
Article https://doi.org/10.1038/s41467-022-35564-z

Benchmarking tools for detecting long-
itudinaldifferential expression inproteomics
data allows establishing a robust reproduci-
bility optimization regression approach

Tommi Välikangas 1, Tomi Suomi 1, Courtney E. Chandler2, Alison J. Scott 2,
Bao Q. Tran3, Robert K. Ernst 2, David R. Goodlett 4,5 & Laura L. Elo 1,6

Quantitative proteomics hasmatured into an established tool and longitudinal
proteomics experiments have begun to emerge. However, no effective,
simple-to-use differential expressionmethod for longitudinal proteomics data
has been released. Typically, such data is noisy, contains missing values, and
has only few time points and biological replicates. To address this need, we
provide a comprehensive evaluation of several existing differential expression
methods for high-throughput longitudinal omics data and introduce a Robust
longitudinal Differential Expression (RolDE) approach. The methods are eval-
uated using over 3000 semi-simulated spike-in proteomics datasets and three
large experimental datasets. In the comparisons, RolDE performs overall best;
it is most tolerant to missing values, displays good reproducibility and is the
top method in ranking the results in a biologically meaningful way. Further-
more, RolDE is suitable for different types of data with typically unknown
patterns in longitudinal expression and can be applied by non-
experienced users.

In the course of the past few decades, mass spectrometry (MS)-based
proteomics has developed significantly and emerged as a powerful
tool for clinical biomarker discovery1. Currently, MS-powered quanti-
tative proteomics can be considered as an established method routi-
nely used for proteome exploration in biomedical research2,3.

Longitudinal study designs are generally regarded as havingmore
statistical power to detect differences between the examined study
groups than cross-sectional designs4,5. While requiring more mea-
surements per individual, less individuals are required to achieve the
same statistical power as in cross-sectional studies4,5. In addition to
having more statistical power, longitudinal study designs deliver
information concerning the changes in the studied individuals over

time. In the context of high-throughput transcriptomics, longitudinal
experiments for detecting time-resolved gene expression changes
have been performed already for more than two decades6–8. For pro-
teome profiling, most of the experiments thus far have utilized cross-
sectional study designs, but longitudinal proteomics experiments with
two3 or multiple9,10 time points have begun to emerge.

A recent study comparing longitudinal methods for RNA-
sequencing (RNA-seq) gene expression experiments discovered that
most of the specific longitudinal methods performed worse than
timepoint-wise analysis of the data using traditional pairwise differ-
ential expression tools when the number of time points was small
(<8)11. With only a few time points, most of the tested longitudinal

Received: 22 April 2021

Accepted: 9 December 2022

Check for updates

1Turku Bioscience Centre, University of Turku and ÅboAkademi University, FI-20520 Turku, Finland. 2University of Maryland – Baltimore, Baltimore, MD 21201,
USA. 3US Army 20th Support CommandCBRNE Analytical and Remediation Activity, Baltimore, MD 21010-5424, USA. 4University of Victoria, Victoria, BCV8P
3E6, Canada. 5International Centre for Cancer Vaccine Science, Gdansk, Poland. 6Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland.

e-mail: laura.elo@utu.fi

Nature Communications |         (2022) 13:7877 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-6046-1920
http://orcid.org/0000-0002-6046-1920
http://orcid.org/0000-0002-6046-1920
http://orcid.org/0000-0002-6046-1920
http://orcid.org/0000-0002-6046-1920
http://orcid.org/0000-0003-3639-979X
http://orcid.org/0000-0003-3639-979X
http://orcid.org/0000-0003-3639-979X
http://orcid.org/0000-0003-3639-979X
http://orcid.org/0000-0003-3639-979X
http://orcid.org/0000-0001-6969-4707
http://orcid.org/0000-0001-6969-4707
http://orcid.org/0000-0001-6969-4707
http://orcid.org/0000-0001-6969-4707
http://orcid.org/0000-0001-6969-4707
http://orcid.org/0000-0001-5016-8694
http://orcid.org/0000-0001-5016-8694
http://orcid.org/0000-0001-5016-8694
http://orcid.org/0000-0001-5016-8694
http://orcid.org/0000-0001-5016-8694
http://orcid.org/0000-0002-8045-8200
http://orcid.org/0000-0002-8045-8200
http://orcid.org/0000-0002-8045-8200
http://orcid.org/0000-0002-8045-8200
http://orcid.org/0000-0002-8045-8200
http://orcid.org/0000-0001-5648-4532
http://orcid.org/0000-0001-5648-4532
http://orcid.org/0000-0001-5648-4532
http://orcid.org/0000-0001-5648-4532
http://orcid.org/0000-0001-5648-4532
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35564-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35564-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35564-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35564-z&domain=pdf
mailto:laura.elo@utu.fi


methods produced a high number of false positives11. When the
number of time points was increased, the performance of many of the
longitudinal methods also improved11. However, as currently relatively
few time points are typical in biomedical studies, the usability of such
methods which cannot performwell on short time series is limited and
new approaches are required.

In the context of proteomics data, another limitation of the
longitudinal methods developed for RNA-seq data11 is that many of
them are specifically designed for discrete negative binomially dis-
tributed count data and, as such, are not directly applicable. Pro-
teomics data is typically close to normally distributed after logarithm
transformation and/or normalization12, making methods originally
proposed for the analysis of longitudinal gene expression microarray
data better suited. Among those methods, BETR (Bayesian Estimation
of Temporal Regulation)13 and Timecourse14 rely on a Bayesian fra-
mework, and Microarray Significant Profiles (MaSigPro) builds on a
two-step regression strategy15. In addition, the popular R package for
the analysis ofmicroarray and sequencing data, Limma16, also contains
tools for analyzing longitudinal differential expression. However, since
these methods do not take into account the characteristics of MS
proteomics data, they might not be optimal for proteomics experi-
ments. In particular, as has been extensively observed in previous
studies17,18, missing values are prevalent in proteomics data and their
handling is not trivial18. This is particularly the case with the data-
dependent acquisition (DDA) label-free proteomics approach, which is
popular due to its cost efficiency, speed, and ability to handle complex
samples19. Furthermore,MS data is prone to noise in quantification20,21,
rendering especially the lowly abundant proteins subject to false
positive detections22.

In addition to the methods specially designed for longitudinal
omics data, different statistical modeling approaches have been uti-
lized in their analysis. Several types of linear and non-linear regression-
based approaches, with or without random effects, have been applied
in various contexts10,23–25. For example, Liu et al.10 used mixed-effects
regression modeling with quadratic random terms to detect trends
and differential expression patterns in the longitudinal expression of
proteins between children developing type 1 diabetes (T1D) and
healthy controls. However, no comprehensive comparison on the
performance and application of the different approaches exists and,
therefore, specific standard practices for analyzing differential
expression in longitudinal omics data with regression modeling have
not been established. Furthermore, the statistical frameworks devel-
oped for the analysis of longitudinal clinical variablesmight not bebest
suited for the analysis of longitudinal omics data, in which the number
of individuals and the number of measured time points are typically
small, but the number of simultaneous variables (e.g., genes or pro-
teins) is very large. Given the complexity of suchdata and the variety of
potential methods available, the selection of an appropriatemethod is
not straightforward.

To facilitate the selection of a suitablemethod for the discovery of
differential expression from longitudinal proteomics data, we present
an extensive evaluation of altogether 15 longitudinal approaches and a
baseline cross-sectional method, including a method named RolDE
(Robust longitudinal Differential Expression) that we develop here.
The methods are evaluated in their ability to correctly detect long-
itudinal differential expression using over 3000 semi-simulated pro-
teomics spike-in datasets with and without missing values, a varying
number of time points and including a large variety of linear and non-
linear longitudinal trend differences between the examined condi-
tions. In addition, the reproducibility and reliability of the methods, as
well as their ability to provide biologically meaningful results are
assessed in two large-scale experimental biological datasets. Finally,
after demonstrating the robustness and overall good performance of
RolDE with various datasets and longitudinal differential expression
trends, we apply it to a previously published longitudinal type 1

diabetes proteomics dataset10 to further illustrate its applicability to
non-aligned measurements in a real clinical dataset.

Results
We extensively evaluated the performance of several approaches to
detect differential expression from longitudinal proteomics data:
Reproducibility Optimized Test Statistic (BaselineROTS)26, Bayesian
Estimation of Temporal Regulation (BETR)13, Linear Models for
Microarray Data (Limma, LimmaSplines)16, Timecourse14, Microarray
Significant Profiles (MaSigPro)15, Extraction of Differential Gene
Expression (EDGE)27, Linear Mixed Model Spline Framework for Ana-
lysing Time Course Omics Data (LMMS)28, Omics Longitudinal Differ-
ential Analysis (OmicsLonDA)29, linear mixed effects regression
modeling (Lme), and polynomial mixed effects modeling (Pme). The
performance evaluation of the methods was conducted using over
3000 semi-simulated datasets generated on the basis of three spike-in
proteomics datasets (UPS130, SGSDS31, and CPTAC32) (Fig. 1a). Repro-
ducibility and biological relevance of the findings were further asses-
sed with the large experimental Francisella tularensis subspecies
novicida (Fn) dataset (Fig. 1b) and a publicly available dataset on
induced human regulatory T (iTreg) cell differentiation33 (Fig. 1c). In
addition to the existing methods, we present RolDE, which is a com-
posite method consisting of three independent modules— RegROTS,
DiffROTS and PolyReg—with different approaches for detecting
longitudinal differential expression. The combination of these
diverse modules allows RolDE to robustly detect varying types of
differences in longitudinal trends and expression levels in diverse
experimental settings (Fig. 1d). Finally, the ability of RolDE to pro-
duce meaningful findings even in data with non-aligned time points
was demonstrated using previously published longitudinal T1D
proteomics data10 (Fig. 1e).

Performance in semi-simulated spike-in proteomics data with
single trend categories and no missing values
First, we investigated the performance of the methods in the filtered
semi-simulated spike-in datasets, where a single trend category per
condition was generated for each dataset (Stable, Linear, LogLike,
Poly2, Sigmoid, or PolyHigher; Supplementary Data 1) and only pro-
teins with no missing values were included in the analysis.

In the UPS1-based semi-simulated datasets involving five time
points, the overall highest partial areas under the ROC curves (pAUCs)
were obtained by RolDE with an interquartile range (IQR) mean pAUC
of 0.977 (Fig. 2a), performing better than the second-best method
Timecourse with an IQR mean pAUC of 0.973 (p =0.059, one-tailed
pairedMann–WhitneyU test). The baselinemethod ROTS that ignores
longitudinal trends also performed well with an IQR mean pAUC of
0.941, while the difference to the best performing method RolDE was
highly significant (p < 10−15). Among the regression-based models, the
lower order regression models (denoted by the extension L) per-
formed overall worse than models of higher polynomial degree
(denoted by the extension H).

