
The modern landscape of managing effects
for the working programmer

Master of Science in Technology
Thesis
University of Turku
Department of Computing
Software Engineering
2023
Jaakko Paju

Supervisors:
Jaakko Järvi

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing

Jaakko Paju: The modern landscape of managing effects for the working pro-
grammer

Master of Science in Technology Thesis, 109 p., 2 app. p.
Software Engineering
May 2023

The management of side effects is a crucial aspect of modern programming, especially
in concurrent and distributed systems. This thesis analyses different approaches
for managing side effects in programming languages, specifically focusing on unre-
stricted side effects, monads, and algebraic effects and handlers. Unrestricted side
effects, used in mainstream imperative programming languages, can make programs
difficult to reason about. Monads offer a solution to this problem by describing side
effects in a composable and referentially transparent way but many find them cum-
bersome to use. Algebraic effects and handlers can address some of the shortcomings
of monads by providing a way to model effects in more modular and flexible way.
The thesis discusses the advantages and disadvantages of each of these approaches
and compares them based on factors such as expressiveness, safety, and constraints
they place on how programs must be implemented. The thesis focuses on ZIO, a
Scala library for concurrent and asynchronous programming, which revolves around
a ZIO monad with three type parameters. With those three parameters ZIO can
encode the majority of practically useful effects in a single monad. ZIO takes in-
spiration from algebraic effects, combining them with monadic effects. The library
provides a range of features, such as declarative concurrency, error handling, and
resource management. The thesis presents examples of using ZIO to manage side
effects in practical scenarios, highlighting its strengths over other approaches. The
applicability of ZIO is evaluated by implementing a server side application using
ZIO, and analyzing observations from the development process.

Keywords: functional programming, side effect, algebraic effect, monad, Scala, ZIO

Contents

1 Introduction 1

2 Background 4

2.1 Effects . 5

2.1.1 Mutability . 7

2.1.2 Exceptions . 7

2.1.3 IO . 10

2.2 Concurrency . 12

2.2.1 Concurrency adds complexity 12

2.2.2 Concurrency primitives . 13

2.2.3 Structured concurrency . 15

2.3 Scala . 17

3 Approaches for managing effects 26

3.1 Effect systems . 26

3.2 Unrestricted side effects . 29

3.3 Monads . 31

3.3.1 Id . 34

3.3.2 Either . 35

3.3.3 Reader . 37

3.3.4 IO . 38

i

3.3.5 Syntax . 41

3.3.6 Monad laws . 42

3.3.7 Monad transformers . 44

3.3.8 Polymorphism . 48

3.4 Algebraic effects and handlers . 49

3.4.1 Existing languages and libraries 50

3.4.2 Theory of handlers . 51

3.4.3 Handlers in practice . 52

3.4.4 Effect typing . 56

3.5 Capability based effects . 58

3.5.1 Capture checking . 59

4 ZIO 62

4.1 Basic operators . 65

4.2 Error handling . 68

4.3 Environment . 76

4.3.1 ZLayer . 78

4.3.2 ZEnvironment . 80

4.3.3 Use cases . 81

4.3.4 Similarity to algebraic effects 83

4.4 Resource management . 85

4.5 Concurrency . 87

4.6 Summary of ZIO . 93

5 Case study 95

5.1 Error handling . 97

5.2 Dependency injection . 100

5.3 Testing . 101

ii

5.4 Concurrency . 104

5.5 Analysis . 105

6 Conclusion 107

References 110

Appendices

A Type classes A-1

iii

1 Introduction

Modern programs interact with their environment, such as users, files, databases,

message buses, and/or other applications. They should be able to serve hundreds,

thousands, or sometimes even millions of users simultaneously, utilizing the underly-

ing hardware efficiently. They are expected to be available and working every day of

the year, around the clock. These programs are expected to be robust and resilient,

meaning they should react to failures in a predictable and well-defined manner. At

the same time, programs should be fast to develop and modify when adding new

features or changing existing ones, i.e., applications are expected to be modular.

To write programs that satisfy these demands is no easy task for a programmer.

Many of the key tenets of this task is managing side effects and concurrency, and

exceptions arising from those. Side effects, also known as computational effects or

just effects, are a byproduct of calling a function that causes or observes changes in

its environment. Concurrency is the ability to interleave several units of work to be

executed simultaneously.

Modular and expressive management of side effects, errors and concurrency is

something that current, imperative, mainstream languages do not excel at. The

academic research community has, however, introduced several techniques that make

it possible to work with effects in a compositional and expressive way. These more

sophisticated methods for managing effects are based on functional programming.

Even though the theoretical foundations of functional programming date back to

CHAPTER 1. INTRODUCTION 2

almost a hundred years, when lambda calculus was invented in the 1930s, functional

programming languages have not became mainstream. All of today’s most widely

used programming languages, as ranked by TIOBE Index [1] and Stack Overflow [2],

are fundamentally imperative.

Many functional concepts, however, have been recognized to be valuable in mod-

ern software development. Functional programming promises ease of reasoning

about program behavior – immutability gives referential transparency and conse-

quently equational reasoning, and composability. These functional concepts hold

promise for handling effects, concurrency and modeling complex business logic,

which are the core of many modern applications. Features like immutability, lambdas

and higher-order functions, have found their way to imperative and object-oriented

mainstream languages like JavaScript, Python, Java, and C#.

It is not too much of a stretch to say that functional features are currently

disrupting the field of programming. The purpose of this thesis is to analyze and

understand how these features can be utilized. The aim is to bridge the gap between

solutions studied and used in academia and the dominating technologies used in

the industry by studying different methods of managing effects from a practical

perspective.

The thesis studies three different approaches to side effects; unrestricted side

effects, monads, and algebraic effects and handlers, which are analyzed in the con-

text of Koka and Unison programming languages. The thesis also provides a brief

overview of a bleeding-edge approach to managing effects, called capability-based

effects. As a vehicle for concrete experimentation, we use and study a Scala library

called ZIO, which can support the above programming approaches. The approaches

are studied in terms of how they affect the implementation of programs. The the-

sis seeks answers to the following research questions about different approaches to

managing effects:

CHAPTER 1. INTRODUCTION 3

RQ1: How expressive and compositional the approach is?

RQ2: What are the safety guarantees the approach offers?

RQ3: Does the approach place limitations on how programs can be written?

These are broad questions and it is worth mentioning that a reader who is look-

ing for an unambiguous, concise and one-size-fits-all answer to these questions might

be disappointed by the subject’s multifaceted nature. Instead of easy answers, the

thesis seeks to provide a comprehensive understanding of the domain of computa-

tional effects, and offers analysis of the main approaches for managing effects from

different perspectives.

Beyond the issues addressed by these research questions, many other factors

have an impact on whether the programming techniques of monads and algebraic

effects will gain wider adoption or not. For example, testability of monadic code or

code built with algebraic effects would be an interesting area of research. Sociological

aspects, programmers’ perception of complexity etc. are also certain to have an effect

on adoption of these advanced techniques. This thesis discusses a few observations

about testing and programmers’ preferences regarding programming languages in

the case study part but otherwise shies away from these topics.

Chapter 2 studies the definition of effects and introduces several common types of

effects. The chapter also includes a discussion of concurrency and its implementation

approaches. Also, Scala and its relevant features are introduced in this chapter.

Chapter 3 gives an introductory account on how effects are included in programming

languages, and how they can be managed. Chapter 4 introduces ZIO and explores

how it approaches effect management. Chapter 5 presents a case study that evaluates

the practical applicability of ZIO for server side application development. The last

chapter compares the properties of different methods for managing side effects and

draws conclusions from them.

2 Background

Functional programming uses immutable values and mathematical functions, also

known as pure functions, to build programs. Similarly to imperative procedures,

pure functions take parameters as input and compute some output. Unlike imper-

ative procedures, however, pure functions are only allowed compute output value

based on their input and cannot have any other observable effects. Given the same

inputs, a pure function must always evaluate to the same outputs. Abstraction and

reuse, similarly to in imperative programs, are achieved by composing functions by

passing the output of the previous function to the next function’s input. The entire

program can be seen as a large function composition of all functions used in the

program.

A major difference between imperative and functional programming is in how one

can reason about procedure or function compositions. Any expression in functional

programming can always be substituted with its value without changing the meaning

of the program. The same does not apply in imperative programming. There is

an implicit temporal coupling between imperative statements, since a statement

may depend on the state set by previous statements. Because of this, reordering

procedure calls or substituting any procedure call with its return value might change

the meaning of the program. [3, Chapter 1]

A program is considered to be referentially transparent if it is possible to sub-

stitute an arbitrary expression in the program with its corresponding value without

2.1 EFFECTS 5

changing the meaning of the program in any way. Referentially transparent pro-

grams are easier to understand since they enable equational reasoning, also known

as local reasoning. When composing pure functions, one does not have to under-

stand their implementation, because the only effect the function is allowed to have

is to return a result. A developer can only focus on the function’s signature and

its specification, that is, what are the inputs and what is the output. Compilers

can also take advantage of referential transparency by safely reordering expressions,

evaluating expressions at compile time, memoizing results or by completely skipping

the evaluation of expressions that are not required.

Referential transparency is one of the biggest differentiating factors between

functional and imperative programming. Abandoning referential transparency has

wide-reaching implications. In practice, it makes it much more difficult to refactor

and develop programs. Developers are required to be more disciplined and to have

wider knowledge of the whole program in order to not unintentionally cause defects.

This is particularly evident when programming in the presence of concurrency, where

side-effects can lead to race conditions and hard-to-reproduce errors. [3, Chapter 3]

This chapter introduces first what effects are and discusses certain common effect

types in more detail. It then describes what concurrency is, how it can be achieved

and what kind of problems it causes. Structured concurrency, a concept for defining

semantics on how concurrent workflows interact, is also introduced. Lastly, the

history and features relevant to managing side effects of the Scala programming

language are introduced.

2.1 Effects

Constructing programs only by composing pure expressions without any notion of

impurity is quite limiting, to say the least. To be useful in practice, programs depend

on effects. An expression is said to have an effect if its sole purpose is not to evaluate

2.1 EFFECTS 6

to a value and its evaluation requires interacting with the outside world. Printing to

the console, accessing the system clock or doing IO are all examples of effects. There

is no unambiguous and exact definition of what an effect is, although the concept

has been given, somewhat differing, characterizations by many.

Cartwright and Felleisen [4] suggest that “A complete program is thought of as

an agent that interacts with the outside world, e.g., a file system, and that affects

global resources, e.g., the store [mutable memory]”. They continue by stating that

every phrase in a program could be classified to either a value or an effect. A value is

a referentially transparent expression, while an effect is an interaction with resources

allocated for the program. When an effect is encountered, the control is transferred

to a “central authority”. The central authority manages the use of all resources the

program has access to. They continue to describe the interaction between an effect

and the central authority:

An effect is most easily understood as an interaction between a sub-

expression and a central authority that administers the global resources

of a program. (..) Given an administrator, an effect can be viewed as a

message to the central authority plus enough information to resume the

suspended calculation.

Peyton Jones and Wadler [5], as well as Lindley, McBride, and McLaughlin [6]

see the distinction between expressions and effects as being vs. doing. This obser-

vation is quite interesting since it brings up the concept of computations as values.

Certain approaches deliberately differentiate computations from values, while some

deliberately unify them. This thesis discusses how separation of effects from values

applies to monadic effects and algebraic effects with handlers, together with the

concept of a central authority presented earlier.

Different effects could be categorized as internal or external. Unlike internal

effects, external effects can be observed from the outside. In the context of a whole

2.1 EFFECTS 7

program, the only external effect is IO, while other effects are internal. In the context

of a function, matters are more complicated, since effects such as mutable state,

raising exceptions, and concurrency can be both internal or external, depending on

the specific situation.

2.1.1 Mutability

Mutability means that a program is able to change its state, usually by mutating

data stored in some memory location, and that it is possible to detect a state change

by observing the changed value. Several control structures and language features

require mutability. The destructive assignment operation found in almost every

mainstream language is by definition mutation [3, Chapter 3]. Looping constructs

such as for- and while loops, and iterators found in many standard libraries, rely

heavily on the notion of mutation. Also parts of some well known algorithms, like

the swap operation in quicksort, can be expressed trivially as mutation.

In practice, almost all programs have some state that determines how the pro-

gram reacts to input. Real-world examples of state include the location of characters

in a game, registered users in an application and cursor position in the buffer when

reading bytes from a socket. In the presence of concurrency, when parallel computa-

tions are expected to interact with each other, mutability in one form or another is

needed to indicate if a computation is still on-going, completed or has encountered

an error.

2.1.2 Exceptions

Another very common effect is the ability to signal about exceptional conditions

where the program is unable to compute a result or execute a command. This

signaling is achieved by raising an error or exception. An exception could contain

information about the condition that caused it, for example malformatted input, and

2.1 EFFECTS 8

that could possibly be later used when handling or recovering from the exception.

There are several common reasons why exceptions arise. They usually fall into two

categories: technical or logical. [7]

Logical exceptions are usually caused by failing to meet some preconditions re-

garding the program’s state or a function’s parameters. A function may have as-

sumptions about its inputs — a string may need to be in a format that matches a

schema in order to parse it successfully, or an integer may need to be positive and less

than a certain threshold to represent a year. Sometimes inputs must be compatible

with other inputs. An example of this is accessing an array by its index where the

accessed index must be less than or equal to the size of the array, or attempting to

access authorized content before proper authentication and authorization process.

Technical exceptions are usually related to IO, external events, the runtime en-

vironment, or the programming language itself. They can further be divided into

synchronous and asynchronous exceptions. Peyton Jones describes synchronous ex-

ceptions as something that "arise as a direct result of some piece of code" [8]. On the

other hand, asynchronous exceptions are caused by external events and they cannot

always be tied to the execution of a particular line of code. In some way, logical and

synchronous exceptions are expected exceptions, and asynchronous exceptions are

unexpected.

Many synchronous exceptions are related to IO. If attempting to interact with a

file that does not exist or the current permissions are not sufficient, the result will

likely be an exception of some sort. A significant source of exceptions is commu-

nicating over the network with a remote party. Everything from name resolution,

routing, transport protocol or communication schema could go wrong. A remote

component in a distributed system could be completely unavailable due to a net-

work error or an internal error in that specific component. IO problems also arise

when trying to perform an action before initialization, for example via a database

2.1 EFFECTS 9

connection, file descriptor or IO port.

Other synchronous exceptions may be caused by division by zero or a non-

exhaustive pattern match. Probably the most well known synchronous exception

is the infamous null reference error, where the program is trying to dereference a

pointer that does not point to a valid memory location. In languages that support

direct memory access, an attempt to access memory outside of the allowed memory

range leads to a program or operating system level exception. [8]

Asynchronous exceptions usually originate from the runtime environment of

the program, operating system, concurrency, or user interruption. Asynchronously

raised exceptions are characterized by the fact that they could occur at an arbitrary

point in time [9]. An example of this is a situation where a thread interrupts the

execution of another thread. The whole program could also be interrupted by a

user (for example by pressing Ctrl+C) or the runtime, possibly due to a critical

error in the program or operating system. Resource exhaustion is another common

cause of asynchronous exceptions. Errors like stack overflow or out of memory can

happen every time new memory is required from the stack or heap, thus those are

categorized as asynchronous. Many environments also support dependencies to li-

braries that are loaded/linked dynamically at run time. The programmer cannot

always specify the exact time when dynamic loading should take place, and for this

reason failing to load required dependencies could be considered an asynchronous

exception. [8]

Exceptions can also encode another related and important concept, optionality.

Encoding optionality via exceptions is achieved by raising an exception that contains

only a value of the unit type1, signaling that no result could be computed and

there is no additional information about the exception. Optionality is an approriate

choice instead of exceptions when the cause of the exception is trivial. Such cases

1A type whose cardinality is 1 (i.e., that has only one value) and thus does not contain any
information.

2.1 EFFECTS 10

include unsuccessfully querying a row from a database with a specific id, searching

an element from an array or trying to find a substring from a string.

Usually, the semantics of raising and handling an error are to interrupt the nor-

mal control flow of the program and transfer the execution to the closest appropriate

exception handler. An exception handler decides if and how to continue the execu-

tion, or whether to let the exception bubble up the layers of exception handlers. This

"short-circuiting" semantics is a natural way to think and program in the presence

of errors. However, the ability to raise errors from an arbitrary location can make it

difficult to understand the meaning of the program and prove its correctness. It is a

challenge to ensure that all exceptions that may be raised are handled appropriately.

Lazy evaluation complicates things even further. The evaluation order in a lazily

evaluated language may not be obvious to the programmer. This makes it harder

to define clear semantics for exceptions. [7]

Effective and thorough exception handling is one of the most important practices

in successful software engineering. Conversely, the inability to do so is one of the

most significant factors that causes bugs and failures in software systems. A 2014

study [10] by researchers of the University of Toronto studied multiple popular open

source distributed software systems, such as Redis, Hadoop and Cassandra and

found that a large portion (35%) of catastrophical failures were caused by trivial

mistakes in error handling code. Such mistakes include practices like omitting error

handling code completely and writing a TODO-comment instead. In addition to

failures, inadequate error handling may expose security vulnerabilities in the system.

2.1.3 IO

Programs need the ability to interact with the external world, i.e., with a user, other

programs, or devices and sensors. IO is the medium to carry out these interactions.

Like interaction in general, IO is often bidirectional — the term IO is a shorthand for

2.1 EFFECTS 11

input and output. Input is the ability to observe changes and to receive information

from other parties, output enables a program to cause changes in the environment

and to dispatch information to others.

Many IO effects are about interacting with the user. Probably the most well-

known and fundamental form of user interaction is to display text and graphics

by changing pixels on the screen. Another common type of user interaction is via

the console, which consists of printing characters to standard output and reading

user input from standard input. The use of external devices such as playing sounds

from speakers, recording sound from a microphone, or receiving user input from the

keyboard, mouse, and touchscreen, is essential in user interaction.

In addition to user interaction, a program can also use devices for other pur-

poses. For example, reading the time from the system clock, requesting the current

temperature from a sensor, or setting a digital output to 1 or 0.

Often programs need the ability to store data that persists even when the pro-

gram is restarted. This is achieved by using a device that allows reading from and

writing to a non-volatile memory, such as a hard drive or memory card. Usually

an operating system abstracts this persistent data store by providing a file system.

However, many embedded devices still communicate directly with persistent memory

devices.

The reason for a program to exist is to eventually have an effect on the surround-

ing world. As IO is the only way to achieve this, it fundamentally distinguishes IO

from other effects. Where other effects might be useful for structuring computations

and expressing computations in certain ways, IO is the reason for programs to exist

in the first place [8]. To put it the other way around, it would be impossible to detect

if a program is running or not if it would not be interacting with its environment.

2.2 CONCURRENCY 12

2.2 Concurrency

Computer programs should be able to run multiple workflows interleaved (concur-

rency) or at the same time (parallelism). Programs often have many simultaneous

users, all of whom should be able to use these programs independently of each

other. Also, it is characteristic of IO that a large portion of time is spent waiting for

a response, rather than calculating results with local computing resources, mainly

CPUs. When several operations can be performed in parallel or while waiting for IO

responses, performance improves and the underlying hardware is utilized efficiently.

2.2.1 Concurrency adds complexity

Often workflows must interact with other concurrent workflows. A parent workflow

might spawn multiple child workflows and split a task between them. In some

situations, one might run several workflows in parallel and choose the result that is

computed the fastest, discarding all other results. Concurrent workflows sometimes

must use a shared resource, like mutable memory, file, or database connection.

At first glance, these interactions may seem not particularly problematic, but

concurrency complicates programs significantly. By default the execution order of

concurrent workflows is nondeterministic because of how tasks are scheduled (usu-

ally by the operating system) to run on actual hardware. Many statements in a

programming language are compiled to or interpreted as several CPU instructions,

executed sequentially at different clock cycles. A canonical example is the increment

operator (++ or +=) that first reads a variable’s value with one instruction and then

sets it to a new value with another. If another parallel workflow is updating the

same variable at the same time, it might see the value between the two instructions,

even though that is rarely the desired behavior. These kinds of situations are called

race conditions.

In order to prevent race conditions, explicit countermeasures are required. One

2.2 CONCURRENCY 13

such countermeasure is synchronizing accesses to shared resources. Usually this

means that before a workflow can enter a particular section of a program or use

a shared resource, it must acquire an exclusive lock. This means that only one

of the workflows has access to the resource at a given point of time. Another

countermeasure, applicable to shared memory, is using atomic compare-and-swap

operations [11], which enable updating some data and succeeding only if the data

was not modified by another workflow during the update.

Locks and atomic references are examples of low-level tools for managing con-

currency. Each tool comes with a set of trade-offs. When a workflow must acquire

multiple locks, a possibility for deadlock arises. Deadlock is a situation where two

concurrent workflows are blocked by each other and neither can continue until the

other releases a lock they are holding. An atomic operation can fail, and the fail-

ure must be handled, for example, by retrying until the operation succeeds. Basic

atomic operations usually cannot guarantee the atomicity of operations spanning

over many atomic references.

2.2.2 Concurrency primitives

In practice concurrency can be implemented with many different constructs. The

lowest-level construct commonly accessible to programming languages is a thread. It

is an OS level abstraction for concurrent execution. Each thread has its own stack,

instruction pointer and CPU register values. All threads created by a single process

share the same memory space, i.e., they are able to read from and write to the same

shared memory blocks.

Threads are run on the actual hardware of the computer; a modern multi-core

CPU can execute several threads in parallel. The OS schedules different threads for

execution, and after a thread has been executing for a scheduled amount of time, the

operating system interrupts the execution and switches the execution to a different

2.2 CONCURRENCY 14

thread. The operation where a CPU core switches the execution from one thread

to another is called context switch. Context switch requires that CPU registers and

stack of the previous thread are saved, and respectively registers and stack of the

new thread is loaded to the CPU.

Traditionally a thread has been the concurrency primitive to turn to when some

form of parallelism is required. Threads, however, are not a lightweight construct

and they can exist only in limited numbers, usually in the thousands. Context

switching between threads involves a significant amount of work, and thus causes

performance overhead. Often a context switch defeats many optimizations in con-

temporary CPUs like caching, pipelining and speculative execution, which in turn

amplifies the performance overhead. The issue manifests itself particularly in highly

concurrent scenarios where computations are IO bound, which is usually the case in

web and enterprise applications.

