mechanism, including for B. pertussis, is the A2047G single nucleotide polymorphism (SNP)
in the 23S rRNA gene within the domain V [15,28,50]. This is equal to a SNP in position
A2058G in E. coli and A2064G in M. pneumoniae [54,55]. The A2047G mutation affects
the macrolide binding site in the 23S rRNA component of the 50S ribosomal subunit and
prevents macrolides to inhibit the peptide elongation [50]. There are three copies of this
gene in the B. pertussis genome. Bartkus et al. showed that the A2047G SNP can be found
in one or more of the copies. They suggested that this mutation needs at least two copies
for resistance [50]. However, many studies have shown that in most cases, all three copies
are mutated among the macrolide-resistant B. pertussis strains [15,27,37].

The second possible cause is the acquisition of the ERY-resistant methylase (erm)
gene, which leads to addition of methyl group in the 23S rRNA to block the ERY binding
site [37,50]. However, B. pertussis do not possess this gene, which is also shown in a novel
study in which 167 clinical isolates were screened to identify the possible inclusion of this
gene. However, none of the strains carried such a gene [37]. So far, no studies have found
this mechanism to be the cause of macrolide resistance in B. pertussis.

The third proposed mechanism is the expression of MexAB-OprM efflux pump (reg-
ulated by the mexAB-oprM operon), which helps the bacteria to regulate the uptake of
macrolides. This mechanism excretes macrolide molecules out of the bacterial cell. The
mechanism has been well-described and has been shown to cause resistance against many
antimicrobial agents, including macrolides, in Pseudomonas aeruginosa [56]. Lately, Fong
et al. described the expression of the mexAB-oprM operon within macrolide-resistant Bor-



Antibiotics 2022, 11, 1570 5 of 11

detella parapertussis. Furthermore, they showed upregulation of the mexAB-oprM when
B. parapertussis was grown in 256 mg/mL of ERY. As no other mechanism was found to
cause the resistance, they speculated on the potential effect of this mechanism to cause the
resistance. However, they also showed that this operon was not functional in B. pertussis
due to deletions in mexA and oprM genes [57]. Whether there will be B. pertussis with
functional mexAB-oprM operon remains to be seen.

There have only been two reports (Iran and China) where the A2047G SNP has not
been the mechanism behind the macrolide resistance in B. pertussis [22,43]. However, these
two studies did not perform erm gene or mexAB-oprM operon identification, and the reason
for the resistance remains unknown. In the study by Mirzaei et al., the macrolide-resistant
isolate was resistant to ERY/CHL but not to AZT [43]. Therefore, the presence of erm could
be the cause of the resistance in these studies and would be the first one detected among
macrolide-resistant B. pertussis.

5. Methods to Detect Macrolide Resistant B. pertussis

Antimicrobial susceptibility testing can be performed with cultured B. pertussis isolates
or with B. pertussis-specific DNA. The first approaches to studying AST were performed
by agar and broth dilution series, where plates and liquid medium were prepared with
standardised antimicrobial agent concentrations [58,59]. Later, disk diffusion (DD) and
MIC Etests were adapted, which made the testing less time consuming and simpler to carry
out [12]. Eventually, the lack of cultures performed, and the possibility for the easy detection
of SNPs, led to the DNA-based identification of macrolide-resistant B. pertussis [21,50,60].
Here, we briefly describe the AST methods used currently to identify macrolide-resistant B.
pertussis.

