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University of Turku

Docent Joni Teräväinen
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ABSTRACT

In this thesis we study questions on the distribution of primes and multiplicative or-
ders modulo prime numbers. The problems are attacked using methods from analytic
and algebraic number theory.

In the first article, we consider the problem of finding primes in “many” short
intervals. We improve on a result of Heath-Brown by combining his methods with
Harman’s sieve. We further extend the results for shorter intervals, considerably
improving on a result of Peck. We give applications to prime-representing functions
and binary digits of primes.

In the second article, together with J. Teräväinen, we study the distribution of
Gaussian almost primes in narrow sectors, demonstrating that the previous results
and methods of Teräväinen over the integers may be adapted to Gaussian integers.
Our result for products of three Gaussian primes is almost optimal. The result for
products of two Gaussian primes is of comparable strength as the best known results
over integers.

In the third and fourth articles, we study multiplicative orders of integers modulo
primes, motivated by Artin’s primitive root conjecture. The results of these articles
are conditional on a generalization of the Riemann hypothesis. In the third article,
extending previous methods of Lenstra to a multivariable setting, we in particular
determine all tuples of integers attaining equal orders modulo infinitely many primes.
In the fourth article, together with A. Perucca, we unify many previous variations of
Artin’s conjecture into one framework, and give a finite procedure for solving such
problems in general.

KEYWORDS: prime numbers, Dirichlet polynomials, Gaussian primes, Artin’s con-
jecture

iii



TURUN YLIOPISTO
Matemaattis-luonnontieteellinen tiedekunta
Matematiikan ja tilastotieteen laitos
Matematiikka
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TIIVISTELMÄ

Tässä väitöskirjassa tutkitaan alkulukujen jakautumista ja multiplikatiivisia asteita
modulo alkuluvut. Ongelmia lähestytään hyödyntämällä menetelmiä analyyttisestä ja
algebrallisesta lukuteoriasta.

Ensimmäisessä artikkelissa tutkimme alkulukujen löytämistä “monilta” lyhy-
iltä väleiltä. Parannamme Heath-Brownin tulosta hyödyntämällä hänen menetelmiään
ja Harmanin seulaa. Yleistämme tuloksia myös lyhyemmille väleille, parantaen huo-
mattavasti Peckin tulosta. Tuloksille esitetään sovelluksia alkulukuja esittävistä funk-
tioista ja alkulukujen binääriesityksistä.

Toisessa artikkelissa tutkimme yhdessä J. Teräväisen kanssa Gaussin melkein
alkulukujen jakautumista kapeisiin sektoreihin. Demonstroimme, että Teräväisen
tulokset ja menetelmät kokonaislukujen tapauksessa yleistyvät Gaussin kokonais-
lukujen tapaukseen. Tuloksemme kolmen Gaussin alkuluuvn tulolle on miltei paras
mahdollinen. Kahden Gaussin alkuluvun tuloa koskeva tulos on vastaavan tasoinen
kuin parhaat kokonaislukujen tapauksessa tunnetut tulokset.

Kolmannessa ja neljännessä artikkelissa tutkimme, Artinin primitiivijuurikon-
jektuurin innoittamana, kokonaislukujen multiplikatiivisia asteita modulo alkuluvut.
Näiden artikkelien tulokset olettavat yleistetyn Riemannin hypoteesin. Kolmannessa
artikkelissa yleistämme Lenstran menetelmiä monen muuttujan tapaukseen ja muun
muassa määritämme kaikki kokonaislukutuplat, joiden multiplikatiiviset asteet ovat
samat modulo äärettömän moni alkuluku. Neljännessä artikkelissa kokoamme
yhdessä A. Peruccan kanssa monet aiemmin tutkitut muunnelmat Artinin konjek-
tuurista yhteen kehykseen, ja esitämme äärellisen menetelmän tämän tyyppisten
ongelmien ratkaisemiseksi.

ASIASANAT: alkuluvut, Dirichlet’n polynomit, Gaussin alkuluvut, Artinin konjek-
tuuri
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1 Notation

We introduce notation used in Sections 2 to 6.

1. Sets.

• N = {1, 2, 3, . . .} – natural numbers

• Z – integers

• Q – rational numbers

• R – real numbers

• R+ – positive real numbers

• C – complex numbers

• P – prime numbers

• Z[𝑖] – Gaussian integers

• PZ[𝑖] – Gaussian primes

• 𝐾 – number field

• 𝐾× – multiplicative group of non-zero elements of 𝐾

2. Letters.

• 𝑝, 𝑞 (possibly with subscripts) – prime numbers

• 𝜖 – a small positive constant

• 𝑊 – a finitely generated multiplicative subgroup of Q×

3. Functions.

• 𝜋(𝑥) – number of primes not exceeding 𝑥

• 1𝐴 – indicator function of the set 𝐴

• 𝜆 – the Liouville function

• 𝜇 – the Möbius function

• 𝜏(𝑛) – number of divisors of 𝑛 ∈ N
• 𝜑(𝑚) – Euler phi function of 𝑚
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• Re – real part of complex number

• Im – imaginary part of complex number

• N(𝑛) – norm of 𝑛 ∈ Z[𝑖]

• arg 𝑛 – argument of 𝑛 ∈ Z[𝑖]

• ord𝑝(𝑎) – multiplicative order of 𝑎 modulo 𝑝

• Ind𝑝(𝑎) – the index of 𝑎 modulo 𝑝, Ind𝑝(𝑎) = (𝑝− 1)/ord𝑝(𝑎)

• ord𝑝(𝑊 ) – size of the reduction of 𝑊 modulo 𝑝

• Ind𝑝(𝑊 ) – the index of 𝑊 modulo 𝑝, Ind𝑝(𝑊 ) = (𝑝− 1)/ord𝑝(𝑊 )

4. Number fields.

• 𝐾(𝛼1, . . . , 𝛼𝑛) – smallest extension of 𝐾 containing 𝛼1, . . . , 𝛼𝑛

• [𝐾 : Q] – degree of 𝐾 over Q
• 𝜁𝑛 – the primitive 𝑛th root of unity 𝑒2𝜋𝑖/𝑛

• Gal(𝐾/Q) – Galois group of the extension 𝐾/Q

5. Asymptotics.

• 𝑓(𝑥) = 𝑂(𝑔(𝑥)) – there exists constant 𝐶 > 0 such that |𝑓(𝑥)| ≤ 𝐶𝑔(𝑥)

for all sufficiently large 𝑥

• 𝑓(𝑥) ≪ 𝑔(𝑥) – shorthand for 𝑓(𝑥) = 𝑂(𝑔(𝑥))

• 𝑓(𝑥) ≫ 𝑔(𝑥) – shorthand for 𝑔(𝑥) = 𝑂(𝑓(𝑥)), 𝑔(𝑥) > 0

• 𝑓(𝑥) = 𝑜(𝑔(𝑥)) – shorthand for lim𝑥→∞ |𝑓(𝑥)|/|𝑔(𝑥)| = 0

6. Miscellaneous

• ⟨𝑎1, . . . , 𝑎𝑛⟩ – group generated by 𝑎1, . . . , 𝑎𝑛

• 𝑣𝑞(𝑛) – 𝑞-adic valuation of 𝑛

• 𝑊1𝑊2 – product {𝑤1𝑤2|𝑤1 ∈ 𝑊1, 𝑤2 ∈ 𝑊2} of groups 𝑊1,𝑊2 ⊂ 𝐾*

• GRH – Generalized Riemann Hypothesis (see Hypothesis 5.4.1)
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2 Introduction

Much of number theory revolves around prime numbers and in particular proving
the existence of prime numbers with specific properties. The original articles of this
thesis revolve around the following two questions and their variations.

Question 2.0.1. What can one say about the distribution of primes in short intervals?

Question 2.0.2. What can one say about the order of 2 modulo 𝑝, as 𝑝 ranges over
the primes?

We first focus on Question 2.0.1, with the following problem in our mind.

Problem 2.0.3 (Distribution of primes in short intervals). Given a function 𝑓 : R+ →
R+ and large 𝑋 , bound the number of integers 𝑥 ∈ [𝑋, 2𝑋] such that [𝑥, 𝑥+ 𝑓(𝑋)]

contains no primes.

It is known that that any interval of length 𝑋0.525 contains primes, proven by
Baker, Harman and Pintz [2]. This is far from what we expect to be true: Cramer’s
conjecture [4; 8] states that any interval of length (log𝑋)2+𝜖 contains primes for all
large enough 𝑋 in terms of 𝜖. A natural barrier of current methods is intervals of
length

√
𝑋 , as even under the Riemann hypothesis one can only show that intervals

of length 𝐶
√
𝑋 log𝑋 contain primes for some constant 𝐶 > 0 [48].

Hence, one often considers shorter intervals, but allows there to possibly be some
exceptional values 𝑥 such that there are no primes in [𝑥, 𝑥 + 𝑓(𝑋)]. Jia [27] has
shown that for 𝑓(𝑋) = 𝑋1/20+𝜖 almost all such intervals contain primes. Again,
this is far from what one would expect to be true, which is that the result holds for
any 𝑓 such that 𝑓(𝑋)/ log𝑋 → ∞ (see [18]). For intervals of length

√
𝑋 Heath-

Brown [22] has bounded the number of such 𝑥 by 𝑋3/5+𝜖 for 𝑋 large enough in
terms of 𝜖.

In Article I we improve on Heath-Brown’s result, obtaining the bound 𝑋0.57+𝜖.
This brings us closer to the bound 𝑋1/2+𝜖 following from the Riemann hypothesis
[52]. The proof strategy is to combine Heath-Brown’s recent methods [21; 22] with
Harman’s sieve. We further extend Heath-Brown’s methods to intervals shorter than√
𝑋 , namely by giving the bound 𝑋0.63+𝜖 for the number of intervals [𝑥, 𝑥+𝑋0.45]

not containing primes, significantly improving on a result of Peck [38]. We give ap-
plications to prime-representing functions and primes with many ones in their binary
representation.

3
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Variants on questions on the distribution of primes are obtained by considering
the distribution of almost primes.

Problem 2.0.4 (Distribution of almost primes in short intervals). Given a function 𝑓 :

R+ → R+, integer 𝑘 ≥ 2 and large 𝑋 , bound the number of integers 𝑥 ∈ [𝑋, 2𝑋]

such that [𝑥, 𝑥 + 𝑓(𝑋)] contains no product of exactly 𝑘 primes.

The increased number of prime factors gives additional flexibility and allows
one to show stronger results. Very recently, it has been shown by Matomäki and
Teräväinen [33] that almost all intervals of length (log𝑋)2.1 contain products of
exactly two primes.

In Article II we consider the analogous problem in Gaussian integers, with short
intervals replaced by narrow sectors. It is shown that, for 𝑋 large enough, almost all
sectors of a disk of radius

√
𝑋 and of angular width (log𝑋)15.1/𝑋 contain products

of exactly two Gaussian primes. This is achieved by generalizing previous results of
Teräväinen [46] to the Gaussian setting. We show a corresponding result for products
of three Gaussian primes in sectors of angular width (log𝑋)1+𝜖/𝑋,𝑋 ≥ 𝑋0(𝜖), this
result being almost optimal.