In the SGSDS-based filtered datasets with eight timepoints and no
missing values, all the tested methods performed relatively well
(Fig. 2b). Again, the performance of RolDE with IQR mean of pAUC
0.997 was significantly better than the next best methods Limma and
LimmaSplines_H (p < 10−11).

A closer look at the performance of the methods in the different
trend categories suggested that the proposedmethod RolDE, together
with Timecourse and BaselineROTS, performed consistently well in
every category in both the UPS1-based and SGSDS-based datasets
(Supplementary Fig. 1a, b). The performance of the general regression-
based approaches was in concordance with the degree of the regres-
sion, as expected. The linear approach Lme performed well when the
categories were linear or close to linear; the polynomial regression
Pme_L performed better when the examined categories were linear or
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close to second order polynomial. The highest order polynomial
regression Pme_H performed well on the broadest spectrum of cate-
gories, but the performance was best when the examined categories
wereofhigher order polynomial. The regression spline-basedmethods
EDGE_L and EDGE_H and the OmicsLonDA method were not able to
effectively detect longitudinal differential expression when only
expression level differences were present between the examined
conditions (Stable_Stable category, Supplementary Fig. 1).

Performance in semi-simulated spike-in proteomics data with
single trend categories and including missing values
Second, we investigated the performance of the methods in the full
semi-simulated spike-in datasets with a single trend category per
condition but also proteins with missing values included in the ana-
lysis. Similarly as with the filtered datasets, which did not involve any
missing values, RolDE performed overall best in the full datasets in the
presence ofmissing values (Fig. 2c, d). In theUPS1-based datasets, with

missing values only in the true negative proteins, RolDE performed
best with an IQR mean pAUC of 0.976 but with no significant differ-
ences in the overall performance to the second-best method Time-
course (p =0.257). In the SGSDS-based full datasets, with missing
values also in the true positive spike-in proteins, RolDE and LMMSwith
IQR mean pAUCs of 0.995 and 0.993, respectively, clearly out-
performed the other methods, with RolDE performing significantly
better than the second-best method LMMS (p < 10−9). BETR and EDGE
do not tolerate missing values and were therefore excluded from the
analysis of the full datasets.

Investigation of the performance of the methods in the different
trend categories suggested that the performance of RolDE, LMMS and
BaselineROTS in the full datasets with missing values remained on par
to the filtered datasets without missing values (Supplementary Fig. 1c,
d), whereasmost of the othermethods experienced a decrease in their
performance across all categories in the SGSDS-based full datasets
(Supplementary Fig. 1b, d).
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Fig. 1 | Illustration of the benchmark design and the new RolDE method. a In
total over 3000 semi-simulated spike-in proteomics datasets with two conditions,
five (UPS1 and CPTAC) or eight (SGSDS) time points, and varying trend differences
between the conditions were generated for an extensive evaluation of the perfor-
manceof themethods.bReproducibility of themethodsacross technical replicates
and their ability to provide biologically relevant findings in terms of known asso-
ciated KEGG pathway was evaluated in an experimental Francisella tularensis sub-
species novicida (Fn) dataset. c Biological relevance of the findings of the methods
was further assessed in a publicly available proteomics data of human induced T
regulatory cell (iTreg) differentiation using known Treg-related gene sets from
multiple sources. d Schematic illustration of the Robust longitudinal Differential
Expression (RolDE) method, which is a composite method, consisting of three

independent modules with different approaches to detect longitudinal differential
expression. The RegROTS module combines individual regression modeling with
the power of the established differential expression method Reproduciblity Opti-
mizedTest Statistic (ROTS). In theDiffROTSmodule, the expressionbetween all the
individuals in the different conditions is directly compared at different time points.
The PolyRegmodule uses polynomial regressionmodeling to evaluate longitudinal
differential expression. The combinationof thesemodules allowsRolDE to robustly
detect differences in longitudinal trends and expression levels in diverse data types
and experimental settings. e Ability of RolDE to detect longitudinal differential
expression even when the time points in the data are not aligned was further
demonstrated using a previously published longitudinal type 1 diabetes
proteomics data.
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Fig. 2 | Theperformanceof the examinedmethods in the semi-simulated spike-
in datasets. a UPS1 filtered (n = 300 datasets), b SGSDS filtered (n = 210 datasets),
c UPS1 full (n = 300 datasets), d SGSDS full (n = 210 datasets), e UPS1 Mix filtered
(n = 300 datasets), f UPS1 Mix full (n = 300 datasets), g CPTAC full (n = 300 data-
sets). The methods were examined in their ability to detect true (known) long-
itudinal differential expression using receiver operating characteristic (ROC)
analysis across datasets with varying longitudinal trend differences in the spike-in

proteins (3 replicate samples per condition). The partial areas under the ROC
curves (pAUC) between the specificity of 1 and 0.9 were used to measure the
performanceof themethods. The violin plots display the distribution of pAUCs for
each method, including median (white circle), interquartile range (IQR) from the
first to third quartile (black box), and 1.5* IQR (whiskers). The IQR mean pAUC for
eachmethod is shown above the violin. Eachmethod is shownwith a unique color.
Source data are provided as a Source Data file.
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Performance in semi-simulated spike-in proteomics data with
mixed trend categories
Next, to examine the performance of the methods in more depth,
semi-simulated UPS1-based datasets with five time points and mixed
trend differences in the spike-proteins were generated to reflect typi-
cal real longitudinal proteomics data where proteins with multiple
different types of longitudinal trends coexist (UPS1 Mix, Supplemen-
tary Data 1).

In the filtered UPS1 Mix datasets without missing values, Base-
lineROTS with an IQR mean pAUC of 0.953 performed best, fol-
lowed by RolDE with an IQR mean pAUC of 0.948 (p < 0.05, Fig. 2e).
Both BaselineROTS and RolDE performed significantly better than
the next best method Timecourse with an IQR mean pAUC of 0.937
(p < 0.05). Similarly as with the single trend category datasets, the
higher order regression models outperformed the lower order
models.

In the full UPS1 Mix datasets including missing values, RolDE
with an IQR mean pAUC of 0.945 performed best, followed by
Timecourse with an IQR mean pAUC of 0.942 (p = 0.279, Fig. 2f).
Both RolDE and Timecourse significantly outperformed the next
best method BaselineROTS with an IQR mean pAUC of 0.939
(p < 0.05), while the rest of the methods performed significantly
worse, with IQR mean pAUCs below 0.9 in both the filtered and full
datasets.

While RolDE displayed the strongest balanced performance
over all the trend categories in the UPS1 Mix datasets, also Base-
lineROTS, Timecourse, Limma, and LimmaSplines_H performedwell
across the categories (Supplementary Fig. 1e, f). Similarly as with the
single-category datasets, the complexity of the trends largely
defined in which categories the regression-based approaches per-
formed well; more complex models performed better on a broader
spectrum of categories, while the simpler models struggled when
the polynomial complexity of the trends increased. Overall, pro-
teins with Linear_Sigmoid and Linear_LogLike trend differences
were most challenging across all the methods.

Effect of missing values in the datasets
The original UPS1 and SGSDS datasets contained moderate to low
numbers of missing values (14.1% and 3.4%, respectively) and only few
missing values in the spike-in proteins (0% and 4.2%, respectively).
Therefore, to further push the methods, semi-simulated datasets with
a larger proportion of missing values were generated using the CPTAC
dataset, whichhad a larger overall proportion ofmissing values (19.5%)
and a considerably larger proportion of missing values in the spike-in
proteins (29.4%) than the UPS1 and SGSDS datasets. In the presence of
such a large proportion of missing values, all the methods performed
clearly worse than in the UPS1 and the SGSDS datasets (Fig. 2g). The
cross-sectional method BaselineROTS applied separately to each time
point significantly outperformed the longitudinalmethodswith an IQR
mean pAUC of 0.782, followed by RolDE with an IQR mean pAUC of
0.745 (p < 10−5). Both BaselineROTS and RolDE performed significantly
better than the next best method LMMS with an IQR mean pAUC of
0.740 (p < 10−5).

Furthermore, many of the evaluated methods struggled to pro-
vide valid scores for proteins in the presence of missing values in the
data. To evaluate how consistently the different methods were able to
provide scores for the proteins in the datasets, IQR mean proportions
of valid scores for each method and dataset type were calculated
(Table 1). In addition toRolDE,which bydefault generates a ranking for
all the proteins in a dataset, the linear regression method Lme and the
linear mixed model spline method LMMS were most often able to
provide a valid ranking for the proteins in all the datasets. Overall, the
lower ordermodels, Pme_LandLimmaSplines_L,were able toprovide a
ranking more often than their higher order counterparts Pme_H and
LimmaSplines_H.

Effect of reduced number of time points
Since it has remained common to have only few time points in real
biomedical studies, we also evaluated the performance of the best-
performing methods RolDE, Timecourse, Limma, and the baseline
ROTS in additional 1200 semi-simulated datasets with only three or

Table 1 | Median proportions ofmissing values and interquartile range (IQR)mean proportions ofmissing valid result scores in
the semi-simulated spike-in datasets and the experimental Francisella tularensis subspecies novicida dataset

UPS1 Filtered SGSDS Filtered UPS1Mix Filtered UPS1 Full SGSDS Full CPTAC Full UPS1Mix Full WT vs. L WT vs. D2 WT vs. D1

Missing values in proteins

All proteins 0.0% 0.0% 0.0% 14.1% 3.3% 19.6% 14.0% 7.0% 7.7% 7.1%

Spike-in proteins 0.0% 0.0% 0.0% 0.0% 4.6% 28.5% 0.0%

Missing values in results

BaselineROTS 0.0% 0.0% 0.0% 11.0% 1.8% 15.2% 9.0% 2.0% 1.8% 2.3%

Lme 0.0% 0.0% 0.0% 7.7% 0.5% 7.4% 7.2% 1.5% 1.4% 1.3%

Pme_H 0.0% 0.0% 0.0% 19.3% 3.2% 19.5% 19.1% 13.2% 16.1% 12.7%

Pme_L 0.0% 0.0% 0.0% 11.9% 1.2% 11.4% 11.2% 2.8% 2.7% 2.7%

LMMS 0.0% 0.0% 0.0% 4.8% 0.6% 5.9% 4.0% 0.8% 0.7% 0.8%

MaSigPro_H 20.3% 22.8% 23.2% 30.6% 24.1% 40.6% 32.9% 29.3% 31.4% 16.7%

MaSigPro_L 33.6% 35.7% 46.0% 41.1% 36.5% 52.2% 51.8% 43.6% 51.2% 26.8%

BETR 0.0% 0.0% 0.0% NA NA NA NA 29.6% 34.1% 32.2%

Timecourse 0.0% 0.0% 0.0% 23.4% 6.9% 27.8% 24.4% 20.8% 25.0% 23.5%

Limma 0.0% 0.0% 0.0% 19.3% 3.2% 19.2% 19.0% 13.2% 16.1% 12.7%

LimmaSplines_H 0.0% 0.0% 0.0% 19.3% 3.2% 19.2% 19.0% 13.2% 16.1% 12.7%

LimmaSplines_L 0.0% 0.0% 0.0% 11.9% 1.2% 11.1% 11.1% 2.7% 2.7% 2.6%

EDGE_H 0.0% 0.0% 0.0% 34.2% 15.0% 50.7% 33.8% 29.6% 34.1% 32.2%

EDGE_L 0.0% 0.0% 0.0% 34.3% 15.0% 50.7% 33.8% 29.6% 34.1% 32.2%

OmicsLonDA 0.0% 0.0% 0.0% 21.8% 4.3% 25.6% 21.6% 11.6% 16.2% 13.4%

RolDE 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

NA refers to no scores delivered at all by the method. Source data are provided as a Source Data file.
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four time points. Altogether 300 filtered (without missing values) and
300 full (including missing values) UPS1-based semi-simulated data-
sets of both lengths were explored. Again, RolDE performed overall
best, significantly outperforming the second-best method Timecourse
(p < 0.02 in all scenarios, Supplementary Fig. 2). Both RolDE and
Timecourse performed better than the cross-sectional baseline
method (p <0.001 in all scenarios) and Limma (p < 10−15). None of the
methods were largely affected by the missing values in the true
negative proteins.