5.1. Disk Diffusion and Minimum Inhibition Concentration Methods

To perform DD or MIC testing, a confirmed B. pertussis culture is needed. So far,
there are no cut-offs for either of the previous methods recommended by EUCAST, and
all determinations for sensitivity or resistance are based on notifications from clinical
studies. For both DD and MIC testing, bacterial suspension equivalent to McFarland (McF)
standard 0.5 is inoculated on selected culture plates. RL and BG agar plates are used in
many studies with 0.5 McF [12,42,49,50]. In addition, Muller–Hinton agar supplemented
with blood (HMB) have been used, although studies have shown that 8 McF is needed
for confluent growth on this medium [42,45]. For DD testing, an antimicrobial agent disk
(ERY, AZT, CHL, clindamycin (CLI)) is placed on the plate, and the disk diffusion zone
is measured. Results from the studies performing DD vary, and different intervals have
been used for plate read-outs. In general, the DD zone for ERY-susceptible strains varies
between 37 and 60 mm, whereas for resistant strains, it is 6 mm (reflecting the diagonal
of the disk) [12,38,49,59,61]. The DD zone is also affected by the incubation time. Longer
incubation leads mostly to an increase in the zone diameter [59]. In general, DD tests are
no longer that widely used, and there has been criticism over the reliability of this testing
method as the results are not reproducible, have low sensitivity and do not correlate with
good clinical outcomes [8,38,62].

The MIC testing is more commonly performed than DD tests. After the Etest (slides
with increasing antimicrobial agent concentrations) became available and were evaluated,
they more or less replaced the plate dilution methods [49]. The method is simple to perform.
After the addition of 0.5 McF B. pertussis suspension on a culture plate, an Etest slide is
added in the middle of the plate. After 2–5 days, sensitivity to the selected antimicrobial
agent can be interpreted as the point where bacterial growth is in touch with the test strip.
Figure 2 shows antimicrobial susceptibility testing of B. pertussis to ERY (Etests for AZT
similar to ERY) on RL charcoal agar with inoculation density equivalent to a 0.5 McFarland
standard.

For B. pertussis, several studies have been performed for MICs against antimicrobials
(ERY, AZT, CHL, CLI). These tests have been quite consistent with the findings. For
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sensitive strains, MIC has varied from <0.016 to 0.25 µg/mL, whereas nearly all resistant
strains have MIC > 256 µg/mL [28,31,32,38,42,63]. However, one study in Iran described
an isolate that was resistant to ERY (128 µg/mL) and CHL (>256 µg/mL) but not to AZT
(<0.06 µg/mL). Furthermore, the authors did not identify the A2047G mutation in this
strain as previously described [43]. In addition, Hill et al. and Korgenski et al. described
the first two identified macrolide-resistant B. pertussis in the USA (Arizona and California)
to have an MIC of 64 µg/mL for ERY [12,49]. A flow chart of how to identify macrolide-
resistant B. pertussis is presented in Figure 3. For B. pertussis culture-positive samples,
the nucleic acid amplification indicated in the flow chart should be also used for rapid
identification of possible A2047G mutation of 23S rRNA.

Figure 2. Etest of B. pertussis on Regan–Lowe charcoal agar with inoculation density equivalent of
0.5 McFarland standard. (1) = erythromycin resistant B. pertussis and (2) = erythromycin sensitive B.
pertussis.

Figure 3. A flow chart of sample processing to detect macrolide-resistant B. pertussis. * The A2047G
mutation can also be detected from the culture-positive clinical samples by DNA extraction and
following the procedure for B. pertussis culture-negative but PCR-positive scheme.

5.2. DNA-Based Identification of A2047G Mutation in the 23S rRNA

There are different approaches to detecting the A2047G mutation. One method is
based on the amplification of a 521 bp fraction of the 23S rRNA gene by PCR and its
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cleavage with BbsI restriction enzyme. This results in two separate fragments (393 bp and
128 bp) for resistant isolates and one fragment (521 bp) for sensitive isolates when imaged
on a gel [15,27,50]. Another option is the Sanger sequencing of the amplification product to
detect the specific A2047G SNP [27,36,50]. However, short-read Sanger sequencing cannot
differentiate the three copies of the 23S rRNA gene; long-read sequencing is needed to
confirm the number of mutations in the three copies [57]. In addition, whole-genome
sequencing (WGS) can be used, but so far, no studies are relying on this method as a sole
approach to detecting macrolide-resistant B. pertussis. In 2015, Wang et al. introduced
an allele-specific PCR to detect the A2047G SNP [60]. In this method, specific primers
with small modifications are used to produce either one or two bands after amplification
when imaged on a gel. Two bands mark resistance and one band susceptibility of the
studied B. pertussis isolates. Zhang et al. published another approach based on qPCR high-
resolution melting analysis (HRMA) [21]. In this method, the A2047G mutation is identified
by the difference in the HRMA melting temperatures of the amplified PCR products. To
enhance the HRMA difference, DNA samples were spiked with wild-type DNA. However,
the method was only performed with extracted DNA from cultured B. pertussis, and its
usability among DNA extracted from NP samples needs further evaluation. In general, the
above-described methods are currently widely used, especially in China, where most of the
macrolide-resistant B. pertussis isolates have appeared [28,40,53].