We then consider Question 2.0.2. A particularly important conjecture on multi-
plicative orders concerns the maximum possible value of orders modulo 𝑝.

Conjecture 2.0.5 (Artin’s primitive root conjecture). Let 𝑎 ∈ Z∖{−1, 0, 1} be given
and assume 𝑎 is not a square. There are infinitely many primes 𝑝 such that ord𝑝(𝑎) =

𝑝− 1.

Artin’s conjecture is strongly supported by heuristic arguments and numerical
results, indicating that, for any such 𝑎, the relative density (in the set of primes)
of such primitive root producing 𝑝 is strictly positive. Central milestones along the
conjecture’s nearly hundred year history include Hooley’s [23] resolution under the
Generalized Riemann Hypothesis (GRH) and Heath-Brown’s [19] result that (in par-
ticular) Conjecture 2.0.5 is true for at least one of 𝑎 ∈ {2, 3, 5}.

There are numerous variants of Artin’s conjecture. To name a few, one could
instead consider the primes 𝑝 with ord𝑝(𝑎) = (𝑝 − 1)/ℎ (near-primitive roots [35,
Section 9.7.3]), conditions of form ord𝑝(𝑎) = ord𝑝(𝑏) = 𝑝 − 1 (simultaneous prim-
itive roots [34]), or the condition ord𝑝(𝑏) | ord𝑝(𝑎) corresponding to solvability of
𝑎𝑥 ≡ 𝑏 (mod 𝑝) (the two-variable Artin conjecture [36]).

Lenstra [29], building on works of Hooley [23] and Cooke–Weinberger [3], fa-
mously provided a systematic way for approaching such questions under GRH. In
short, it suffices to check that any finite set of local valuation conditions (such as
𝑣2(ord𝑝(𝑎)) = 𝑣2(𝑝 − 1)) on the orders may be simultaneously satisfied in order to
obtain a global condition (such as ord𝑝(𝑎) = 𝑝− 1).

In Article III we generalize Lenstra’s methods to a multivariable setting and, in
particular, solve the Schinzel-Wójcik problem [42] on equality of orders under GRH.
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Problem 2.0.6 (Schinzel-Wójcik). Determine all 𝑎1, . . . , 𝑎𝑛 ∈ Q× such that there
are infinitely many primes 𝑝 with

ord𝑝(𝑎1) = . . . = ord𝑝(𝑎𝑛).

The contents of the article and related topics are also covered in the author’s
master’s thesis [26].

In Article IV we generalize the ideas further in a systematic way, giving a uni-
fied treatment of Artin-type problems. Indeed, many such questions may be seen as
instances of the following general problem.

Problem 2.0.7 (Index map problem). Let 𝑊1, . . . ,𝑊𝑛 be finitely generated sub-
groups of Q×. Describe the image of the index map

𝑝 ↦→ (Ind𝑝(𝑊1), . . . , Ind𝑝(𝑊𝑛)) (2.0.1)

as 𝑝 ranges over the primes. Consider restricting to primes 𝑝 satisfying a given Artin
symbol condition, and consider the analogous problem over an arbitrary number
field in place of Q.

Under GRH, we give a satisfactory solution to Problem 2.0.7. In particular, we
give an explicit finite procedure for computing the image of the index map. This
provides a description of the image and a method for explicitly determining the image
of the index in any given concrete case.

In the next four sections we give overviews of the ideas behind each of the arti-
cles. We aim to keep the exposition light, leaving the complete proofs and technical
details to the articles.

5



3 On large differences between
consecutive prime numbers

A central problem in number theory is understanding the distribution of primes. In
particular, one may consider the number of primes in intervals: how many primes
are there in [1, 𝑥] or [𝑥, 𝑥 +

√
𝑥], or how long does an interval necessarily have to be

for it to contain primes, what if one considers just almost all intervals, and so on.
In Article I we consider the problem of finding primes in “many” intervals of

length
√
𝑥 and 𝑥0.45. Denoting by 𝑝𝑛 the 𝑛th prime, we show the following.

Theorem 3.0.1. Let 𝑥 > 0 be large enough. We have
∑︁

𝑝𝑛∈[𝑥,2𝑥]
𝑝𝑛+1−𝑝𝑛≥𝑥1/2

(𝑝𝑛+1 − 𝑝𝑛) ≪ 𝑥0.57+𝜖

for any fixed 𝜖 > 0.

Theorem 3.0.2. Let 𝑥 > 0 be large enough. We have
∑︁

𝑝𝑛∈[𝑥,2𝑥]
𝑝𝑛+1−𝑝𝑛≥𝑥0.45

(𝑝𝑛+1 − 𝑝𝑛) ≪ 𝑥0.63+𝜖

for any fixed 𝜖 > 0.

Theorem 3.0.1 improves on a bound of Heath-Brown, who gave the estimate
𝑥3/5+𝜖. Previous results on the same problem have been given by Wolke with the
exponent 29/30 [50], Heath-Brown with 5/6+𝜖 [16], Heath-Brown again with 3/4+

𝜖 [17], Peck with 25/36 + 𝜖 [38] and Matomäki with 2/3 [31]. The exponents are
best viewed as 1

2 + 𝛿 with varying 𝛿 > 0, since either the sum in Theorem 3.0.1 is
empty or at least 𝑥1/2, and standard conjectures such as the Lindelöf hypothesis or
the Riemann hypothesis cannot rule out such large prime gaps.

In Theorem 3.0.2 the best previous result was given by Peck [39], resulting in
the bound 𝑥0.8+𝜖. Here the exponents should be viewed as 0.55 + 𝛿, as the Lindelöf
hypothesis implies the bound 𝑥0.55+𝛿 for any 𝛿 > 0 [52]. Our result’s 𝛿 = 0.08 + 𝜖

is less than a third of Peck’s result’s 𝛿 = 0.25 + 𝜖. Peck’s result, however, handles

6
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intervals of any length, giving the bound 𝑥1.25−𝑐+𝜖 for an interval of length 𝑥𝑐. Con-
currently with our work, Stadlmann [44] improved Peck’s result to 𝑥1.23−𝑐+𝜖, though
for intervals of length 𝑥0.45 our result is stronger.

Below we outline some main ideas that are used in the proofs. A couple of
central tools are complex analysis and Dirichlet polynomials. We start by a brief
motivation on why exactly such tools are so useful to number theoretic problems on
the distribution of primes. The author finds pretentious number theory (see [11; 9])
to give a particularly illuminating explanation for why one would consider Dirichlet
polynomials in such problems. After this introduction we go into more detail about
the methods we use for bounding the number of long prime gaps.

3.1 Why Dirichlet polynomials?
We take a slight detour from the distribution of prime numbers to the behavior of
multiplicative functions. While these topics are superficially quite different, there
turn out to be deep connections. Consider the following problem.

Problem 3.1.1 (Cancellation in multiplicative sums). Determine all multiplicative
functions 𝑓 : N → C for which |𝑓(𝑛)| ≤ 1 and

lim
𝑥→∞

∑︀
𝑛≤𝑥 𝑓(𝑛)

𝑥
= 0. (3.1.1)

Perhaps the most natural example of a non-trivial 1-bounded multiplicative func-
tion is the Liouville function, defined by 𝜆(𝑛) = 1 if 𝑛 has an even number of (not
necessarily distinct) prime factors and 𝜆(𝑛) = −1 otherwise. A related example is
the Möbius function 𝜇(𝑛) = 𝜆(𝑛)1𝑛 squarefree. Intuition says that 𝜆 and 𝜇 are zero
on average: certainly one would guess that 50% of positive integers have an even
number of prime factors and 50% have an odd number, and that this would hold for
squarefree numbers as well. However, proving this is not easy: it is well known (and
not quite obvious) that the statement (3.1.1) for 𝑓 = 𝜆 (or 𝑓 = 𝜇) is equivalent to
the prime number theorem (see e.g. [1, Chapter 4]).

There are functions for which (3.1.1) does not hold. The most obvious example
is 𝑓 ≡ 1, but there are non-trivial examples as well. Namely, one can show that the
function

𝑓(𝑛) = 𝑛𝑖𝑡 = 𝑒𝑖𝑡 log𝑛

does not satisfy (3.1.1) for any 𝑡 ∈ R. The reason is that the values 𝑓(1), 𝑓(2), . . .

circle around the unit circle with quickly shrinking step lengths, so that the points
𝑓(1), 𝑓(2), . . . , 𝑓(⌊𝑥⌋) are unevenly distributed on the unit circle. See Figure 1 for
an illustration.

We note that one may obtain new counter-examples to (3.1.1) by modifying the
above examples at some prime numbers: for example, the completely multiplicative

7
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Figure 1. The points 𝑛𝑖𝑡 = 𝑒𝑖𝑡 log𝑛 for 𝑡 = 1, 1 ≤ 𝑛 ≤ 50 and their average.

function 𝑓 with 𝑓(𝑝) = 1/2 for 𝑝 < 100 and 𝑓(𝑝) = 1, 𝑝 ≥ 100 does not satisfy
(3.1.1) either.

The critical fact is that these are essentially the only counterexamples to (3.1.1).
Namely, one can show that if 𝑓 does not satisfy (3.1.1), then there is some 𝑡 ∈ R
such that 𝑓(𝑝)𝑝−𝑖𝑡 is roughly the constant function 1 – more precisely, the sum

∑︁

𝑝 prime

1 − 𝑓(𝑝)𝑝−𝑖𝑡

𝑝

is finite (this is Halász’s theorem, see [12], [13], also [10]). In other words, 𝑓(𝑛)

“pretends” to be the function 𝑛𝑖𝑡.
This demonstrates the general principle that in order to understand the averages

of a sequence (𝑎𝑛) (say 𝑎𝑛 = 𝜆(𝑛) or 𝑎𝑛 = 1𝑛 is prime) in intervals, one should
understand the sums

𝐴(𝑖𝑡) =
∑︁

𝑛≤𝑥

𝑎𝑛𝑛
−𝑖𝑡

for various real numbers 𝑡. Indeed, the value 𝐴(𝑖𝑡) measures how strongly the se-
quence 𝑎𝑛 behaves like the sequence 𝑛𝑖𝑡. Such functions 𝐴(𝑖𝑡) are called Dirichlet
polynomials.

(We note that other ways to motivate the use of Dirichlet polynomials exist. For
example, one sees that the functions 𝑥 ↦→ 𝑥𝑖𝑡 are the characters of the group (R+, ·),
so any time one applies Fourier analysis one encounters the characters 𝑛𝑖𝑡.)

8
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3.2 Reducing to Dirichlet polynomials
We then explain how in practice one reduces number-theoretic problems to ones on
Dirichlet polynomials. The central tool is Perron’s formula (see [25, Proposition
5.54]).

Lemma 3.2.1. Let (𝑎𝑛) be a sequence of complex numbers and let 𝐴(𝑠) =
∑︀

𝑛∈N 𝑎𝑛𝑛
−𝑠.