A common way to constrain the total number of threads and increase their

reuse is to collect multiple threads into a pool of threads, where tasks could be

submitted for execution instead of operating with individual threads. Once a task

is submitted to a thread pool, it is queued and run once there are available threads.

This way many concurrent workflows could be multiplexed into a smaller number of

physical threads. When fewer threads are created and reused by multiple concurrent

workflows, the intent is to decrease the number of context switches in order to achieve

performance gains.

Thread pools do not solve the problem of blocking threads while they are waiting

for an IO operation or another thread to complete. When a thread blocks, the OS

puts it in a waiting state, meaning that its execution is not continued until the event

it is waiting on is triggered. The ideal solution would be that no physical threads

are blocked, and blocking is only semantic. This is not possible when threads are

preemptively scheduled by the OS. A solution is to change the scheduling model from

2.2 CONCURRENCY 15

preemptive to cooperative. Cooperative scheduling means that when a workflow is

about to be blocked, it will register itself to be scheduled once all of its dependencies

are met, and yield the control to other workflows. In this model no physical threads

need to be blocked.

Cooperative scheduling is usually implemented by a runtime environment, pro-

gramming language, or library that runs on top of preemptively scheduled OS

threads. Event loop is a common pattern for implementing cooperative schedul-

ing, and it is used extensively in asynchronous IO or single-threaded environments

like JavaScript. The idea is to have a queue that contains computations waiting to

be executed, and an event loop that picks up and executes tasks from the queue

one at a time. Once a task is about to do a blocking operation, it registers a call-

back. The callback is invoked when the blocking operation completes, and it will

add another task to the queue that represents the remaining of the workflow.

Another way to implement cooperative scheduling is fibers. They are lightweight

threads that are managed and scheduled in the application instead of OS. Each

fiber contains a stack and possibly error handlers or thread-local variables, similar

to a thread. Fibers require a scheduler that determines what fibers to execute on

actual OS threads. The scheduler can multiplex many fibers to run on smaller

number of physical threads. Fibers could exist in the hundreds of thousands or even

millions; switching execution from one fiber to another is very cheap in comparison

to a context switch between threads. The fiber scheduler can assign a fiber to

execute on a specific CPU core, which will make it easier to reap benefits from CPU

optimizations like caches.

2.2.3 Structured concurrency

When parent workflow spawns many child workflows, it is common that if one of

the children encounters an error, the result cannot be computed at all and thus the

2.2 CONCURRENCY 16

results of other sibling workflows are not needed anymore. A similar situation may

occur with racing workflows: when the first workflow successfully computes a result,

the results of other workflows are no longer needed. In both of these situations

it would be ideal to cancel the workflows whose results are not needed, to preserve

compute resources and make sure that no concurrent workflows remain in execution.

Traditional concurrency primitives, such as threads, do not offer this kind of control

out of the box.

A solution to this is structured concurrency [12], [13], which makes it possible

to define clear semantics on if and how a child workflow could outlive its parent.

The basic idea of structured concurrency is that there is a way to govern how

child workflows are handled when the parent workflow completes (by succeeding

or failing), or when there is an error encountered in any of the sibling workflows.

For example, for a parent workflow that spawns child workflows one would like to

define whether the children should be awaited, cancelled, or left orphaned when the

parent completes or is cancelled before the children are finished.

Native support for structured concurrency in programming languages is still

quite rare, but it has been added to programming languages at an accelerating

pace. Kotlin added structured concurrency in 2018 [14], Swift 5.5 in 2021 [15] and

Java 19 in 2022 [16]. The feature will probably find its way into more programming

languages in the future.

It is difficult to write correct and concurrent programs. Knowledge of concur-

rency primitives and tools, such as different data structures and CPU instructions,

and possible concurrency hazards are required. One has to be especially careful

about race conditions, which are not always obvious. Ideally, concurrency could

be implemented with high-level code, using operations that take into consideration

possible concurrency issues, and deal with low-level details.

2.3 SCALA 17

2.3 Scala

Scala [17] is a high level, statically typed, compiled, and garbage collected program-

ming language, that is both functional and object-oriented. It is eagerly evaluated

by default, but it also supports lazy evaluation. The first release was in 2004 and

the latest version is 3, which was released in 2021. Version 3 is exclusively used in

this thesis. The initial and current lead designer of the language is Martin Odersky,

a professor at the École polytechnique fédérale de Lausanne. Scala’s roots are thus

in academia, but its approach is pragmatic.

Scala is most commonly run on the Java Virtual Machine (JVM), but also

JavaScript and native code are supported compilation targets. When running on the

JVM it is possible to use Java code directly from Scala. The Scala standard library

even contains functions for converting Java data types to their Scala counterparts.

This gives access to a huge number of Java libraries.

Scala aims to blend the Functional programming (FP) and Object-oriented pro-

gramming (OOP) paradigms and as a result has features from both. Many OOP

concepts like classes, objects, interfaces and subtype polymorphism are supported.

In fact, every value in Scala is an object. Scala uses class-based objects with at-

tributes and methods, and supports multiple inheritance. Scala supports generics

with lower and upper subtype constraints as well as declaration-site variance. The

language also includes many imperative constructs, like loops and mutable variables,

that are commonly used in other OO-languages. What is perhaps less common in

most OO-languages is that in Scala everything is an expression, including control

structures like if/else, try/catch, and loops. Listing 1 demonstrates the basic

syntax of Scala.

Due to Scala’s object-oriented nature, every object is part of a type hierarchy.

On top of the hierarchy is Any, which is the supertype of all other types. Below Any

2.3 SCALA 18

Listing 1 Basic syntax of Scala.
trait Foo // Define an interface
class Bar extends Foo // Define a class inheriting from Foo

// Define variables/constants
var mutableFoo: Foo = Bar() // Explicit type is Foo
val immutableBar = Bar() // Inferred type is Bar
lazy val lazyPlus = 1 + 1 // Computed lazily and cached

// Type argument here is Int
val genericType: List[Int] = List(1, 2, 3)

// Type parameters are declared between '[' and ']'
def genericMethod[A](a: A): A = a

// Type parameter constraints:
// 'A' must be supertype of 'Bar' and 'B' must be subtype of 'Foo'
def typeBounds[A >: Bar, B <: Foo](a: A): B = ???

// ??? is defined in the standard library. It can replace any
// expression; it's type is Nothing, the bottom type
def `???` : Nothing = throw new NotImplementedError

// => specifies 'by-name' calling convention:
// The parameter n is evaluated every time it is used (2 times here)
def byNameParameter(n: => Int) = n + n

2.3 SCALA 19

AnyVal

Matchable

AnyRef / Object

Unit Boolean Int ... (value types) String List[Int] ... (reference types)

Any

Null

Nothing

Figure 2.1: Scala 3 type hierarchy.

is Matchable, which marks values suitable for pattern matching. Matchable has two

subtypes: AnyVal, a supertype for all value types, and AnyRef, a supertype for all

reference types. Null is a subtype of all reference types, except when explicit nulls

-feature is enabled and Null becomes a subtype of Any. Scala also has a bottom

type Nothing that is a subtype of every type. No values of type Nothing can ever

exist at runtime so the type reflects the absence of a value, for example in the case

of an infinite recursion or loop, or when an expression throws an exception. The

diagram in Figure 2.1 depicts Scala’s type hierarchy.

Variance defines the rules on how the subtype relationships between parameter-

ized types are dependent on the subtype relationship on the type on which they are

parameterized. Variance has three variants: invariance, covariance, and contravari-

ance. Invariance means that subtyping relationships present in type parameters are

not applied to the parameterized type at all. Covariance states that the subtype

relationship of the parameterized type is in the same direction as a type parameter’s

subtype relationship. Contravariance reverses the subtype relationships between pa-

2.3 SCALA 20

rameterized types and their type parameters. When Sub is a subtype of Super and

F[_] is any parameterized type, then

• Under covariance, F[Sub] is a subtype of F[Super];

• Under contravariance, F[Super] is a subtype of F[Sub]; and

• Under invariance, F[Sub] and F[Super] have no subtyping relationship.

Covariance is applicable in parameterized types that contain, store, or produce

values; the type parameter is in covariant position. Contravariance is applicable in

the opposite situation, where values of the type parameter are consumed, i.e., the

type parameter appears in a function parameter list, and is said to be in contravari-

ant position. Invariance is useful in situations where it does not make sense for the

parameterized type to have inheritance based on a type parameter, or when the

parameterized type is used as the type of a mutable value, or the type parameter

appears both in covariant and contravariant positions. A parametric type with mul-

tiple type parameters could declare each type parameter with different variance. For

example, functions in Scala are contravariant in their input type(s) and covariant in

their result type.

An infamous example of a mutable covariant type is the primitive array type

in Java and C#. These arrays must perform a runtime type check when adding

elements to the array, and throw an exception if the type of the element is not

compatible with the array, as demonstrated in Listing 2. To avoid these mandatory

casts and checks, mutable collections in Scala are invariant. Immutable collections

and containers, such as Option or Either are covariant in Scala.

Programming languages differ in the way variance annotations are defined and

used. Variance annotations in C# and Scala occur with the parameterized type.

On the other hand, in Java one defines variance only when using a parameterized

2.3 SCALA 21

Listing 2 Covariance in mutable types, like Java primitive array, is problematic.
String[] a = new String[1];
Object[] b = a; // String is a subtype of Object, so this is legal
b[0] = 1; // Runtime exception since cannot add Integer to String[]

type. The former is called declaration-site variance, demonstrated in Listing 3,

and the latter is called use-site variance, demonstrated in Listing 4. Approaches

deviating from these exist. For example, TypeScript tries to infer variance, but

it has optional declaration-site annotations from version 4.7 onwards. Kotlin has

declaration-site variance by default but it emulates some parts of use-site variance

with type projections.

Listing 3 Scala uses declaration-site variance, where the variance of a parameterized
type is denoted in its type definition.
class Invariant[A] // Invariance is the default
class Covariant[+A] // Covariance denoted with +
class Contravariant[-A] // Contravariance denoted with -

Listing 4 Java has use-site variance, where the desired variance is declared when
using the parameterized type.
interface Supertype {}
interface Subtype extends Supertype {}

void invariant(List<Supertype> list) {
/* Get and set list values */

}
void covariant(List<? extends Supertype> list) {

/* Only get list values */
}
void contravariant(List<? super Subtype> list) {

/* Only set list values */
}

Invariance is the default in Scala and it does not require an explicit annotation.

Covariance is declared with a + sign before each type parameter. Since contravari-

2.3 SCALA 22

ance could be seen as the opposite of covariance, it is denoted with a - sign.

Many features and principles from functional programming are not only avail-

able, but also encouraged in Scala. Pattern matching, first-class functions (Listing

5), and tail recursion are all supported and heavily utilized in idiomatic Scala pro-

grams. Immutable variables, collections and data-structures are the default way

of writing Scala, even though mutable counterparts are also available. Functional

data modeling is achieved with the use algebraic data types built into the language.

Even though Scala embraces functional programming and imperative code is gener-

ally discouraged, introducing arbitrary side effects is possible.

Listing 5 Long and short form of anonymous functions in Scala.
val ns = List(1, 2, 3)

val mapped1 = ns.map(n => n + 1)
val mapped2 = ns.map(_ + 1) // Same as above in shorter form

val sum1 = ns.foldLeft(0)((x, y) => x + y)
val sum2 = ns.foldLeft(0)(_ + _) // Same as above in shorter form

In addition to ordinary functions, Scala has a specific function type called

PartialFunction for representing functions that are not defined for all values of

their input types. It is a subtype of the (normal) function type, to which it adds the

method isDefinedAt, which determines if the function is defined for a given value.

Listing 6 shows how to define and use partial functions.

Listing 6 Partial functions in Scala.
val someEvensMultipliedByTen: PartialFunction[Option[Int], Int] = {

case Some(n) if n % 2 == 0 => n * 10
}

val opts = List(None, Some(2), None, Some(3), Some(4))
val somes = opts.collect(someEvensMultiplied) // List(20, 40)

2.3 SCALA 23

Some functional languages, such as Haskell, have a special syntax for monadic

computations. Scala also provides this syntactic sugar in a form of for-comprehen-

sions, demonstrated in Listing 21. The for-comprehension is compatible with any

data type that has map and flatMap methods defined, such as Option, Either,

and ZIO (Chapter 4). These required methods can be added to any type by using

extension methods.

Extension methods, which allow adding methods to a class separately from its

definition, are one of Scala’s more advanced features. Other state-of-the-art features

of Scala include operator overloading and infix operator- and method syntax, higher

kinded and dependent types, type lambdas, as well as powerful meta programming

capabilities. Scala 3 introduced more cutting edge features, such as automatic type

class derivation and union and intersections types.

Probably the most distinguishing feature in Scala is its system of implicits and

other contextual abstractions arising from that. A function can mark some of its

parameters as implicit and the compiler will try to figure out these parameters from

the enclosing scope by their type, without the programmer explicitly passing an

argument for these parameters. Originally implicit parameters were introduced to

achieve similar behavior as Haskell’s type classes. Type classes are described in

more detail in Appendix A. Implicits can, however, also be used for other purposes,

such as implicit conversions, context propagation, extension methods, and proving

subtyping relationships between generic type parameters at compile-time. [18]

Syntactically to use implicits, a function can mark some of its parameters as

implicit with the keyword using. When the function is called, the compiler tries to

find a value marked as implicit, with the keyword given, from the enclosing scope.

If all requested values are found, they are automatically applied as arguments. If

any of the implicit parameters is not found, compilation error is reported. Listing 7

shows the function summon that searches for an implicit value by type, demonstrating

2.3 SCALA 24

the definition and use of implicit parameters.

Listing 7 Implicit resolution in Scala 3.
// Defined in the standard library
def summon[A](using a: A): A = a

// Defines an implicit value of type Int
given Int = 3

val three = summon[Int] // Finds the value 3 defined above

def implicitSum(a: Int)(using b: Int): Int = a + b
val five = implicitSum(2) /*(compiler automatically inserts 3)*/

Another advanced feature utilizing implicit resolution is the ability of the Scala

compiler to prove type equality or subtype relationships. The class =:=[From, To]

is for type equality and <:<[From, To] for subtype relationship. Both classes extend

a function From => To, and can be used to transform types. Types with two type

parameters can be used as infix in Scala, for example type equality can be written

A =:= B. When requesting an implicit parameter of either of the types above, Scala

compiler synthesizes an instance if the type relationship holds, otherwise it reports

a compilation error. The act of proving type relationships is said to be witnessing,

and a common practice is to name the implicit parameter as evidence. The feature is

useful, for example, when defining functions that make sense only for specific types,

as demonstrated in Listing 8, where only nested Maybe types could be flattened.

Scala 2 and 3 are also differentiated by the introduction of intersection and union

types in Scala 3. Intersection types are denoted with the & symbol and union types

with |. Intersection A & B means that the resulting type has properties of both A

and B. Union is the dual of intersection, and the resulting type of A | B is either A

or B.

Intersection types are commutative, idempotent, and have Any as the identity

2.3 SCALA 25

Listing 8 Scala compiler can prove (witness) a subtype relationship by providing
implicit evidence.
enum Maybe[+A]:

case Just(a: A)
case Nothing

def flatten[B](using evidence: A <:< Maybe[B]): Maybe[B] =
this match

case Just(a) => evidence(a)
case Nothing => Nothing

Maybe.Just(Maybe.Just(1)).flatten // Compiles
Maybe.Just(1).flatten // Error: Cannot prove that Int <:< Maybe[B]

element. Commutativity means that the order of types included in the intersection

does not matter — Scala considers permutations equal. Idempotency means that

type intersectioned with itself is equal to the type itself. Any as the identity element

means that the intersection of any type A with Any is equal to A, since all types

themselves are subtypes of Any. Expressed as code, laws of intersection types can

be proved with the Scala compiler:

• Commutativity: summon[(A & B) =:= (B & A)]

• Idempotency: summon[A =:= (A & A)]

• Identity: summon[A =:= (A & Any)]

Like intersection types, also union types are commutative, idempotent, and obey

the identity laws. The identity element is Nothing: the union of any type A with

Nothing is equal to A, since there are no values of type Nothing. Again expressed

as code, the laws of union types proved by the Scala compiler are:

• Commutativity: summon[(A | B) =:= (B | A)] then

• Idempotency: summon[A =:= (A | A)]

• Identity: summon[A =:= (A | Nothing)]

3 Approaches for managing effects

This chapter presents different approaches of managing effects and how these ap-

proaches manifest as programming language features. These approaches include

effect systems and unrestricted side effects, as well as more advanced techniques

such as monadic effects, algebraic effects and handlers, and capability based effects.

3.1 Effect systems

The purpose of an effect system is to allow mixing effectful and pure code safely.

The idea of an effect system is very similar to that of a type system. In some

programming languages, a type system can be used to implement an effect system,

such as in Java or C#, but in others they are two separate systems, such as in

Unison [19] or Koka [20].

A type system sets the rules according to which functions, parameters, expres-

sions, and, in some cases, objects can be composed. A static type system checks

that these rules are obeyed before the program is run. An effect system enforces

rules regarding the effects that expressions and statements have, and how these ef-

fects can interact with each other. Similarly to type systems, these interactions are

checked statically at compile-time.

A type system infers or requires the programmer to specify the type of the

values related to an expression. Analogously, an effect system infers or requires the

programmer to specify the possible effects for every function/expression. Contrary

3.1 EFFECT SYSTEMS 27

to type systems where an expression usually has just one type, an expression can

produce zero or more different effects. Considering the possible effects related to

an expression as a set, an empty set of effects denotes an expression that is free of

effects.

Active research related to statically checking effects began in the mid 80s and

90s. Even earlier efforts in this direction were the Pascal extensions Euclid (in

the 70s) and Ada (in the 80s) that separated side effecting procedures from pure

functions [21]. The term effect system was introduced by Gifford and Lucassen [22]

in 1986. Their idea was to assign different effect classes to different parts of a

program. Gifford and Lucassen’s paper proposed rules for how these different classes

are allowed to interact with each other. For example, a pure function is not allowed

to call a function that is labeled with a more permissive effect class. This allows the

safe mixing of functional and imperative code while preserving equational reasoning

of the functional parts and tracking possible effects of the imperative parts. In

the system, the only effectful operations were related to allocating, mutating and

reading memory locations. The goal was to determine what parts of the program

could be run in parallel without changing the semantics of the program.

Probably the most widely known example of effect systems is checked exceptions

in Java (Listing 9). This part of Java’s type, or effect, system is concerned of track-

ing exceptions, more specifically where they are thrown and caught. If a method

might throw an exception, the exception type must be declared in a throws clause

in the method’s type signature. The compiler forces any code that calls the method

to either handle all declared exceptions or to add a throws clause to indicate that

exceptions will bubble up. Checked exceptions have been widely criticized for mak-

ing programming clumsy, and nowadays it is common for the whole feature to be

circumvented when possible.

Since their introduction, effect systems have evolved significantly and gained

3.1 EFFECT SYSTEMS 28

Listing 9 Checked exceptions in Java.
public byte[] readFile(String fileName) throws IOException {

var file = new File(fileName);
var is = new FileInputStream(file); // can throw IOException
return is.readAllBytes(); // can throw IOException

}

public void catchIt() {
try { var bytes = readFile("file.txt"); }
catch (IOException exc) { /* Handle error */ }

}

// Caller must handle IOException
public void declareIt() throws IOException {

var bytes = readFile("file.txt");
}

more sophisticated features, such as the ability to track non-memory related effects

like IO and exceptions. Several effect systems [19], [20], [23], [24] allow the user

to define custom effect types. The research regarding effect systems is active, and

several novel approaches and features are emerging.

One feature under active research and development is effect polymorphism [25].

The goal of effect polymorphism is to allow defining, in a safe way, functions that are

polymorphic in the effect of their argument. This makes it possible to define, e.g.,

an effect polymorphic map function that accepts as an argument a transformation

function and applies the transformation to elements in a context, such as a list. The

challenge is to be able to define just a single a map function, per context, in a way

that the input function can be either pure or have arbitrary effects that determine

the effect of evaluating the map function.

Several researchers agree that discovering a practical solution to expressing effect

polymorphism is crucial for the practical use of effect systems.

Odersky, Boruch-Gruszecki, Lee, et al. [25]:

The problem is not lack of expressiveness — [effect] systems have been

3.2 UNRESTRICTED SIDE EFFECTS 29

proposed and implemented for many quite exotic kinds of effects. Rather,

the problem is simple lack of usability and flexibility, with particular

difficulties in describing polymorphism.

Leijen [26]:

In practice though we wish to simplify the types more and leave out

‘obvious’ polymorphism.

Lindley, McBride, and McLaughlin [6]:

In designing Frank we have sought to maintain the benefits of effect

polymorphism whilst avoiding the need to write effect variables in source

code.

Languages with built-in effect systems [19], [20], [23], [24] usually include alge-

braic effects and handlers, which are discussed in more detail in Section 3.4. Library-

level support for effect systems is commonly based on monadic effects, which are

discussed in Section 3.3. Another approach for managing effects is capability-based

effects, which are described in more detail in Section 3.5.

3.2 Unrestricted side effects

The most straightforward way to incorporate effects into a programming language

is by not giving them any special treatment. This way pure expressions and effectful

statements are treated equally and can be combined with each other in any way.

The evaluation of any method, function or procedure can cause side effects to occur.

The origins of unrestricted side effects go back all the way to 50s and 60s when

the first programming languages were created. Even in today’s software industry,

unrestricted side effects are the default way to incorporate effects into a programming

3.2 UNRESTRICTED SIDE EFFECTS 30

language. Virtually all mainstream programming languages allow unrestricted side

effects in one way or another.

Not restricting side effects in any way gives the programmer a lot of freedom when

implementing a program. By allowing effects in any expression, the language does

not place constraints on how subprograms can be composed. This way is well-aligned

with the imperative paradigm. However, the programmer is solely responsible for

managing all the effects and making sure that they are compatible with each other.