6. Conclusions and Perspective

Macrolide antibiotics are the mainstay of both the treatment and prevention of per-
tussis [2]. Traditionally, ERY has been the most-used macrolide to treat pertussis. It has
been shown in a randomized controlled trial that 7 days of erythromycin is adequate to
eradicate B. pertussis from the nasopharynx [64]. More recently, AZT has replaced ERY as
the drug of choice for pertussis, due to being as effective, having higher compliance and
causing fewer side effects [65]. Early macrolide treatment has shown to be associated with
shorter durations of symptoms, shorter periods of being able to transmit and decreased
mortality from pertussis in young infants [66–69]. Macrolides have been recommended as
the first-line therapy for all age groups. The second-line treatment option is sulphamethox-
azole/trimethoprim (SMZ-TMP), but because of the potentially severe side effects, it is not
recommended for the treatment of the youngest infants < 2 months of age.

The emergence of macrolide resistance has raised new questions regarding the op-
timal treatment of young infants with infection caused by macrolide-resistant B. pertus-
sis. In vitro, several classes of antibiotics seem to be effective against B. pertussis, includ-
ing SMZ-TMP, levofloxacin, ampicillin, 3rd-generation cephalosporins, gentamicin and
piperacillin-tazobactam [17,34,38,40,46,63]. However, no data regarding clinical benefit of
these antibiotics in infants with severe pertussis caused by a macrolide-resistant strain exist.
Clinical treatment failure with macrolides in patients with pertussis caused by resistant
strains has seldom been documented.

In two novel studies, piperacillin and cefoperazone-sulbactam were shown to be effec-
tive for killing B. pertussis both in vitro and in vivo, providing good options for alternative
treatment in hospitalized infants if an isolate is identified to be macrolide resistant, although
their suitability for young infants still needs to be better studied [34,35]. As stated in the
study by Hua et al. [33], a controlled clinical trial including more pertussis patients to be
treated with single piperacillin, cefoperazone or other antibiotics is scheduled in Zhejiang,
China. The use of alternative therapy for pertussis other than macrolide in outpatients
needs clinical studies.

For the future, it is also worth speculating how the use of co-purified acellular pertussis
vaccines versus separately purified acellular pertussis vaccines and changes in the overall
use of macrolide antibiotics and population density might affect the epidemiology of
macrolide-resistant B. pertussis and whether these issues could be targeted to combat the
spread of resistant strains. Novel vaccines, such as live attenuated nasal vaccine, that
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would produce more sterilizing mucosal immunity could also help to address the issue of
antibiotic resistance in pertussis [70,71].

So far, the only mechanism identified to cause macrolide resistance has been a point
mutation at position 2047 (A2047G) in domain V of the 23S rRNA gene of B. pertussis. There-
fore, simple methods for the rapid identification of this mutation in clinical microbiology
laboratories will provide important help for clinicians to use proper antimicrobials for
(prophylactic) treatment of patients, especially young infants. These direct typing methods
are even more crucial in the future because culture is less and less used for diagnosis of
pertussis. The macrolide resistance of B. pertussis has not yet been of clinical concern outside
mainland China. However, efforts to increase awareness, guide national/international
surveillance and implement systematic screening of B. pertussis-positive samples are highly
recommended. At the same time, practices for the best possible clinical care of infants with
pertussis caused by resistant strains should be studied.
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