Assume that 𝐴(𝑠) is absolutely convergent for Re(𝑠) > 𝜎. Then we have

∑︁

𝑛≤𝑥

𝑎𝑛 =
1

2𝜋𝑖

∫︁ 𝑐+𝑖∞

𝑐−𝑖∞
𝐴(𝑠)

𝑥𝑠

𝑠
d𝑠 (3.2.1)

for any 𝑐 > max(0, 𝜎) and 𝑥 > 0 (which is not an integer).

Note that by the lemma one can also access sums
∑︀

𝑎<𝑛≤𝑏 𝑎𝑛 over arbitrary
intervals by replacing 𝑥𝑠 with 𝑏𝑠 − 𝑎𝑠 above.

Often one arranges things so that one wants to bound
⃒⃒
⃒
∑︀

𝑛≤𝑥 𝑎𝑛

⃒⃒
⃒ from above by

choosing the sequence 𝑎𝑛 in a suitable way. For example, if one wants to bound the
number of primes 𝑝 ≤ 𝑥, instead of 𝑎𝑛 = 1𝑛 prime one should choose something like
𝑎𝑛 = 1𝑛 prime − 1/ log 𝑛, so that one expects

∑︀
𝑛≤𝑥 𝑎𝑛 to be small.

The problem is then reduced to bounding the integral in (3.2.1). The integral is
inconveniently over an infinite line. This technical issue is commonly resolved by
using a truncated version of Perron’s formula, where the integral is over [𝑐− 𝑖𝑇, 𝑐 +

𝑖𝑇 ] for some large 𝑇 ∈ R+.
In any case, one should not let the technicalities blur the main idea: the point

is that the problem has been reduced to bounding the mean value of a Dirichlet
polynomial. Indeed, we have
⃒⃒
⃒⃒ 1

2𝜋𝑖

∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇
𝐴(𝑠)

𝑥𝑠

𝑠
d𝑠
⃒⃒
⃒⃒ ≤

∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇
|𝐴(𝑠)| |𝑥

𝑠|
|𝑠| d|𝑠| = 𝑥𝑐

∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇
|𝐴(𝑠)| 1

|𝑠|d|𝑠|.

The term 1/|𝑠| is also easy to control, as usually one performs a dyadic decomposi-
tion over the imaginary part of 𝑠. So the problem is essentially reduced to bounding

∫︁
|𝐴(𝑖𝑡)|d𝑡.

However, in many cases a direct application of Perron’s formula does not suffice.
As mentioned above, one first normalizes the sequence 𝑎𝑛 so that its average is ex-
pected to be small. Yet one also needs 𝐴 to satisfy some additional properties. Most
importantly, one wants 𝐴 to factorize as the product of shorter polynomials – this will
make the methods of bounding 𝐴(𝑖𝑡) work much better (or to work at all). We hence
seek for choices which give more flexibility than the choice 𝑎𝑛 = 1𝑛 prime − 1/ log 𝑛

presented above.

9
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It is not easy to see how one could do better, though. Primes are, by their very
nature, numbers which do not factorize. However, there are creative ways of working
around this issue. Let us present a toy example which, while being a vast simplifica-
tion of ideas that actually work, nevertheless conveys some intuition. One could try
to count primes by writing

|{𝑝 ≤ 𝑥 : 𝑝 prime}| = |{𝑛 ≤ 𝑥 : 𝑛 has at most two prime factors}|
− |{𝑛 ≤ 𝑥 : 𝑛 has exactly two prime factors}|.

The integers 𝑛 counted by the last term above by definition factorize into a product.
Integers which are the product of at most two primes are not readily accessible. How-
ever, they are slightly more accessible by sieve methods than primes themselves, and
this then leads to expressions that factorize. One can get more leverage by consider-
ing also numbers with exactly three prime factors and applying inclusion-exclusion.

In practice one applies more complicated identities than the one above, such as
the identities of Heath-Brown [14, Section 2.5] and Buchstab [14, (1.4.13)] (which,
at the end of the day, boil down to elementary combinatorics such as inclusion-
exclusion). Often it is also sufficient to obtain merely lower bounds for the number
of primes instead of an accurate asymptotic formula, which one can exploit by dis-
carding some positive terms that could not be evaluated accurately. We employ an
idea of this type, known as Harman’s sieve, in our work.

3.3 Overview of the proof
We consider the specific task of showing that for “many” integers 𝑥 there are primes
in short intervals of the form [𝑥, 𝑥 +

√
𝑥] or [𝑥, 𝑥 + 𝑥0.45]. In order to focus on the

main ideas and keep things simple, some of the technical aspects are not represented
accurately – we guide the interested reader to the original work.

The basic approach relies on Perron’s formula in the form

∑︁

𝑥<𝑛≤𝑥+𝑦

𝑎𝑛 =
1

2𝜋𝑖

∫︁
𝐴(𝑠)

(𝑥 + 𝑦)𝑠 − 𝑥𝑠

𝑠
d𝑠, 𝑦 ∈ {𝑥0.45, 𝑥0.5}, (3.3.1)

As explained in the previous section, we will not use the naive choice 𝑎𝑛 = 1𝑛 prime

but something more complicated (explained below). In particular, we choose 𝑎𝑛 so
that one would expect

∑︀
𝑎𝑛 to be small.

We use a method due to Heath-Brown to exploit the fact that we do not need to
consider

∑︀
𝑎𝑛 over all intervals [𝑥, 𝑥+𝑦] but just “many” of them. The idea is that if

there are many intervals [𝑥, 𝑥+ 𝑦] such that the sum in (3.3.1) is unexpectedly large,
one may add (with plus or minus signs) those sums together and obtain an expression
of the form

1

2𝜋𝑖

∫︁
𝐴(𝑠)𝑀(𝑠)

𝑠
d𝑠

10
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that is large, where 𝑀(𝑠) is a linear combination of terms of type 𝑧𝑠. Hence it
suffices to obtain a good bound for this integral in order to bound the number of such
exceptional intervals [𝑥, 𝑥 + 𝑦]. One should not pay attention to the 1/𝑠 factor: the
problem is essentially to bound

∫︁
|𝐴(𝑖𝑡)𝑀(𝑖𝑡)|d𝑡. (3.3.2)

There are numerous tools one may use to bound mean values of Dirichlet polyno-
mials (see [25, Chapter 9]). There are large value theorems of the form “the number
of reals 𝑡 for which |𝐴(𝑖𝑡)| > 𝑉 is at most 𝑓(𝑉 )”. There are also pointwise bounds
giving an upper bound for |𝐴(𝑖𝑡)| that applies everywhere (corresponding to a large
value theorem with 𝑓(𝑉 ) = 0). Furthermore, there is a special tool applicable specif-
ically for this problem: Heath-Brown [22, Proposition 1] has a mean value theorem
that specifically allows one to bound integrals of the form

∫︀
|𝑃 (𝑖𝑡)𝑀(𝑖𝑡)|2d𝑡 with 𝑀

as above. (This is slightly different from (3.3.2) due to the squaring in the integral.)
We arrange things so that 𝐴(𝑠) factorizes as a product of several polynomials,

say 𝑃1(𝑖𝑡) · · ·𝑃𝑛(𝑖𝑡). As is usual for bounding mean values, one then considers
cases depending on how large |𝑃𝑗(𝑖𝑡)| are for 1 ≤ 𝑗 ≤ 𝑛, as this allows one to
apply the large value theorems above. Hence we fix some 𝑉1, . . . , 𝑉𝑛 and consider
the integral ∫︁

𝒯𝑉1,...,𝑉𝑛

|𝑃1(𝑖𝑡) · · ·𝑃𝑛(𝑖𝑡)𝑀(𝑖𝑡)|d𝑡

over the set 𝒯𝑉1,...,𝑉𝑛
of numbers 𝑡 for which |𝑃𝑗(𝑖𝑡)| is approximately 𝑉𝑗 for all 𝑗.

One may think of the setup as a single-player game. We start from some initial
position determined by the value of 𝑛, the lengths of the factors 𝑃𝑗(·) and the values
𝑉1, . . . , 𝑉𝑛. Our goal is to bound the integral above sufficiently well. Our allowed
“moves” include applying large value theorems or pointwise bounds to some of the
polynomials 𝑃𝑗(·) (or products or moments of such polynomials). There are also
some special moves, such as Heath-Brown’s mean value theorem. These require a
bit of arrangement to work: to get a mean square as in Heath-Brown’s theorem, one
groups the factors 𝑃1(𝑖𝑡) · · ·𝑃𝑛(𝑖𝑡) into two products 𝑃 (𝑖𝑡) and 𝑄(𝑖𝑡) and applies
Cauchy-Schwarz to get

∫︁

𝒯𝑉1,...,𝑉𝑛

|𝑃1(𝑖𝑡) · · ·𝑃𝑛(𝑖𝑡)𝑀(𝑖𝑡)|d𝑡 ≪
√︃∫︁

|𝑃 (𝑖𝑡)𝑀(𝑖𝑡)|2d𝑡

√︃∫︁
|𝑄(𝑖𝑡)|2d𝑡.

The first integral is bounded by Heath-Brown’s theorem, and for the second integral
we use the “standard” moves based on large value theorems.

There are a lot of possible moves in the game and the set of initial positions is
quite high-dimensional (and in particular infinite), making the game rather complex
and difficult. The author wrote several programs to explore potential strategies in
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order to play the game better, that is, to determine winning strategies when they
exist. Of course, one cannot win every time: there are plenty of initial positions
where a winning sequence of moves does not exist.

Having determined as many winnable initial positions as possible, we are left
with representing the indicator 1𝑛 prime (or the corresponding polynomial

∑︀
𝑝−𝑖𝑡)

in terms of sequences (𝑎𝑛) whose corresponding polynomials 𝐴(𝑖𝑡) give winnable
games. This problem is even more high-dimensional than the game played above.
For this reason we rely on a computer search which shows that such a representation
indeed exists. This part uses the Heath-Brown and Buchstab identities and Harman’s
sieve, with quite a lot of work needed to handle various technical issues.

We have now given a broad overview of the idea behind the proof. We guide the
interested reader to the original article for the details.

12



4 Gaussian almost primes in almost all
narrow sectors

Since many questions regarding primes themselves turn out to be very difficult, it is
natural to consider analogous questions in easier setups. One such setup is consid-
ering almost primes, namely numbers that are products of just a few primes. More
precisely, we let 𝐸𝑘 denote the set of positive integers which are the product of ex-
actly 𝑘 primes. (It is also common to consider numbers which are the product of
at most 𝑘 primes. They turn out to be easier, as one may employ classical sieve
methods, but this is another story.) Note that 𝐸1-numbers are exactly the primes.

As with primes, one may consider the distribution of 𝐸𝑘-numbers in short inter-
vals. The methods employed are quite similar (cf. Section 3): again it is natural to
consider Dirichlet polynomials and use Perron’s formula, and again one may use the
large value theorems and pointwise bounds for polynomials. However, there is one
crucial difference. For primes, it requires work to get the relevant Dirichlet polyno-
mials to factorize, whereas for 𝐸𝑘-numbers one, by definition, necessarily has fac-
torization. This makes 𝐸𝑘-numbers easier to work with and one obtains significantly
stronger results.