The language does not provide help in ensuring correct use of effects. This way

of handling side effects is also not particularly expressive or modular. Creating

reusable functions for common side-effecting operations, such as repeating an effect,

defining a timeout or retrying, is hard or at least clumsy.

Listing 10 shows a higher-order function map for the List datatype, and demon-

strates how it can be used with pure and effectful mapping functions. A similar

function is used in the upcoming sections as a running example to demonstrate

how such effectful mapping function can be implemented with other approaches for

managing effects.

Listing 10 List.map function in Scala, where f can have arbitrary side effects.
extension [A](as: List[A])

def map[B](f: A => B): List[B] =
as match

case head :: tail => f(head) :: tail.map(f)
case Nil => Nil

// The type signatures of all expressions are identical
// Even though the last one may throw an exception
val nums: List[Int] = List(1, 2, 3, 4, 5)
val pure: List[Int] = nums.map(n => n * 2)
val effectful: List[Int] = nums.map { n =>

if n > 5 then throw RuntimeException("Too large") else n * 2
}

3.3 MONADS 31

3.3 Monads

Of particular interest in this thesis is the algebraic structure monad. Algebraic

structures are a concept that define functions that operate on some parametric

type, or types, and are governed by algebraic laws. Algebraic structures are often

studied through the lense of category theory, a branch of theoretical mathematics

that studies objects, transformations between objects and relationships between

different categories. In this thesis algebraic structures and monads in particular are

approached from the perspective of computer science; the focus is on how monads

are capable of encoding effects.

A functor is a transformation between two categories. In functional program-

ming most, if not all, functors are endofunctors, which are transformations from one

category back to the same category. In practice endofunctors wrap some other cate-

gory and allow transforming the inner category while preserving the outer category.

The list datatype is an example of an endofunctor, because it allows for applying

transformations to elements in the list, resulting in a new list. A monad is a special

kind of endofunctor that is capable of collapsing a nested endofunctor structure. In

the case of lists, consider applying a transformation that would result in a nested

list. A monad is capable of applying such a transformation in a way that the result-

ing list is not nested. Listings 11 and 12 show the definition of Functor type class

in Haskell and Scala. Type classes are introduced in Appendix A.

Listing 11 Functor type class in Haskell.
class Functor f where

fmap :: (a -> b) -> f a -> f b

The applicability of monads to programming was not discovered until the late

80s by Moggi [27], who showed how monads can define semantics of effectful pro-

3.3 MONADS 32

Listing 12 Functor type class in Scala 3.
trait Functor[F[_]]:

extension [A](fa: F[A]) def map[B](f: A => B): F[B]

grams. Moggi’s proposed semantics extend lambda calculus in a pure way to support

calculations previously considered to be impure. Later the idea of using monads to

describe effectual computations was refined by Wadler [28], and Moggi [29] and

Wadler [30]. The approach to effects based on monads can be summarized as de-

scribing computations as ordinary values.

Any data type can form a monad if it has at least two capabilities: lifting any

value to the context of the monad (i.e., the data type), and sequentially composing

computations that act on these values. Every computation in these sequences has

access to the values that the preceding computations may have produced. These

computations produce values that are inside a data type and succeeding computa-

tions have access to. Lifting and sequencing must adhere to monad laws in order for

the data type to be considered a monad. Monad laws are discussed in more detail

in Section 3.3.6.

In practice several data types naturally form a monad, such as Array in JavaScript

with of function providing lifting and flatMap function providing sequencing [31].

Monads and other algebraic structures are often implemented as type classes, and

writing programs consists of using operations provided by those type classes. This

allows for writing abstract programs that work for any monad instance. The defini-

tions of the Monad type class in Haskell and Scala are provided in Listings 13 and

14.

Listing 13 Monad type class in Haskell.
class Functor m => Monad m where

return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

3.3 MONADS 33

Listing 14 Monad type class in Scala 3.
trait Monad[F[_]] extends Functor[F]:

def pure[A](a: A): F[A]
extension [A](fa: F[A]) def flatMap[B](f: A => F[B]): F[B]

Composing programs of sequential instructions is nothing new compared to im-

perative programming. Monads, however, can control what effects are possible

within computations and in their compositions. The data type (i.e., monad) provides

the context in which the computations are performed, and thus defines the semantics

of lifting and sequencing. Different monads have different semantics, which allows

encoding different effects with monads. The usefulness of monads comes from the

fact that sequencing computations one after another is such a fundamental opera-

tion in any effectful program. Monads abstract this operation, and allow for defining

the meaning of sequentiality in the context of a specific monad. For example in a

list monad, the semantics of sequencing is to perform the computation for every

element in the list, and composing multiple lists will result in a cartesian product,

as demonstrated in Listing 15. Examples of other monads and their semantics are

given later in this chapter.

Listing 15 Monadic bind in list monad results in a cartesian product.
suits = ["Club", "Heart", "Diamond", "Spade"]
ranks = [2..14]

type Card = (String, Int)

-- [("Club", 2), ("Club", 3), ... ,("Spade", 13), ("Spade", 14)]
deck :: [Card]
deck =

suits >>= \suit ->
ranks >>= \rank ->
return (suit, rank)

The naming of monad’s functions is dependent on the programming language,

3.3 MONADS 34

library and framework. The lifting function is usually called pure, return, unit,

or succeed, and the sequencing function is called bind, flatMap, chain, or the

symbolic alias >>=.

In addition to these mandatory functions, monads commonly define more specific

functions that only make sense in the context of a particular monad. These functions

make it easier and more convenient to use the capabilities of the monad, or possibly

to change the behavior of computations in some way. Examples of such functions

are presented below along with the introduction of specific monad types.

Monads are traditionally associated with statically typed languages, although

nothing prevents their use in a dynamically typed language. In statically typed

languages monads naturally work as an effect system by making explicit in the

type system if and what effects are involved. When mixing multiple effects, type

signatures can get quite chaotic. We will get back into this subject when discussing

monad transformers.

3.3.1 Id

A trivial example of a monad is the identity, or Id monad. It simply encodes the

effect of having no effect at all. Lifting values to monadic context is trivial since no

lifting is required. The semantics of sequencing does not differ from conventional

function application, as demonstrated in Listing 16.

Listing 16 Identity monad in Scala.
type Id[A] = A

given Monad[Id] with
def pure[A](a: A): Id[A] = a
extension [A](a: Id[A])

def flatMap[B](f: A => Id[B]): Id[B] = f(a)

3.3 MONADS 35

3.3.2 Either

Either monad encodes the effect of raising and handling exceptions when perform-

ing computations that might fail. Since Either is a monad, it enables the sequen-

tial composition of multiple possibly failing computations. Like the name suggests,

computations in Either monads can either succeed with a value or fail with an

exception. Either has similar short-circuiting semantics as throwing exceptions has

in, e.g., Java. When the first exception is encountered, computations that follow

will not be performed and the exception remains as the result of the computation.

Usually Either provides combinators that can transform a failed computation into

a successful one. This is semantically similar to catching exceptions. Unlike throw-

ing and catching exceptions, Either makes it obvious in the type signature of the

function that the computation the function describes has a possibility of failure.

In practice the Either data type is commonly implemented as a sum type of

two variations: Left (exception) and Right (success). Usually implementations are

right-biased, which, among other things, determines the semantics of monadic op-

erations. To lift a value into Either monad, it is simply wrapped in Right. The

meaning of sequencing in the case of Right is to pass the successful value to subse-

quent computations, whereas in the case of Left it is to return the failed exception

as is and perform no computations. An example of Either monad implementation

in Scala is given in Listing 17.

In order for Either to better support exception handling, several convenience

functions are commonly defined for it. These functions are more specific than the

monad structure admits, since they operate in a domain where the computation

might produce different values. Next a few of the these functions are introduced in

more detail.

One typical scenario in error handling is to define a fallback computation to be

3.3 MONADS 36

Listing 17 Either monad in Scala.
enum Either[+E, +A]:

case Left(e: E)
case Right(a: A)

given [E]: Monad[[A] =>> Either[E, A]] with
def pure[A](a: A): Either[E, A] = Right(a)
extension [A](either: Either[E, A])

def flatMap[B](f: A => Either[E, B]): Either[E, B] =
either match

case Left(e) => Left(e)
case Right(a) => f(a)

performed if the actual computation is unsuccessful. In Haskell this is achieved by

utilizing an associative binary operation in Semigroup type class, which is defined as

(<>) :: Either e a -> Either e a -> Either e a. In Scala similar semantics

are made possible by orElse -method on an Either data type itself, with type signa-

ture: def orElse[E1, A1](or: => Either[E1, A1]): Either[E1, A | A1]. Be-

cause Scala 3 has union and subtypes, it is possible for the fallback computation

to have different exception and success types as the original Either, here A is the

success type of Either.

Another common operation in error handling is to transform the error type.

There are some differences in the implementation of this functionality depending on

the language. Haskell has BiFunctor type class where the function first allows ap-

plying transformations to the left side of Either. Scala has LeftProjection, which

allows to perform monadic operations on the (left) error "channel" of the Either.

Either in Scala also has def swap: Either[A, E] method that transforms a Right

to Left and vice versa.

Possibly the most common operation in error handling is to derive some final

value from a computation. Since the computation can have either failed or suc-

ceeded, both possibilities must be covered. This could be achieved by providing a

function for both cases that transforms the corresponding value (failure or success)

3.3 MONADS 37

to the same result type. In Haskell the type signature of this function is

either :: (a -> c) -> (b -> c) -> Either a b -> c and in Scala it’s

def fold[B](onLeft: E => B, onRight: A => B): B.

3.3.3 Reader

The reader monad encodes the effect of describing a sequence of computations that

require some shared context or environment in order to be evaluated. The idea

closely resembles composing functions together by passing arguments from the par-

ent to child functions. Instead of explicitly passing every parameter, the reader

monad automatically threads the environment through computations. It is note-

worthy that the reader monad itself is nothing more than a data structure that

describes a computation. In order to retrieve the described result the computation

must be executed by providing the environment it requires. Common use cases

for reader monad are dependency injection and context sharing in deeply nested

structures, such as function calls or component hierarchies in UI frameworks.

Listing 18 Reader monad in Scala.
case class Reader[-R, +A](run: R => A)

object Reader:
def ask[R]: Reader[R, R] = Reader(r => r)

given [R]: Monad[[A] =>> Reader[R, A]] with
def pure[A](a: A): Reader[R, A] = Reader(_ => a)
extension [A](self: Reader[R, A])

def flatMap[B](f: A => Reader[R, B]): Reader[R, B] =
Reader(r => f(self.run(r)).run(r))

The implementation of the reader monad (Listing 18) is confusingly simple due

to the fact that it is essentially just a wrapper for a function. It could be imple-

mented as a single parameter function that receives the environment as an argument

3.3 MONADS 38

and returns the result of the computation. Lifting a value to a reader monad is as

simple as defining a function that ignores its argument and returns a specified value.

The meaning of sequencing two reader computations together is to run both com-

putations providing them with the same parameter [32].

Reader has a couple of common operations specific to it. One primitive operation

is to retrieve the environment from the reader. The implementation is just the

identity function, and the operation is often named ask, get, or environment.

Another primitive operation is to actually run the computation the reader monad

describes to get the final result from it. Running a reader monad is nothing more

than providing the required environment, in some cases there is a helper function

run or runReader to do just that.

3.3.4 IO

IO monad encodes the effect of performing side effects and possibly returning a value

that depends on the side effect. This enables the implementation of programs that

use, e.g., a console, file system, network or graphical user interface. It is common

to also allow expressing mutability via IO monad. Also, IO monads usually provide

a way to introduce and manage asynchrony, concurrency, and parallelism. With

asynchronous operations comes the desire to define interruptions and timeouts, and

handle asynchronous exceptions in a sound way, as discussed in Section 2.1.2.

Theoretical background of IO Monad is described by Peyton Jones and Wadler [5].

This work was published a couple of years after Moggi’s initial discovery of using

monads to model effects. IO monad was originally designed for Haskell, which is a

lazily evaluated purely functional programming language. Due to being a lazy lan-

guage, there is no explicit control flow — terms are evaluated only when absolutely

required. Programming with side effects, however, requires that they are executed

in a precisely defined order. Wadler and Peyton Jones describes the relationship

3.3 MONADS 39

between lazy evaluation and side effects as follows: “laziness and side effects are

fundamentally inimical”. Every expression in Haskell must be referentially trans-

parent and programming with side effects is no exception. Modeling side effects

with monads retains referential transparency and determines the execution order of

expressions.

Wadler and Peyton Jones describe a parametric data type IO a that represents

a possibly side effecting program that, when executed, returns a value of type a.

In other words, IO a is an ordinary value that can be transformed by passing it

into functions that return modified IO values. Also, a program may choose not to

execute certain IO values even though they are defined. This idea of modeling side

effecting programs as values turned out to be highly useful. It provides superior

composability compared to programs with unrestricted side effects. For example it

is possible to define combinators that work with every IO program and thus define

behaviors like retrying, timeouts, error handling, parallelism and racing in a reusable

manner.

IO monads and the idea of programs as values has been adopted to other lan-

guages than Haskell, including many impure and eagerly evaluated ones. Examples

of such implementations are ZIO [33], Cats Effect [34] and Monix [35] in Scala,

Effect TS [36] in JavaScript/TypeScript, Arrow FX [37] in Kotlin, Missionary [38]

in Clojure, and Eff [39] and Aff [40] in PureScript.

Lifting a value into the IO monad means that no side effects are performed and

the value is simply wrapped to IO. This bridges the cap between pure and impure

worlds by making it possible to bring pure values into a context where describing side

effects is possible. The meaning of sequencing is to create a description of two side

effects that, when executed, are performed one after another. Like with all monads,

the latter IO has access to the value produced by the preceding IO computation. A

simple example implementation of IO monad is given in Listing 19.

3.3 MONADS 40

Listing 19 Naive IO monad in Scala.
case class IO[A](run: () => A)

given Monad[IO] with
def pure[A](a: A): IO[A] = IO(() => a)
extension [A](io: IO[A])

def flatMap[B](f: A => IO[B]): IO[B] =
IO(() => f(io.run()).run())

The IO monad is fundamentally different from previously introduced monads,

which can be implemented in a referentially transparent way. Since the IO monad

encodes side effects it is inherently not referentially transparent, because the side

effects must be executed at some point. To make it possible to write side-effecting

programs in a purely functional way, the IO monad separates the description of

side effects from the execution of side effects. Constructing a description of a side-

effecting program is referentially transparent, while its execution is not; the latter

is delayed, usually happening outside of "user-land" code.

To actually perform the side effects IO describes, there must be a way to inter-

pret IO values into side effects they describe. This is usually the responsibility of

the particular runtime system. In a purely functional programming language, the

runtime cannot be implemented in the language itself. Impure languages have more

flexibility in the way of implementing the runtime system, as well as how to encode

the IO monad in the first place. Flexibility is useful: modern runtime systems with

industry adoption are enormously complex and sophisticated, so that they can utilize

the hardware as efficiently as possible to achieve the best performance possible.

Performance is really important, since the use of IO monad in a program is

intrusive: any expression that references another expression that is evaluated in IO,

must also be evaluated in IO. This is to be expected as there is no way to "peel

off" the IO wrapper from an expression in a referentially transparent way, since that

would mean executing the side effect. In programs written with the IO monad, the

3.3 MONADS 41

runtime system can be seen as the central authority, as described in Section 2.1.

3.3.5 Syntax

The "usual" kind of code where functions are applied to values is called direct

style. Programming with wrapped types (endofunctors), like monads, enforces a

different style of syntax called monadic style. To perform operations on values in a

monadic context, like combining multiple values together, one must use higher-order

combinators, such as map and flatMap. The sequencing combinator will bind the

value inside the monad to a variable that could be used in a function. Listing 20

compares the direct style with the monadic style, by the means of usual integer

addition and integer addition in the Option monad.

Listing 20 Direct vs. monadic syntax in Scala.
// Direct style
val num1: Int = 3
val num2: Int = 4
val sum: Int =

num1 + num2

// Monadic style
val optionNum1: Option[Int] = Option(3)
val optionNum2: Option[Int] = Option(4)
val optionSum: Option[Int] =

optionNum1.flatMap(n1 =>
optionNum2.map(n2 =>

n1 + n2))

Programming with monads leads to numerous sequencing functions one after

another. This can get verbose, and the intent of the code might be harder to

see because it is obfuscated by the "monadic machinery". Some languages have

built-in support for representing monadic computations in a more convenient way.

Usually this comes in the form of special syntax for sequencing multiple monadic

computations together with minimum boilerplate. The syntax is nothing more than

syntactic sugar that the compiler converts to calls to monadic sequencing functions.

Examples of such syntax are Haskell do-notation [41], Scala for comprehensions

[42], F# computation expressions [43], and OCaml Binding operators [44]. Listing

21 compares Scala’s for-comprehension syntax that desugars to sequence of flatMaps

3.3 MONADS 42

and one final map function.

Listing 21 For-comprehension in Scala.
val optionSum: Option[Int] =

optionNum1.flatMap(n1 =>
optionNum2.map(n2 =>

n1 + n2))

val optionSumFor: Option[Int] = for
n1 <- optionNum1
n2 <- optionNum2

yield n1 + n2

A technique for programming in direct style with monadic effects while preserving

the semantics of the specific monad has been proposed [45]. The technique is called

monadic reflection, and it utilizes the fact that programs written in monadic style

could be translated into programs written in Continuation Passing Style (CPS). The

proposed technique requires from the programming language or platform a language-

level support for first-class continuations/suspensions/coroutines. Monadic reflec-

tion requires for each monad an implementation of a type class with two operations:

reify and reflect that wrap and unwrap values to and from the monadic context.

The original motivation for monadic reflection was to support monadic effects in

Scheme, but in practice monadic reflection has hardly gained any traction in any

functional library or language. There has been, however, some recent research on

how monadic reflection could work with capability-based effect tracking in Scala,

and also a proof-of-concept implementation in Scala 3 [46], [47].

3.3.6 Monad laws

For a data type to form a monad, it must adhere to three laws, also known as the

monad laws: associativity, left identity, and right identity. These laws are simply

rules that the operations on a data type must follow. The laws precisely define

the semantics of a data type and ensure that desired semantics are preserved when

refactoring. In addition to their signatures, laws are what separate one algebraic

structure from another. To be precise, an algebraic structure is totally defined by its

3.3 MONADS 43

operations and the laws that govern these operations. Thus the definition of monad

is an algebraic structure with two operations pure and bind, obeying the laws of

associativity, left identity, and right identity, nothing more, nothing less. [48]

Listing 22 Monad associativity law in Scala.
def pure[A](a: A): Option[A] = Monad[Option].pure(a)

val num1: Option[Int] = Some(1)
val num2: Option[Int] = Some(2)
val num3: Option[Int] = Some(3)

val mustBeTrue = sumAll1 == sumAll2

def sumAll1: Option[Int] =
num1.flatMap(n1 =>

num2.flatMap(n2 =>
num3.flatMap(n3 =>

pure(n1 + n2 + n3))
)

)

def sumAll2: Option[Int] =
num1.flatMap(n1 =>

num2.flatMap(n2 =>
pure(n1 + n2))

).flatMap(sum12 =>
num3.flatMap(n3 =>

pure(sum12 + n3))
)

Associativity means that if there is a binary operation that is applied to three or

more values, the order of application does not change the resulting value. In other

words, the order of parentheses does not matter. Common examples of associative

operations include integer addition and multiplication, string concatenation, and

boolean && and || operations. In the context of monads, associativity states that

the semantics of sequencing are not dependent on the nesting of the bind operations.

An example of this is provided in Listing 22.

Left and right identity laws define how lifting and sequencing must interoperate.

Left identity states that if a value is lifted to a monadic context and then a function

is applied to it using the sequencing operator, the result must be equal to just

applying the function to the value without lifting it into the monadic context. Right

identity states that if a value is lifted into a monadic context and sequenced into the

3.3 MONADS 44

Listing 23 Monad identity laws in Scala.
def pure[A](a: A): Option[A] = Monad[Option].pure(a)
def f(n: Int) = pure(n + 1)

// Left identity
val x: Int = 1
pure(x).flatMap(n => f(n)) == f(x)

// Right identity
val num: Option[Int] = pure(1)
num.flatMap(n => pure(n)) == num

lifting function, it must be equal to the original lifted value. An example of both

identity laws is provided in Listing 23.

3.3.7 Monad transformers

So far we have gone through how monads can be used for encoding several side

effects. However, in practice it is common that multiple effects need to be used in

tandem. Practically all applications use the IO monad and they may desire to model

exceptions and early termination with the Either monad, and access configuration or

other context provided by the Reader monad. There is nothing to prevent manually

stacking multiple monads to achieve all these functionalities.

Stacking multiple monads will lead to nested type signatures. The order of stack-

ing is important, as the same types nested in different orders may imply totally differ-

ent meanings. For example, IO[Either[Error, Success]] is a side effecting pro-

gram that produces either a result of type Success or fails with an exception of type

Error. On the other hand, an expression of type Either[Error, IO[Success]] is

a program that will in the success case perform some side effects to produce a value

of type Success, or fail with an exception of type Error without side effects.

Programming with nested monads leads to added boilerplate. To lift a value in

to a nested monad, it must be manually wrapped with every monad in the correct

3.3 MONADS 45

order. The programmer must manually thread the value inside monad layers through

the program while preserving the nesting order and semantics of each monad. Every

monad has slightly different semantics, so implementation details differ depending

on the monad type. Listing 24 demonstrates the required syntax when programming

with nested IO and Either monads.

Listing 24 Syntactic overhead of nesting Either and IO monads.
def fn(str: String): IO[Either[Unit, Int]] = ???

val ioEitherString: IO[Either[Unit, String]] = IO(Right("foo"))

val ioEitherInt: IO[Either[Unit, Int]] =
ioEitherString.flatMap(either =>

either.fold(
error => IO(Left(error)),
success => fn(success),

)
)

In addition to obfuscating the intent, manually implementing all of this func-

tionality is a burden to the programmer and a possible source of bugs. Sometimes

the cause of bugs could be highly subtle, for example when using Either for error

handling inside IO, as shown in Listing 25. The programmer might be relying on

the short-circuiting semantics of Either but when it is used inside the IO monad, the

error is silently swallowed. It is even possible that the return type of mayFail was

initially IO[Unit], and it was later refactored to also include an error case. In this

situation, the compiler does not report an error since discarding values is allowed.