Reproducibility between technical replicate Fn datasets
To evaluate the longitudinal differential expression methods in a real
proteomics study setting, we generated an experimental membrane-
enriched longitudinal proteomics data of Francisella tularensis sub-
speciesnovicida (Fn) (Fig. 1b), including four strains: thewild type (WT)
and null mutants of lpxD1 (D1), lpxD2 (D2) and lpxL (L). For evaluation
of the methods, differential expression between the null mutant and
the wild-type strains was investigated, while their growth at five dif-
ferent temperatures offered a surrogate for the different time points.
Three technical replicates of the three biological replicate samples
were used to form technical replicate datasets analyzed with the

different methods to evaluate the reproducibility of the methods. To
examine the overall reproducibility of the results produced by the
tested methods, all possible pairwise combinations of the strains were
analyzed (WT vs. D1, WT vs. D2, WT vs. L, D1 vs. D2, D1 vs. L, D2 vs. L).

The overall proportion of missing values in the Fn data was 10.8%,
being highest in the 37 °C samples withmore than 25% of all the values
missing in all strains but L (Supplementary Fig. 3). The proportion of
valid rankings provided by the different methods were consistent with
the full semi-simulated spike-in benchmark datasets with missing
values (Table 1): RolDE, Lme, BaselineROTS, Pme_L, LimmaSplines_L,
and LMMS provided a ranking for more than 97% of all the proteins in
each pairwise comparison; Limma, LimmaSplines_H, and Pme_H pro-
vided a ranking for 84–87% of the proteins; OmicsLonDA was able to
rank 84–88% of the proteins; and Timecourse, EDGE and MaSigPro
provided a ranking for <80% of the proteins.

Spearman correlations between the technical replicate lists were
on average highest with different variants of Limma (IQR mean cor-
relations 0.793–0.813, Fig. 3a), followed by LMMS (IQR mean correla-
tion 0.757) and RolDE (IQRmean correlation 0.754), both of which had
significantly higher correlations than the next method Pme_L with an
IQR mean correlation of 0.745 (p < 0.05). In addition to the overall
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Timecourse 2 1 NA
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OmicsLonDA 28 249 NA
RolDE 3 1

Strain

11

WT vs. L WT vs. D2 WT vs. D1 WT vs. L WT vs. D2 WTv vs. D1 Mean Rank
BaselineROTS 1.786 1.564 1.622 7 6 3 5.3

Lme 1.445 1.152 1.265 13 13 11 12.3
Pme_H 2.116 1.432 1.229 1 7 12 6.7
Pme_L 1.512 0.998 1.496 12 16 4 10.7
LMMS 2.031 1.730 1.011 2 1 14 5.7

MaSigPro_H 1.744 1.615 1.454 8 2 6 5.3
MaSigPro_L 1.291 1.315 1.295 15 11 10 12.0

BETR 1.627 1.417 0.825 11 8 16 11.7
Timecourse 1.789 1.221 1.874 6 12 1 6.3
Limma 1.998 1.606 1.367 3 3 7 4.3

LimmaSplines_H 1.994 1.597 1.355 4 4 8 5.3
LimmaSplines_L 1.437 1.071 1.675 14 15 2 10.3

EDGE_H 1.276 1.402 1.300 16 9 9 11.3
EDGE_L 1.655 1.334 1.170 10 10 13 11.0

OmicsLonDA 1.655 1.130 0.913 9 14 15 12.7
RolDE 1.833 1.586 1.482 5 5 5 5.0

Gene Set Enrichment Analysis (GSEA)
Normalized Enrichment Score (NES) Method GSEA NES ranks within comparisons

2
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c d

0.731 0.725 0.682 0.745 0.757 0.443 0.668 0.777 0.731 0.793 0.793 0.813 0.699 0.683 0.541 0.754

Fig. 3 | Reproducibility and biological relevance of the examined longitudinal
differential expression methods in the experimental Francisella tularensis
subspecies novicida (Fn) proteomics data. a Reproducibility of the methods was
evaluated using the Spearman’s rank correlation coefficient between technical
replicate result lists (n = 18 correlations for each method over all the six possible
pairwise comparisons of strains with three technical repeats for each comparison).
The violin plots display the distribution of correlations for each method, including
median (white circle), interquartile range (IQR) from the first to thirdquartile (black
box), and 1.5* IQR (whiskers). The IQRmean of the correlations for each method is
shown above each violin. Each method is shown with a unique color. b Median
proportional overlaps of the top k findings between the technical replicate result
lists when k was varied from 1 to the length of the entire dataset. Proteins with
missing valueswerefilteredout from thedataset prior to the reproducibility testing

in a andb. cRankings of the proteins related to themodified acyltransferases when
longitudinal differential expression was examined by eachmethod in each pairwise
comparison between the null mutant strains LpxD1 (D1), LpxD2 (D2), LpxL (L) and
the wild type (WT) over the five temperatures. The UniProt accession of each
protein related to themodifiednullmutant is shown.NA refers tonotdetectedat all
by the method. d The normalized enrichment scores (NES) from the gene set
enrichment analysis (GSEA) of the relevant Lipopolysaccharide synthesis pathway
and the associated knockout pathway proteins among the findings of the different
methods in comparisons of the acyltransferase null mutant strains and the wild
type. The NES scores of the methods were ranked within each comparison and a
mean rank was calculated over all the comparisons for each method. Source data
are provided as a Source Data file.
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correlations of the result lists, we examined themedian overlaps of the
top findings between the replicate datasets, when the size of the
overlap was varied from 1 to the total number of proteins in the
dataset. In line with the correlation results, the different variants of
Limma, LMMS, and RolDE showed a high overlap between the tech-
nical replicate result lists, especially among the top findings (Fig. 3b).

Biological relevance of the findings in the Fn data
Typically, the top findings in any experiment are the most interesting
ones and will most likely be selected for further validation. Therefore,
consistencyof amethod indelivering the samefindings at the topof the
list is a highly desirable quality.However, reproducibility alonedoesnot
guarantee biological relevance. Therefore, we also examined how the
different methods detected the proteins related to the modified acyl-
transferases in the Fn data. For this purpose, longitudinal differential
expression over the temperatures was examined pairwise between the
wild type (WT) and the null mutants of lpxD1 (D1), lpxD2 (D2) and lpxL
(L) in the full data with technical replicates averaged for each biological
replicate. The result lists from eachmethod were ordered based on the
strength of differential expression given by the method.

When investigating the acyltransferases themselves, most of the
methods ranked the proteins related to the acyltransferases lpxL and
lpxD2 to the top of their result lists, with the exception of BETR,
EDGE_H, and EDGE_L, which failed to provide a score for lpxD2. More
variation was observed in how themethods ranked the protein related
to lpxD1, with BETR, Pme_H, Timecourse, Limma, LimmaSplines_H,
EDGE_H, EDGE_L and OmicsLonDA failing to provide a score for the
protein (Fig. 3c).

In addition to the acyltransferases themselves, we also investi-
gated how the different methods ranked the related pathway of the
synthesis of lipid A and the endotoxin lipopolysaccharide (LPS).
Accordingly, we examined how the relevant proteins in different
comparisons in the KEGG pathway Lipopolysacchararide biosynthesis
—Francisella tularensis subsp. novicida U112 (ftn00540) and the asso-
ciated Lipopolysaccharide biosynthesis knockout pathway (ko00540)
were detected in our Fn dataset (Fig. 3d, Supplementary Table 1). In
each comparison of the wild type and mutant strains, RolDE, Limma,
LimmaSplines_H, and BaselineROTS consistently provided top find-
ings with high biological relevance (Fig. 3d). Also MaSigPro_H, LMMS,
and Timecourse provided highly biologically relevant top results in
most comparisons.

Biological relevance of the findings in the human iTreg data
In addition to evaluating the biological relevance of the findings of the
different methods in the Fn data, an additional publicly available
dataset of human iTreg in vitro induction33 was included in the com-
parison to comprehensively assess the methods in delivering biologi-
cally meaningful results. In this dataset of almost 10,000 proteins,
naïve T cells were stimulated and iTreg cells were induced using two
different protocols. Proteome profiles were acquired at multiple time
points during iTreg induction or mock stimulation at 6 h, 24 h, 48 h,
and 6 d. Longitudinal differential expression was determined between
the iTreg and the mock-stimulated control cells, separately for both
protocols, resulting in two comparisons.

As the exact proteins afflicted by the induction process are still
under research33,34 and not known in detail, several Treg related gene
sets were used to assess the biological relevance of the findings.
Altogether 28 Treg cell-related human gene sets were downloaded
from the Molecular Signatures Database (MSigDB version 7.5.1)35 and
combined into 14Treggene sets (SupplementaryData 2). In addition, a
Treg signature gene set34 from a large human study, genes from the
relevant Reactome pathway (RUNX1 and FOXP3 control the develop-
ment of regulatory T lymphocytes), and the interactome of the fork-
head box P3 (FOXP3) protein, which is a lineage specification factor of
Treg cells, were used to exploreTreg-related functional enrichment. In

both of the comparisons using the two different iTreg induction
protocols, the highest enrichments were most consistently detected
with RolDE, BaselineROTS, and BETR (Fig. 4a), suggesting that these
methods were able to provide biologically relevant results and find-
ings related to the Treg cell state expected using the Treg cell induc-
tion protocols.