Teräväinen [46] has shown that almost all intervals [𝑥, 𝑥 + (log 𝑥)3.51] contain
𝐸2-numbers and that almost all intervals [𝑥, 𝑥 + (log 𝑥)(log log 𝑥)6+𝜖] contain 𝐸3-
numbers. The result for 𝐸2-numbers was very recently improved by Matomäki and
Teräväinen [33] to intervals of length (log 𝑥)2.1 (interestingly, using the same mean
value theorem of Heath-Brown as we use in Article I).

We set out to give analogous results for Gaussian integers. Namely, we show the
following results.

Theorem 4.0.1. Let 𝑋 be large and let ℎ = (log𝑋)15.1. Almost all sectors {𝑛 ∈
Z[𝑖],N(𝑛) ≤ 𝑋 : 𝜃 ≤ arg 𝑛 < 𝜃 + ℎ

𝑋 } contain a product of exactly two Gaussian
primes.

Theorem 4.0.2. Let 𝑋 be large and ℎ = (log𝑋)(log log𝑋)19.2. Almost all sectors
{𝑛 ∈ Z[𝑖],N(𝑛) ≤ 𝑋 : 𝜃 ≤ arg 𝑛 < 𝜃 + ℎ

𝑋 } contain a product of exactly three
Gaussian primes.

Here “almost all” means that the Lebesgue measure of 𝜃 not satisfying the con-
dition approaches zero as 𝑋 tends to infinity. One thus sees that Theorems 4.0.1 and
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4.0.2 give bounds which are qualitatively of the same strength as the best results over
the integers.

Below we give a short indication of how one may approach the problems for
𝐸𝑘-numbers, highlighting a connection to the famous Matomäki–Radziwiłł method
[32]. We then give a quick refresh on Gaussian integers, after which we discuss how
the methods can be adapted to this setting, indicating some challenges that one faces
in the process.

4.1 Almost primes
Consider first the case of 𝐸2-numbers, with the aim of finding them in almost all
intervals of form [𝑥, 𝑥+ 𝑦]. First, since we only have to find some 𝐸2-numbers in an
interval, it suffices to consider only specific 𝐸2-numbers. This allows us to choose
the sizes of the factors. Hence, choose some parameter 𝑧, and let 𝑎𝑛 = 1 if 𝑛 = 𝑝𝑞,
where 𝑝 and 𝑞 are primes with 𝑞 ≈ 𝑧. Then applying Perron’s formula we have

∑︁

𝑥<𝑛≤𝑥+𝑦

𝑎𝑛 =
1

2𝜋𝑖

∫︁
𝐴(𝑠)

(𝑥 + 𝑦)𝑠 − 𝑥𝑠

𝑠
d𝑠.

The Dirichlet polynomial 𝐴(𝑠) essentially factorizes into the product of

𝑄(𝑠) =
∑︁

𝑞≈𝑧

𝑞−𝑠 and 𝑃 (𝑠) =
∑︁

𝑝≈𝑥/𝑧

𝑝−𝑠

(after some technical arrangements). In contrast to the situation in Chapter 3, we
may choose the lengths of the factors 𝑄(𝑠) and 𝑃 (𝑠). A good choice turns out to be
𝑧 = (log 𝑥)𝑐 for some constant 𝑐 (so that 𝑄(𝑠) is rather short).

Once again the problem reduces to bounding a mean value of Dirichlet polyno-
mials, this time of the form

∫︁
|𝐴(𝑠)|2d|𝑠| =

∫︁
|𝑃 (𝑠)𝑄(𝑠)|2d|𝑠|.

The way the problem is reduced to Dirichlet polynomials is different from Chapter
3, though, and hence we have a mean square here and there is no polynomial 𝑀(𝑠)

this time. The methods again include large value theorems, mean value theorems
and pointwise bounds and dividing the integral into pieces depending on the sizes
of |𝑃 (𝑠)| and |𝑄(𝑠)|. Furthermore, the polynomial 𝑃 (𝑠) corresponds to a sum over
primes, and so just as before we may use various identities to make the polynomial
𝑃 (𝑠) factorize. We do note, however, that the actual large and mean value theorems
used are somewhat different from those in Chapter 3 and the polynomial 𝑄(𝑠) is
much shorter than the polynomials there, and hence the proof requires different ideas.

It is now clear that for larger values of 𝑘 the 𝐸𝑘-numbers are easier to control:
the Dirichlet polynomial 𝐴(𝑠) factorizes as 𝑘 polynomials, whose lengths we can
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choose, and more factors give more flexibility. Indeed, the best known results are the
stronger the larger 𝑘 is.

We note that the work of Teräväinen on 𝐸𝑘-numbers builds on the Matomäki–
Radziwiłł method. In their seminal work, Matomäki and Radziwiłł [32] (see also
[43]) considered the averages of multiplicative functions in short intervals and in
particular showed that the Liouville function 𝜆(𝑛) has a small average on almost all
intervals [𝑥, 𝑥 + 𝑦] for any function 𝑦 tending to infinity with 𝑥. Compare this to
primes, for which we can only access intervals of length 𝑦 = 𝑥𝑐 (we have lower
bounds when 𝑐 > 1/20 [27] and asymptotics when 𝑐 ≥ 1/6 [53]).

The reason multiplicative functions work so much better than primes or even
the 𝐸𝑘 numbers is that one immediately has an unbounded amount of factors. Let
us explain. Almost all integers have a factor which is close to, say, log 𝑥 (more
precisely, a factor in [log 𝑥, (log 𝑥)Ψ(𝑥)] for any Ψ(𝑥) tending to infinity), so that one
may write almost all integers 𝑛 ≈ 𝑥 as 𝑚1𝑚2, where 𝑚1 ≈ log 𝑥 and 𝑚2 ≈ 𝑥/ log 𝑥.
By multiplicativity we have 𝜆(𝑛) = 𝜆(𝑚1)𝜆(𝑚2). This allows one to factorize the
polynomial 𝐴(𝑠) =

∑︀
𝜆(𝑛)𝑛−𝑠 essentially as a product 𝑀1(𝑠)𝑀2(𝑠), where

𝑀1(𝑠) =
∑︁

𝑚1≈log 𝑥

𝜆(𝑚1)𝑚
−𝑠
1 and 𝑀2(𝑠) =

∑︁

𝑚2≈𝑥/ log 𝑥

𝜆(𝑚2)𝑚
−𝑠
2 .

Nothing stops one from factorizing 𝑀1(𝑠) and 𝑀2(𝑠) in the same manner as 𝐴(𝑠).
Hence, one can choose the number and lengths of factors of 𝐴(𝑠) in more or less any
way one desires. (Needless to say, this sketch misrepresents many technical details.
In practice one takes 𝑚1 to be a prime, one has to be careful to not double-count
integers 𝑛 representable as 𝑚1𝑚2 in more than one way, and the approximations
above should be made precise.)

While 𝐸𝑘-numbers are not quite as malleable as multiplicative functions, never-
theless the spirit carries over. And indeed, as 𝑘 grows larger one can find 𝐸𝑘-numbers
in intervals whose length approaches log 𝑥 [46], an almost optimal result and a natu-
ral barrier for current methods.

4.2 The Gaussian integers
Recall that the Gaussian integers Z[𝑖] are numbers of the form 𝑎 + 𝑏𝑖, where 𝑎, 𝑏 ∈
Z. Equipped with the usual addition and multiplication of complex numbers they
form an interesting variant of the ordinary integers Z. In particular, one may define
Gaussian primes as numbers 𝑧 ∈ Z[𝑖] which cannot be written in a non-trivial way as
the product of two Gaussian integers (non-trivial meaning that neither of the factors
is one of the units 1, 𝑖,−1 or −𝑖). As with the integers, any Gaussian integer is the
product of Gaussian primes in an unique way (if one neglects factors of 1, 𝑖,−1,−𝑖).

One may then consider variants of problems adapted to the Gaussian setting. For
example, one may consider the distribution of Gaussian primes, or Gaussian almost
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primes, or study the behavior of multiplicative functions in Gaussian integers.
There are several ways one may generate such variants. For example, if one

sets to find Gaussian primes, one could try to find Gaussian primes which are a
certain distance away from the origin (ordering Gaussian integers by their norm),
which are at a certain angle viewed from the origin (ordering Gaussian integers by
their argument), or asking how large a circle or square in the plane has to be to
necessarily contain Gaussian primes (which corresponds to considering both norm
and argument).

It turns out that many problems where one orders Gaussian integers by norm
reduce to analogous problems on the integers. For example, finding Gaussian primes
with norm in [𝑥, 𝑥+𝑦] corresponds to finding ordinary primes 𝑝 with 𝑝 ≡ 1 (mod 4)

in [𝑥, 𝑥+𝑦], or questions on averages of multiplicative functions on Gaussian integers
with norm lying in [𝑥, 𝑥 + 𝑦] are directly reduced to such problems on integers.

Ordering Gaussian integers by their argument, however, leads to new and in-
teresting problems. We demonstrate that the Matomäki–Radziwiłł method may be
adapted to this setting. Hence, while we consider the particular problem of find-
ing 𝐸𝑘-numbers (or rather their Gaussian analogues) in narrow sectors, the methods
generalize to questions on multiplicative functions.

We mention some previous work on Gaussian primes in narrow sectors and small
circles. For sectors, it is known that sectors of the circle of radius

√
𝑋 with area

𝑋0.619 [15] contain Gaussian primes, with asymptotic formulas valid for sectors of
area 𝑋7/10+𝜖 [41] (compare this to integers, with the corresponding bounds 𝑋0.525

[2] and 𝑋7/12 [20]). Relaxing to almost all sectors, one has asymptotics for sectors
of area 𝑋2/5+𝜖 [24] (in integers the corresponding bound is 𝑋1/6 [53]). For small
circles, in turn, one can find Gaussian primes within a radius of 𝑂(|𝑧|0.528) from any
point 𝑧 [30]. See [14, Chapter 11] for more references.

One sees that the problem of finding Gaussian primes in small circles is easier
than for narrow sectors (as one obtains better bounds). We indeed believe that our
results for narrow sectors may be adapted to small circles as well.

4.3 Adapting to Gaussian integers
The Dirichlet polynomials 𝐴(𝑖𝑡) =

∑︀
𝑛≤𝑥 𝑎𝑛𝑛

−𝑖𝑡 measure how closely (𝑎𝑛) behaves
like 𝑛𝑖𝑡, which is relevant when studying the behavior of the sequence (𝑎𝑛) in short
intervals. However, as now we are interested in sectors instead of intervals, the
Dirichlet polynomials are no longer the right tool for the task. Instead, we consider
Hecke polynomials

𝐴(𝑚) =
∑︁

N(𝑛)≤𝑥

𝑎𝑛𝜆
−𝑚(𝑛), 𝜆𝑚(𝑛) :=

(︂
𝑛

|𝑛|

)︂4𝑚

,𝑚 ∈ Z
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to study the distribution of 𝑎𝑛, 𝑛 ∈ Z[𝑖]. Here 𝜆𝑚(𝑛) is a Hecke character, serving
a similar purpose as the Archimedean character 𝑛𝑖𝑡 serves when studying the dis-
tribution of numbers in intervals. Note that 𝑛/|𝑛| is a complex number on the unit
circle at angle arg(𝑛). The 4 in the exponent is there for symmetry, so that we have
𝜆𝑚(𝑛) = 𝜆𝑚(𝑢𝑛) for any 𝑢 ∈ {1, 𝑖,−1,−𝑖}.