As there are arbitrarily many ways to nest monads, the number of similar possible

bugs is also large.

Nesting monads also comes with performance considerations. Calls to monadic

functions must propagate through every layer of nesting, which increases indirection

3.3 MONADS 46

Listing 25 Subtle bugs not causing early termination or compilation error.
def mayFail: IO[Either[String, Unit]] = ???
def wontFail: IO[Either[Nothing, Int]] = ???

val program: IO[Either[String, Int]] =
for

// Type of _ is Either[String, Unit]
_ <- mayFail // Even if this line evaluates to Left
res <- wontFail // ... this line will still be executed

yield res

and the number of function calls. Also memory consumption increases because each

nested monad necessarily consumes some amount of memory. The exact magni-

tude of performance implications depends on the language, platform, and runtime

environment.

Listing 26 EitherT monad transformer in Scala.
case class EitherT[F[_], E, A](effect: F[Either[E, A]])

given [E, F[_]: Monad]: Monad[[A] =>> EitherT[F, E, A]] with
def pure[A](a: A): EitherT[F, E, A] =

EitherT(Monad[F].pure(Right(a)))

extension [A](self: EitherT[F, E, A])
def flatMap[B](f: A => EitherT[F, E, B]): EitherT[F, E, B] =

EitherT(
self.effect.flatMap {

case Left(e) => Monad[F].pure(Left(e))
case Right(a) => f(a).effect

},
)

Monad transformers can avoid nested monads and help compose multiple monads

into one. A Monad transformer is simply a wrapper for one monad that gives it also

the semantics of another monad, just like nested monads. Like every monad, the

composed monad must obey the monad laws. There is no universal way to compose

monads, each monad must have its own monad transformer instance. For some

3.3 MONADS 47

monad pairs composition is meaningless, or it is not possible to define a monad

transformer.

The nested monad in Listing 24, IO[Either[E, A]], is isomorphic to

EitherT[IO, E, A] (defined in Listing 26), which is a monad transformer for Either

monad applied to IO. This monad is capable of encoding side effects as well as

terminating early in the presence of errors. Listing 27 shows an identical program to

that in Listing 25 but one that does not suffer from the issues described earlier. This

is since EitherT composes with any other monad with short-circuiting semantics.

Listing 27 Usage of EitherT monad transformer with IO monad.
def mayFail: EitherT[IO, String, Unit] = ???
def wontFail: EitherT[IO, Nothing, Int] = ???

val program: EitherT[IO, String, Int] =
for

// Type of _ is Unit
_ <- mayFail // If this line evaluates to Left
value <- wontFail // This line won't be executed

yield value

Monad transformers alleviate some of the issues encountered when nesting mon-

ads manually. There is less syntactic overhead since the monad transformer threads

the values through the monad stack and does all the required wrapping and unwrap-

ping. However, many of the problems with nested monads are also present in monad

transformers. The order of nesting is still significant, performance considerations are

similar and every monad requires a unique implementation.

Because Scala has subtyping, it emposes some unique constraints to monad trans-

formers. EitherT defined in Listing 26 is invariant on the monad it composes. With

this definition the code in Listing 27 will not compile since mayFail and wontFail

do not have identical type signatures. To overcome this issue, there are multiple

solutions, each with their pros and cons. One might define EitherT to require the

3.3 MONADS 48

composed monad to be covariant. This has the obvious downside that it restricts

what monads are compatible with EitherT. An other option would be to define

widening operators on invariant EitherT, but that would place a burden on the

programmer who would have to explicitly invoke those methods. Both options are

demonstrated in Listing 28.

Listing 28 EitherT leftWiden method.
case class CovariantEitherT[F[+_], +E, +A](effect: F[Either[E, A]])

case class EitherT[F[_], E, A](effect: F[Either[E, A]]):
def leftWiden[E1 >: E]: EitherT[F, E1, A] =

this.asInstanceOf[EitherT[F, E1, A]]

3.3.8 Polymorphism

Many higher-order combinators found in collections and other data types, such as

map, filter, zip, and fold, do not work when the input function is monadic. This

means that a specific monadic counterpart is required for each of combinator. The

implementations of these combinators differ considerably from the implementations

of the corresponding pure operators. However, the implementations can usually be

generalized to work with every monad, including monad transformers. A convention

originating from Haskell is to suffix such combinators with M to indicate that it is

the monadic version of the combinator. Listing 29 defines the effect polymorphic

monadic mapM operator for List that is compatible with any monad.

Similarly, looping and branching constructs require their own monadic versions,

such as ifM and whileM, when the predicate is evaluated in a monad. The need for

separate monadic combinators is definitely one of the weaknesses of monads, and a

possible stumbling block for a newcomer.

Monads provide a referentially transparent way of modeling effects. As a result,

3.4 ALGEBRAIC EFFECTS AND HANDLERS 49

Listing 29 Monadic mapM function for List in Scala.
extension [A](as: List[A])

def mapM[F[_]: Monad, B](f: A => F[B]): F[List[B]] =
as match

case Nil => Monad[F].pure(List.empty)
case head :: tail =>

for
b <- f(head)
bs <- tail.mapM(f)

yield b :: bs

val nums: List[Int] = List(1, 2, 3, 4, 5)
val effectful: Either[String, List[Int]] =

nums.mapM { n =>
if n > 5 then Left("Too large") else Right(n * 2)

}

programs written using monads are modular and can be safely refactored. Expres-

sivity is also high; there are many operators, and new ones can be easily implemented

in terms of existing ones. However, monads largely determine how programs should

be written. They force monadic syntax instead of direct one. Many existing com-

binators and control structures require a monadic counterpart. Also, composing

different effects together is not straightforward since it requires nesting monads or

using monad transformers.

3.4 Algebraic effects and handlers

Algebraic effects and handlers are one of the most recent approaches and fields of

research on the subject of purely functional effectful programming. Algebraic effects

take the approach that there is a variety of different types of effects and every

effect type has a finite set of operations that define potentially impure abilities. To

interpret each operation, one must provide a handler for every effectful operation.

Operations define the interface of the effect, while handlers define the semantics of

3.4 ALGEBRAIC EFFECTS AND HANDLERS 50

each effect and operation.

The notion of “algebraic operations” was introduced by Plotkin and Power [49] in

2001 and they refined the idea in [50] and [51]. The idea of handlers accompanying

algebraic effects was first presented by Plotkin and Pretnar [52] in 2009 and later

Plotkin and Pretnar [53] in 2013. The idea was similar to what Moggi discovered

in [29], but Plotkin and Power considered operations to be primitive instead being

derived from the monadic context.

The availability of algebraic effects and handlers is mostly, at least currently,

in strict/eagerly evaluated purely functional programming languages. The idea of

transferring the control to an effect handler does not fit the model of lazily evaluated

languages naturally, since languages with lazy evaluation do not have explicit control

flow. [54]

3.4.1 Existing languages and libraries

Algebraic effects can be implemented as a library or a language-level feature. There

are several libraries that provide some support for algebraic effects in languages

that do not have native support for them, like Idris Effects [55], Haskell Extensible

effects [56] and F# AlgEff [57]. In the 2010s the theory of algebraic effects evolved

in to several research languages such as Eff [58], Koka [20], Frank [23], Links [59],

and Effekt [60]. The appearance of algebraic effects in non-research languages has

only happened in the past few years, with Unison [19] and OCaml [24].

Unison is a programming language with several out-of-the-ordinary features, in-

cluding abilities, which are an implementation of algebraic effects from Frank [23].

Unison has had alpha and beta versions since 2019 and it is currently aiming to

achieve commercial adoption. OCaml version 5.0 [61] (released in December 2022)

includes language-level support for algebraic effects and handlers. As can be seen,

currently algebraic effects are a new concept with little to no experience from in-

3.4 ALGEBRAIC EFFECTS AND HANDLERS 51

dustry.

3.4.2 Theory of handlers

When a program encounters an effect operation, its execution is halted, and the

control is transferred to the closest handler provided for that specific operation.

The handler may also receive some parameters from the program in the process of

taking over the execution. After the transfer of control, it is solely the responsibility

of the handler to decide how the program will continue.

The idea of effects being interaction between sub-programs and a central au-

thority, described in Section 2.1, fits algebraic effects naturally. The parts of the

program that call effect operations of algebraic effects are the sub-programs and the

handlers are the central authority. Compared to monads, algebraic effects take a

different approach. Pure values are separate from effectful computations, which are

defined as effect operations and performed by handlers. The concept is powerful

enough to implement all previously mentioned monads and even many of the more

complicated control structures, built-in to many languages, like try-catch, iterators,

and async/await. [54]

A common way of handling an effect is to transform it to another effect or

data type. Many times higher-level effects are implemented in terms of lower level

effects, and finally the most primitive effects, such as IO, are provided by runtime.

Eventually this forms a graph of effects and handlers that depend on each other [62].

Providing an expression with an effect handler it requires is said to “discharge” the

effect from the expression. In order to safely evaluate an expression all of its effects

must be discharged.

Handlers have a way to continue executing the program, and optionally apply a

transformation function to the final value of the expression they handle. However, it

is totally up to the specific handler to decide how and if to continue the execution or

3.4 ALGEBRAIC EFFECTS AND HANDLERS 52

whether to apply the final transformation. This way the handler has the full power to

decide how to act. It may continue the execution and, depending on the operation,

supply a value to continue with, or it may decide to terminate the execution and

continue by executing a different part of the program instead. The handler may

even decide to execute a continuation multiple times and possibly collect all results

of the continuations to a list.

It is worth noting that the handlers required by a well-formed program can

be changed without having to change the program code in any way. This could

have interesting implications in for example multi-platform development, where one

could abstract platform-specific operations to effects and provide different handlers

depending on the platform. For example one could provide an effect interface for

concurrency, which would have drastically different handler implementations in a

single-threaded environment, such as JavaScript, compared to multi-threaded envi-

ronment, like JVM. This would be opaque from the perspective of the programmer

who is using the effect interface.

3.4.3 Handlers in practice

Languages and libraries that implement algebraic effects provide effect handlers

access to a continuation function that, when called, resumes the execution of the

program from where it was transferred to the handler in the first place. In other

words, the continuation is a function that represents the remaining of the program

after the effect is handled.

There are several ways to implement handlers in a language. Handler can be

either deep or shallow. A deep handler handles all effects of specific type in an

expression, while a shallow handler only handles the first effect of its corresponding

type. A shallow handler can usually be converted to a deep handler by applying it

recursively. The continuation provided to the handler can be either single-shot or

3.4 ALGEBRAIC EFFECTS AND HANDLERS 53

multi-shot. A single-shot continuation can be invoked only a single time, whereas

a multi-shot continuation can be invoked many times. A handler usually handles

only a single effect, but if the language supports multihandlers, the same handler

can handle several effects at once.

Handlers in Unison are shallow with multi-shot continuations. A handler can

continue executing the program by calling the continuation function available when

pattern matching against the possible effect constructors. The syntax for defining a

handler for a single effect operation is as follows:

{ <operation> <param1, ... , paramN> -> <continuation> } -> <result>.

Matching a final transformation, or the pure case, is defined with a simple pattern:

{ <operation-result> } -> <handler-result>.

Listing 30 Exception ability and handler in Unison.
structural ability Exception e where

raise : e -> a

toOptional : '{Exception e} a -> Optional a
toOptional mightThrow =

handle !mightThrow with cases
{ raise e -> c } -> None
{ a } -> Some a

Continuations in Koka’s handlers are multi-shot, like in Unison, but the handlers

are deep, unlike in Unison. In Koka an operation handler is defined with the syn-

tax: <operation>(<param1, ... , paramN>) -> <result>, and the continuation

is implicitly in scope via the keyword resume. The final transformation is defined

with return(<operation-result>) -> <handler-result>

Listings 30 and 31 demonstrate how to define an effect and a handler, as well

as how to use the final transformation function when implementing effect handlers.

They define an effect type Exception that is capable of interrupting a program by

3.4 ALGEBRAIC EFFECTS AND HANDLERS 54

Listing 31 Exception effect and handler in Koka.
effect exception

ctl raise (exc : e) : a

fun to-maybe(might-throw : () -> <exception|x> a) // : x maybe<a>
with handler

raise(e) -> Nothing
return(a) -> Just (a)

might-throw()

raising an exception of type e, while the uninterrupted program would have resulted

in a value of type a. The handlers discharge the effect by translating it to the data

type Optional a/Maybe a by converting a raise operation to None/Nothing and

utilizing the final transformation to convert a value of type a to Some a/Just a.

Listing 32 Definition and usage of Choice effect in Unison.
structural ability Choice where

choose : Boolean

pickNumber : '{Choice} Nat
pickNumber = do

if choose then
if choose then 12 else 21

else
if choose then 34 else 43

Listing 32 defines an effect Choice that has a single operation choose that results

in a Boolean. The function pickNumber selects a number based on the results of the

choose operation. The code that uses the effect does not enforce how the choosing

operation should be implemented, but it works with any implementation.

A possible handler implementation for the Choice effect could be a handler

that always chooses the same Boolean value. Listing 33 gives an example of such a

handler with two helper handlers, alwaysTrue and alwaysFalse that always choose

the corresponding value.

3.4 ALGEBRAIC EFFECTS AND HANDLERS 55

Listing 33 Effect handlers for Choice that always result in constant value.
constantChoice : Boolean -> '{Choice} a -> {} a
constantChoice choice thunk =

handle !thunk with cases -- shallow handler is applied recursively
{ choose -> resume } -> constantChoice choice '(resume choice)
{ a } -> a

alwaysTrue : '{Choice} a -> {} a
alwaysTrue = constantChoice true

alwaysFalse : '{Choice} a -> {} a
alwaysFalse = constantChoice false

alwaysTrue pickNumber -- 12
alwaysFalse pickNumber -- 43

Another possible handler implementation is one that collects all possible results

in a list. The handler resumes the program multiple times, two times for every

choose operation to be precise. An example of such an implementation is given in

Listing 34.

Listing 34 Effect handler for Choice that collects all possible results.
collectAll : '{Choice} a -> {} [a]
collectAll thunk =

collectHandler : Request Choice a -> [a]
collectHandler = cases

{ choose -> resume } ->
(handle resume true with collectHandler) ++
(handle resume false with collectHandler)

{ a } -> [a]

handle !thunk with collectHandler

collectAll pickNumber -- [12, 21, 34, 43]

3.4 ALGEBRAIC EFFECTS AND HANDLERS 56

3.4.4 Effect typing

Programming with algebraic effects clearly separates effectful computations from

values, which makes a language with algebraic effects a good candidate for separate

type and effect systems, which were discussed in Section 3.1. All effectful expressions

must be provided with corresponding handlers before execution, and by utilizing an

effect system, this check can be made statically. Algebraic effects themselves do not

require a static type system, but practically all current programming languages with

first-class algebraic effects are equipped with an effect system.

When an expression references an effectful operation, the effect system adds that

effect to the set of effects associated with the expression. On the other hand, when an

effect handler is provided for an expression, the effect system can remove the effect

from the set of effects for that specific expression, and possibly add new effects if

the implementation of the handler references other effects. Usually algebraic effects

can be inferred and do not need to be mentioned in the source code.

Previous examples demonstrate how effect system and algebraic effects cooper-

ate. In Listing 32, pickNumber is an expression that evaluates to a natural number

and references the Choice ability/effect. The referenced effect is reflected in the

type signature of the expression. In Listings 33 and 34 handler functions for the

Choice effect are defined. Constant handlers alwaysTrue and alwaysFalse simply

discharge the effect from expressions. The discharging of the effect is evident in

the type signature, as it changes from {Choice} a to {} a, which indicates that

the expression does not reference any unhandled effects. The collecting handler

collectAll discharges the effect, and also changes the type of the expression.

Unlike monads, algebraic effects naturally compose with one another. An expres-

sion can reference any number of effects and those effects are simply added to the

set of effects associated with the expression. Similarly to nested monads and monad

transformers, the order in which handlers are applied is significant and changing

3.4 ALGEBRAIC EFFECTS AND HANDLERS 57

the order of handlers might significantly alter the semantics of the program. Listing

35 shows the effect signature when an expression references multiple effects, in this

case Choice and Exception effects.

Listing 35 Effect composition in Unison.
failingNumber : '{Choice, Exception Text} Nat
failingNumber = do

if choose then 34
else raise "Better luck next time"

Algebraic effects with handlers usually make it possible to achieve effect poly-

morphism by defining an effect variable that represents a generic effect type, or lack

thereof. Listings 36 (Unison) and 37 (Koka) both demonstrate this by giving an

implementation of the map function for lists, as well as introducing its usage. When

nums are mapped with a function without any effects, the resulting list pure is free

of effects. On the other hand, when nums are mapped with an effectful function, the

resulting list effectful depends on the Exception effect.

Listing 36 Effect polymorphic map function in Unison.
-- {e} is the polymorphic effect variable
map : (a -> {e} b) -> [a] -> {e} [b]
map f = cases

head +: tail -> f head +: map f tail
[] -> []

nums : [Nat]
nums = [1, 2, 3, 4, 5]

pure : [Nat]
pure = map (n -> n * 2) nums

effectful : '{Exception Text} [Nat]
effectful _ = map (n -> if n > 5 then raise "Nope" else n * 2) nums

3.5 CAPABILITY BASED EFFECTS 58

Listing 37 Effect polymorphic map function in Koka.
// e is the polymorphic effect variable
fun map(lst : list<a>, f : a -> e b) : e list

match lst
Cons (head, tail) -> Cons (f(head), map(tail, f))
Nil -> Nil

val nums: list<int> = [1, 2, 3, 4, 5]

val pure: list<int> = map(nums, fn(n) n * 2)

fun effectful(): exception list<int>
map(nums, fn(n) if n > 5 then raise("Too large") else n * 2)

Algebraic effects provide high expressive power and good modularity with effect-

ful computations. Programs can be written in direct style, albeit handlers must be

implemented in a special way. Algebraic effects also offer seamless composability

between different effects and different effects can be combined freely. Effects can

be locally introduced and eliminated. The usually included effect system helps with

refactoring by ensuring that if an existing expression is modified to have a new effect,

it is handled appropriately.

Unlike monads, algebraic effects do not offer equational reasoning and it is not

always safe to replace an expression with its value. Algebraic effects are still an

active field of research with many open questions regarding, for example, shallow

vs. deep handlers, single vs. multi-shot continuations, and multihandlers.

3.5 Capability based effects

Recently another approach, called capabilities, for describing effects has emerged.

Compared to algebraic effects and handlers, capabilities view effects differently; in-

stead of denoting an expression with effects, they place the requirement that the

evaluation context must contain a capability for an effect. The distinction between

3.5 CAPABILITY BASED EFFECTS 59

the two approaches may seem subtle, but capabilities seem to provide better devel-

oper ergonomics by reducing the need to specify effect types in code. [63]

One can think algebraic effects as rising outwards from effectful expressions,

while capability based effects (more specifically, capabilities) as going inwards from

the surrounding context towards effectful expressions. This way of modeling effects

with capabilities seems promising. It should be possible to define effect polymorphic

higher-order functions without the need to mention any effect variables in their type

signature. For example, an effectful List.map function in Scala would have the

signature def map(f : A => B): List [B], which is exactly the same as that of

the current map function in Scala. This is possible because map does not require any

additional capabilities in addition to capabilities required by f. If f requires any

capabilities, the context in which map is called must provide those capabilities to

f. [25]

The idea of using capabilities to model effects is recent and research on this

idea is in its infancy. Programming languages supporting capability based effects

are experimental and rare. Effekt [60] is a research language with capability based

effects with handlers. There is also an ongoing research project to study how effects

could be managed with capabilities in Scala 3.

3.5.1 Capture checking

Scala 3 is based on a research language called Dotty. The name Dotty comes from

Dependent object types (DOT), which are the theoretical foundation behind Scala

3 [64]. During writing this thesis, an experimental and work-in-progress feature

called Capture checking [65] was added to Dotty and later to Scala 3 nightly builds.

Capture checking is a language feature based on capabilities. The idea of capture

checking is to enable effectful programming in direct style (discussed in Section

3.3.5), yet tracking effects in the type system and providing strong static guarantees

3.5 CAPABILITY BASED EFFECTS 60

of the correctness of the program.

The initial version of capture checking is based on the work of Odersky, Boruch-

Gruszecki, Lee, et al. [25] on modeling polymorphic effects with capabilities. Oder-

sky, Boruch-Gruszecki, Lee, et al. criticize the currently widely used ways of man-

aging effects, such as Java’s checked exceptions and monads, arguing that they lack

in both usability and flexibility, and result in complex and duplicated code. They

conclude that this is due to the transitive nature of effects in function call chains,

combined with the classical type-systematic approach that “characterize the shape

of values but not their free variables”, and suggest that modeling effects with capa-

bilities may circumvent the problems they described.

The goal of capture checking is to address many of the limitations in effectful

programming. These include how to solve the "What color is your function" prob-

lem [66], how to express effect polymorphism, how to combine manual and automatic

memory management, how to express high-level concurrency and parallelism safely,

and how to migrate already existing programs to use capture checking [67]. Active

research on capture checking focuses on the usability aspect of static effect tracking,

which likely will evolve around effect polymorphism, inferring the captured capabil-

ities, direct style of programming, and in general minimizing the overall syntactic

overhead.

Capture checking extends the idea of capabilities by tracking what capabilities

are closed over, i.e. captured, by an expression. This means that a capability can

be just a normal value, like any other variable in a program. In the context of

capture checking, an expression is pure if it does not capture any capabilities. To

make programming with capabilities easier, capabilities can be implicitly passed

to expressions, instead of requiring one to explicitly thread capabilities through a

program. The implicit system in Scala should be well suited for this task.

Capture checking aims to address effects such as throwing exceptions, IO, mu-

3.5 CAPABILITY BASED EFFECTS 61

tability, suspending computations and continuations. Capture checking should also

be applicable to resource handling. Resources, such as file handles, network connec-

tions, or memory must be acquired before use, and disposed afterward to free up

allocated resources. A resource has a lifetime in which it can be used, and the use

of an already disposed resource should be prevented. Resource lifetimes and rules

should preferably be enforced statically by the type system. There are close con-

nections between capture checking and linear type systems, of which Rust lifetimes

is a well-known example [68].