Overlaps of the findings in the human iTreg data
To explore the reliability of the findings with the different methods in
the experimental iTreg data, we compared the overlaps of the top
findings between themethods. Commonfindings bymultiplemethods
areoften consideredmore reliable than thosedetectedonlyby a single
method11,33. When comparing the top 1000 findings of the overall best-
performingmethods in this study (RolDE, Timecourse, Limma, LMMS,
and BaselineROTS), RolDE had the largest number of shared and the
lowest number of uniquefindings in both comparisons (Fig. 4b); RolDE
had only 94 and 90 unique findings in the two comparisons, compared
to Limmawith 112 and 133, BaselineROTSwith 177 and 559, LMMSwith
278 and 262, and Timecourse with 288 and 321 unique findings.

To further expand these investigations, we explored the propor-
tion of the top 1000 findings of each method that was common with
the other methods in their respective top 1000 findings over the two
comparisons (Fig. 4c). Here, only the best-performing variant of each
method was included for an unbiased and accurate comparison, as for
methodswithmultiple variants, a large proportion of the top result list
is shared between the variants. Overall, BETR had the lowest propor-
tion of unique detections, followed closely by EDGE_H, RolDE, LMMS,
andPme_H. Less than 10%of their top 1000findingswereunique to the
method and over 50% of the findings were shared with six or more
other methods.

Application of RolDE to longitudinal type 1 diabetes proteomics
data with non-aligned time points
While the semi-simulated spike-in datasets and the experimental Fn
and iTreg datasets contained perfectly aligned time points (or their
surrogates), this is not always the case in various real experimental
settings. Therefore, we demonstrate the applicability of the overall
best-performing RolDE method in a previously published longitudinal
type 1 diabetes proteomics data with non-aligned time points10. The
dataset contains blood plasma protein expressionmeasurements of 11
children developing T1D and 10 matched controls10. Nine longitudinal
samples were collected for each child with non-aligned time points.
The aim was to detect early T1D related biomarkers from the blood
even before seroconversion and T1D diagnosis, which would allow
earlier disease prediction and intervention.

RolDE detected a total of 15 proteins with longitudinal differential
expression between the T1D cases and controls at false discovery rate
(FDR) of 0.05 (Supplementary Table 2). These included proteins with
clear trend differences as well as proteins with clear expression level
differences between the cases and controls. Two keratins, K1H1 and
KRT86, were detected as highly differentially expressed (Fig. 5a, Sup-
plementary Table 2). Decreased levels of keratins36 as well as increased
keratin metabolism37 have been previously associated with diabetes
and hyperglycemia with keratinocyte proliferation, differentiation,
and function38. Downregulation of another detected protein (Fig. 5b),
cell growth regulator with EF-hand domain 1 (CGRE1), has been asso-
ciated with hyperglycemia in humans39. Significant decrease in sero-
transferrin (TRFE) in T1D cases was also detected (Fig. 5c).
Serotransferrin has been associated with diabetes and glucose meta-
bolism levels in multiple studies40–42; Metz et al. reported sero-
transferrin to be downregulated by two-fold in the plasma of T1D
patients compared to controls42. Similarly, serum Amyloid A1 (SAA1,
Fig. 5d), a top differential expression finding of RolDE, has been pre-
viously linked to diabetes and blood glucose levels in multiple
studies43–45. Furthermore, sodium channel and clathrin linker 1 (SCLT1)
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was detected as highly significant (Fig. 5e). It has been linked to cilio-
pathies in human46 and many ciliopathies have been linked to obesity
and insulin secretion in the pancreas by the regulating effect of pan-
creatic cilia47.

Finally, we compared the RolDE results to the results from the
original study by Liu et al.10. The study detected two proteins with
differential expression between T1D cases and controls at FDR of 0.05
usingmixed effectsmodelingwith linear and quadratic randomeffects
in addition to thefixedeffects10. Oneof these, SCLT1, was alsodetected
byRolDE,whereas theother one, carbonyl reductase 1 (CBR1), had FDR
of ~0.07 with RolDE (Supplementary Fig. 4).

Taken together, these top findings demonstrate the ability of
RolDE to detect proteins with various kinds of differential expression
patterns also in data with non-aligned time points.

Discussion
We have comprehensively evaluated the performance of 16 approa-
ches, including the RolDE method developed in this study, for

detecting differential expression between two conditions in long-
itudinal proteomics data. Altogether 3120 semi-simulated proteomics
datasets were used to benchmark the ability of the different approa-
ches to detect the truly differentially expressed spike-in proteins with
various longitudinal expression patterns and differences, both with
andwithoutmissing values present in thedata.The reproducibility and
biological relevance of the results of the different methods were fur-
ther evaluated using a longitudinal experimental dataset based on
mutants of Francisella tularensis subspecies novicida at various tem-
peratures known to change the expression of proteins in the Raetz
pathway responsible for Lipid A Biosynthesis48. In addition, the biolo-
gical relevanceof the findingswas assessed in a publicly available time-
series dataset33 of human iTreg cell differentiation. Finally, we
demonstrated the ability of RolDE to detect differential expression
even in data where the time points in different conditions are not
aligned using a previously published T1D dataset10.

Overall, the proposed longitudinal differential expressionmethod
RolDE performed best in the semi-simulated spike-in datasets,
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including datasets with missing values in the true positive spike-in
proteins (Fig. 2d, g). Missing values are a typical occurrence in pro-
teomics data, especially in the popular label-free data-dependent
acquisition approach. Furthermore, as the proteins of interest are
typically unknown beforehand and may also contain missing values
(such as in the SGSDS datasets or in the Fn dataset), the ability of a
differential expression method to deal with versatile missing values
might be crucial in detecting relevant proteins to the experimental
question. RolDE also displayed the most balanced performance of
detecting all possible types of trend differences with good consistency
(Supplementary Fig. 1). It is typical that a researcher does not know
beforehandwhat types of differences in longitudinal expression are to
be expected. The ability of a method to detect various types of trend
differences is thus essential for a comprehensive analysis of the data.

The overall reproducibility of the results in the biological Fn data
as well as the reproducibility of the top results was best with the
Limma-based approaches, RolDE and LMMS. The relevance of the top
findings in terms of both the modified proteins themselves as well as
the directly associated KEGG Lipopolysaccharide Biosynthesis and
Lipopolysaccharide Biosynthesis knockout pathway proteinswasmost
consistent with RolDE, Limma, LimmaSplines_H, and BaselineROTS.
LPS is an essential part of the Gram-negative bacteria outer membrane
and forms an amphipathic interface between the bacteria and the
environment49,50. LPS is composed of three structural parts: the core
polysaccharide, O-antigen, and the membrane anchor lipid A49. Mod-
ifications of lipid A can alter the structure and pathogenicity of the
bacterium and are influenced by environmental conditions such as
temperature51. In Fn, temperature has been shown to alter the com-
position of lipid A51. The chosen KEGG pathway focusing on LPS bio-
synthesis therefore served as valuable readout for exploring and
validating the performanceof the differentmethods and alsohighlight
the consistency of the generated proteomics data within our under-
standing of Fn biology field as a whole.

In the experimental human iTreg data, the overall biological
relevance of the results was highest with RolDE, BaselineROTS, BETR,
and Timecourse, as assessed by their enrichment withmultiple related
gene sets from various sources, which were expected to provide a
good surrogate of what should be affected during the induction pro-
cess. The results were well in line with the semi-simulated spike-in
datasets as well as the Fn data, where especially RolDE and Base-
lineROTS performed overall best. The relevance of the RolDE findings
was further supported by the observation that it was among the
methods with the largest proportion of shared and the lowest pro-
portion of unique findings among its top 1000 detections. For
instance, in a previous comparative study of differential expression
methods in RNA-seq, it has been observed that true positives are
generally shared by the methods, while the unique findings by a single
method are rarely true positive detections11.

In summary, the proposedmethod RolDE performed overall best.
In addition to excellent performance in the semi-simulated spike-in
datasets, it had goodoverall and especially top reproducibility (Fig. 3a,
b), was among the top methods in the experimental Fn (Fig. 3c, d) and
iTreg datasets (Fig. 4a), as well as displayed a high degree of overlap of
its top findings in the iTreg data (Fig. 4b, c). Furthermore, RolDE
delivered interesting findings even when the time points in the data
were not aligned (Fig. 5). Even though not always being the best
method in each explored scenario, the consistently good performance
throughout the various datasets and comparison aspects suggests
RolDE to offer robust general all-round approach for detecting long-
itudinal differential expression. By default, RolDE provides a score for
all the proteins in the data.

The ability of RolDE to deal with missing values and noisy mea-
surements can, for the most part, be credited to four features of the
method: (1) modularity, (2) application of ranks and rank products,
(3) application of longitudinal regression modeling, and (4)

reproducibility-optimization with ROTS. The benefit of modularity is
that, even if some modules would not be able to provide a valid score
for a protein, the other modules with diverse approaches can still
provide enough evidence for detecting possible differential expres-
sion, whereas proteins with multiple poor ranks will end up towards
the end of the result list. The motivation to use ranks and rank pro-
ducts in RolDE is to avoid relying on any distributional assumptions for
the data. The rank product approach has been previously shown to be
especially effective for noisy datasets and for small numbers of
replicates52,53. An additional benefit of the longitudinal regression
modeling applied in the RegROTS and PolyReg modules is their tol-
erance against missing values. Although the method does not use
regression for any imputation of missing values as such, the long-
itudinal regression models can typically be estimated for a protein
even in the presence of some missing values. The coefficients of these
models are then used to explore longitudinal differential expression.
Similarly, most of the other longitudinal methods tested in this study
also used some formof regressionmodeling. Finally, the benefit of the
reproducibility-optimization procedure of ROTS is its ability to pro-
duce robust results, as shownbyus andothers in this study andvarious
other omics studies12,30,54–56. In addition, ROTS tolerates a moderate
number of missing values in the data matrix by effectively ignoring
their contribution during the operation of the procedure26, making it
particularly suitable for proteomics data.

While RolDE displayed good performance in all scenarios, most of
the methods performed well in at least some comparison. Similar to
RolDE, Timecourse, a longitudinal differential expression method
developed for microarrays and utilizing a Bayesian framework, per-
formed excellent in the semi-simulated datasets and produced biolo-
gically relevant results in the iTreg data and mostly in the Fn data.
However, missing values in the spike-in proteins clearly hindered the
performance of the method and Timecourse was able to provide a
ranking only for ~72%–79% of proteins in the UPS1 and CPTAC semi-
simulated datasets and the experimental Fn data when missing values
were present (Table 1). Furthermore, Timecourse was not able to
deliver a ranking for all themodified acyltransferases known to change
between the conditions in the Fn dataset. A method that is not able to
deal with different kinds of missingness in the data might be imprac-
tical in the context of proteomics data, wheremissing values can occur
due to various reasons18,57. In addition, Timecourse does not provide
significance estimates for the features, which might also limit its
usability.