In Chapter 3.1 the use of Archimedean characters was motivated through study-
ing the averages of multiplicative functions. One could give a similar motivation for
Hecke characters. Consider whether a multiplicative function 𝑓 : Z[𝑖] ∖ {0} → C
satisfies

lim
𝑥→∞

1

𝑥

∑︁

N(𝑛)≤𝑥
𝛼<arg(𝑛)≤𝛽

𝑓(𝑛) = 0 (4.3.1)

for any fixed 0 ≤ 𝛼 < 𝛽 ≤ 2𝜋. One family of counter-examples to (4.3.1) is
𝑓(𝑛) = N(𝑛)𝑖𝑡, imitating the counter-example for the analogous problem on the
integers. However, there is another such family, namely 𝑓(𝑛) = (𝑛/|𝑛|)𝑚 for any
integer 𝑚 – indeed, in this case 𝑓(𝑛) is roughly constant in any fixed small sector.
And so, as with short intervals and Dirichlet polynomials, in general the study of
distribution of a sequence in narrow sectors is best done via Hecke polynomials.
(And again another motivation could be given by noting that the functions 𝜆𝑚(𝑛) are
characters of (C∖{0}, ·), so that the Hecke characters arise when performing Fourier
analysis.)

Perron’s formula is no longer quite the right tool, but as before the problem is
reduced to considering character sums and thus we it suffices to consider mean values
of Hecke polynomials. Many of the large value theorems, mean value theorems and
pointwise bounds carry over to Hecke polynomials with analogous proofs.

Nevertheless, there are a couple of result for which no analogue for Hecke poly-
nomials is known. A major reason is the lack of understanding of the Hecke zeta
functions

𝜁(𝑠, 𝜆𝑚) =
1

4

∑︁

𝑛∈Z[𝑖]∖{0}

𝜆𝑚(𝑛)

N(𝑛)𝑠

(where we divide by 4 due to the symmetry caused by 1, 𝑖,−1,−𝑖) when compared
to the Riemann zeta function

𝜁(𝑠) =
∑︁

𝑛∈N

1

𝑛𝑠
.

For example, the fourth moment of the Riemann zeta function is known (see e.g.
[47, Chapter 7.6]), whereas the fourth moment of the Hecke zeta functions is not. In
terms of Dirichlet / Hecke polynomials this means that we have essentially optimal
(upper) bounds for ∫︁

|𝐷(𝑖𝑡)|4d𝑡
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for a Dirichlet polynomial 𝐷(𝑖𝑡) of the form 𝐷(𝑖𝑡) =
∑︀

𝑑≤𝑥 𝑑
−𝑖𝑡, but the corre-

sponding bound is not known for
∑︁

|𝐻(𝑚)|4

for a Hecke polynomial 𝐻(𝑚) =
∑︀

N(𝑛)≤𝑥 𝜆
𝑚(𝑛). Similarly, the best pointwise

bounds for |𝐻(𝑚)| are worse than for |𝐷(𝑖𝑡)|, as we have worse pointwise bounds
for the Hecke zeta function.

We cannot do anything about the lack of fourth moment estimates. However, we
can obtain pointwise bounds via other means. Namely, we interpret

∑︀
N(𝑛)≤𝑥 𝜆

𝑚(𝑛)

as an exponential sum by writing

∑︁

N(𝑛)≤𝑥

𝜆𝑚(𝑛) =
∑︁

𝑎,𝑏∈Z
𝑎2+𝑏2≤𝑥

𝑒

(︂
4𝑚 arctan

(︂
𝑏

𝑎

)︂)︂
.

Sums of form
∑︀

𝑛≤𝑥 𝑒(𝑓(𝑛)) may be bounded by the theory of exponential pairs
[7]. By chopping up the sum above to one-dimensional sums over 𝑎 or 𝑏 we then
get upper bounds for

∑︀
N(𝑛)≤𝑥 𝜆

𝑚(𝑛), which allows us to salvage versions of the
respective mean and large value theorems.

Another central difficulty is bounding certain terms appearing in the mean and
large value theorems. More specifically, in the integer case there is a mean value
theorem of the form

∫︁ 𝑇

−𝑇
|𝐴(𝑖𝑡)|2d𝑡 ≪ 𝑇

∑︁

𝑛,𝑚≤𝑥
|𝑛−𝑚|≤𝑥/𝑇

|𝑎𝑛𝑎𝑚|,

where 𝐴(𝑠) =
∑︀

𝑛≤𝑥 𝑎𝑛𝑛
−𝑠. For example, if 𝑎𝑛 = 1𝑛 prime, this results in having

to bound from above the number of primes in intervals of length 𝑥/𝑇 from above.
This is a rather standard sieve-theoretic problem. However, in the case of Gaussian
integers the corresponding theorem gives

𝑇∑︁

𝑡=1

|𝐴(𝑡)|2 ≪ 𝑇
∑︁

N(𝑛),N(𝑚)≤𝑥
| arg𝑛−arg𝑚|≤1/𝑇

|𝑎𝑛𝑎𝑚|,

where 𝐴(𝑡) =
∑︀

N(𝑛)≤𝑥 𝑎𝑛𝜆
𝑚(𝑛). For 𝑎𝑛 = 1𝑛∈PZ[𝑖] one thus has to bound the

number of Gaussian primes in sectors of angular width 1/𝑇 , which is not a standard
problem.

This problem is solved as follows: If arg 𝑛 ≈ arg𝑚, the imaginary part of 𝑛𝑚
is small. Hence, writing 𝑛 = 𝑎 + 𝑏𝑖,𝑚 = 𝑐 + 𝑑𝑖 one has (roughly) |Im(𝑛𝑚)| =
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|𝑎𝑑− 𝑏𝑐| ≤ 𝑥/𝑇 . Thus we have, more or less,
∑︁

𝑛,𝑚∈PZ[𝑖]
N(𝑛),N(𝑚)≤𝑥

| arg𝑛−arg𝑚|≤1/𝑇

1 ≪
∑︁

0≤𝑘≤𝑥/𝑇

∑︁

𝑎,𝑏,𝑐,𝑑≤√
𝑥

𝑎𝑑−𝑏𝑐=𝑘

1𝑎+𝑏𝑖∈PZ[𝑖]1𝑐+𝑑𝑖∈PZ[𝑖]

≈
∑︁

0≤𝑘≤𝑥/𝑇

∑︁

𝑎,𝑏,𝑐,𝑑≤√
𝑥

𝑎𝑑−𝑏𝑐=𝑘

1𝑎2+𝑏2∈P1𝑐2+𝑑2∈P.

By sieve methods we may upper bound the number of primes in a set if we understand
well enough the number of integers in the set divisible by 𝑇 for any 𝑇 ≤ 𝑥𝜖. Thus,
we wish to asymptotically evaluate, for various 𝑇1, 𝑇2,

∑︁

𝑎,𝑏,𝑐,𝑑≤
√
𝑋

𝑎𝑑−𝑏𝑐=𝑘
𝑇1|𝑎2+𝑏2

𝑇2|𝑐2+𝑑2

1.

This is in spirit the same sum as
∑︁

𝑎,𝑏,𝑐,𝑑∈N
𝑏𝑐≤𝑋

𝑎𝑑−𝑏𝑐=𝑘

1 =
∑︁

𝑛≤𝑋

𝜏(𝑛)𝜏(𝑛 + 𝑘)

with additional congruence conditions on 𝑎, 𝑏, 𝑐, 𝑑 with relatively small moduli. The
sum over 𝜏(𝑛)𝜏(𝑛 + 𝑘) is well understood (see [5]), and the methods used to treat
that sum adapt to our case as well.

We have now given an overview of some fundamental ideas and tools behind our
work. We refer the reader to the article for details.
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5 Equality of orders of a set of integers
modulo a prime

There is plenty of literature on Artin’s primitive root conjecture and its variants.
Below we give an exposition of the conjecture, giving a heuristic approach and then
discussing the details and technical challenges. After that we will move on to the
so-called Schinzel–Wójcik problem on equality of orders of integers, whose (GRH-
conditional) resolution is our main result.

Theorem 5.0.1. Assume GRH. Given 𝑎1, . . . , 𝑎𝑛 ∈ Q× ∖{−1, 1}, there are infinitely
many primes 𝑝 such that

ord𝑝(𝑎1) = . . . = ord𝑝(𝑎𝑛)

if and only if at least one of the following statements is false:

1. There exist integers 𝑒𝑖 such that
∏︁

𝑎𝑒𝑖𝑖 = −1.

2. There exist integers 𝑓𝑖 with an odd sum such that
∏︁

𝑎𝑓𝑖𝑖 = 1.

As will become clear in the course of our exposition, the underlying methods
adapt to a large class of problems regarding orders of integers modulo primes.

5.1 Heuristic argument
The famous Artin conjecture states the following.

Conjecture 5.1.1 (Artin’s primitive root conjecture). Let 𝑎 ∈ Q× ∖ {−1, 1} be given
and assume 𝑎 is not a square. There are infinitely many primes 𝑝 such that ord𝑝(𝑎) =

𝑝− 1.

(Note that while ord𝑝(𝑎) is often defined only for 𝑎 ∈ Z, one may extend the
definition to rationals by straightforward means.)
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It is well known that for any 𝑝 there exists a primitive root 𝑔 modulo 𝑝, so that
the multiplicative group of non-zero integers modulo 𝑝 is cyclic and generated by 𝑔.
One then sees that the perfect (non-zero) squares modulo 𝑝 are exactly {𝑔𝑘 : 2 | 𝑘},
perfect cubes are {𝑔𝑘 : 3 | 𝑘} and so on. If, for example, 3 ∤ 𝑝− 1, then clearly any
element mod 𝑝 is a cube. These ideas yield the following lemma.

Lemma 5.1.2. Let 𝑎 be an integer modulo 𝑝. Then 𝑎 is a primitive root modulo 𝑝 if
and only if, for any prime 𝑞 | 𝑝− 1, 𝑎 is not a 𝑞th power modulo 𝑝.

Motivated by this, for a prime 𝑞 let 𝐶𝑞 = 𝐶𝑞,𝑎(𝑝) denote the condition

𝑝 ≡ 1 (mod 𝑞) and 𝑎 is a 𝑞th power modulo 𝑝.

We are thus interested in finding primes 𝑝 such that none of the conditions 𝐶𝑞 are
satisfied.

For the heuristic argument, it will be convenient to use probabilistic language,
and hence we let 𝐸𝑞 denote the event that a “random” prime 𝑝 satisfies the condition
𝐶𝑞. As our purpose is to merely sketch a heuristic idea, we will not make these
notions of probability and randomness rigorous, but rather rely on an intuitive notion
of a random prime.