Odersky’s research group is actively working on capabilities, as evidenced by

a recent large grant [69]. This research project is called Caprese (Capabilities for

resources and effects), and its goal is a universal theory of resources and effects based

on capabilities. It will be interesting to see the results from Odersky’s group in the

coming years.

4 ZIO

This chapter focuses on ZIO and its features, which are discussed in the context of

the theory covered in the previous chapters. First a brief history and overview of

ZIO is presented. The rest of the chapter is organized into several sections to analyze

ZIO’s features. The first section introduces the basic operators used in ZIO. The

second section covers error handling by presenting ZIO’s error model and its error

handling operators. The next section explores ZIO’s most distinguishing feature:

the environment as well as operators and data types related to it. The chapter

then moves onto resource management, detailing how ZIO facilitates safe resource

handling. The fifth section is about concurrency in ZIO, showcasing the concurrency

model and related operators. The chapter concludes with a summary of ZIO and

highlights how ZIO is able to address issues presented in the earlier chapters.

ZIO [33] is an open-source Scala library/framework for managing side effects and

modeling asynchronous and concurrent programs in a purely functional way. The

development of ZIO started in 2017 by John De Goes. The first stable release of

the library took place in the summer of 2020, so ZIO is quite new. At the time

of writing this, the most recent version is 2.0.10, released in March 2023. De Goes

and Adam Fraser, a core contributor to the project, co-authored a book about ZIO

called Zionomicon [70], which is extensively used as a reference in this chapter.

The ZIO ecosystem consists of dozens of official and several more third-party

libraries that include, among other things, testing, streaming, logging, caching,

CHAPTER 4. ZIO 63

JSON-parsing, database interaction, and HTTP servers and clients. Despite being

a new library, many large companies, including DHL, eBay and Zalando are using

ZIO in production. There is also a very active and quickly expanding ecosystem

around ZIO, which has libraries and interoperability packages with other libraries

and ecosystems. Today, ZIO is one of the fastest growing ecosystems in Scala.

ZIO is based on monadic effects but it also takes influence from algebraic effects

and handlers. ZIO aims to provide a pragmatic, purely functional, type safe, easily

testable and declarative API for asynchronous and concurrent effectful program-

ming. The idea of ZIO is to combine multiple effects into a single monad and thus

avoid the need for monad transformers.

The library is built around ZIO[-R, +E, +A] monad, which has three type pa-

rameters. E and A parameters represent the error and success channels, much like

in Either monad. The functionality of Either monad is just one aspect of ZIO: ZIO

is also capable of describing asynchronous and side-effecting computations. The R

parameter describes the requirements, environment, or context, needed to perform

the computation captured by the monad. In this sense ZIO is similar to the reader

monad, but again, the reader monad is only one aspect of ZIO, and also this reader

aspect has some extra capabilities that are introduced later in this chapter. Drasti-

cally simplifying, a ZIO computation can be seen as function from an environment to

either an error or a success value: R => Either[E, A]. The idea of ZIO’s three type

parameters is that it should be possible to encode most, if not all, of the practically

useful effects in a single monad.

ZIO provides type aliases for common variants, among others:

• type UIO[A] = ZIO[Any, Nothing, A] has no requirements and cannot fail.

• type IO[E, A] = ZIO[Any, E, A] has no requirements and can fail with E.

• type URIO[R, A] = ZIO[R, Nothing, A] has requirement R and cannot fail.

CHAPTER 4. ZIO 64

Since ZIO is a monadic effect system, all computations are values that can be

transformed with functions. This makes it easy to implement combinators for mod-

ifying ZIO-values, thus changing the behavior of the described computation. ZIO

provides numerous built-in combinators for error handling, context management,

dependency injection, concurrency, retrying and repeating, scheduling, memoizing,

resource management, and more. It is also easy to implement complex custom

combinators in terms of existing ones.

ZIO’s approach to functional programming is pragmatic, aiming to be easy to

learn, even for programmers without prior theoretical knowledge about functional

programming concepts. Even though the library has strong theoretical foundations

in functional programming, the goal is to not have them surface in the public API

more than necessary. Using ZIO does not require knowledge of concepts like type

classes or monad transformers, even though the former is utilized internally. Func-

tion naming mostly avoids terms originating from category theory, symbolic opera-

tors, and naming conventions from Haskell. For example, functions corresponding

to Haskell’s sequence, traverse, and bracket, are named collectAll, foreach,

and acquireReleaseWith in ZIO to make them easier to understand. There is a

naming convention originating from Haskell where monadic combinators, such as

foldM, ifM, and replicateM, are suffixed with M. The meaning of M might not be

obvious to newcomers and ZIO aims to make it clearer by naming these combinators

as foldZIO, ifZIO, and replicateZIO. Haskell’s convention to suffix the names of

combinators that discard their result with _, e.g. sequence_ or traverse_, is not

followed: the respective ZIO names are collecAllDiscard and foreachDiscard.

ZIO also takes advantage of multiple advanced features of Scala to make the API

more convinient to use. The implicit system is used to provide context information

for tracing, derive type class instances and prove type relationships. Dependent

types are used, for example, to destructure nested tuples when zipping together

4.1 BASIC OPERATORS 65

multiple ZIO values. There are several combinators that only make sense with spe-

cific success or error types. These operators utilize implicit evidence provided by the

Scala compiler to make sure they are used appropriately. Examples of such cases are

error handling operators that are only applicable with effects that can actually fail.

Metaprogramming is utilized, for example, in dependency injection: the dependency

graph is resolved and constructed at compile time, failing compilation if any of the

required dependencies is not provided.

Monadic programming in Scala has traditionally suffered from the lack of type

inference due to subtyping, forcing the programmer to explicitly write type annota-

tions. Prior to ZIO, many functional programming libraries in Scala implemented

their monads with invariant type variables because of these issues related to sub-

typing, and because of issues related to type inference with monad transformers,

mentioned in Section 3.3.7. Since ZIO does not use monad transformers, it does

not suffer from limitations associated with them. ZIO embraces the subtyping and

variance of Scala by declaring the error and success types covariant and the environ-

ment type as contravariant. This makes type inference a lot more effective: explicit

type definitions are rarely required when combining ZIO effects with different type

parameters.

4.1 Basic operators

One of ZIO’s most used classes of operators are constructors that create ZIO values.

Like every monad, ZIO also has a lifting function ZIO.succeed. In addition to lifting

pure values, it also enables the lifting of non-fallible side effects to ZIO. For lifting

side effects that might throw exceptions, ZIO.attempt is used. To create failed ZIO

effects, functions ZIO.fail or ZIO.die are commonly used. ZIO constructors use

lazy, by-name parameters to delay the execution of unintentional side effects until

the ZIO effect is actually executed. Error handling in ZIO is discussed in more

4.1 BASIC OPERATORS 66

detail in Section 4.2. Constructors for data types from Scala standard library like

Option and Either exist as well. Usage of the most common ZIO constructors is

demonstrated in Listing 38.

Listing 38 Common ZIO constructors.
val pureValue: UIO[Int] = ZIO.succeed(1)
val sideEffect: UIO[Unit] = ZIO.succeed(println("Hello World!"))

val either: Either[String, Int] = ???
val fromEither: IO[String, Int] = ZIO.fromEither(either)

val effect: IO[Throwable, Array[Byte]] = ZIO.attempt {
val file = new File("numbers.txt")
val is = new FileInputStream(file) // can throw IOException
is.readAllBytes() // can throw IOException

}

val error: IO[String, Nothing] = ZIO.fail("Error")
val defect: UIO[Nothing] = ZIO.die(new Exception("Error"))

The simplest operators on ZIO monads are the ones that include a single ZIO

value. The operator for applying a pure transformation to a value inside ZIO is

implemented by the map function. The operator to discard the value in ZIO and

map it to a constant value is the function called as. A common debugging operator

for peeking the value inside ZIO without changing the value is called tap. ZIO also

has a specific debug operator that will print the value inside ZIO with the provided

prefix. The use of the above mentioned operators are demonstrated in Listing 39.

Listing 39 Common ZIO transform operators.
val one: UIO[Int] = ZIO.succeed(1)
val two: UIO[Int] = one.map(_ + 1)
val discardOne: UIO[Int] = one.as(34) // same as map(_ => 34)

one.tap(n => ZIO.succeed(println(s"One: $n")))
one.debug("One") // Same as above, prints "One: "34"

4.1 BASIC OPERATORS 67

An other much used category of operators are the ones combining two ZIO values

together. The flatMap function present in all monads naturally exists in ZIO as well.

For combining two independent ZIO workflows together, there is a whole family of

zipping operators. Unlike monadic composition via flatMap, when zipping values

together the second value cannot use the value produced by the first one. The most

simple zipping operator, zip, simply runs both ZIOs from left to right and combines

their results in a tuple. The zipWith allows for supplying a function to combine

the left and right value into the resulting ZIO. Sometimes a ZIO is only evaluated

because of the effect it produces, and its return value is not needed. For these

puproses zipRight and zipLeft operators are useful. These combinators evaluate

both ZIOs from left to right, but retain only the return value of the side indicated by

the operator name. Right and left zipping combinators also have symbolic aliases,

generally quite rare in ZIO, *> and <*, where the arrow points to the side whose

value is returned. The combinators for two ZIOs are demonstrated in Listing 40.

Listing 40 Common binary combinators in ZIO.
val num = ZIO.succeed(34)
val str = ZIO.succeed("A string value")
val tell = ZIO.succeed(println("Hello World"))

// All three below are semantically equal
val v1: UIO[(Int, String)] = num.flatMap(n => str.map(s => (n, s)))
val v2: UIO[(Int, String)] = num.zipWith(str)((n, s) => (n, s))
val v3: UIO[(Int, String)] = num.zip(str)

val zipRight: UIO[Int] = tell.zipRight(num)
val zipLeft: UIO[Int] = num.zipLeft(tell)

// Evaluation order: tell, num, tell. Returns the value of num
val toldTwoTimes: UIO[Int] = tell *> num <* tell

When there is a need to combine more than two ZIOs togheter, for example

to combine a collection of ZIO effects together, there are operators for that as

4.2 ERROR HANDLING 68

well. An effectful for loop is provided by the ZIO.foreach function, which takes a

collection of values and a function that performs some effectful computation for each

value. The operator performs all computations and returns a collection of results. A

similar operator is collectAll, which receives a collection of ZIO computations, and

returns a collection containing the results of the computations. Both operators are

demonstrated in Listing 41. In order to effectfully fold over a collection of values, ZIO

provides, among others, mergeAll, reduceAll, foldLeft, and foldRight functions

to compute a single summary value from a collection.

Listing 41 Common combinators for multiple values in ZIO.
def findById(id: Int): UIO[Result] = ???
def combineResults(total: Int, result: Result): Int = ???

val ids = List(1, 2, 3)

val found1: UIO[List[Result]] = ZIO.foreach(ids)(findById(_))
val found2: UIO[List[Result]] = ZIO.collectAll(ids.map(findById(_)))

val combined: UIO[Int] =
ZIO.mergeAll(ids.map(findById(_)))(0)(combineResults(_, _))

4.2 Error handling

Proper error handling is essential in any non-trivial application, as discussed in

Section 2.1.2. Failures in ZIO are described in a referentially transparent way by

returning values that represent the error, instead of throwing exceptions. Like other

monads capable of encoding exceptions, ZIO stops the execution of the success

channel on the first encountered error, until the error is handled with one of the

error handling combinators. Much of the errors and their handling are tracked in

types, making it possible to have static proofs that all declared errors are handled.

ZIO advocates its error model, which is promised not to lose any errors, even if

4.2 ERROR HANDLING 69

they are asynchronous, parallel, caused by interruptions, or exceptions thrown by

finalizers.

ZIO divides failures into three categories: errors, defects and fatal errors. Fatal

errors, such as OutOfMemoryError, are thrown by the runtime platform (usually

JVM), and result in immediate termination of the application, and thus are not

very interesting in this context. The two remaining error types describe failures

that the programmer can interact with. Errors are represented as the E parameter

in ZIO, and are tracked in types. Nothing has a cardinality of zero, which proves

that ZIO with Nothing in the error channel cannot produce a failing ZIO, thus the

computation is infallible. Defects are not reflected in types, and practically any

ZIO can produce a defect when executed. The type of a defect is always Java’s

Throwable.

The error channel should be used for business errors that are expected to some-

times happen and can be handled in a meaningful way and recovered from. On the

other hand, defects are failures that are unexpected, or errors for which there is no

meaningful way to handle or recover from. Because Scala programs are mostly run

on the JVM, where exceptions could be thrown anywhere, ZIO runtime catches all

thrown exceptions and reports them as defects. This makes it easier to integrate

ZIO code with code not written with ZIO, such as Java-libraries where throwing

exceptions is the de-facto error reporting and handling strategy. Roughly speak-

ing, logical exceptions (discussed in Section 2.1.2) are usually errors, while technical

exceptions are usually defects.

Errors in ZIO are internally represented with a data type Cause, which is an

instance of the algebraic structure semiring, that is capable of capturing the full

chain of possible failures, including errors, defects, and interruptions, sequential

or parallel. This data type also keeps track of a trace that lead to the failure

described by a specific cause. Such a trace is similar to an ordinary stack trace

4.2 ERROR HANDLING 70

but it is able to describe operations across asynchronous boundaries and does not

expose unnecessary implementation details of the underlying runtime. ZIO provides

operators for interacting with the Cause data type directly, but usually higher level

operators that work with error or defect types are preferred. The definition of a

simplified Cause data type and an example of its use is provided in Listing 42.

Listing 42 Cause data type captures the full cause of failures.
// Cause in ZIO also includes traces omitted here
enum Cause[+E]:

case Empty
case Fail(value: E)
case Die(value: Throwable)
case Both(left: Cause[E], right: Cause[E])
case Then(left: Cause[E], right: Cause[E])
case Interrupt(fiberId: FiberId)

val a = ZIO.dieMessage("A")
val b = ZIO.fail("B").ensuring(ZIO.sleep(5.millis).timeout(1.milli))
a.zipPar(b).cause.debug
// Cause.Both(
// Cause.Die(java.lang.RuntimeException("A")),
// Cause.Then(
// Cause.Fail("B"),
// Cause.Interrupt(<FiberId of the interrupting fiber>),
//),
//)

When two ZIOs are composed together, the composed ZIO could fail either with

the error from the first or the error from the second one. The order in which the

error types appear should not matter and all permutations consisting of the same

types should be equal, i.e., composition is commutative. If the two ZIOs share the

same error type, the resulting ZIO has the equal error type with the original ZIOs,

i.e., composition is idempotent. If either of the two ZIOs cannot fail (the error

type is Nothing), its error type does not contribute to the resulting error type, i.e.,

composition has Nothing as the identity element. Union types in Scala 3 naturally

4.2 ERROR HANDLING 71

have all these properties and precisely express composition of error types: an error

type represents a set of possible errors, composition is then set union and Nothing

represents the empty set. If the execution of a ZIO fails, the error is one of the

errors in the set of possible errors. Listing 43 demonstrates the accumulation of

errors in types.

Listing 43 Typed error accumulation when composing multiple ZIO values.
val num1: ZIO[Any, ErrorA, Int] = ???
val num2: ZIO[Any, ErrorA, Int] = ???
val num3: ZIO[Any, ErrorB, Int] = ???
val doSomething: ZIO[Any, Nothing, Unit] = ???

// 'ErrorA' is included only once in the error type
// 'Nothing' is not included at all in the error type
val composed: ZIO[Any, ErrorA | ErrorB, Int] =

for
n1 <- num1 // ErrorA
n2 <- num2 // ErrorA
_ <- doSomething // Nothing
n3 <- num3 // ErrorB

yield n1 + n2 + n3

Ideally there would be no need to explicitly add a type annotation about the error

type when composing ZIOs together, and the programmer could simply rely on type

inference. The Scala compiler tries automatically to unify the types, i.e., find the

closest common supertype between the composed ZIO values. The E parameter in

ZIO is covariant, which is essential for type inference when combining multiple ZIOs

together. Because Nothing is a subtype of every type, ZIO that has Nothing in the

E channel is automatically considered to be a subtype of ZIO that has the same R

and A type parameters.

There are many similar operators for working with values in the error chan-

nel than there are for working in the success channel. For example mapError,

flatMapError and tapError all work similarly to their success channel counter-

4.2 ERROR HANDLING 72

parts. Some of the most common error handling operators include catching some

or all errors, providing a fallback computation, or folding over error and success

values. The operators catchAll and catchSome behave like catch blocks in a try-

catch clause, and as the names suggest, they handle, respectively, a subset or all

errors. The orElse operator makes it possible to define a fallback computation

whose success and error is used in the case when the original ZIO fails. ZIO has

many variations of fold for pure and effectful folding that are semantically similar

to folding an Either, discussed more in Section 3.3.2. These basic error handling

operators are demonstrated Listing 44.

Listing 44 Basic error handling operators in ZIO.
type Error = ErrorA | ErrorB | ErrorC

val mayFail: IO[Error, Int] = ???

val handled: IO[Nothing, Int] = mayFail.catchAll(e => ZIO.succeed(0))

val someHandled: IO[Error, Int] =
mayFail.catchSome { case _: ErrorA => ZIO.succeed(34) }

val folded: UIO[Int] = mayFail.fold(e => -1, n => n + 10)

val withFallback: IO[Nothing, Int] = mayFail.orElse(ZIO.succeed(0))

In addition to the try-catch like semantics described above, try-finally is a

common pattern in imperative programming. Regardless whether the code in the

try block throws exceptions or not, the code in finally block is guaranteed to be

executed. The underlying idea is that there are one or more finalizers that need

to be run after a certain block of code is executed. ZIO also supports this pattern

with several operators that are guaranteed to execute the finalizers even in the

presence of parallelism, asynchrony, concurrency, interruption, errors, and defects.

Listing 45 demonstrates the basic finalizing operator ensuring that executes the

4.2 ERROR HANDLING 73

specified finalizer regardless of any kind of failure or interruption. Other, higher

level, operators for try-finally like semantics are discussed more thoroughly in

Section 4.4 about resource management.

Listing 45 Basic finalizer operator ensuring in ZIO.
val finalizer = ZIO.succeed(println("Finalizer executed"))

// The finalizer is executed once after each ZIO below is executed
val success: UIO[Int] = ZIO.succeed(1).ensuring(finalizer)
val error: IO[Int, Int] = ZIO.fail(42).ensuring(finalizer)
val defect: UIO[Nothing] = ZIO.dieMessage("No").ensuring(finalizer)

val interruption: UIO[Unit] = for
fiber <- ZIO.sleep(1.second).ensuring(finalizer).fork
_ <- fiber.interrupt // The finalizer is executed here

yield ()

The fact that ZIO has two-typed channels of output values (error and success),

makes it possible to create interesting combinators that switch values between the

two channels. An operator that simply swaps the channels with each other is flip.

Another way to expose errors in the success channel is the either operator that

converts a fallible ZIO to ZIO[R, Nothing, Either[E, A]], resulting in an effect

that cannot fail, but instead surfaces errors with Either in the success channel.

The dual of either is the operator absolve that separates Either cases from the

success channel to error and success channels of ZIO. The Cause data type can also

be exposed in the success channel with the cause operator, making it possible to

operate on errors, defects and interruptions at the same time. The reverse operator

is uncause: it hides the Cause data type from the type signature. Type signatures

of the above mentioned operators can be seen in Listing 46.

The same exception might be considered an error at some abstraction level and a

defect at some other abstraction level. For example when implementing functionality

4.2 ERROR HANDLING 74

Listing 46 Operators for swapping values between error and success channels.
trait ZIO[-R, +E, +A]:

def flip: ZIO[R, A, E]

def either: ZIO[R, Nothing, Either[E, A]]
def absolve[E1 >: E, B](using A <:< Either[E1, B]): ZIO[R, E1, B]

def cause: ZIO[R, Nothing, Cause[E]]
def uncause[E1 >: E](using A <:< Cause[E1]): ZIO[R, E1, Unit]

that is directly interacting with a relational database, it would be sensible to treat

SQLException as an error and expose it in the E parameter. On the other hand,

higher level abstractions that use this functionality, like repositories or services,

usually should not declare SQLException in their signature, and treat it as a defect.

ZIO contains operators for switching values from the error channel to defect

channel and the other way around. A simple way to convert errors to defects is to

consider all errors as defects, which could be achieved with the orDie operator that

switches all errors from the error channel to the defect channel. In order to have

more control of what errors to retain, the refineOrDie operators are useful. They

allow picking desired errors by providing a type parameter or a partial function, and

the operator converts all errors not matching the type parameter or partial function

to defects. To go the other way around and switch values from the defect channel

to error channel, the resurrect operator moves all defects to errors and unrefine

moves some defects to errors, like refine but the other way around. Listing 47

demonstrates the usage of these operators.

Sometimes when an error occurs, it can be resolved by retrying the operation

that produced the error. Retries in ZIO only apply when the failure is in the error

channel, and not in the defect channel. If one would like to retry even when a

defect happens, the defect must first be surfaced to the error channel. Probably the

simplest retry operator is eventually, which will retry forever until the operation

4.2 ERROR HANDLING 75

Listing 47 ZIO operators for switching between errors and failures.
val readFile: IO[Throwable, Array[Byte]] =

ZIO.attempt(new FileInputStream("file.txt").readAllBytes())

val allErrorsToDefects: IO[Nothing, Array[Byte]] = readFile.orDie

val someErrorsToDefects: IO[FileNotFoundException, Array[Byte]] =
readFile.refineToOrDie[FileNotFoundException]

val allDefectsToErrors: IO[Throwable, Array[Byte]] =
allErrorsToDefects.resurrect

val someDefectsToFailure: IO[FileNotFoundException, Array[Byte]] =
allErrorsToDefects.unrefineTo[FileNotFoundException]

succeeds. Usually it makes sense to limit the number of retries, and the retryN

operator enables just that. For specifying custom rules when to retry and when

to give up, ZIO has retryUntil and retryWhile operators that take a predicate

as a parameter and retry according to that predicate. Basic retry operators are

demonstrated in Listing 48.