Although not quite on par with RolDE, the different variants of
Limma and LMMS offered consistent overall performance as well. In
general, LMMSperformedwell in the semi-simulated spike-in datasets,
especially in SGSD-based datasets with more time points. Similar to
RolDE, LMMS was tolerant against missing values and typically pro-
vided scores for most of the proteins in the datasets (Table 1). In
addition, LMMS had good reproducibility and biological relevance of
the results, especially in the Fn data. Limma provides two different
approaches to detect longitudinal differential expression. In the semi-
simulated spike-in datasets, the group mean parametrization
approach (Limma) performed similar to the cubic splines approach
(LimmaSplines) when the data did not contain missing values. Some
differences in theperformancecouldbeobservedwhenmissing values
were present in the data. In particular, the LimmaSplines_L approach
with less degrees of freedom was best among the Limma-based
approaches when missing values were present also in the spike-in
proteins in the SGSDS and CPTAC semi-simulated datasets (Fig. 2), but
not in datasets without missing values or when missing values were
present only in the background proteins (UPS1-based datasets).
Reproducibility of the resultswas very high in all variants of Limma and
in particular the group mean parametrization approach (Limma) and
the splines variant with more degrees of freedom (LimmaSplines_H)
provided biologically relevant results in the Fn data. However, similar
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to Timecourse, Limma and LimmaSplines_H failed to provide a score
for all the modified acyltransferases in the Fn data.

The cross-sectional differential expression method used in this
study as a baseline, the BaselineROTS, also performed well in the
comparisons. BaselineROTS displayed good performance in the semi-
simulated spike-in datasets, especially in the UPS1 Mix datasets, where
several different types of longitudinal trends and trend differences
were present. Furthermore, BaselineROTS displayed good overall
reproducibility andwas able to provide biologicallymeaningful results
in both of the examined experimental datasets. Overall, when con-
sidering all the examined scenarios, out of the longitudinal approa-
ches, only RolDE consistently outperformed BaselineROTS. Also
Timecourse and the Limma-based approaches outperformed or per-
formed on par with BaselineROTS in most explored scenarios. These
results suggest that a well-performing two group differential expres-
sionmethod applied separately on each timepoint andwith the results
summarized with a suitable metric (e.g., with minimum of the sig-
nificance values as in this study) can sometimes provide a meaningful
ranking for the strength of longitudinal differential expression in the
data. Our results are in line with the previous results of a study com-
paring longitudinal methods for RNA-sequencing, where most long-
itudinal methods performed worse than pairwise differential
expression approaches applied timepoint-wise11.

BETR and variants of EDGEdid not toleratemissing values and did
not match the performance of RolDE, Timecourse and Limma in the
semi-simulated datasets and in terms of reproducibility, but fared
better on the experimental iTreg data, especially BETR. While per-
forming decently in many of the tested semi-simulated datasets,
OmicsLonDa struggled inmany scenarios and in the iTreg datamost of
its top 1000 findings were unique. However, OmicsLonDa was initially
developed for identification of time intervals with significant differ-
ences between the conditions in longitudinal data and is perhaps not
suitable as a general tool to detect any longitudinal differential
expression between the conditions. Similarly, by default MaSigPro
explores the overall time-associated changes over both conditions, but
these effects were not included in this study, as the interest was
explicitly in the longitudinal differential expression between the
conditions.

There was considerable variation in the performance of the var-
ious regressionmodeling approaches tested. Overall, the higher order
polynomial regression models outperformed the lower degree mod-
els. Only in the SGSDS full datasets, the overall performance of Pme_L
was better than the performance of Pme_H. This reversal in perfor-
mancewasmost likely related tomissing values in the spike-in proteins
in the SGSDS full datasets and the inability to reliably define the more
complex models related to Pme_H for all the spike-in proteins. Fur-
thermore, the performance of the full regression modeling approach
wasbetter over a broader spectrumof trenddifference categories than
the performance of the lower degree models (Supplementary Fig. 1).
The degree of the regression was directly associated to how complex
trend differences could be detected between the conditions by the
models, as expected. All polynomial regression model approaches
utilized orthogonal polynomials. This likely allowed the detection of
both lower and higher order differential trend patterns simultaneously
by reducing collinearity between the coefficients of different poly-
nomial degrees as compared to using raw polynomials58,59.

Most of the examined approaches in this study require a suitable
polynomial degree or degrees of freedom to be defined. However, our
results show that, through the use of orthogonal polynomials, differ-
ential expression related to different polynomial degrees can be
effectively detected simultaneously within a single model (Supple-
mentary Fig. 1). Moreover, the performance of RolDE was not sensitive
to the specific polynomial degrees and remained excellent regardless
of their choice (Supplementary Fig. 5). By default, RolDE defines the
used degrees automatically. Similar to the generalized additive

modeling (GAM) framework60,61, where the response variable is mod-
eled against unknown smooth functions of explanatory variables,
RolDE can simultaneously search for many different types of patterns
related to longitudinal differential expression. While the advantage of
GAM is that it is not limited to global parametric functions, such as
polynomials, which provides flexibility to adapt the fit to the data even
with complex non-linear relationships, its downside is thepropensity to
overfit. Therefore, with RolDE we decided to focus on relatively simple
models, which is crucial for typical longitudinal proteomics studies,
involving small to moderate numbers of individuals and time points.

By default, the use of RolDE requires the user to provide only a
design matrix linking the samples in the data to the time points and
conditions, and information whether the time points are aligned or
not. RolDE thendetects any kindof longitudinal differential expression
(e.g., stable differences in expression levels, differences in linear/
quadratic/cubic/sigmoid/etc. longitudinal expression patterns) from
the data. RolDE is freely available as an R package in Bioconductor
(https://bioconductor.org/packages/RolDE/).

Methods
Semi-simulated spike-in proteomics datasets
Three spike-in proteomics datasets were used as a basis for generating
the semi-simulated longitudinal spike-in proteomics datasets.

TheUniversal Proteomics Standard Set (UPS1) data. The UPS1 spike-
in data includes 48 Universal Proteomics Standard Set (UPS1) proteins
spiked into a yeast proteome digest with five different concentrations:
2, 4, 10, 25, and 50 fmol/μl30. Three technical replicates of each con-
centration were analyzed using an LTQ Orbitrap Velos mass spectro-
meter. After preprocessing, 47 spike-in proteins and 1581 proteins
remained in the UPS1 data.

The Shotgun Standard Set Dataset (SGSDS). In the SGSDS spike-in
data, 12 nonhuman proteins were spiked into a stable human back-
ground (human embryonic kidney, HEK-293) in eight different sample
groupswith known concentrations31. Three technical replicates of each
sample group were analyzed using a Q Exactive Orbitrap mass spec-
trometer both in the DDA and data-independent acquisition (DIA)
modes. In this study, theDDA shotgunproteomics datawasused. After
preprocessing, all 12 spike-in proteins and 3487 proteins remained in
the SGSDS data.

The Clinical Proteomic Tumor Analysis Consortium (CPTAC) data-
set. The CPTAC data from study six contains 48 UPS1 proteins spiked
into a stable yeast proteome digest in five different concentrations:
0.25, 0.74, 2.2, 6.7 and 20 fmol/μl32. Three technical replicates of each
sample group were analyzed using an LTQ Orbitrap mass spectro-
meter (test site 86). After preprocessing, 41 spike-in proteins and 1247
proteins remained in the CPTAC data.

The default peak-picking settings were applied to process the raw
MS files of all the datasets in MaxQuant62 version 1.5.3.30. Peptide
identifications were performed using the Andromeda search engine.
The ‘match between the runs’ option was enabled with the default time
window of 0.7min and alignment time window size of 20min. ‘Require
MS/MS for comparisons’ was on, and decoy mode was ‘revert’. False
discovery rate (FDR) of 0.01 was set as a threshold for peptide and
protein identifications. A FASTA database of the yeast Saccharomyces
cerevisiae protein sequences merged with the Sigma-Aldrich 48 UPS1
protein sequences was used to search protein identifications for the
UPS1 and CPTAC data. For the SGSDS data, a FASTA database of the
human HEK-293 cell proteins merged with the sequences of the non-
human spike-in proteins was used. MaxLFQ with ‘advanced ratio esti-
mation’, ‘stabilize large LFQ ratios’ and ‘advanced site intensities’ were
on. Non-normalized protein intensities were extracted fromMaxQuant
and imported into theR statistical programming software environment.
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The datasets were normalized using the variance stabilization normal-
ization (vsn)63 shown to perform well with proteomics spike-in data12.

Generation of the semi-simulated datasets with varying long-
itudinal trends
The normalized spike-in datasets were used to create semi-simulated
datasets with varying pre-defined longitudinal trends in the spike-in
proteins. Unlike the spike-in proteins, the expression of the back-
ground proteins was expected to remain stable in all sample groups. It
should be noted, however, that due to experimental noise and fluc-
tuations, there is always some variation also in the abundance of the
background proteins, which reflects the nature of MS data in a real
biological experimental setting.

For the creation of the semi-simulated datasets, the means and
standarddeviations of theproteins in the sample groupsof theoriginal
normalized spike-in data were used. More precisely, the simulated
expression of protein i in sample group j for each replicate was drawn
from a normal distribution Nðμij ,σ

2
ijÞ, where the protein and sample

group specific mean μij and variance σ2
ij were calculated from the ori-

ginal spike-in dataset. The longitudinal trends were created by reor-
ganizing the semi-simulated samplegroups intodesired combinations.
For example, to create a simple linear trend using the UPS1 data, we
sequentially combined the simulated 2 fmol to 50 fmol sample groups.
This approach allowed the generation of a plethora of semi-simulated
proteomic datasets with different longitudinal trends for the spike-in
proteins as well as a constant but noisy background and, therefore, a
realistic benchmarking of the longitudinal methods.

Six basic trend categories were introduced for the UPS1 and
CPTAC datasets: Stable, Linear, LogLike, Sigmoid, Poly2, and Poly-
Higher (Supplementary Data 1). For the SGSDS datasets, five basic
trend categories were used: Stable, LogLike, Sigmoid, Poly2, and
PolyHigher. For the SGSDS datasets, a longitudinal linear increase or
decrease (Linear) was unattainable due to the uneven concentration
differences of the spike-inproteins between the samples in the original
data31. In total, this approach resulted in 21 trend difference combi-
nations between two simulated conditions for the UPS1 and CPTAC
datasets and 15 combinations for the SGSDS dataset. When each
dataset contained only one type of trend for a condition, a total of 300
semi-simulateddatasetswith twoconditions anddifferent longitudinal
trends and/or expression levels were generated for the UPS1 and
CPTAC datasets and 210 for the SGSDS dataset (Supplemen-
tary Data 1).

In addition, we generated 300 semi-simulated datasets with
varying trends within a condition and varying trend differences
between the conditions to reflect typical real experimental data where
proteins with multiple different types of longitudinal trends coexist.
These datasets were generated by randomly selecting 10 different
trend differences for the spike-in proteins using the UPS1 dataset,
referred to as UPS1 Mix in the results section (Supplementary Data 1).