We first consider just a single prime 𝑞 and the corresponding condition 𝐶𝑞. The
condition consists of two parts: imposing that 𝑝 ≡ 1 (mod 𝑞), and then imposing
that 𝑎 is a 𝑞th power modulo 𝑝. For a prime 𝑝 ̸= 𝑞, there are 𝑞− 1 possible values for
𝑝 (mod 𝑞), and one thus guesses that 𝑝 ≡ 1 (mod 𝑞) is satisfied for a proportion of
1/(𝑞− 1) of primes 𝑝. There are precise results of this form, most notably the prime
number theorem in arithmetic progressions.

The power residue condition is more difficult to handle. One could guess that
since (𝑝− 1)/𝑞 of the 𝑝− 1 non-zero elements modulo 𝑝 are 𝑞th powers, the proba-
bility of 𝑎 being a 𝑞th power is 1/𝑞. Clearly this heuristic fails if 𝑎 is a 𝑞th power of
a rational number, but otherwise this guess seems reasonable.

Put together we guess that the probability of 𝐸𝑞 is

𝑃 (𝐸𝑞)
?
=

1

(𝑞 − 1)𝑞
, (5.1.1)

at least if 𝑎 is not a perfect power.
There is another heuristic in addition to (5.1.1) that we employ. One could guess

that the information “𝑎 is a cube modulo 𝑝” does not tell much one way or another
about if 𝑎 is a fifth power modulo 𝑝 or not. More generally, one could guess that the
conditions 𝐶𝑞 are independent of each other, so that

𝑃

(︃
𝑛⋂︁

𝑖=1

𝐸𝑐
𝑞𝑖

)︃
?
=

𝑛∏︁

𝑖=1

𝑃 (𝐸𝑐
𝑞𝑖), (5.1.2)
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where 𝐸𝑐 denotes the complement of the event 𝐸.
We can now make a reasonable heuristic concerning the set of primes 𝑝 which

satisfy none of the conditions 𝐶𝑞. Hoping that the independence heuristic (5.1.2)
extends to infinitely many conditions, one has

𝑃

⎛
⎝
⎛
⎝ ⋃︁

𝑞 prime

𝐸𝑞

⎞
⎠

𝑐⎞
⎠ = 𝑃

⎛
⎝ ⋂︁

𝑞 prime

𝐸𝑐
𝑞

⎞
⎠ ?

=
∏︁

𝑞 prime

𝑃 (𝐸𝑐
𝑞)

?
=
∏︁

𝑞 prime

(︂
1 − 1

(𝑞 − 1)𝑞

)︂
.

(5.1.3)

The final product is known as Artin’s constant, and is numerically

𝐴 =
∏︁

𝑞 prime

(︂
1 − 1

𝑞(𝑞 − 1)

)︂
≈ 0.374, (5.1.4)

a strictly positive constant.
We note that the heuristic holds up well for 𝑎 = 2 (resp. 𝑎 = 3): out of the

first 10 000 primes coprime to 𝑎, 3750 (resp. 3771) are such that 2 (resp. 3) is a
primitive root modulo 𝑝. Of course, for the perfect powers 𝑎 = 4 and 𝑎 = 8 the
heuristic (5.1.1) fails (there are 0 and 2248 such primes 𝑝, respectively), and in the
more subtle case 𝑎 = 5 the independence assumption fails (there are 3959 such
primes).

5.2 Rigorous approach
Making this heuristic argument formal requires two ingredients. First, while the
heuristic guesses (5.1.1) and (5.1.2) are roughly correct, there are, as noted above,
certain cases where they fail. Second, care is needed when considering infinitely
many conditions 𝐶𝑞 at once. Let us first consider the latter problem.

Still in heuristic mode, the idea is that the probabilities 𝑃 (𝐸𝑞) decay quadrati-
cally in 𝑞 (at least if (5.1.1) is true), and hence the probability of some of the events
𝐸𝑞 with 𝑞 “large” occurring should be “small”. Indeed, we have, for any constant 𝑘,

𝑃

⎛
⎝⋃︁

𝑞>𝑘

𝐸𝑞

⎞
⎠ ≤

∑︁

𝑞>𝑘

𝑃 (𝐸𝑞)
?
=
∑︁

𝑞>𝑘

1

(𝑞 − 1)𝑞
,

the right hand side tending to zero as 𝑘 tends to infinity.
Taking a more rigorous stance, one believes that the quantities

𝑐𝑘 := lim sup
𝑥→∞

|{𝑝 ≤ 𝑥 : ∃𝑞 > 𝑘 s.t. 𝑝 satisfies 𝐶𝑞}|
|{𝑝 ≤ 𝑥 : 𝑝 prime}| (5.2.1)
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tend to 0 as 𝑘 → ∞:

lim
𝑘→∞

𝑐𝑘
?
= 0. (5.2.2)

Assuming (5.2.2), one can reduce Artin’s conjecture to considering merely finitely
many conditions 𝐶𝑞, as we have

|{𝑝 ≤ 𝑥 : 𝑎 is a primitive root mod 𝑝}| =

|{𝑝 ≤ 𝑥 : 𝑝 does not satisfy 𝐶𝑞 for any 𝑞 ≤ 𝑘}| + 𝑂(𝜋(𝑥)𝑐𝑘)

(the implied constant in the 𝑂-term being bounded by 1), and hence taking 𝑘 large
enough the error term is negligible. This brings us back to the heuristics (5.1.1) and
(5.1.2), which hint that

lim
𝑥→∞

|{𝑝 ≤ 𝑥 : 𝑝 does not satisfy 𝐶𝑞 for any 𝑞 ≤ 𝑘}|
𝜋(𝑥)

?
=
∏︁

𝑞≤𝑘

(︂
1 − 1

(𝑞 − 1)𝑞

)︂

(5.2.3)

is true (at least for generic values of 𝑎, such as 𝑎 = 2). If true, this then implies
Artin’s conjecture, with the density of primitive root producing primes 𝑝 being given
by Artin’s constant (5.1.4).

Proving (5.2.2) is precisely the difficult part of Artin’s conjecture: (5.2.2) is not
known unconditionally. This is the analytic part of Artin’s conjecture. Formaliz-
ing the heuristics (5.1.1) and (5.1.2), and also determining the possible corrections
needed to the formulas, may be done unconditionally, this forming the algebraic side
of the conjecture. We first consider the algebraic side, then the analytic side.

5.3 Algebraic methods
The problem at hand is computing, for any fixed 𝑛 and distinct primes 𝑞1, . . . , 𝑞𝑛,
(informally) the probability 𝑃 (𝐸𝑞1 ∩ . . . ∩ 𝐸𝑞𝑘) or (formally) the density

lim
𝑥→∞

|{𝑝 ≤ 𝑥 : 𝑝 satisfies 𝐶𝑞𝑖 for 1 ≤ 𝑖 ≤ 𝑛}|
𝜋(𝑥)

.

The left hand side of (5.2.3) could then be computed by inclusion-exclusion.
Writing 𝑚 = 𝑞1 · · · 𝑞𝑛, note that 𝑝 satisfies 𝐶𝑞𝑖 for 1 ≤ 𝑖 ≤ 𝑛 if and only if 𝑝 ≡ 1

(mod 𝑚) and 𝑎 is an 𝑚th power modulo 𝑝. Hence, we wish to compute

lim
𝑥→∞

|{𝑝 ≤ 𝑥 : 𝑝 ≡ 1 (mod 𝑚) and 𝑎 is an 𝑚th power modulo 𝑝}|
𝜋(𝑥)

.

As mentioned before, the congruence condition is rather easy to tackle: namely, the
prime number theorem on arithmetic progressions states

lim
𝑥→∞

|{𝑝 ≤ 𝑥 : 𝑝 ≡ 1 (mod 𝑚)}|
𝜋(𝑥)

=
1

𝜑(𝑚)
.
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The power residue condition is more difficult. For 𝑚 = 2 one could appeal to the
law of quadratic reciprocity, but this method does not generalize.

It is a very non-obvious and deep idea, which we cannot do justice here, that
power residue (and other similar) conditions are best viewed through the theory of
field extensions. The celebrated Chebotarev density theorem (see e.g. [45]) provides
one reason why, giving a formula for the number of primes 𝑝 satisfying such con-
ditions, with the formula depending on the properties of relevant field extensions.
As the theorem is somewhat technical, in this exposition we stick to the following
simple consequence.

Lemma 5.3.1 (Consequence of the Chebotarev density theorem). For any 𝑚 ∈ N we
have

lim
𝑥→∞

|{𝑝 ≤ 𝑥 : 𝑝 ≡ 1 (mod 𝑚), 𝑎 is an 𝑚th power mod 𝑝}|
𝜋(𝑥)

=
1

[Q(𝜁𝑚, 𝑎1/𝑚) : Q]
.

Recall that here [𝐾 : Q] denotes the degree of 𝐾 over Q.
The question then reduces to computing the degree of the field Q(𝜁𝑚, 𝑎1/𝑚) over

Q. The root of unity 𝜁𝑚 has degree 𝜑(𝑚) over Q. Furthermore, 𝑎1/𝑚 has degree at
most 𝑚 over Q, as 𝑎1/𝑚 is a root of the polynomial 𝑋𝑚−𝑎. This shows that 𝜑(𝑚)𝑚

is an upper bound for the degree. The heuristics (5.1.1) and (5.1.2) correspond to
asking that equality holds for any square-free 𝑚.

In order to compute the degrees [Q(𝜁𝑚, 𝑎1/𝑚) : Q], it is instructive to consider
reasons for why the upper bound may not be attained. We have already mentioned
one, namely that 𝑎 may be a perfect power. Another, more subtle reason is that square
root of integers lie in cyclotomic fields. For example, one has

√
2 = 𝜁8 + 𝜁−1

8 ∈ Q(𝜁8),√
3 = 𝑖(𝜁3 − 𝜁23 ) ∈ Q(𝜁12), and

√
5 = 𝜁5 − 𝜁25 − 𝜁35 + 𝜁45 ∈ Q(𝜁5).

In elementary terms, quadratic residue information and congruence information are
not independent of each other, as is demonstrated by the law of quadratic reciprocity
(which, by the way, is naturally viewed in terms of field theory). This causes the
independency assumption (5.1.2) to fail in certain cases.

These two reasons turn out to be the only reasons for the failure of maximality
of extensions of form Q(𝜁𝑚, 𝑎1/𝑚) (we omit the proof). From here one may easily
compute the degrees. For example, if 𝑎 is not a perfect power, then [Q(𝜁𝑚, 𝑎1/𝑚) :

Q] = 𝑚𝜑(𝑚), except if 𝑚 is even and
√
𝑎 ∈ Q(𝜁𝑚), in which case we have

[Q(𝜁𝑚, 𝑎1/𝑚) : Q] = 𝑚𝜑(𝑚)/2. Furthermore, the set of 𝑚 for which
√
𝑎 ∈ Q(𝜁𝑚)

is the set of integers divisible by an integer 𝑚𝑎, where one may describe 𝑚𝑎 explic-
itly in terms of the prime factorization of 𝑎. With these ideas one can compute the
left hand side of (5.2.3), although the general case requires a bit of calculation.
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5.4 Analytic methods
The analytic argument goes back to Hooley [23], see also [6, Theorem 4] and [49,
Theorem 5.1]. The version of GRH we will be using is as follows (see [23], [28]).