Listing 48 Basic retry operators in ZIO.
val readFile: IO[Throwable, Array[Byte]] =

ZIO.attempt(new FileInputStream("file.txt").readAllBytes())

val retryForever: UIO[Array[Byte]] = readFile.eventually
val retryFiveTimes: IO[Throwable, Array[Byte]] = readFile.retryN(5)

val retryUnlessFileNotFound: IO[Throwable, Array[Byte]] =
readFile.retryUntil {

case _: FileNotFoundException => true
case _ => false

}

Instead of immediately retrying, a common way is to schedule the retries with a

delay in order to allow the error to resolve. ZIO has a specific data type Schedule

for describing retry policies and other scheduling use cases. It is a purely functional

4.3 ENVIRONMENT 76

and composable data type capable of describing complicated schedules. In addition

to retries, schedules are also applicable for describing the repetition and scheduling

the execution of ZIO computations. Listing 49 introduces some basic Schedule

constructors and combinators. When retrying ZIO with a delay, one might desire to

limit the total time the computation can take, which is achieved with the timeout

operator.

Listing 49 Schedule data type in ZIO.
Schedule.spaced(7.millis) // Constant delay between every computation
Schedule.fixed(7.millis) // Computations start at constant intervals
Schedule.fibonacci(2.millis) // 2ms | 4ms | 6ms | 10ms | 16ms
Schedule.exponential(2.millis) // 2ms | 4ms | 8ms | 16ms | 32ms

Schedule.forever // Schedule always wants to continue
Schedule.stop // Schedule that never wants to continue
Schedule.recurs(5) // Schedule that wants to continue 5 times

left ++ right // First left schedule to complection, then right
left && right // Recurs when both schedules want to continue
left || right // Recurs when either schedule wants to continue

4.3 Environment

Arguably the most distinguishing feature about ZIO is its environment, or the R type.

The possibility to express environmental/contextual requirements of a computation

plays a big part in the fact that ZIO can encode several effects in one monad, thus

mostly eliminating the need for monad transformers. ZIO environment is similar to

a reader monad, but there are a couple of key differences. Unlike the reader monad

whose only effect is to provide read-only access to some context, the ZIO environment

is just one of the effects that can be expressed with ZIO. Also, the environment type

composes naturally when combining multiple ZIO values. The environment type in

ZIO can be changed from one type to another, similar to indexed reader monads [71].

4.3 ENVIRONMENT 77

It is also possible to locally both introduce and eliminate (some or all) environmental

requirements.

Recall that a mental model of a ZIO[R, E, A] is function R => Either[E, A].

Before a ZIO can be executed the required environment must be provided, just like

a function must be provided with the arguments before it can be evaluated. A

ZIO workflow that has no environmental requirements has Any as its environment

type. Function f: Any => Either[E, A] function accepts anything as its argu-

ment. It can be called, for example, by providing the unit value f(()), a number

f(42), or a string f("foo") as an argument. The analogy applies to ZIO, where

ZIO[Any, E, A] is ready to be executed without providing any environment.

Listing 50 Environment types accumulate when composing multiple ZIO values.
val num1: ZIO[String, Nothing, Int] = ???
val num2: ZIO[Int, Nothing, Int] = ???
val num3: ZIO[Any, Nothing, Int] = ???

// 'Any' does not appear in the environment type
val composed: ZIO[String & Int, Nothing, Int] =

for
n1 <- num1
n2 <- num2
n3 <- num3

yield n1 + n2 + n3

When combining ZIO values together, the resulting ZIO naturally has environ-

mental requirements from all the combined ZIOs. Similarly to error accumulation,

composition should be commutative and have Any as its identity element. Scala 3

intersection types have these properties and they thus express environment compo-

sition accurately. Listing 50 demonstrates the accumulation of environment types

when composing ZIO values.

Basic operations for interacting with the environment are adding requirements

to it and eliminating all or part of the requirements. It is also possible to translate

4.3 ENVIRONMENT 78

one environmental requirement to another. A value from the environment can be

accessed with ZIO.service function, which is similar to the ask function in Reader

monad, with the exception that ZIO.service can return a part of the environment

instead of the entire environment. Listing 51 demonstrates different operators for

accessing the environment and adding environmental requirements.

Listing 51 Operators for adding requirements or accessing the ZIO environment.
// Same as 'ask' in reader monad
val ask: ZIO[String, Nothing, String] =

ZIO.service[String]

// Eqivalent to: ZIO.service[String].map(_.length)
val askAndMap: ZIO[String, Nothing, Int] =

ZIO.serviceWith[String](_.length)

// Equivalent to: ZIO.service[Random].flatMap(_.nextInt)
val askAndFlatMap: ZIO[Random, Nothing, Int] =

ZIO.serviceWithZIO[Random](_.nextInt)

4.3.1 ZLayer

Environmental requirements in ZIO are provided in the form of a purely functional

data type called ZLayer. ZLayer[RIn, E, ROut] has the same three type param-

eters as ZIO itself, and it is thus capable of expressing effectful, asynchronous,

and possibly failing construction of requirements. The RIn parameter in ZLayer

represents dependencies that are required in order to construct a value of type

ROut. These dependencies between layers form a graph of dependencies, like the

one demonstrated in Listing 52.

The environment for a ZIO workflow is provided with operators such as provide

(provide all requirements), provideSome (provide a part of requirements), and

provideLayer (convert existing requirements into other requirements), that take

4.3 ENVIRONMENT 79

Listing 52 Dependencies between ZLayers form a graph.

val layerA: ZLayer[Any, Nothing, A] = ???
val layerB: ZLayer[A, Nothing, B] = ???
val layerC: ZLayer[A, Nothing, C] = ???
val layerD: ZLayer[B & C, Nothing, D] = ???

A

B C

D

ZLayer(s) as their argument. Also the apply method in ZLayer can be used to elimi-

nate requirements from a ZIO workflow. ZIO can resolve the dependency graph with

compiler macros, for example in ZIO.provide and ZLayer.make functions, and raise

a compilation error if all required dependencies are not provided. Different ways of

providing layers is demonstrated in Listing 53.

Listing 53 Providing layers from Listing 52 to a ZIO.
// ZLayer.make and ZIO.provide resolve the dependency graph
val useD: ZIO[D, Nothing, Int] = ZIO.service[D].as(34)

val layer: ZLayer[Any, Nothing, D] =
ZLayer.make[D](layerA, layerB, layerC, layerD)

val provided1: ZIO[Any, Nothing, Int] = useD.provideLayer(layer)
val provided2: ZIO[Any, Nothing, Int] = layer(useD) // layer.apply
val provided3: ZIO[Any, Nothing, Int] =

useD.provide(layerA, layerB, layerC, layerD)

Dependency injection is a design pattern that helps writing loosely coupled pro-

grams. The goal is to separate the logic of building a service from that of using the

service. Such separation also makes it possible to provide different implementations

of a service intended for different situations. ZLayers along with ZIO environment

are the basis of dependency injection in ZIO. Dependency injection in ZIO is re-

solved statically at compile time, so programs with missing dependencies will not

compile.

4.3 ENVIRONMENT 80

4.3.2 ZEnvironment

The example in Listing 50 has a ZIO value composed that has String & Int as

the environment type. No values of this type can exist at runtime, since there is

no value that is both String and Int, so the type is only sensible at compile time.

These kinds of types that only exist at compile time are sometimes called phantom

types [72].

The R type parameter in ZIO is a phantom type, and therefore represents the

required types only at compile time. However, every type present in the environment

type intersection must have a corresponding value at runtime. This is achieved with

a data type called ZEnvironment[R], which can be seen as a map associating every

type in the environment type intersection to a value, as demonstrated in Listing 54.

Listing 54 ZEnvironment contains the required environment for ZIO workflow.
// Can be thought of as: Map(Int -> 42, String -> "foo")
val environment: ZEnvironment[String & Int] =

ZEnvironment.empty
.add[Int](42) // Explicit types here are not required
.add[String]("foo") // but they are added for clarity

// Values from the environment can be accessed by their type
val int = environment.get[Int] // 42
val string = environment.get[String] // "foo"

With this knowledge, the mental model of ZIO can be updated to be

ZEnvironment[R] => Either[E, A]. Since ZEnvironment is a low-level data type

used internally to represent the environmental requirements of ZIO, its direct use is

not advised, higher-level operators and data types such as ZLayer should be used

instead.

4.3 ENVIRONMENT 81

4.3.3 Use cases

The ZIO environment can be used in many ways. In addition to providing read-only

data to computations like reader monad does, it can describe mutable state, safe

resource management (discussed more in Section 4.4), or dependency-injection. One

could also use environmental requirement as a marker that a certain ZIO compu-

tation must be run in a specific context. Another common use case is to define

combinators that translate a certain environmental requirement into another.

Probably the most basic use case of ZIO environment is to provide some static

data/context, which the computation can use as it wishes. An example of such data

is configuration data in a web application, possibly containing a URL for performing

http requests. This is demonstrated in Listing 55.

Listing 55 Static data can be provided to computations with the ZIO environment.
case class Configuration(url: String)

val useConfiguration: ZIO[Configuration, Nothing, Result] =
ZIO.serviceWithZIO[Configuration](conf => makeRequest(conf.url))

val configurationLayer: ZLayer[Any, Nothing, Configuration] =
ZLayer.succeed(Configuration(url = "https://example.com"))

val configurationProvided: ZIO[Any, Nothing, Result] =
configurationLayer(useConfiguration)

Another use case is to encode mutable state in the environment, similar to a

monad transformer for State monad. This is achieved with a data type describing

mutable references evaluated in the ZIO monad, such as Ref or ZState, that is pur-

posefully built for this use case. State can be accessed with ZIO.getState function,

which also adds a state requirement to the environment. State requirement can be

eliminated using the ZIO.stateful operator by providing the initial state. Listing

56 demonstrates the usage of these operators in a stateful computation. A nice

4.3 ENVIRONMENT 82

byproduct of encoding state in the ZIO environment is that the environment can

carry several different states at the same time, as long as the states are of different

types.

Listing 56 Mutable state can be encoded with the environment in ZIO.
val statefulComputation: URIO[ZState[Int], Int] = for

state <- ZIO.getState[Int] // Access state
_ <- ZIO.setState(state + 1) // Modify state

yield state

val statefulProgram: URIO[ZState[Int], Unit] = for
_ <- statefulComputation.debug("First")
_ <- statefulComputation.debug("Second")
_ <- ZIO.getState[Int].debug("Last")

yield ()

// Provide initial state (0) to the stateful computation
// When executed prints: "First: 0", "Second: 1", "Last: 2"
val stateProvided: UIO[Unit] = ZIO.stateful(0)(statefulProgram)

Environmental requirements can be converted from one type to another by elim-

inating one requirement and adding a new one. Listing 57 demonstrates one such

situation. In that example businessLogic requires a UserSession from the envi-

ronment. There is a UserService that can validate a token (String in this case)

and succeed with UserSession, or fail validation with TokenError. For example,

in the context of a web application, a token could be extracted from a http request.

The helper function UserService.withSessionFromToken takes two parameters: a

token and a ZIO computation that requires UserSession from the environment, and

returns a ZIO computation that requires UserService from the environment, which

will be used to validate the token. If the validation is successful a UserSession is

provided to the computation. If validating the token fails, the whole computation

fails with TokenError, and the computation received as a parameter will not be exe-

cuted. The possibility that validating the token might fail can be observed from the

4.3 ENVIRONMENT 83

fact that TokenError is added to the error type of the returned ZIO computation.

Listing 57 ZIO environment can be used to translate a contextual requirement to
other requirement.
trait UserService:

def validate(token: String): IO[TokenError, UserSession]

object UserService:
def withSessionFromToken[R: Tag, E, A](token: String)(

needsSession: ZIO[R & UserSession, E, A]
): ZIO[R & UserService, E | TokenError, A] =

val session = ZIO.serviceWithZIO[UserService](_.validate(token))
val layer = ZLayer(session) // Create a ZLayer from ZIO value
layer(needsSession) // Provide session as layer to ZIO workflow

val businessLogic: ZIO[UserSession, Nothing, Result] = ???

val program: ZIO[UserService, TokenError, Result] = for
token <- getToken // For example from a HTTP request
result <- UserService.withSessionFromToken(token) { businessLogic }

yield result

The power of the environment type comes from the fact that it supports many

different overlapping use cases. For example, configuration, state, and sessions can

coexist in the environment without interfering with each other. The environment

can be provided locally to a specific computation or globally to the entire program.

4.3.4 Similarity to algebraic effects

It may not be immediately obvious how ZIO is similar to algebraic effects and

handlers. However, if we consider that each type in the environment is representing

a specific effect, adding or interacting with environmental requirements represents

an effectful operation, and removing an environmental requirement with ZLayer

represents handling an effect, the similarity is imminent.

Like handlers in algebraic effects, ZLayers can handle (or discharge) the effect

by removing it altogether, or it can translate one effect into another. Similarly

4.3 ENVIRONMENT 84

to handlers in algebraic effects, ZLayers commonly form a graph of dependencies

between other ZLayers. ZIO environment composes in similar way as effects in a

language that natively supports algebraic effects and handlers, such as Unison.

With ZLayers it is possible to define a polymorphic handler, which only handles

a subset of all effects in a specific expression. In practice this means that a ZLayer

eliminates only a part of the environment, while leaving the rest in place. Listing

58 demonstrates the mentioned similarity and polymorphic handlers.

Listing 58 ZIO workflows and ZLayers can be seen as really similar to algebraic
effects and handlers.
trait ZLayer[-RIn, +E, +ROut]:

// Environmental requirement of type ROut is removed, and RIn is
// added to the ZIO received as parameter.
def apply[R, E1, A](

zio: ZIO[ROut & R, E1, A]
): ZIO[RIn & R, E1 | E, A]

val handleAtoB: ZLayer[B, Nothing, A] = ??? // Changes A -> B
val handleB: ZLayer[Any, Nothing, B] = ??? // Eliminates B

val effect: ZIO[A & Boolean, Nothing, Int] = ???

// ZLayer is polymorphic in the type of environmental requirement
// Here it removes B, adds A, and leaves Boolean as is
val handledA: ZIO[B & Boolean, Nothing, Int] = handleAtoB(effect)

// ZLayer (handler) for B does not have any requirements, so B is
// removed from the environment entirely, leaving only Boolean
val handledB: ZIO[Boolean, Nothing, Int] = handleB(handledA)

Effect polymorphism (demonstrated in Listings 29, 36 and 37), however, is lim-

ited since every ZIO computation is evaluated in a monadic context. Also handlers

(i.e., ZLayers) in ZIO are not as expressive, since they do not receive a continuation

to the rest of the program, like algebraic effect handlers do.

4.4 RESOURCE MANAGEMENT 85

4.4 Resource management

At a high level, resource management consists of three parts: acquiring resources,

using resources and releasing resources after they are no longer needed. Numerous

things can be viewed as resources that need to be acquired and released: concurrency

or database locks, allocated memory, open file handles or network sockets, connec-

tions from a connection pool, or spawned processes/threads. Even a database trans-

action is a special kind of resource where releasing it either commits the transaction

or rolls it back.

Important for the correct behavior of programs is that once a resource is acquired,

it must be released, even if using the resource raises an exception or fails in some

other way. This behavior can be described with a contextual data type that is added

to the environment when resources are acquired, and that stays in the environment

as long as there are resources that need to be released. A consequence of this is that

acquired resources are visible in the type signatures that describe computations and

the compiler is able to help in making sure that acquired resources are actually

released, but not too soon.

Safe resource management in ZIO relies on information threaded through com-

putations in the ZIO environment. In ZIO, the data type describing the lifetime

of resources is called Scope. In principle, a Scope is very simple. It has only two

operations: one to add a finalizer that is executed when the scope is closed, and one

to actually close the scope. A computation that acquires a resource requires that a

Scope is in the environment. After the resource is acquired, a finalizer for releasing

the resource is added to the scope. Before the ZIO is executed, the Scope must be

provided. The provided Scope determines how long the resource is usable and when

it is released.

To create a resource, ZIO has acquireRelease constructor and several variants

for it. Like the name suggests, these constructors take two ZIO computations as

4.4 RESOURCE MANAGEMENT 86

their parameters: one to acquire the resource and one to release it. They return

a ZIO computation that succeeds with the resource, and has added Scope to the

environment. In order to determine the extent of a Scope and remove it from the

environment, ZIO provides an operator called scoped. This function takes a ZIO

computation as an argument that requires a scope. It then opens the scope, runs

the computation with the scope, and finally closes the scope. Several resourceful

ZIOs could be interpreted in different ways depending on how the Scope is provided,

which changes the order of how resources are acquired and released, in other words

the lifetime of the resource. Listing 59 demonstrates use of these operators, and how

scoping affects the order of acquiring and releasing resources.

Listing 59 Operators for acquiring resources and providing a Scope in ZIO. Re-
sources can be scoped to shared or separate scopes.
def log(msg: String): UIO[Unit] = ZIO.debug(msg)

val intResource: ZIO[Scope, Nothing, Int] = ZIO.acquireRelease(
acquire = log("acquire int").as(34),

)(release = int => log(s"release $int"))

val stringResource: ZIO[Scope, Nothing, String] = ZIO.acquireRelease(
acquire = log("acquire string").as("foo"),

)(release = str => log(s"release $str"))

// "acquire int", "acquire string", "release foo", "release 34"
val program1 = ZIO.scoped { intResource *> stringResource }

// "acquire int", "release 34", "acquire string", "release foo"
val program2 = ZIO.scoped(intResource) *> ZIO.scoped(stringResource)

If multiple resources are acquired, they are released in the reverse order. By

default releasing resources happens sequentially, but Scope also enables running

finalizers in parallel if configured to do so. When using Scope with ZIO.scoped,

finalizers are guaranteed to be executed even when an error/defect is encountered,

or when the workflow is interrupted.

4.5 CONCURRENCY 87

Traditionally resource management is implemented with a try-finally state-

ment, where a resource is acquired before using it in a try block, and lastly releasing

it in a finally block. This guarantees that the resource is released, even if an error

occurs after acquiring the resource. Managing resources with try-finally lacks in

expressivity, composability, and safety compared to a higher-level declarative strat-

egy like Scope. Firstly, the acquired resource is not visible in the type system, so

it is possible to forget to release the resource. Secondly, composing the acquisition

and release of several resources with try-finally is complicated, especially if the

acquisition and release must be done in a particular order. Thirdly, when a resource

is acquired, the lifetime of the resource must be statically determined (by adding a

finally statement).

4.5 Concurrency

ZIO values are descriptions of workflows that can be executed in different ways.

They can be executed sequentially or concurrently, and this decision can be made

after a ZIO workflow is defined. This makes ZIO, or any other IO monad, an ideal

abstraction for high level combinators that allow the programmer to precisely define

the concurrency semantics of a computation.

The concurrency model in ZIO is based on fibers. Every operation that waits for

another ZIO fiber to complete is semantically blocking and does not block actual

operating system threads. For code that is doing blocking IO, ZIO has a separate

thread pool dedicated for blocking operations. ZIO uses structured concurrency

by default and allows other types of concurrency semantics to be configured when

needed. Additionally ZIO offers many concurrency primitives such as queues, atomic

references and semaphores, as well as software transactional memory, which are not

discussed in more depth in this thesis.

Every ZIO workflow is executed by a fiber that is in turn executed by the ZIO

4.5 CONCURRENCY 88

runtime that assigns and schedules fibers to be run on actual threads. In ZIO, fiber

is a datatype that is a handle to an ongoing computation. A ZIO program is started

on a fiber called main fiber created by the runtime. Additional fibers can be created

with the fork operator on a ZIO workflow. The fork operator starts executing the

forked fiber concurrently in the background and then returns immediately to the

original fiber. Other common operations with fibers are to check whether a fiber

is finished (poll), to wait for the result (join and await), or to interrupt a fiber’s

execution (interrupt). Most operations on fibers are effects, and thus they return

their result inside a ZIO. Listing 60 demonstrates forking and joining a fiber.

Listing 60 Forking and joining a fiber in ZIO.
val work = ZIO.sleep(1.second) *> ZIO.debug("Work completed")
val parentZIO = for

childFiber <- work.fork
_ <- ZIO.debug("Parent forked child fiber")
_ <- childFiber.join
_ <- ZIO.debug("Parent joined child fiber")

yield ()

// When executed prints:
// Parent forked child fiber
// Work completed
// Parent joined child fiber

Structured concurrency in ZIO is implemented with a fiber supervision model.

Every forked fiber in ZIO has a scope that determines the maximum lifetime of

a fiber. When a scope is closed, all fibers in that scope (that have not finished

executing) are interrupted. The scope is determined at the time of forking, and it

depends on which operator the forking is done with. It is also possible to change the

scoping of a fiber after it is forked, but this is somewhat rare. Listing 61 introduces

different forking operators and their type signatures.

The default is to scope child fibers to their parent, which is achieved with the

4.5 CONCURRENCY 89

Listing 61 Forking operators on ZIO.
trait ZIO[-R, +E, +A]:

def fork: URIO[R, Fiber[E, A]]
def forkDaemon: URIO[R, Fiber[E, A]]
def forkScoped: URIO[R & Scope, Fiber[E, A]]
def forkIn(scope: Scope): URIO[R, Fiber[E, A]]

fork operator. In order for a fiber to outlive its parent, a different operator is re-

quired. If a fiber should live forever, independently from its parent, forkDaemon

operator attaches the fiber to the global scope, which is closed only when the whole

application exits. For finer-grained control over the scope of a fiber, its lifetime

could be tied to ZIO Scope, with forkScoped operator, which is scoped to sur-

rounding Scope in the ZIO environment, or forkIn operator, which takes a Scope

as an argument. Listing 62 demonstrates forking fibers in different scopes and their

interruption properties.