For benchmarking the methods, two versions of each semi-
simulated UPS1 and SGSDS dataset were generated, referred to as full
and filtered in the results section. In the full datasets, none of the
proteins were filtered from the data (i.e., proteins with missing values
were included), whereas the filtered datasets contained only proteins
without any missing values.

As missing values are a common occurrence in proteomics
data17,18, the CPTAC dataset with relatively large numbers of missing
values in the spike-in proteins was used to generate semi-simulated
datasets with high proportions of missing values to explore the tol-
eranceof thedifferentmethods against suchmissing values. Here, only
full datasets were considered.

Longitudinal Francisella tularensis proteomics data
To evaluate the longitudinal differential expression methods in a real
proteomics study setting, we generated an experimental membrane

enriched longitudinal proteomics data of Francisella tularensis sub-
species novicida (Fn). Francisella tularensis subspecies tularensis (Ft) is
a highly pathogenic Gram-negative bacterial agent responsible for the
disease tularemia in humans. Research interest on Ft has peaked dur-
ing the past decades due to the possible application of the bacterial
agent in biological warfare and bioterrorism64. As reliablemethods for
the geneticmanipulationof thehighly virulent subspecies Fthave been
lacking, themore responsive and avirulent subspecies Fnwas used as a
proxy in an effort to shed light into the mechanisms of pathogenicity
of Ft64. We considered two temperature regulated N-acyltransferases,
designated lpxD1 and lpxD2, which have been identified in Fn. LpxD is
involved in the productionof a key virulence factor, lipid A, in Fn50. The
null mutant of lpxD1 has been shown to be more sensitive to envir-
onmental factors and attenuated in virulence when compared to the
wild type50,51. In addition, we studied a late acyltransferase lpxL, which
has been discovered in Ft and shown to be essential for cell viability at
temperatures above 33 °C65. Thus, the dataset consisted of four strains:
thewild type (WT) and nullmutants of lpxD1 (D1), lpxD2 (D2), and lpxL
(L). In order to activate the temperature sensitive enzymes responsible
for the production of the lipopolysaccharide, the global protein
expression of the Fn strains was examined at five temperatures: 18, 21,
25, 32, and 37 °C (surrogates for time points). Given that LPS is
assembled in the membrane of Gram-negative bacteria, we chose to
isolate and generate data only for amembrane-enriched fraction. Each
mutant and wild type strain consisted of three biological replicates
(surrogates for individuals), and each biological replicate was mea-
sured in three technical replicates, resulting in a total of 36 unique
samples at each temperature and 180 samples in total. For evaluation
of the methods, differential expression between the null mutant and
the wild type strains was investigated, while their growth at different
temperatures offered a surrogate for the different time points.

Wild-type Fn strain U112 was originally obtained from Professor
Francis Nano (University of Victoria, Canada)66 and maintained at
−80 °C. The lpxD1, lpxD2, and lpxL null mutants were generated
previously67. The lpxL strain used was a transposon insertionmutant of
FTN_0071 (lpxL) identified as tnfn1_pw060510p04q127 carrying a
kanamycin cassette disrupting the coding sequence. The mutant was
functionally characterized as having an lpxL knockout lipid A pheno-
type. All bacterial strainswere grown in tryptic soy broth supplemented
with 0.1% cysteine at the designated temperatures (18, 21, 25, 32, and
37 °C).Cultureswere harvested at logphase, supernatantwas aspirated,
and cell pellets were flash frozen and stored at −80 °C until processing.

To isolate a fraction of proteins enriched in membrane proteins,
cell pellets were first fractionated along the lines of a previous study68.
Briefly, cell pellets were resuspended in0.1MNaPO4, 0.05MMgSOD4,
DNaseI digested, and sonicated. Unbroken cells were removed by
centrifugation and the supernatant was again subjected to cen-
trifugation at 39,000× g for 45min. The resulting pellet, which con-
tained the membrane envelope, was resuspended in 50mM
ammonium bicarbonate and subjected to trypsin digestion. After
digestion, samples were desalted usingMACROspin C18 columns (The
Nest Group, Southborough, MA). The flow-through was collected,
concentrated in a speedvac to near dryness, and resuspended in 5%
acetonitrile/0.1% formic acid for MS analysis. Samples were stored at
−80 °C until MS analysis.

Themembrane sampleswereprepared for proteomics analysis by
high performance liquid chromatography (HPLC)-tandem mass spec-
trometry on an LTQ Orbitrap Elite (Thermo-Fisher) according to pre-
viously published protocols69. Briefly, mass spectrometry data were
collected over a 95min LC gradient using data-dependent acquisition
with a full MS scan for 350–2000m/z range at 120 K resolution. Top 15
ions were selected with an isolation width of 2m/z for fragmentation
by CID, with a dynamic exclusion of 30 s. The default peak-picking
settings were applied to process the raw MS data files in MaxQuant62

version 1.6.5.0. Peptide identifications were performed using the
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Andromeda searchenginewith a SwissProt/UniProt FASTAdatabaseof
all reviewed and unreviewed protein sequences for Fn strain U112
(April 2019). Trypsin digestion with a maximum of two missed clea-
vages, carbamidomethylation of cysteine as a fixed modification, and
methionine oxidation and N-terminal acetylation as variable mod-
ifications were used as search parameters. Precursor mass tolerance
was set to 20ppm and fragment mass tolerance to 0.5 Da. Minimum
peptide length was set to 7. The ‘match between the runs’ option was
enabled with the default time window of 0.7min and the alignment
time window size of 20min. ‘Require MS/MS for comparisons’was on,
and decoymodewas ‘revert’. A false discovery rate (FDR) of 0.01 at the
peptide and protein level was applied. The MaxQuant label-free
quantification LFQ algorithmwas used to calculate the relative protein
intensity profiles across the samples. ‘Advanced ratio estimation’,
‘stabilize large LFQ ratios’ and ‘advanced site intensities’were on. Non-
normalized protein intensities were extracted from MaxQuant and
imported into the R statistical programming software environment
version 3.6.1. Reverse protein hits, known contaminants, and proteins
with less than two peptides and at least one unique peptide were fil-
tered out. The dataset was normalized using the variance stabilization
normalization (vsn)63 shown to perform well with proteomics data12.

Longitudinal human iTreg proteomics data
To further evaluate the methods on real experimental biological
data, we included a previously published proteomics dataset
exploring the molecular landscapes associated with in vitro
induction of human iTreg cells33. Naive CD4+ T cells from three
adult donors were stimulated and iTreg cells were induced using
two different protocols with or without the vitamin A metabolite
all-trans retinoic acid (ATRA) and rapamycin (groups G03 and G05
in the original study). Samples were collected at 6 h, 24 h, 48 h and
6 d of differentiation and subjected to proteomics analysis. The
samples were analyzed using TMT-10plex-based LC-MS/MS with a
Q Exactive Hybrid Quadrupole-Orbitrap mass spectrometer33 and
the data was normalized using the TMT ratio sample median nor-
malization. The preprocessed data available from the original
study was downloaded and log2-transformed. Longitudinal dif-
ferential expression was determined between the iTreg and the
mock-stimulated control cells (group G02 in the original study),
separately for both protocols, resulting in two comparisons.

Longitudinal human type 1 diabetes proteomics data
Finally, we evaluated the performance of RolDE on human type 1 dia-
betes proteomics data from a recent study by Liu et al.10. The data
contained longitudinal blood plasma protein expression measure-
ments from 11 children (aged 0.8–14.4 years) developing T1D and 10
matched controls. Nine longitudinal samples were collected for each
child, with the T1D case samples covering seroconversion and clinical
T1D diagnosis. The samples were analyzed using a TMT-10plex-based
LC-MS/MS approach with a Q Exactive HF mass spectrometer with all
time points of one individual and a common pooled reference sample
included in one TMT-10plex MS run10. Altogether, 189 samples were
analyzed. The data was normalized and filtered similarly to the original
study: the reporter ion intensities were standardized to the reference
sample, log2-transformed and median normalized, and only proteins
with at least two individuals from either group with at least seven non-
missing values were included in the analysis10.

Robust longitudinal Differential Expression (RolDE)
The proposed method, RolDE, is a composite method, consisting
of three independent modules with different approaches to detect
longitudinal differential expression (see Fig. 1e for a schematic
illustration). While each module typically performs well already on
its own in ranking the true findings high, there can also be some
additional unwanted noise detections (false positives) associated

with each module. Since such false positives are typically specific
for a single module, combining the modules creates a balanced
composite method, enriches the true signal at the top of the
results and allows RolDE to robustly detect varying differences in
longitudinal trends and expression levels in diverse data types and
experimental settings. The three modules of RolDE, named
RegROTS, DiffROTS and PolyReg, and their combination are
described in more detail below.

RegROTS
The RegROTS module combines the power of polynomial regression
modeling and the reproducibility optimization of ROTS26. First, a
polynomial regression model for each protein is separately fitted for
each individual u over time t:

yu =β0u +
Xd
j = 1

βjut
j + ε ð1Þ

where d is the polynomial degree of the model, βju are the regression
coefficients, and ε is the error term. The degree d is by default defined
as: d = max 1,min m

2

� �
,4

� �� �
, where m is the median number of time

points over all the individuals. Orthogonal polynomials are used to
reduce multicollinearity and allow for more independent exploration
of coefficients of different polynomials of the same variable58,59. The
orthogonal polynomials are defined using the three-term recursion
algorithm described in70 and implemented in the function poly of R. If
the time points in the compared conditions are aligned, we use the
default algorithm. If the time points are not aligned, we omit the last
scaling step in the function for eachpolynomial (i.e., the square root of
the sum of the squared vector values of the longitudinal variable, the
L2 norm) to preserve comparability between the coefficients of the
different individual regression models.

Next, all coefficients of the same degree j are compared across
the individual models by considering all possible pairs of individuals
u and v between the two conditions C1 and C2: Δβjuv = βju � βjv, where
u2 C1 and v 2 C2. These replicate comparisons are divided into
multiple different runs so that each individual is used atmost once in
each run. Thus, assuming an equal number of individuals per con-
dition n, a total of n runs are considered. For instance, with three
individuals in both conditions, we consider three runs: run 1 u1-v1, u2-
v2, u3-v3; run 2 u1-v2, u2-v3, u3-v1; and run 3 u1-v3, u2-v1, u3-v2. Subse-
quently, within each run, multigroup ROTS is used to test the null
hypothesis Δβ0 = Δβ1 = . . . =Δβd = 0 for each protein to investigate,
whether there are differences in any of the regression coefficients of
the individual models between the different conditions, including
the intercept Δβ0 (mean expression), linear longitudinal trends Δβ1

(slope), quadratic trends Δβ2, or any of the examined polynomial
trends until degree d (Δβd). In each run, the proteins are then ranked
according to the significance values of the modified F-statistic from
the multigroup ROTS. The protein with the smallest significance
value gets the smallest rank. The final RegROTS score for a protein is
calculated by combining these ranks from the different runs using
the rank product (i.e., the geometric mean):

SRegROTS =
Yn
i = 1

ri

 !1
n

ð2Þ

where ri is the rank of the protein in run i and n is the total number of
runs. Previous cross-sectional studies have suggested the rank product
approach to be especially useful for noisy data52,53. The empirical
distribution of SRegROTS under the null hypothesis is shown in
Supplementary Fig. 6a. Given the null hypothesis is valid, the
differences in the estimated coefficients for the longitudinal trends
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and expression levels between the conditions are effectively zero and
no longitudinal differential expression exists.