Hypothesis 5.4.1 (Generalized Riemann Hypothesis). For any number field 𝐾, the
non-trivial zeros of the Dedekind zeta function of 𝐾 lie on the line Re(𝑠) = 1

2 .

(In fact, it would be sufficient to assume GRH only for the number fields used in
the proof.)

Our task is to show (5.2.2) (conditionally on GRH). Depending on the size of 𝑞
we employ different methods for showing that |{𝑝 ≤ 𝑥 : 𝑝 satisfies 𝐶𝑞}| is small.

A natural idea is to apply versions of Lemma 5.3.1 with effective error terms.
The error terms are of same strength as for the usual prime number theorem: uncon-
ditionally one does not have any power-saving error term and thus does not get very
far, but conditionally on a suitable Riemann hypothesis one has roughly square-root
error terms. This alone allows one to handle 𝑞 smaller than (roughly)

√
𝑥. In more

detail, GRH implies that

|{𝑝 ≤ 𝑥 : 𝑝 satisfies 𝐶𝑞}| =
𝜋(𝑥)

[Q(𝜁𝑞, 𝑎1/𝑞) : Q]
+ 𝑂(

√
𝑥(log 𝑥)𝐵)

for some constant 𝐵 (see [28]). Summing up the main term for all primes 𝑞 >

𝑘 would lead to an acceptable contribution, but the error term allows one to only
consider 𝑞 smaller than

√
𝑥/(log 𝑥)𝐵+2 or so.

How about very large values of 𝑞? Noting that 𝐶𝑞 being satisfied implies that
ord𝑝(𝑎) ≤ (𝑝 − 1)/𝑞, it follows that ord𝑝(𝑎) is then very small. If 𝑞 is very large,
say 𝑞 ≈ 𝑥/100, one would have ord𝑝(𝑎) ≤ 100 and thus 𝑝 ≤ 𝑎100 = 𝑂(1), which is
not possible for 𝑝 large enough. For slightly smaller values of 𝑞 there could be some
primes 𝑝 with ord𝑝(𝑎) smaller than (𝑝−1)/𝑞, but this would be exceptional: 𝑝 would
then have to divide a number of form 𝑎𝑛−1 for a relatively small value of 𝑛, and those
numbers do not have too many prime factors. This argument allows one to handle 𝑞

larger than (roughly)
√
𝑥. In more detail, let 𝑆 denote the set of primes 𝑝 ≤ 𝑥 for

which 𝐶𝑞 is satisfied for some 𝑞 >
√
𝑥(log 𝑥). Then ord𝑝(𝑎) ≤ √

𝑥/(log 𝑥), and
thus 𝑝 | 𝑎𝑛 − 1 for some 𝑛 ≤ √

𝑥/(log 𝑥). It follows that

∏︁

𝑛≤√
𝑥/(log 𝑥)

(𝑎𝑛 − 1) ≡ 0

⎛
⎝mod

∏︁

𝑝∈𝑆
𝑝

⎞
⎠ .

The left hand side is 𝑎𝑂(𝑥/(log 𝑥)2), from which we get |𝑆| = 𝑂(𝑥/(log 𝑥)2) =

𝑜(𝜋(𝑥)).
There is a small set of primes 𝑞 near the value

√
𝑥 that remains, namely the

interval 𝑞 ∈ [
√
𝑥/(log 𝑥)𝐵+2,

√
𝑥(log 𝑥)]. The idea here is to drop the power residue
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condition in 𝐶𝑞 and merely consider the congruence condition via

|{𝑝 ≤ 𝑥 : 𝑝 satisfies 𝐶𝑞}| ≤ |{𝑝 ≤ 𝑥 : 𝑝 ≡ 1 (mod 𝑞)}|.

This loses a lot of information, but the bound above is sufficient as there are only few
primes 𝑞 left. Indeed, the right hand side may be bounded by the Brun–Titchmarsh
inequality, giving the bound

|{𝑝 ≤ 𝑥 : 𝑝 ≡ 1 (mod 𝑞)}| ≪ 𝜋(𝑥)

𝑞

for 𝑞 ≤ 𝑥1−𝜖 for fixed 𝜖 > 0, and we have
∑︁

√
𝑥/(log 𝑥)𝐵+2≤𝑞≤√

𝑥(log 𝑥)

1

𝑞
= 𝑜(1)

by Mertens’ theorem (or by the stronger prime number theorem and dyadic decom-
position). This concludes the proof of (5.2.2) under GRH.

5.5 Schinzel–Wójcik problem
We then consider Problem 2.0.6. The problem was motivated by a work of Schinzel
and Wójcik [42], where it was shown by elementary means that for any 𝑎, 𝑏 ∈ Q× ∖
{−1, 1} there are infinitely many primes 𝑝 with ord𝑝(𝑎) = ord𝑝(𝑏). See also [51]
and [37] for subsequent work.

We assume GRH. We first note that Hooley’s argument adapts equally well to
considering indices of multiple integers simultaneously. This observation was al-
ready implicitly present in Matthews’ [34] work on simultaneous primitive roots,
though it was not combined to the systematic framework above prior to our work.

We fix some integer ℎ and consider the set of primes 𝑝 such that ord𝑝(𝑎𝑖) =

(𝑝 − 1)/ℎ. Instead of computing explicit formulas for the density of such 𝑝, which
would be very laborious, it is better to think of reasons why there could be only
finitely many such primes 𝑝. By the same procedure as in Artin’s conjecture, the
problem is reduced from considering infinitely many conditions 𝐶𝑞 at once to merely
finitely many of them, the conditions 𝐶𝑞 now being that, for all 𝑖,

𝑝 ≡ 1 (mod 𝑞𝑣𝑞(ℎ)), and

𝑎𝑖 is a 𝑞𝑣𝑞(ℎ)th power modulo 𝑝, and

(𝑝 ̸≡ 1 (mod 𝑞𝑣𝑞(ℎ)+1) or 𝑎𝑖 is not a 𝑞𝑣𝑞(ℎ)+1th power modulo 𝑝).

Again, these conditions are best viewed through field and Galois theory. Via the Artin
symbol and the Chebotarev density theorem the problem above reduces to asking: is
there, for any distinct primes 𝑞1, . . . , 𝑞𝑘, necessarily some automorphism 𝜎 of

Q(𝜁ℎ𝑞1···𝑞𝑘 , 𝑎
1/(ℎ𝑞1···𝑞𝑘)
1 , . . . , 𝑎1/(ℎ𝑞1···𝑞𝑘)𝑛 )/Q
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that fixes Q(𝜁ℎ, 𝑎
1/ℎ
1 , . . . , 𝑎

1/ℎ
𝑛 ) but does not fix Q(𝜁ℎ𝑞𝑗 , 𝑎

1/(ℎ𝑞𝑗)
𝑖 ) for any 𝑖 and 𝑗?

It turns out that primes 𝑞𝑖 larger than 3 do not cause any issues. The idea
is that roots of unity 𝜁𝑞𝑣 , 𝑞 ≥ 5, 𝑣 ≥ 1 do not lie in other extensions of form
Q(𝜁𝑚, 𝑎

1/𝑚
1 , . . . , 𝑎

1/𝑚
𝑛 ) in a non-trivial way (that is, if 𝑚 is not divisible by 𝑞𝑣),

allowing one to construct 𝜎 so that it does not fix 𝜁ℎ𝑞𝑖 (but still fixing 𝜁ℎ). This cor-
responds to restricting to primes 𝑝 such that 𝑣𝑞(𝑝− 1) = 𝑣𝑞(ℎ). In fact, by choosing
ℎ of form 3 · 2𝑣 for some 𝑣, one can similarly avoid issues at the prime 3, as 𝜁9 does
not lie non-trivially in root extensions.

So one only has to consider obstructions caused by the prime 2. Hence the prob-
lem more or less reduces to finding those tuples (𝑎1, . . . , 𝑎𝑛) for which there are
infinitely many primes 𝑝 such that

𝑣2(ord𝑝(𝑎1)) = . . . = 𝑣2(ord𝑝(𝑎𝑛)).

This is where the obstruction of Theorem 5.0.1 comes in. First note that if for
some integers 𝑒1, . . . , 𝑒𝑛 we have

𝑎𝑒11 · · · 𝑎𝑒𝑛𝑛 = −1.

then all of ord𝑝(𝑎𝑖) must be even: indeed, if ord𝑝(𝑎𝑖) = 𝑂 for all 𝑖, then

(−1)𝑂 = (𝑎𝑒11 · · · 𝑎𝑒𝑛𝑛 )𝑂 ≡ 1 (mod 𝑝).

On the other hand, if for some integers 𝑓𝑖 with an odd sum we have

𝑎𝑓11 · · · 𝑎𝑓𝑛𝑛 = 1,

then 𝑂 cannot be even, as otherwise 𝑎
𝑂/2
𝑗 ≡ −1 (mod 𝑝) for each 𝑗 and thus

1 = 1𝑂/2 ≡ (𝑎𝑓11 · · · 𝑎𝑓𝑛𝑛 )𝑂/2 ≡ (−1)𝑓1+...+𝑓𝑛 ≡ −1 (mod 𝑝).

Hence if such tuples 𝑒𝑖 and 𝑓𝑖 exist, there are only finitely many desired primes 𝑝.
This turns out to be the only obstruction. The proof consists of tracking mul-

tiplicative relations between 𝑎1, . . . , 𝑎𝑛 (in particular, considering whether integers
𝑒1, . . . , 𝑒𝑛 as above exist) and considering basis elements 𝑏𝑖, 1 ≤ 𝑖 ≤ 𝐵 for the group
⟨𝑎1, . . . , 𝑎𝑛⟩ (or ⟨|𝑎1|, . . . , |𝑎𝑛|⟩). All relevant information on the orders ord𝑝(𝑎𝑖)
may then be written in terms of 𝑏𝑖 via the Artin symbol and automorphisms of the
field

Q(𝜁2𝑘 , 𝑏
1/2𝑘

1 , . . . , 𝑏
1/2𝑘

𝐵 ).

Here 𝑘 is a large integer. As the elements 𝑏𝑖 are multiplicatively independent, by
the “almost maximality” of extensions as above (see [40] or Lemma 6.2.1) one may
prescribe the images of 𝑏1/2

𝑘

𝑖 under an automorphism more or less independently of
each other and the image of 𝜁2𝑘 , while ensuring that a corresponding automorphism

27



Olli Järviniemi

in fact exists. One then has to decide on the images of 𝑏
1/2𝑘

𝑖 and 𝜁2𝑘 so that the
images of 𝑎1/2

𝑘

𝑖 come out correct. This problem corresponds to satisfying a system
of linear equations modulo 2, whose solvability is well understood.

Article III includes other applications of the methods as well, those following by
broadly similar ideas and methods. These applications are somewhat ad hoc, calling
for a more systematic approach, carried out in Article IV.
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6 Unified treatment of Artin-type
problems

We continue the discussion of Artin-type problems undertaken in Section 5. We start
with introducing the general framework, after which we give some algebraic tools.
We then discuss our ideas for treating Artin-type problems in general.

The following theorem captures a large portion of our results.