Listing 62 Fiber scopes and interruption in ZIO
def log(msg: String): UIO[Unit] = ZIO.debug(msg)
def hangForever(tag: String): UIO[Nothing] =

log(s"Start: $tag") *> ZIO.never.onInterrupt(log(s"Stop: $tag"))

val supervision: UIO[Unit] = for
_ <- hangForever("fork").fork
_ <- hangForever("forkDaemon").forkDaemon
scope <- Scope.make
_ <- hangForever("forkIn").forkIn(scope)
_ <- ZIO.scoped(hangForever("forkScoped").forkScoped)
_ <- scope.close(Exit.unit)

yield ()

// Start order(non-deterministic): fork, forkDaemon, forkIn, forkScoped
// Interruption order: forkScoped, forkIn, fork
// forkDaemon is not interrupted

The fibers of an application can be thought of as a tree where the main fiber is

the root node, new child nodes are created by a fork operation, and each parent

4.5 CONCURRENCY 90

fiber is the root node of its subtree from which all child fibers branch. When a fiber

terminates, either by succeeding, failing, or by interruption, all of its descendant

fibers are recursively interrupted. After the child fibers have been interrupted, the

current fiber’s finalizers are executed. A call to interrupt a fiber blocks until the

fiber has interrupted all of its children, and all finalizers have finished executing. If

a fiber has a large number of descendants with long-running or many finalizers, the

interruption could take a significant amount of time. Sometimes it is desired to per-

form the interruption in the background by a daemon fiber and return immediately

to the fiber that initiated the interrupt. This can be achieved by interrupting the

fiber with interruptFork method or by using disconnect combinator on a ZIO

workflow to make the interruption happen in the background.

Sometimes a fiber is doing critical work, such as disposing acquired resources,

that cannot be interrupted without leaving the program in an inconsistent state.

These parts of a program should therefore be executed without interruptions. ZIO

guarantees that if a fiber that is executing a section marked as uninterruptible is

interrupted by another fiber, the uninterruptible section is executed to completion

despite the interruption. A ZIO workflow can be marked as uninterruptible with

uninterruptible and uninterruptibleMask operators. The former marks the

whole ZIO workflow as uninterruptible, while the latter gives more control over

what parts inside an uninterruptible section are interruptible.

Fibers along with other concurrency primitives are basic building blocks for cre-

ating concurrency operators in ZIO. Countless concurrent and parallel combinators

can be implemented with forking, joining and interrupting fibers in various ways.

Combinators implemented with fibers automatically inherit structured concurrency

properties like supervision, scoping and interruption. Listing 63 demonstrates how

the zipPar concurrency operator can be implemented using fibers.

Fibers are a low-level construct and programming directly with them is error-

4.5 CONCURRENCY 91

Listing 63 zipPar implementation with fibers in ZIO.
// Actual implementation in ZIO is considerably more complex due to
// environment, errors, race conditions, and other concerns
def zipPar[A, B](left: UIO[A], right: UIO[B]): UIO[(A, B)] =

for
fiber1 <- left.fork
fiber2 <- right.fork
a <- fiber1.join
b <- fiber2.join

yield (a, b)

prone because of the possibility of race conditions. ZIO has numerous built-in high-

level concurrency operators (a few of which are presented below) that should be used

instead of fibers, when possible. Operators that combine multiple ZIOs in parallel

are usually suffixed with Par to indicate that execution happens in parallel. For

the majority of the operators that combine several independent ZIOs, there is a

parallel counterpart that executes in parallel. Listings 40 and 41 demonstrate ZIO

combinators that combine several ZIOs sequentially. Their parallel counterparts

include zipPar, foreachPar, and collectAllPar, to name a few. Some operators

only make sense to be defined as parallel, such as race and its variants that execute

multiple ZIOs and pick the one that succeeds first.

Many combinator operators (like foreach, collectAll, and every zip variant)

need the result of each combined ZIO in order to compute a result. Consequently,

if even one of the combined ZIOs fail, the result cannot be computed. In sequential

composition this is unproblematic: if a ZIO fails, the execution of subsequent ZIOs

will not be started. When composing ZIOs in parallel, the semantics are more com-

plicated. All composed ZIOs start executing in parallel and if any of them fails, the

results of the others are not needed anymore and they are interrupted. In some situ-

ations this interrupting behavior is not desired, and it can be avoided by converting

ZIOs to infallible, with operators described in Section 4.2, before the parallel compo-

4.5 CONCURRENCY 92

sition. Listing 64 demonstrates the zipPar operator and an interruption associated

with it.

Listing 64 Parallel composition of ZIOs with zipPar operator.
// Represents long-running interaction such as network or file system
def work(duration: Duration) = ZIO.sleep(duration)

val fast: IO[String, Int] = work(50.millis) *> ZIO.fail("oops")
val slow: IO[Nothing, Int] = work(3.seconds) *> ZIO.succeed(34)

// 'slow' is interrupted after 50ms when 'fast' fails
val successInterrupted: IO[String, (Int, Int)] =

fast.zipPar(slow)

// 'slow' is not interrupted because 'fast' is made infallible
val successNotInterrupted: IO[Nothing, (Either[String, Int], Int)] =

fast.either.zipPar(slow)

By default parallel combinators in ZIO have unbounded parallelism, which means

that all composed ZIOs are executed at the same time. Often one would want

to limit the amount of parallelism, especially with operators like foreachPar or

collectAllPar, whose parallelism is defined by the size of a collection received as

an argument. ZIO has two basic operators for controlling the amount of parallelism:

withParallelism that limits concurrency to a number it receives as an argument,

and withParallelismUnbounded that removes any limitations to parallelism. These

operators only apply to a single ZIO workflow, meaning that parallelism is limited

only in a specific ZIO. Composing ZIOs with varying parallelism limits preserves

the parallelism of each individual ZIO workflow. Listing 65 demonstrates the use of

operators controlling the amount of parallelism.

4.6 SUMMARY OF ZIO 93

Listing 65 ZIO operators for controlling the amount of parallelism.
def fetchContent(url: URL): IO[Throwable, String] = ???
val urls: List[URL] = ???

val contents: IO[Throwable, List[String]] =
ZIO.foreachPar(urls)(fetchContent)

// By default all requests are performed in parallel
val unboundedParallelism = contents

// The parallelism is limited to 10 concurrent requests
val boundedParallelism = unboundedParallelism.withParallelism(10)

// Bounded parallelism can be converted back to unbounded
val unboundedAgain = boundedParallelism.withParallelismUnbounded

4.6 Summary of ZIO

ZIO is a realization of the monadic approach to effectful programming. It puts into

practice results of several decades of programming research. Essentially ZIO is an IO

monad and it inherits much of their properties, both good and bad. On the positive

side, effects can be described in a referentially transparent way, which gives high

expressivity and good refactoring characteristics. On the negative side, like with

all monads, encoding multiple effects is not straight-forward and programs must be

written in a sometimes cumbersome monadic syntax.1

ZIO circumvents some of the problems traditionally related to monads, such as

impaired type inference and having to encode multiple effects by nesting monads

or by using monad transformers. The majority of the practically useful effects can

be encoded by using a monad with three type parameters. First two parameters

are used to include the capabilities of IO and Either monads. The third parameter

is the environment that allows to encode other, possibly overlapping, effects such

as Reader and State. The environment takes inspiration from algebraic effects and

1Direct syntax can be achieved by utilizing compiler macros that rewrite direct style to monadic
style at compile time, e.g https://zio.dev/zio-direct/.

4.6 SUMMARY OF ZIO 94

handlers, and is able to encode semantics similar to that approach. The environment

is also central to dependency injection in ZIO.

ZIO takes a novel approach with its error model, which enables expressing errors

in a referentially transparent way. The error model is expressive, capable of encoding

asynchronous and concurrent errors that are in the core of modern applications. The

error model blends well with the concurrency model, which enables the programmer

to express concurrency concerns at a high abstraction level. When multiple effects

are encoded in a single monad, IO, errors and concurrency compose together in a

natural and type safe way.

ZIO provides many state-of-the-art features with the focus on practical usability.

Although the library is quite new, it has few years of production experience from

several large companies. It has a comprehensive and constantly growing ecosystem.

Because ZIO is built with Scala, which is a JVM language, ZIO programs also have

access to Java libraries, one of the largest open source ecosystems. For these reasons,

ZIO is one of the most viable ways to develop modern applications today.

5 Case study

This chapter reports on a study focusing on the practical applicability of ZIO in

a development of a server application for Qlik Sense business intelligence tool [73].

First the purpose and the background of the project is introduced along with a

quick overview of Qlik Sense. Then, the evaluation of ZIO is discussed, divided

into several sections, roughly following the structure of Chapter 4 about ZIO. The

first section examines error handling with ZIO and its usability in the development

process. The second section discusses the use of dependency injection with ZIO.

The third section looks at testing and how ZIO facilitates the implementation of

automated tests. The fourth section covers the role of ZIO’s concurrency constructs

in the development of the application. The last section analyzes the overall usability

of ZIO in application development.

The application under study is the backend for a web application. It exposes its

functionality via an HTTP interface. The purpose of the application is to manage

control parameters of the Qlik Sense business intelligence tool. A browser-based

user interface has also been developed for the application, but it is not within the

scope of this thesis.

Qlik Sense is a data analytics software with Extract, Transform and Load (ETL),

data modeling and interactive data visualization capabilities. Qlik Sense is com-

monly used to create dashboards that display data from various sources in a single

easy-to-consume format. The user of the dashboard can filter the data and export

CHAPTER 5. CASE STUDY 96

reports in various formats, such as PDF or Excel, or via email message. Qlik Sense

has various deployment options including on-premises servers, Kubernetes and more

recently also a Cloud/SaaS offering.

It is often desirable to parameterize the operation of Qlik Sense applications, such

as URLs, calculation formulas and titles to display. However, Qlik does not have

a built-in mechanism to maintain such configurations, and many Qlik applications

end up managing configurations in an Excel file or similar. This method is often

perceived as suboptimal due to usability challenges for non-technical users, limited

possibilities to manage user rights, and deficiencies in validating the correct structure

of the configuration, which makes it error prone. A table as a configuration format

is also limited in describing, for example, object or array structures.

For these reasons, a custom web application for managing Qlik Sense config-

uration was developed. The custom solution exposes an HTTP/JSON API that

Qlik Sense applications can read configuration values from. Authentication is im-

plemented with an API key, which is simply a token provided by the client in the

HTTP headers. The configuration format and values can be managed from a graph-

ical user interface by Qlik application developers.

The code of the application was divided roughly into three layers/modules: core,

persistence and HTTP. The core contains all the business logic and interface defi-

nitions that are implemented in the persistence layer. The HTTP layer is respon-

sible for exposing the public API of the application. This requires decoding HTTP

requests and handling authentication logic. The persistence layer implements in-

terfaces defined by the core and HTTP layers. It translates domain models into

relational format and communicates with a PostgreSQL database, which is used for

persistence.

The application utilizes many libraries from the ZIO ecosystem: zio-protoquill

for database interaction, tapir with zio-http for the HTTP server, zio-json for JSON

5.1 ERROR HANDLING 97

(de)serialization, zio-config for reading and parsing the application configuration,

zio-logging for logging and zio-test with zio-testcontainers for testing. The server

application is packaged as a Docker container to accommodate the different deploy-

ment options of Qlik Sense.

5.1 Error handling

The ZIO error model was proven to be suitable for many situations. Due to the

greenfield nature of the project, the development process involved a significant

amount of experimentation and refactoring. Changes could be done with confidence

because of statically typed errors that trigger a compile error if an error case was

accidentally left unhandled. Adding a new error case to a method is easy because

the compiler errors indicate where additional error handling is required.

Converting errors between different layers of the application turned out to be easy

and convenient. Listing 66 contains part of the ApikeyRepository implementation

that stores API keys in a PostgreSQL database. Because every API key value must

be unique, adding a new API key can fail if the database already contains an API key

with the same value. The possibility of failure is reflected in the return type of the

add method: IO[DuplicateApikey, Unit]. Running an insert query against the

database can fail with SQLException, which must be converted to DuplicateApikey

or to a ZIO defect, depending on the specific SQLException received. The catchAll

operator expresses this logic clearly.

Retrying capabilities of ZIO also proved to be useful. The data model for API

key contains a secret token and a description. In the application ApikeyService is

responsible of creating a new API key. The user can specify a description for the key

and ApikeyService is responsible of creating a token and persisting the new API

key. The process of creating a new API key consists of validating that the provided

5.1 ERROR HANDLING 98

Listing 66 Expressing the desired error handling behavior with catchAll operator.

class PostgresApikeyRepository(datasource: DataSource):
def add(apikey: Apikey): IO[DuplicateApikey, Apikey] =

// Prepare the insert query, implementation omitted for brevity
val insertApikeyQuery: Query[Apikey] = ???

// Run the query against a database
val queryResult: IO[SQLException, Unit] = run(insertApikeyQuery)

// Convert the SQLException to DuplicateApikey error or defect
val uniqueViolationHandled: IO[DuplicateApikey, Unit] =

queryResult
.catchAll {

case exc: SQLException if isUniqueViolation(exc) =>
ZIO.fail(DuplicateApikey(apikey))

case otherSqlExc: SQLException => ZIO.die(otherSqlExc)
}

// Return the original apikey after insert was successful
uniqueViolationHandled.as(apikey)

private def isUniqueViolation(exc: SQLException): Boolean =
exc.getSQLState == PSQLState.UNIQUE_VIOLATION.getState

5.1 ERROR HANDLING 99

description meets its requirements, generating a new token, persisting the new API

key and finally returning the created and persisted API key. The service delegates

the creation of the token to KeyGenerator and persistence to ApikeyRepository.

Listing 67 Expressing sophisticated retry policies declaratively with Schedule and
retry operator on ZIO.
class ApikeyService(keyGen: KeyGen, repo: ApikeyRepository):

def create(description: String): IO[InvalidDescription, Apikey] =
type CreateError = DuplicateApikey | InvalidDescription

val createApikey: IO[CreateError, Apikey] = for
validDesc <- validateDesc(description)
token <- keyGen.generateKey
savedApikey <- repo.add(Apikey(validDesc, token))

yield savedApikey

// Retry only in the case of DuplicateApikey and at most 10 times
val policy = Schedule.recurWhile[CreateError] {

case DuplicateApikey(_) => true
case InvalidDescription(_) => false

} && Schedule.recurs(10)

// Apply the retry policy to the ZIO that creates the apikey
val retried: IO[CreateError, Apikey] = createApikey.retry(policy)

// Change the error type of the retried ZIO:
// IO[CreateError, Apikey] => IO[InvalidDescription, Apikey]
// By converting all errors to defects except InvalidDescription
retried.refineOrDieWith {

case descError: InvalidDescription => descError
}(otherErr => RuntimeException(s"Defect in create: $otherErr"))

def validateDesc(str: String): IO[InvalidDescription, String] = ???

As demonstrated in Listing 66, persisting the API key can fail if the token al-

ready exists in the database. A desired way to react to this situation is by creating

a new token and trying to persist the API key again with the new token. However,

it is desirable not to retry persisting a new API key indefinetely. If persisting a

new API key fails a couple times in a row with DuplicateApikey, there is prob-

5.2 DEPENDENCY INJECTION 100

ably a bug in the code, and it should be considered a defect. Listing 67 shows

the ApikeyService.create method that implements the above logic with ZIO. A

ZIO Schedule describes the retry policy and refineOrDieWith is used to convert

DuplicateApikey to defect if retries do not resolve the error.

5.2 Dependency injection

The services in the application were implemented by using constructor-based depen-

dency injection. If a service requires another service, it will receive the dependency

as a constructor argument. This pattern can be seen in Listings 66 and 67 where

dependencies are received as constructor arguments. Each service defines a ZLayer

in its companion object, which can be used to construct that specific service. De-

pendencies for the program are provided in the main method by referencing ZLayer

of each required service. Listing 68 demonstrates how the layers are provided.

ZIO resolves and constructs the dependency graph at compile time, as described

in Section 4.3.1. If a required dependency is not provided, ZIO reports a developer-

friendly error message explaining what dependency is missing. This compile time

verification proved to be valuable in the development process when new dependen-

cies were added to services. Forgetting to provide a newly-added dependency was

brought to the attention of the developer in a clear format before the application

could even be started. This can be demonstrated, for example, by commenting

out KeyGen.layer and Database.dataSourceLayer from Listing 68. The compiler

reports an error shown in Figure 5.1, which clearly states what dependencies are

missing and which services require them.

5.3 TESTING 101

Listing 68 Dependencies are provided in the main method of the application as
ZLayers.
object Main:

// Represents the whole program before its dependencies are provided
val program: ZIO[ApikeyService, Nothing, Unit] = ???

val run: ZIO[Any, Nothing, Unit] = program.provide(
ApikeyService.layer,
PostgresApikeyRepository.layer,
KeyGen.layer,
Database.dataSourceLayer,

)

Figure 5.1: Error message produced by ZIO when required ZLayer is not provided.

5.3 Testing

The application contains several automated tests. ZIO has its own test library,

zio-test, which was used for testing. Three types of tests were written for the appli-

cation: unit tests, integration tests and system tests. Unit tests run in-memory and

exercise a single class or function. Integration tests ensure the correct functionality

of multiple services together and may include out-of-process dependencies such as

5.3 TESTING 102

databases. Repository classes that interact with a PostgreSQL database were tested

with integration tests that used a database instance running in a Docker container.

In system tests the application is tested as a whole, which in this case means that

the configuration is read from environment variables and the database is running in

a Docker container, similar to integration tests. System tests treat the application

as a black box and tests only interact with its public API, which in this case consists

of the HTTP endpoints.

Dependency injection in zio-test is managed with ZLayers. This makes it easy

to configure tests in a way that the class under test can be provided with fake

implementations of its dependencies. ZIO has also built-in test services that make

it possible to write deterministic tests that interact with the console, time/clock,

random number generator and environment variables. This ability to effortlessly

test interaction with time and environment variables in a controlled manner proved

to be valuable.

Listing 69 shows a test for ApikeyService that verifies that the revokation time

of an API key is set to the current time. In the test a TestClock is used to fix

the current time visible to the service, and then assert that the hardcoded time

was actually used. The example also demonstrates how layers are used to provide

dependencies to the class under test.

The biggest advantage of ZIO test services were the possibility to configure the

environment variables in system tests. The application reads its configuration, such

as a database connection string and an HTTP port number, from environment

variables. Traditionally testing how a program interacts with environment variables

is cumbersome and error prone to say the least. ZIO TestSystem allows setting

environment variables easily before the application is started and it tries to read its

configuration. Listing 70 shows a layer that requires environment variables that will

be set before the application is started and kept running in the background.

5.3 TESTING 103

Listing 69 ZIO TestClock facilitates testing of code that uses the current time.
ZLayers enable to inject desired dependencies to the service under test.
test("revoke should set current time as the revokation time") {

val fixedTime: Instant = Instant.parse("2023-03-30T19:34:28Z")

for
apikeyService <- ZIO.service[ApikeyService]
apikey <- apikeyService.create("test apikey description")

_ <- TestClock.setTime(fixedTime) // Set current time
_ <- apikeyService.revoke(apikey) // Perform logic under test

// This is verifiable using the provided in-memory repository
allApikeys <- FakeApikeyRepository.getAll
revokedApikey <- ZIO.getOrFail(allApikeys.find(_ == apikey))

// Assert that the fixed time was used as the revokation time
yield assertTrue(revokedApikey.isRevokedAt(fixedTime))

}.provide(
ApikeyService.layer,
FakeApikeyRepository.layer,
FakeKeyGen.layer,

) // Test is configured with real ApikeyService and fake dependencies

5.4 CONCURRENCY 104

Listing 70 ZIO TestSystem makes it possible to set/overwrite environment vari-
ables the application sees. This is used to set the configuration for the application
in system tests.
case class EnvVars(values: Map[String, String])

object SystemTestSetup:
// This layer starts the application in the background and
// configures it by setting environment variables before starting.
val layer: ZLayer[EnvVars, Nothing, Unit] =

TestSystem.default >>> ZLayer.scoped {
for

envVars <- ZIO.service[EnvVars]
_ <- setEnvironmentVariables(envVars)
_ <- startApp

yield ()
}

// The application keeps it running while tests are finished.
// Delay makes sure the application has had time to start.
def startApp = Main.run.forkScoped *> ZIO.sleep(2.second)

def setEnvironmentVariables(envVars: EnvVars) =
ZIO.foreachDiscard(envVars.values) { (key, value) =>

TestSystem.putEnv(key, value)
}

ZIO test services do not provide a way to control access to the file system, which

is also quite hard to test, for similar reasons as environment variables. In its current

form, the application does not use the file system. If it did, it is evident that the

application programmer would like ZIO to provide tools to test such interactions.

5.4 Concurrency

The application in its current form is quite simple, and thus ZIO’s concurrency

features were not needed much. This is partly due to the decision to use a relational

database, which can perform complex query logic in a single query. In other projects

of similar complexity, the need for concurrency typically arises when fetching data

5.5 ANALYSIS 105

from multiple sources and combining the data in the application code. This occurs,

e.g, with NoSQL databases, which are usually not capable of doing joins in the

database, thus forcing the joining logic to be expressed in the application code.

As the application advances, we foresee that concurrency plays a more signifi-

cant role. ZIO’s concurrency features will likely then become more useful, especially

when the application gains other functionalities besides an HTTP interface. Useful

concurrency features could include scheduled batch jobs running in the background,

such as updating and invalidating caches or reporting metrics, or asynchronous

messaging where the application must listen and react to new messages in the back-

ground. ZIO’s concurrency and scheduling capabilities are well suited for these kind

of use cases.

5.5 Analysis

The case study revealed that using ZIO may initially slow down development, but

this is only temporary and lasts for days or about one week. While the simplest tasks

may sometimes be slightly more challenging to implement with ZIO, the benefits

become apparent when dealing with more complex problems. The use of ZIO made

it easier to tackle more difficult problems that may typically be ignored in imperative

languages due to the time and effort required to solve them, such as examples in

Listings 66 and 67 demonstrate. Some tasks that are unreasonably difficult (or even

practically impossible) in mainstream languages are possible, often simple, with

ZIO, such as determining dynamic lifetime for a resource with Scope or defining a

complex retry policy with Schedule.

Acknowledging the ever changing and unpredictable nature of software projects,

building new projects on strong foundations is desirable. This increases the likeli-

hood that customizing and evolving the software is possible with reasonable effort.

In our small experiment, ZIO proved to be a robust foundation that enables such

5.5 ANALYSIS 106

customizations. Refactoring was easy and could be done with confidence because

ZIO programs are referentially transparent.