DiffROTS
The DiffROTS module examines directly the expression differences
between the conditions at each time point. Similar to the RegROTS
module, all the individuals in condition C1 are compared to all the
individuals in condition C2 in multiple runs, but instead of comparing
the coefficients of the fitted models, the expression measurements ytu
and ytv for each pair of individuals u and v at time point t are used
directly: Δytuv = ytu � ytv. If any of the protein abundance values are
missing, this results in amissing value for that time point in the analysis.

Similar to the RegROTS module, multigroup ROTS is then used
within each run to detect differences in the expression levels between
the conditions, with the null hypothesis that there are nodifferences in
the expression values at the distinct time points between the condi-
tions, i.e.,Δy1 =Δy2 = . . . =ΔyT =0, where T is the total number of time
points considered. In each run, the proteins are ranked according to
the significance values of the modified F-statistic from the multigroup
ROTS. The protein with the smallest significance value gets the smal-
lest rank. The final DiffROTS score for a protein is then calculated by
combining these ranks from the different runs using the rank product
(i.e., the geometric mean):

SDiffROTS =
Yn
i = 1

ri

 !1
n

ð3Þ

where ri is the rank of the protein in run i and n is the number of runs.
The empirical distribution of SDiffROTS under the null hypothesis is
shown in Supplementary Fig. 6b. Given the null hypothesis is valid, the
expression differences between the conditions are effectively zero at
each time point and no longitudinal differential expression exists.

If the time points in the data are not aligned between the indivi-
duals and the expression levels between the different conditions
cannot be directly compared at different time points, the DiffROTS
module is adjusted to such a design. This is done by examining the
expression level differences between the conditions after accounting
for time-associated trends of varying complexity in the data. More
specifically, polynomial regressionmodels of degrees j =0,…,d arefirst
fit to each protein: y=β0 +βj t

j + δ0u + ε, where δ0u is the individual
specific baseline, δ0u ∼N 0, σ2

0u

� �
. Themaximumdegree d is by default

defined as d = max 2,min m� 1, 5ð Þ� �
, where m is the median number

of time points over all the individuals. Individual variation is taken into
account by adding a random effect for the individual baseline but can
be adjusted to incorporate individual slopes as well. The model resi-
duals ejtu = ytu � ŷjtu are then recorded for each individual u in each of
their measured time point t, and differentially expressed proteins
between the two conditions are determined by comparing all the
residuals of the individuals in one condition to those in the other
condition using two-group ROTS26, separately for the different poly-
nomial degrees j. To detect any differential expression between the
conditions, the final DiffROTS score for a protein is determined as the
minimum over the significance values pj over the compar-
isons: SDiffROTS =minðp0,p1, . . . ,pdÞ

PolyReg
The PolyReg module applies polynomial regression modeling to each
protein todetect longitudinal differential expression over time t across
the conditions c:

y= β0 +
Xd
j = 1

βj t
j + γoc+

Xd
j = 1

γjc � tj + ε ð4Þ

where d is the polynomial degree of the model, βj and γj are the time
and condition-related regression coefficients, respectively, and ε is the
error term. Individual variation can be taken into account by adding a
random effect for the individual baseline or slope. By default, RolDE
usesfixed effectsmodels for the PolyRegmodulewhen the timepoints
are aligned and mixed models with random effects for the individual
baseline when the time points are not aligned. Using themixed effects
modeling approach should be considered especially when hetero-
geneity and uneven sampling points (e.g., non-aligned time points) are
expected among individuals. The degree d is by default defined as
d = max 2,min m� 1, 5ð Þ� �

, where m is the median number of time
points over all the individuals. For each of the condition related
coefficients γj, the null hypothesis is γj =0, that is, the condition
related variable is not statistically significantly associated with the
abundance of the protein. Each null hypothesis is examined using t-
test, which is the standard way of assessing the significance of
regression coefficients. The corresponding significance values pγj

are
then used to determine the final score for the PolyRegmodule, SPolyReg,
which is calculated as the minimum over the significance values of the
condition related regression coefficients:

SPolyReg =minðpγ0
,pγ1

, . . . ,pγd
Þ ð5Þ

The composite method RolDE
Finally, for a comprehensive inspection of differential expression
between the conditions, the results from the different modules are
combined using the rank product (i.e., geometricmeanof the ranks) of
the module scores:

SRolDE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r SRegROTS
	 


� r SDiffROTS
� � � r SPolyReg

	 

3

r
ð6Þ

To estimate the significance of the RolDE score, a simulation
procedure is used. Given the null hypothesis is true, the significance
value distribution within a RegROTS or DiffROTS run is (approxi-
mately) uniform. Based on this, a simulated internal rank product is
calculated for the RegROTS and DiffROTSmodules as follows. First, an
equal number of simulated significance values as there are experi-
mental significance values in the corresponding run are generated
from the uniform distribution. Second, the simulated significance
values within each run are ordered so that the ranks of the proteins
according to the experimental significance values are retained to
account for the dependencies between runs. Finally, each simulated
significance value within each run is replaced with the rank of the
closest experimental significance value and these are used to calculate
the simulated internal rankproducts. Given the null hypothesis is valid,
the experimental and simulated internal rank products are similar
(Supplementary Fig. 6c). For the PolyReg module, the representative
simulated significance values are calculated in a similar fashion. Under
the null hypothesis, the significance value distribution of the condition
related coefficients is uniform. First, an equal number of simulated
significance values as there are experimental significance values are
generated from the uniform distribution. Second, the simulated sig-
nificance values are ordered according to the overall order of the
experimental significance values to account for any potential depen-
dencies between the coefficients of different polynomial degrees for a
protein. Finally, representative significance values for proteins are
calculated as the minimum over all the simulated significance values.
Given the null hypothesis is valid, the experimental and simulated
significance values are similar.

After acquiring the simulated internal rank products or repre-
sentative significance values for each module, final simulated rank
products are calculated equivalently to the experimental rank pro-
ducts and utilized to estimate the overall significance values. This is
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done by generating 500,000 (by default) simulated rank products and
then calculating the fraction of simulated rank products smaller or
equal to each experimental rank product. Given the null hypothesis is
valid, the estimated significance value distribution for RolDE will be
approximately uniform (Supplementary Fig. 6d). By default, the esti-
mated significance values are adjusted for multiple hypothesis testing
using the Benjamini-Hochberg procedure71. Alternatively, Bonferroni
correction, Q-value adjustment or any other multiple testing correc-
tion method can be used.

The RolDE workflow is demonstrated in Supplementary Fig. 7. For
all the semi-simulated spike-in datasets, and the Fn and iTreg data with
technical replicates or biological cell culture replicates, RolDE with
fixed effects regression was applied. For the T1D data with human
individuals, RolDE with mixed effects regression with random effects
for the individual baseline was applied.

In Supplementary Note, we provide a refined evaluation of the
proposed RolDEmethodology, including the sensitivity of themethod
to various adjustable parameters (but not needed to be adjusted by
default, Supplementary Fig. 5), the effect of the reproducibility-
optimization with ROTS (Supplementary Fig. 8) and the combination
of multiple rankings on the performance (Supplementary Fig. 9), as
well as the effectiveness of the simulation approach in estimating the
significance values and controlling the number of false discoveries
(Supplementary Table 3).

Existing methods for detecting longitudinal differential
expression tested
Reproducibility Optimized Test Statistic (BaselineROTS). ROTS is a
well-established differential expression method aiming to maximize
the reproducibility of the top detections using a modified t-statistic
and group preserving bootstraps26. It has been observed to perform
well in multiple types of omics data, including proteomics12,30,54,55. In
this study, ROTS was used as a baseline cross-sectional method at
each time point against which the longitudinal methods were com-
pared to. To detect any differences in longitudinal expression, the
minimum significance value over all the time point comparisons was
recorded as the representative significance value for each protein.
Version ≥ 1.12.0 of the Bioconductor R package ROTS was used in
this study.

Bayesian estimation of temporal regulation (BETR). BETR utilizes the
Bayesian framework and was first introduced for the analysis of times
series DNA microarray data13. It calculates the probability of differ-
ential expression for each feature (e.g., gene or protein), taking cor-
relations between time points into account; the magnitude of
expression at time points closer to each other are assumed to bemore
correlated than those further apart13. Version ≥ 1.32.0 of the Bio-
conductor R package betr was used in this study.

Linearmodels formicroarray data (Limma, LimmaSplines). Limma is
a popular toolset used especially in the analysis of gene expression
microarray and RNA-seq data. Longitudinal differential expression can
be examined in two different ways according to the Limma user’s
guide16. The first option is through group-mean parametrization,
where the designmatrix for the linearmodels is designed is such a way
that a separate coefficient exists for each time point and condition
combination and various contrasts between the coefficients can be
defined to examine differential expression between the conditions.
The contrasts were defined as differences in expression between the
conditions at each time point and differential expression between the
conditions was determined by examining whether all contrasts were
zero simultaneously using the moderated F-statistic. The second
option included using natural cubic spline curves to model the long-
itudinal variable over time and fitting separate curves for the condi-
tions for each protein fromwhich differences related to the conditions

were explored, following the instructions in the limma R package user
manual16. Version ≥ 3.40.2 of the Bioconductor limma R package was
used in this study.

Timecourse. Timecourse ranks features (e.g., genes or proteins)
according to probabilities for differential expression using the
Maxwell–Boltzmann or the Hotelling’s T2 statistics through a multi-
variate empirical Bayes approach, taking replicate variances and cor-
relations in expression levels between time points into account14. The
method borrows information across features to better estimate the
variance-covariance matrices to reduce the number of false positives
and false negatives14. Version ≥ 1.56.0 of the Bioconductor timecourse
R package was used in this study.

Microarray significant profiles (MaSigPro). MaSigPro is a method
originally developed for the analysis of time series gene expression
microarray data15. It follows a two-step regression approach to detect
longitudinal differential expression between the conditions15. In the
first step, a general regression model is defined for each feature (e.g.,
gene or protein). In the second step, only the significant models from
the first step are then modeled using polynomial regression to find
differences between the compared conditions15. Version ≥ 1.56.0 of the
Bioconductor maSigPro R package was used in this study. For each
protein, a minimum over the condition-related significance values was
used as a representative significance value.

Linear mixed effects regression modeling (Lme). Linear mixed
effects regression is a popular approach inmodeling longitudinal data,
where individual variability can be incorporated into the model in the
form of random effects10. We considered two different types of mod-
els. In the first variant, a random effect only for the individual baseline
(the intercept) was allowed. In the second variant, a randomeffect was
allowed also for the slope. Finally, a likelihood ratio testwas conducted
to examine if adding a random effect for the slope yielded a sig-
nificantly better fit at the significance level of 0.05. If this was not the
case or the second model could not be defined due to insufficient
number of measurements (caused e.g., by missing values), the model
with a random effect only for the intercept was used for the protein.
For each protein, a minimum over the condition-related significance
values was used as a representative significance value. The R package
nlme version ≥ 3.1-142 was used for all the mixed effects modeling
approaches in this study.

Polynomial mixed effects modeling (Pme). In the polynomial mixed
effects approach, we added polynomial fixed terms for the time-
related effects in themodels.Again, twodifferent typesofmodelswere
considered: models with a random effect only for the individual
intercept andmodels with a random effect also for the slope. Similarly
as with Lme, a likelihood ratio testwas conducted to examine if adding
a random effect for the slope yielded a significantly better fit at the
significance level of 0.05. We did not consider random effects for the
higher order polynomials as there was typically not enough data in the
relatively short time series to define such models. For each protein, a
minimum over the condition-related significance values was used as a
representative significance value.

Extraction of differential gene expression (EDGE). EDGE27 is a well-
established method developed for identifying differentially expressed
genes in time course studies with DNA microarrays. It uses regression
splines to fit twomodels for each feature: a nullmodel (no longitudinal
differential expression between the conditions) and the full model
(differential expression between the conditions). A likelihood ratio test
(LRT) or an optimal discovery procedure (ODP) can be used to
determine whether the full model fits the data better than the null
model, i.e., whether there is longitudinal differential expression. The
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LRT approach of the Bioconductor R package edge version ≥ 2.16.0
was used in this study.

Linear mixed model spline framework for analysing time course
omics data (LMMS). The LMMS28 approach utilizes linear mixed
effects model regression splines to detect longitudinal differential
expression. Fitted models for longitudinal differential expression
between the conditions are compared to the null model using like-
lihood ratio tests. The default cubic regression splines in the Rpackage
lmms version ≥ 1.3.3 were used. For each protein, a minimum over the
condition-related significance values was used as a representative
significance value.

Omics longitudinal differential analysis (OmicsLonDA).
OmicsLonDA29 offers a statistical framework for identification of time
intervals with significant differences between the conditions. First, the
measurements for each feature are adjusted according to the baseline
for each individual. Regression splines are then fitted for the features
and Monte Carlo permutations are used to generate empirical dis-
tributions for the test statistic under the null hypothesis. The Bio-
conductor R package OmicsLonDA version ≥ 1.6.0 was used. For each
protein, all possible time intervalswere explored and amaximumvalue
for the test statistic over all the explored intervals was used as a
representative value to detect any longitudinal differential expression.

For each polynomial regression-based approach (LimmaSplines,
MaSigPro, Pme, EDGE), we explored twodifferent levels of complexity:
amore complexmodel (denotedby the extensionH in the results)with
the degree of the polynomial set to T-1, and a less complex one
(denoted by the extension L) with the degree set to T=2

� �
, where T is

the number of time points.
R statistical programming software environment ≥ 3.6.1 was used

for the computational analysis performed in this study.

Evaluation of the methods in the semi-simulated spike-in pro-
teomics datasets
In the semi-simulated datasets, we evaluated the performance of the
longitudinal methods in their ability to correctly detect true differ-
ential expression (the spike-in proteins) using receiver operating
characteristic (ROC) analysis. In the ROC analysis, the sensitivity (i.e.,
true positive rate) was plotted against the specificity (i.e., true negative
rate). The area under the ROC curve (AUC) was used to measure how
well a given method was able to distinguish the true signal of interest
when the detection threshold (e.g., significance value) was varied. As
typically the interest of a differential expression analysis is focused on
the top findings, we used partial AUC (pAUC) between specificity
values 1 and 0.9 to score the methods on the essential part of the ROC
curve. The calculated pAUCs were summarized using the interquartile
range (IQR) mean across the datasets of each type. The R package
pROC version ≥ 1.15.3 was used to conduct the ROC analysis72. The
pAUCs were visualized using the vioplot R package version ≥ 0.3.2.

Different methods had varying abilities to calculate a score (a test
statistic or a ranking) for the examined proteins due to missing values
or other reasons. To ensure comparability, a full result list was
expected from each method, including a score for all the proteins in
the examined dataset. If a method could not produce a score for a
protein, a random score larger than the maximum observed score for
the method in the dataset was generated, placing the protein at the
end of the result list. Thus, all proteins without valid scores for a given
method, were placed randomly at the end of the result list.

Reproducibility and biological relevance in the longitudinal
Fn data
In the experimental longitudinal Fn dataset, we assessed the repro-
ducibility of the results of the methods using the three technical
replicate datasets. After filtering out all proteins with missing values,

three completely separate technical datasets were formed, whichwere
assumed to be similar to each other. Longitudinal differential expres-
sion between all possible pairwise combinations of strains (WT vs. D1,
WT vs. D2, WT vs. L, D1 vs. D2, D1 vs. L, D2 vs. L) were considered. To
estimate the overall reproducibility of each method, the similarity of
their outputs in the replicate datasets was assessed using the Spear-
man’s rank correlation coefficient. To evaluate the reproducibility of
the top differential expression findings, the median proportional
overlap between the top k findings was calculated over the replicate
datasets, when the examined top list size k was varied from 1 to the
number of proteins in the complete dataset. The proportional overlap
at each value of k was calculated as the median overlap over the
replicate datasets divided by k.

To examine the biological relevance of the findings by each
method in the Fn dataset, we examined how the proteins in the KEGG
pathway Lipopolysaccharide biosynthesis—Francisella tularensis
subsp. novicida U112 (ftn00540) complemented with the proteins in
the associated Lipopolysaccharide biosynthesis knockout pathway
(ko00540) (Supplementary Table 1) were ranked by the different
methods. One of the key virulence factors in Fn is lipid A, which is part
of LPS, whereas LPS is an essential part of the Gram-negative bacterial
outer membrane and forms an amphipathic interface between the
bacteria and the environment49,50. As the modified null mutants of
acyltransferases in the Fndata (D1,D2, L) are associatedwith lipidA and
LPS, the 18 proteins in the selected ftn00540 and ko00540 pathways
are assumed to be affected by the modifications. To explore this, we
used Gene Set Enrichment Analysis (GSEA)35 to investigate enrichment
of the relevant pathway proteins in each wild type to mutant strain
comparison in the normalized data with technical replicates averaged
for each biological replicate. For ameaningful and fair comparison, the
relevant and included pathway proteins in each comparison were
determined as those pathway proteins with enough variation to be
detectedby themethodsbyhaving a coefficient of variation (CV) larger
than the median CV for all the proteins (Supplementary Table 1). The
result lists for eachmethod in each comparisonwere ranked according
to the strength of differential expression and used for prerankedGSEA.
Again, if a method failed to provide a score for a protein (due to
missing values or other reasons), a random score larger than the
maximum observed score for the method in the comparison were
generated, placing these proteins at the end of the result list. The gene
set analysis was performed using the Bioconductor R package fgsea
version ≥ 1.10.1. The normalized Enrichment Scores (NES) were used to
reflect the ability of the methods in detecting the relevant pathway
proteins and in producing biologically meaningful results.

Biological relevance and shared findings in the longitudinal
human iTreg data
To further evaluate the biological relevance of the results by the dif-
ferent methods, we explored how the methods detected proteins in
known Treg-related gene sets in the human iTreg data. Altogether 28
human Treg related gene sets were downloaded from the Molecular
Signatures Database (MSigDB) version 7.5.135 (Supplementary Data 2).
These gene sets included up- and downregulated signature genes in
Treg states from altogether 14 different scenarios. For our purposes,
each pair of up- and downregulated gene sets were combined into a
single gene set, resulting in 14 gene sets from MSigDB in total. In
addition, three additional gene sets were downloaded. The first set
included genes with a mean fold change ≥ 2 in Treg cells as compared
to conventional CD4+ T cells from a large human study including 168
donors34. As Treg cells are known to express the transcription factor
forkhead box P3 (FOXP3)33, the associated Reactome pathway (RUNX1
and FOXP3 control the development of regulatory T lymphocytes) was
included as a secondadditional gene set. Finally, interactomeofFOX3P
from the STRING protein-protein interaction database was down-
loaded, including 100 known and predicted interacting proteins for
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FOXP3. All the used gene sets are given in Supplementary Data 2.
Functional enrichment for each gene set and each method was
determined using GSEA similarly as with the Fn dataset.

To evaluate the performance of the methods in terms of unique
and shared findings in the iTreg data, the result lists for each method
were ranked according to the strength of the differential expression.
The overlap of the top 1000 findings was investigated. For each of the
top 1000 findings for each method, the number of other methods
sharing the same protein in their respective top 1000 findings was
determined. For a fair evaluation of methods with multiple variants,
only the best-performing variantwas included, as the different variants
share a considerable proportion of their result lists. The selected var-
iants included the higher order variants for Pme, MaSigPro and EDGE,
and the group-mean parametrization approach for Limma.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The UPS1 spike-in dataset is available from the PRoteomics IDentifi-
cation Database (PRIDE) with the identifier PXD002099. The SGSDS
spike-in dataset is available from PeptideAtlas: No. PASS00589. The
CPTAC spike-in dataset (study 6, at test site 86) is available from the
CPTAC Portal (https://cptac-data-portal.georgetown.edu/cptac/study/
list?scope=Phase+I).

The Francisella tularensis subspecies novicida (Fn) data generated
in this study has been deposited in the ProteomeXchange Consortium
via the PRIDE partner repository under accession code PXD025439.

The longitudinal type 1 diabetes proteomics dataset of Liu et al. is
available from the original publication10. For this study, the data
available in Table S3 and the clinical data available in Table S1 and
Table S2 of the supplementary material from the original publication
were downloaded andused. The longitudinal iTreg proteomicsdataset
of Schmidt et al. is available from the original publication33. For this
study, the data available in the Additional file 3: Table S2 from the
original publication was downloaded and used. Source data are pro-
vided with this paper.

Code availability
RolDE is freely available as anRpackage inBioconductor at https://doi.
org/10.18129/B9.bioc.RolDE. Custom codes for methods used in the
study are available from GitHub (https://github.com/elolab/RolDE-
benchmarking).
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