Developers with no previous experience with monadic effects or effects as values

may find it difficult to comprehend programs written with ZIO. This became clear

in discussions with other developers involved in the project. The programmer must

master quite a bit of functional programming techniques and adopt a functional

programming mindset in order to use ZIO (or other monadic effects) effectively.

One of the key benefits of monads is their ability to describe different aspects of

the control flow in a clear and modular manner. Monads facilitate good separation

of concerns by allowing developers to define the core business logic, often referred

to as "happy path", separately from error handling and concurrency concerns. This

separation of concerns facilitates writing maintainable and scalable code. In con-

trast, the imperative paradigm often conflates these concerns, forcing programmers

to deal with multiple aspects in a single block of program logic.

6 Conclusion

Monads as a way to encode effects were discovered in the 90s. It is possible to use

monads in a majority of current languages, as long as the language has support for

higher-order functions. Assuming a statically typed language, monads also provide

an effect system, in addition to modeling effects. Even though monads are not part

of mainstream industrial programming, they have been used for a long time and

they are quite a mature approach today. Challenges with monads is that they force

programs to be written in a rather cumbersome monadic syntax. Also, combining

different monadic effects is not straightforward and necessitates the use of complex

programming constructs.

Algebraic effects and handlers are a more recent approach for managing effects

that was discovered in the early 2000s; first academic languages appeared in the

2010s. First languages with support for algebraic effects intended for commercial

use surfaced in the early 2020s. A productive use of algebraic effects requires a

language that has native support for them. Such languages usually come with a

built-in effect system as well. These languages allow programmers to write effectful

programs in direct style, and combining different effects is effortless. Algebraic effects

and handlers are, however, a recent practice with many remaining open questions

regarding how they should be best included in a programming language.

Programming in a direct style with algebraic effects resembles imperative pro-

gramming. It can be argued that the direct style of programming is more familiar

CHAPTER 6. CONCLUSION 108

to the majority of programmers, thus making algebraic effects easier to comprehend

than monadic effects. Monadic effects, on the other hand, are far more accessible to

the average programmer than algebraic effects, since there are several monadic effect

libraries available for different languages. Both approaches enable highly expressive

and modular effects; monads with combinators that modify a value representing a

computation and algebraic effects with handlers that interpret the effect in a specific

manner.

Capability based effects address many shortcomings of monads and algebraic ef-

fects. Their research is ongoing, and it is not yet possible to use them in practical

applications, since languages with support for them are experimental research lan-

guages. Nevertheless, proposals related to effect polymorphism seem to go a long

way to make capability based effects more practical and easier to use than other

sophisticated approaches for managing side effects.

Compared to unrestricted side effects, monads and algebraic effects provide at-

tractive ways to manage side effects. Regarding the research questions formulated

in the introduction, it can be concluded that controlling side effects with monads

and algebraic effects is clearly more expressive and compositional than unrestricted

side effects. This is underlined by how much more convenient it is to implement

re-usable logic for effects, such as retries and timeouts, with monads and algebraic

effects than it is with unrestricted side effects.

Programs written with monadic or algebraic effects have a tendency to be more

declarative than their imperative counterparts with unrestricted side effects. These

features facilitate the implementation of modular and resilient programs that are

easier to modify and that respond to errors in a clearly defined manner. Concur-

rency concerns can be alleviated: high-level concurrency makes it easier to imple-

ment correct and performant programs when compared to working with traditional

imperative low-level primitives, such as threads.

CHAPTER 6. CONCLUSION 109

The case study described in this thesis showed that ZIO provides the program-

mer a good foundation for managing control flows and abstractions, encountered for

example in error handling, and leads to declarative and concise programs. Express-

ing programs in referentially transparent way proved to be beneficial for refactoring,

which encourages changing and correcting the program structure as the applica-

tion evolves. ZIO’s benefits are fully realized when approaching problem-solving

from a functional programming perspective, which can also pose a weakness: the

advantages it provides may not be immediately apparent to programmers who are

exclusively familiar with imperative languages.

Algebraic effects with handlers and capability based solutions may eventually

turn out to provide better developer ergonomics compared to monads, but currently

there is little to none practical experience of using them in commercial software. It

remains to be seen whether this sophisticated approach for managing side effects

will make their breakthrough in the industry. Eventually it is a trade-off; is a

more sophisticated approach perceived useful enough to justify the initial effort

of education/learning that it requires. In turn, is it possible to make these more

sophisticated approaches more accessible by making them feel more familiar to the

practicing programmers, thus requiring less training? In the meantime, ZIO may

well be one of the most compelling technologies to try out to get a taste of what

these more advanced approaches of handling side effects can offer today.

References

[1] “TIOBE index, January 2022”. (2022), [Online]. Available:

https://www.tiobe.com/tiobe-index (visited on 01/13/2022).

[2] “Stack Overflow developer survey 2022”. (2022), [Online]. Available:

https://survey.stackoverflow.co/2022 (visited on 03/24/2023).

[3] H. Abelson and G. J. Sussman,

Structure and interpretation of computer programs, 2nd ed.

The MIT Press, 1996.

[4] R. Cartwright and M. Felleisen,

“Extensible denotational language specifications”,

in Theoretical Aspects of Computer Software: International Symposium

TACS’94 Sendai, Japan, April 19–22, 1994 Proceedings, Springer, 1994,

pp. 244–272.

[5] S. L. Peyton Jones and P. Wadler, “Imperative functional programming”,

in Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, 1993, pp. 71–84.

[6] S. Lindley, C. McBride, and C. McLaughlin, “Do be do be do”,

Association for Computing Machinery, 2017, pp. 500–514.

doi: 10.1145/3009837.3009897. [Online]. Available:

https://doi.org/10.1145/3009837.3009897.

https://www.tiobe.com/tiobe-index
https://survey.stackoverflow.co/2022
https://doi.org/10.1145/3009837.3009897
https://doi.org/10.1145/3009837.3009897

REFERENCES 111

[7] S. Peyton Jones, A. Reid, F. Henderson, T. Hoare, and S. Marlow,

“A semantics for imprecise exceptions”,

in Proceedings of the ACM SIGPLAN 1999 conference on Programming

language design and implementation, 1999, pp. 25–36.

[8] S. P. Jones, “Tackling the awkward squad: Monadic input/output,

concurrency, exceptions, and foreign-language calls in Haskell”,

NATO Science Series Sub-Series III Computer and Systems Sciences,

vol. 180, pp. 47–96, 2001.

[9] S. Marlow, S. P. Jones, A. Moran, and J. Reppy,

“Asynchronous exceptions in Haskell”, in Proceedings of the ACM SIGPLAN

2001 conference on Programming language design and implementation, 2001,

pp. 274–285.

[10] D. Yuan, Y. Luo, X. Zhuang, et al.,

“Simple testing can prevent most critical failures: An analysis of production

failures in distributed Data-Intensive systems”, in 11th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 14),

USENIX Association, 2014, pp. 249–265.

[11] M. M. Michael and M. L. Scott, “Simple, fast, and practical non-blocking

and blocking concurrent queue algorithms”, in Proceedings of the fifteenth

annual ACM symposium on Principles of distributed computing, 1996,

pp. 267–275.

[12] “Structured concurrency”. (2016),

[Online]. Available: https://250bpm.com/blog:71 (visited on 02/22/2023).

[13] “Notes on structured concurrency, or: Go statement considered harmful”.

(2018), [Online]. Available: https://vorpus.org/blog/notes-on-

https://250bpm.com/blog:71
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/

REFERENCES 112

structured-concurrency-or-go-statement-considered-harmful/

(visited on 02/22/2023).

[14] “Kotlin coroutines v0.26.0: Structured concurrency”. (2022),

[Online]. Available:

https://github.com/Kotlin/kotlinx.coroutines/releases/tag/0.26.0

(visited on 12/02/2022).

[15] “Swift structured concurrency”. (2022),

[Online]. Available: https://github.com/apple/swift-

evolution/blob/main/proposals/0304-structured-concurrency.md

(visited on 12/02/2022).

[16] “Java project loom”. (2022), [Online]. Available:

https://openjdk.org/jeps/428 (visited on 12/02/2022).

[17] “The Scala programming language”. (2022),

[Online]. Available: https://www.scala-lang.org/ (visited on 01/13/2022).

[18] B. C. Oliveira, A. Moors, and M. Odersky, “Type classes as objects and

implicits”, ACM Sigplan Notices, vol. 45, no. 10, pp. 341–360, 2010.

[19] “Unison programming language”. (2022), [Online]. Available:

https://www.unison-lang.org/ (visited on 09/06/2022).

[20] “Koka programming language”. (2022),

[Online]. Available: https://koka-lang.github.io/koka/doc/index.html

(visited on 09/06/2022).

[21] J. H. Morris, “Real programming in functional languages”,

Xerox Palo Alto Research Center, Tech. Rep., 1981.

[22] D. K. Gifford and J. M. Lucassen,

“Integrating functional and imperative programming”, in Proceedings of the

https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/
https://github.com/Kotlin/kotlinx.coroutines/releases/tag/0.26.0
https://github.com/apple/swift-evolution/blob/main/proposals/0304-structured-concurrency.md
https://github.com/apple/swift-evolution/blob/main/proposals/0304-structured-concurrency.md
https://openjdk.org/jeps/428
https://www.scala-lang.org/
https://www.unison-lang.org/
https://koka-lang.github.io/koka/doc/index.html

REFERENCES 113

1986 ACM Conference on LISP and Functional Programming, 1986,

pp. 28–38.

[23] “Frank programming language”. (2022), [Online]. Available:

https://github.com/frank-lang (visited on 09/06/2022).

[24] “OCaml programming language”. (2022),

[Online]. Available: https://ocaml.org/ (visited on 09/06/2022).

[25] M. Odersky, A. Boruch-Gruszecki, E. Lee, J. Brachthäuser, and O. Lhoták,

“Scoped capabilities for polymorphic effects”,

ArXiv, vol. abs/2207.03402, 2022.

[26] D. Leijen, “Type directed compilation of row-typed algebraic effects”,

in Proceedings of the 44th ACM SIGPLAN Symposium on Principles of

Programming Languages, 2017, pp. 486–499.

[27] E. Moggi, “Computational lambda-calculus and monads”, in Proceedings of

the Fourth Annual Symposium on Logic in Computer Science,

Pacific Grove, California, USA: IEEE Press, 1989, pp. 14–23,

isbn: 0818619546.

[28] P. Wadler, “Comprehending monads”, in Proceedings of the 1990 ACM

Conference on LISP and Functional Programming, 1990, pp. 61–78.

[29] E. Moggi, “Notions of computation and monads”,

Information and computation, vol. 93, no. 1, pp. 55–92, 1991.

[30] P. Wadler, “Monads for functional programming”, in Advanced Functional

Programming: First International Spring School on Advanced Functional

Programming Techniques Båstad, Sweden, May 24–30, 1995 Tutorial Text 1,

Springer, 1995, pp. 24–52.

https://github.com/frank-lang
https://ocaml.org/

REFERENCES 114

[31] “Mozilla Developer Network: Array”. (2021),

[Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global_Objects/Array (visited on

07/15/2022).

[32] M. P. Jones,

“Functional programming with overloading and higher-order polymorphism”,

in Advanced Functional Programming: First International Spring School on

Advanced Functional Programming Techniques Båstad, Sweden, May 24–30,

1995 Tutorial Text 1, Springer, 1995, pp. 97–136.

[33] “ZIO”. (), [Online]. Available: https://zio.dev/ (visited on 08/18/2022).

[34] “Cats effect”. (2022), [Online]. Available:

https://github.com/typelevel/cats-effect (visited on 08/18/2022).

[35] “Monix”. (), [Online]. Available: https://github.com/monix/monix (visited

on 08/18/2022).

[36] “Effect TS”. (), [Online]. Available: https://github.com/Effect-TS/core

(visited on 08/18/2022).

[37] “Arrow fx”. (), [Online]. Available: https://github.com/arrow-kt/arrow

(visited on 08/18/2022).

[38] “Missionary”. (), [Online]. Available:

https://github.com/leonoel/missionary (visited on 08/18/2022).

[39] “Eff”. (),

[Online]. Available: https://github.com/purescript/purescript-effect

(visited on 08/18/2022).

[40] “Aff”. (), [Online]. Available:

https://github.com/purescript-contrib/purescript-aff (visited on

08/18/2022).

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://zio.dev/
https://github.com/typelevel/cats-effect
https://github.com/monix/monix
https://github.com/Effect-TS/core
https://github.com/arrow-kt/arrow
https://github.com/leonoel/missionary
https://github.com/purescript/purescript-effect
https://github.com/purescript-contrib/purescript-aff

REFERENCES 115

[41] “Haskell do-notation”. (), [Online]. Available:

https://en.wikibooks.org/wiki/Haskell/do_notation (visited on

08/23/2022).

[42] “Scala for comprehensions”. (), [Online]. Available:

https://docs.scala-lang.org/tour/for-comprehensions.html (visited

on 08/23/2022).

[43] “F# computation expressions”. (), [Online]. Available:

https://docs.microsoft.com/en-us/dotnet/fsharp/language-

reference/computation-expressions (visited on 08/23/2022).

[44] “OCaml binding operators”. (), [Online]. Available:

https://ocaml.org/manual/bindingops.html (visited on 08/23/2022).

[45] A. Filinski, “Representing monads”, in Proceedings of the 21st ACM

SIGPLAN-SIGACT symposium on Principles of programming languages,

1994, pp. 446–457.

[46] J. I. Brachthäuser, A. S. Boruch-Gruszecki, and M. Odersky,

“Representing monads with capabilities”, in HOPE 2021 Workshop, 2021.

[47] “Monadic reflection”. (2022),

[Online]. Available: https://github.com/lampepfl/monadic-reflection

(visited on 10/07/2022).

[48] P. Chiusano and R. Bjarnason, Functional programming in Scala, 2nd ed.

Manning, 2014.

[49] G. Plotkin and J. Power, “Adequacy for algebraic effects”,

in Foundations of Software Science and Computation Structures: 4th

International Conference, FOSSACS 2001 Held as Part of the Joint

European Conferences on Theory and Practice of Software, ETAPS 2001

Genova, Italy, April 2–6, 2001 Proceedings 4, Springer, 2001, pp. 1–24.

https://en.wikibooks.org/wiki/Haskell/do_notation
https://docs.scala-lang.org/tour/for-comprehensions.html
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/computation-expressions
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/computation-expressions
https://ocaml.org/manual/bindingops.html
https://github.com/lampepfl/monadic-reflection

REFERENCES 116

[50] G. Plotkin and J. Power, “Computational effects and operations: An

overview”,

Electronic Notes in Theoretical Computer Science, vol. 73, pp. 149–163, 2004.

doi: https://doi.org/10.1016/j.entcs.2004.08.008. [Online]. Available:

https:

//www.sciencedirect.com/science/article/pii/S1571066104050893.

[51] G. Plotkin and J. Power, “Algebraic operations and generic effects”,

Applied categorical structures, vol. 11, pp. 69–94, 2003.

[52] G. Plotkin and M. Pretnar, “Handlers of algebraic effects”,

in Programming Languages and Systems: 18th European Symposium on

Programming, ESOP 2009, Held as Part of the Joint European Conferences

on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29,

2009. Proceedings 18, Springer, 2009, pp. 80–94.

[53] G. Plotkin and M. Pretnar, “Handling algebraic effects”,

Logical Methods in Computer Science, vol. 9, no. 4, 2013.

[54] D. Leijen, “Algebraic effects for functional programming”,

Technical Report. MSR-TR-2016-29. Microsoft Research technical report,

Tech. Rep., 2016.

[55] “Idris effects”. (2022), [Online]. Available:

http://docs.idris-lang.org/en/latest/effects/index.html (visited

on 09/21/2022).

[56] “Extensible effects”. (2022), [Online]. Available:

https://github.com/suhailshergill/extensible-effects (visited on

09/21/2022).

[57] “Algeff”. (2022), [Online]. Available:

https://github.com/brianberns/AlgEff (visited on 09/21/2022).

https://doi.org/https://doi.org/10.1016/j.entcs.2004.08.008
https://www.sciencedirect.com/science/article/pii/S1571066104050893
https://www.sciencedirect.com/science/article/pii/S1571066104050893
http://docs.idris-lang.org/en/latest/effects/index.html
https://github.com/suhailshergill/extensible-effects
https://github.com/brianberns/AlgEff

REFERENCES 117

[58] “Eff programming language”. (2022),

[Online]. Available: https://www.eff-lang.org/ (visited on 09/06/2022).

[59] “Links programming language”. (2022),

[Online]. Available: https://links-lang.org/ (visited on 09/21/2022).

[60] “Effekt programming language”. (2022),

[Online]. Available: https://effekt-lang.org/ (visited on 09/21/2022).

[61] “Release of OCaml 5.0.0”. (2022), [Online]. Available:

https://ocaml.org/news/ocaml-5.0 (visited on 01/24/2023).

[62] M. Pretnar, “An introduction to algebraic effects and handlers. invited

tutorial paper”,

Electronic notes in theoretical computer science, vol. 319, pp. 19–35, 2015.

[63] J. I. Brachthäuser, P. Schuster, and K. Ostermann, “Effects as capabilities:

Effect handlers and lightweight effect polymorphism”, Proceedings of the

ACM on Programming Languages, vol. 4, no. OOPSLA, pp. 1–30, 2020.

[64] N. Amin, S. Grütter, M. Odersky, T. Rompf, and S. Stucki, “The essence of

dependent object types”,

A List of Successes That Can Change the World: Essays Dedicated to Philip

Wadler on the Occasion of His 60th Birthday, pp. 249–272, 2016.

[65] “Capture checking”. (2023), [Online]. Available: https://docs.scala-

lang.org/scala3/reference/experimental/cc.html (visited on

02/13/2023).

[66] “What color is your function?” (2015), [Online]. Available:

https://journal.stuffwithstuff.com/2015/02/01/what-color-is-

your-function/ (visited on 11/29/2022).

https://www.eff-lang.org/
https://links-lang.org/
https://effekt-lang.org/
https://ocaml.org/news/ocaml-5.0
https://docs.scala-lang.org/scala3/reference/experimental/cc.html
https://docs.scala-lang.org/scala3/reference/experimental/cc.html
https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/

REFERENCES 118

[67] “Martin Odersky on Twitter: Caprese project”. (2022),

[Online]. Available: http://web.archive.org/web/20220711175044/https:

//twitter.com/odersky/status/1546552401368334339 (visited on

11/29/2022).

[68] “Rust documentation: Lifetimes”. (2022), [Online]. Available:

https://doc.rust-lang.org/rust-by-example/scope/lifetime.html

(visited on 11/29/2022).

[69] S. N. S. Foundation. “Capabilities for typing resources and effects”. (2022),

[Online]. Available: https://data.snf.ch/grants/grant/209506 (visited

on 11/28/2022).

[70] J. De Goes and A. Fraser, Zionomicon. Ziverge Inc., 2022.

[71] M. Snyder and P. Alexander, “Monad factory: Type-indexed monads”,

in Trends in Functional Programming: 11th International Symposium, TFP

2010, Norman, OK, USA, May 17-19, 2010. Revised Selected Papers 11,

Springer, 2011, pp. 198–213.

[72] R. Hinze et al., “Fun with phantom types”,

The fun of programming, pp. 245–262, 2003.

[73] “Qlik sense”. (2023), [Online]. Available:

https://www.qlik.com/us/products/qlik-sense (visited on 04/20/2023).

[74] P. Wadler and S. Blott, “How to make ad-hoc polymorphism less ad hoc”,

in Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, 1989, pp. 60–76.

http://web.archive.org/web/20220711175044/https://twitter.com/odersky/status/1546552401368334339
http://web.archive.org/web/20220711175044/https://twitter.com/odersky/status/1546552401368334339
https://doc.rust-lang.org/rust-by-example/scope/lifetime.html
https://data.snf.ch/grants/grant/209506
https://www.qlik.com/us/products/qlik-sense

Appendix A Type classes

Type classes are a method to achieve ad-hoc polymorphism. They were first intro-

duced by Wadler and Blott [74] in 1989 as a way to enable operator overloading in

a programming language with Hindley-Milner type system. Eventually type classes

were implemented in Haskell, largely based on Wadler’s and Blott’s proposal. A

couple of years later, when applications of monads and related algebraic structures

in programming were discovered [27], type classes were a natural way to implement

such algebraic structures.

Type class is an abstraction that defines the behavior of a class of types. This

enables one to implement generic functions that work with any type that is con-

strained to belong to a type class. A type is said to belong to a type class if it

has an instance of that type class. An instance of a type class contains functions

and/or values that implement the behavior of the type class. Instances are defined

separately from the type for which the instance is. It is thus possible to provide

type class instances for third party data types after they have been defined. The

example in Listing 71 demonstrates how type classes enable the implementation of

polymorphic functions that work with any data type that belongs to a specific type

class.

APPENDIX A. TYPE CLASSES A-2

Listing 71 Definition, implementation and use of the Ordering type class in Scala.
case class Money(amount: Int)

trait Ordering[A]:
extension (lhs: A) def <(rhs: A): Boolean

given Ordering[Money] with
extension (self: Money) def <(that: Money): Boolean =

self.amount < that.amount

// Compatible with any data type that has instance for Ordering
def sort[A: Ordering](as: List[A]): List[A] = as.sortWith(_ < _)

val sorted = sort(List(Money(3), Money(1), Money(2)))

	Introduction
	Background
	Effects
	Mutability
	Exceptions
	IO

	Concurrency
	Concurrency adds complexity
	Concurrency primitives
	Structured concurrency

	Scala

	Approaches for managing effects
	Effect systems
	Unrestricted side effects
	Monads
	Id
	Either
	Reader
	IO
	Syntax
	Monad laws
	Monad transformers
	Polymorphism

	Algebraic effects and handlers
	Existing languages and libraries
	Theory of handlers
	Handlers in practice
	Effect typing

	Capability based effects
	Capture checking

	ZIO
	Basic operators
	Error handling
	Environment
	ZLayer
	ZEnvironment
	Use cases
	Similarity to algebraic effects

	Resource management
	Concurrency
	Summary of ZIO

	Case study
	Error handling
	Dependency injection
	Testing
	Concurrency
	Analysis

	Conclusion
	References
	Type classes