Theorem 6.0.1. Assume GRH. Let 𝑊1, . . . ,𝑊𝑛 be finitely generated subgroups of
Q×. There is an explicit finite procedure for computing the image of the index map
Ψ : P → N𝑛,

𝑝 ↦→ (Ind𝑝(𝑊1), . . . , Ind𝑝(𝑊𝑛)).

Furthermore, if for any 𝑖 we have

rank (𝑊1 · · ·𝑊𝑛) > rank (𝑊1 · · ·𝑊𝑖−1𝑊𝑖+1 · · ·𝑊𝑛),

then there exists an integer 𝐻 such that (ℎ1, . . . , ℎ𝑛) lies in the image of Ψ if and
only if ((ℎ1, 𝐻), . . . , (ℎ𝑛, 𝐻)) does.

Our proof allows for other descriptions of the image of the index map as well,
though they are more complicated.

6.1 General framework
There are several ways of generalizing Artin’s conjecture.

First, instead of considering primitive roots (ord𝑝(𝑎) = 𝑝 − 1), consider near-
primitive roots (ord𝑝(𝑎) = (𝑝− 1)/ℎ).

Second, consider the orders of multiple integers simultaneously as in Problem
2.0.6.

Third, instead of considering all primes, restrict to primes 𝑝 in some “interesting”
subset of integers. For example, one may restrict to primes in a given arithmetic
progression. More generally, one could impose an Artin symbol condition on 𝑝, in
particular allowing conditions of form “𝑝 ≡ 𝑎 (mod 𝑚)” or “𝑃 (𝑥) ≡ 0 (mod 𝑝)

is solvable” for given 𝑃 ∈ Z[𝑥]. An Artin symbol condition is natural due to the
algebraic number theoretic aspects of Artin’s conjecture.
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Fourth, instead of considering the reduction of a rational modulo 𝑝, one may
consider reductions of a multiplicative subgroup 𝑊 of Q×, for example the order
of the reduction of 𝑊 = ⟨2, 3⟩ = {2𝑛3𝑚|𝑛,𝑚 ∈ Z}. It is reasonable to restrict to
finitely generated subgroups 𝑊 , that is, those subgroups for which there exist a finite
set of generators 𝑤1, . . . , 𝑤𝑛 ∈ 𝑊 such that 𝑊 ⊂ ⟨𝑤1, . . . , 𝑤𝑛⟩.

Finally, one may consider the problems over an arbitrary number field 𝐾 in place
of Q, replacing the primes 𝑝 of Q with the prime ideals p of 𝐾 (or, more precisely,
prime ideals of the ring of integers of 𝐾). For expository reasons, here we consider
problems simply over Q – generalizing to arbitrary 𝐾 requires no major changes.

These generalizations bring us to the index map problem (Problem 2.0.7). One
notes that many previous problems can be seen as specific instances of the general
one: Artin’s conjecture asks when the image of 𝑝 ↦→ Ind𝑝(𝑎) contains 1 infinitely
often, simultaneous primitive roots correspond to the preimage of (1, . . . , 1) under
𝑝 ↦→ (Ind𝑝(𝑎1), . . . , Ind𝑝(𝑎𝑛)), the Schinzel–Wójcik problem concerns the preimage
of {(ℎ, . . . , ℎ)|ℎ ∈ N} and so on. We note that Lenstra [29] has considered a setup
almost as general, namely the case 𝑛 = 1 of Problem 2.0.7.

We cannot give an explicit description of the image of the index map of Problem
2.0.7 in the general case, as such a description would be too complex. Rather, we
give a computational procedure that may be used to determine the index map, and
via inspection of the procedure obtain non-trivial descriptions of the image.

6.2 Algebraic tools
We first repeat the general principle that questions on sets of primes defined via solv-
ability of polynomial congruences are best viewed through the lens of field theory.
A powerful tool ere is the Artin symbol, which unfortunately we cannot properly
explain here due to the technical nature. However, at a very broad level, the Artin
symbol connects the primes 𝑝 for which a given polynomial congruence 𝑃 (𝑥) ≡ 0

(mod 𝑝) is solvable to an object of a number field 𝐾 containing the roots of 𝑃 (𝑥).
This establishes a connection between local and global structures.

To get some taste of the connection, let us give a simple example. Consider the
congruence 𝑥2 + 1 ≡ 0 (mod 𝑝) and the corresponding number field 𝐾 = Q(𝑖).
The odd primes 𝑝 for which the congruence is solvable (namely 𝑝 ≡ 1 (mod 4)) are
associated to the identity map 𝑎 + 𝑏𝑖 → 𝑎 + 𝑏𝑖 of 𝐾, whereas the other odd primes
are associated to the conjugation map 𝑎+ 𝑏𝑖 → 𝑎− 𝑏𝑖. (The prime 𝑝 = 2 is a special
case we ignore.)

In general, primes get associated to automorphisms of the corresponding number
field depending on what kind of polynomial equations are solvable locally. (To be
more precise and general, one should talk about homomorphisms from the ring of
integers of 𝐾 to finite fields of size 𝑝𝑘, 𝑘 ≥ 1 – these homomorphisms are vital for
connecting global and local structures, and the Artin symbol is defined to capture

30



Unified treatment of Artin-type problems

information regarding these homomorphisms.)
Via these tools one may connect knowledge on the complex roots of polynomi-

als to information on the local polynomial equations. Furthermore, the Chebotarev
density theorem tells us how often the primes associate to given automorphisms as
one goes through all of the primes.

As particularly important special cases, power congruences 𝑥𝑛 ≡ 𝑎 (mod 𝑝)

and congruence conditions 𝑝 ≡ 𝑟 (mod 𝑚) are linked to the fields Q(𝜁𝑛, 𝑎
1/𝑛) and

Q(𝜁𝑚), respectively. We have already described how non-trivial interactions or fail-
ure of maximality of such extensions leads to surprising phenomena and obstructions
in Artin’s conjecture and related problems.

Fortunately for us, there turn out to be, in a sense, only finitely many such ob-
structions and issues in any given situation. More precisely, root extensions are “al-
most maximal” in degree [40].

Lemma 6.2.1 (Almost maximality of root extensions). Let 𝑎1, . . . , 𝑎𝑟 ∈ Q× be mul-
tiplicatively independent. There is some constant 𝑐 > 0 (depending on 𝑎𝑖 only) such
that for any 𝑚 ∈ N we have

[Q(𝜁𝑚, 𝑎
1/𝑚
1 , . . . , 𝑎1/𝑚𝑟 ) : Q] ≥ 𝑐𝜑(𝑚)𝑚𝑟.

Following the same theme, there is only a finite amount of non-trivial interaction
between the various root extensions (see Article IV, Proposition 3.1).

Lemma 6.2.2 (Finite interaction of root extensions). Let 𝑎1, . . . , 𝑎𝑟 ∈ Q× be multi-
plicatively independent. There is a number field 𝐹 (depending on 𝑎𝑖 only) such that
for any coprime 𝑚1 and 𝑚2 we have

Q(𝜁𝑚1
, 𝑎

1/𝑚1

1 , . . . , 𝑎1/𝑚1
𝑟 ) ∩Q(𝜁𝑚2

, 𝑎
1/𝑚2

1 , . . . , 𝑎1/𝑚2
𝑟 ) ⊂ 𝐹.

Especially important are the consequences for the set of automorphisms of such
root extensions (the Galois groups of the extensions). As any automorphism maps
elements to their conjugates, the root of unity 𝜁𝑚 is mapped to 𝜁𝑥𝑚 for some 𝑥 co-
prime to 𝑚 and 𝑎

1/𝑚
𝑖 is mapped to 𝜁𝑥𝑖

𝑚 𝑎
1/𝑚
𝑖 for some integer 𝑥𝑖. Also, the values of 𝑥

and 𝑥𝑖 determine the automorphism uniquely. However, as the extension is not nec-
essarily maximal, not all values of (𝑥, 𝑥1, . . . , 𝑥𝑟) correspond to an automorphism.
Nevertheless, in the same spirit as the results above, whether or not there is a corre-
sponding automorphism depends only on the values of 𝑥 and 𝑥𝑖 modulo 𝑀 for some
fixed 𝑀 .

Finally, regarding the finitely generated multiplicative groups we mention the
following.

Lemma 6.2.3 (Bases for subgroups). Let 𝑊 be a finitely generated subgroup of Q×.
Then there is an integer 𝑟 and 𝑤1, . . . , 𝑤𝑛 ∈ 𝑊 such that any 𝑤 ∈ 𝑊 may be
expressed uniquely as

𝑤 = (−1)𝑒0𝑤𝑒1
1 · · ·𝑤𝑒𝑛

𝑛 , 𝑒𝑖 ∈ Z, 𝑒0 ∈ {0, 1}.
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A corresponding result is true for any number field 𝐾 in place of Q, with −1

replaced with 𝜁𝑘 for the largest 𝑘 with 𝜁𝑘 ∈ 𝐾. The result follows from the classifi-
cation of finitely generated abelian groups.

6.3 Proof methods
We then consider the general setup of Problem 2.0.7, with the aim of describing the
image of the index map. For simplicity, we shall work over Q and will not consider an
additional Artin symbol condition on 𝑝, as these lead into minor technical differences
only.

We fix finitely generated subgroups 𝑊1, . . . ,𝑊𝑛 of Q× and consider the values
of the index map

Ψ(𝑝) := (Ind𝑝(𝑊1), . . . , Ind𝑝(𝑊𝑛)).

We fix some tuple h = (ℎ1, . . . , ℎ𝑛), and consider whether the set of primes 𝑝

with Ψ(𝑝) = h is infinite or not. We provide an explicit procedure for determin-
ing whether this is the case.

As with Artin’s primitive root conjecture, one can use certain analytic methods
(conditional on GRH) to reduce this problem to determining whether for any finite
number of primes 𝑞1, . . . , 𝑞𝑛 certain conditions may be met. More precisely, for
𝑄 = 𝑞1 · · · 𝑞𝑛 we aim to determine whether there exists an automorphism of

𝐾𝑄,h := Q(𝜁𝑄ℎ,𝑊
1/ℎ1𝑞1
1 , . . . ,𝑊 1/ℎ𝑛𝑞𝑛

𝑛 )

fixing all of the fields Q(𝜁ℎ𝑖
,𝑊

1/ℎ𝑖

𝑖 ) but none of Q(𝜁𝑞ℎ𝑖
,𝑊

1/𝑞ℎ𝑖

𝑖 ) for 𝑞 | 𝑄. Here
ℎ = lcm(ℎ1, . . . , ℎ𝑛), and 𝐾(𝑊 1/ℎ) means the smallest extension of 𝐾 containing
𝜁ℎ and 𝑤1/ℎ for any 𝑤 ∈ 𝑊 .

We first reduce to the case where 𝑄 has no “large” prime factors. More precisely,
if 𝑞 > 3 and 𝑞 does not divide ℎ, one has 𝜁𝑞 ̸∈ 𝐾𝑄,h for any 𝑞 ∤ 𝑄, and hence an
admissible automorphism of 𝐾𝑄,h may be extended to 𝐾𝑄𝑞,h so that it does not fix
𝜁𝑞.

Assume then that 𝑄 | 6ℎ. The next step is to reduce the problem to considering
just the case where 𝑄 is a prime. This would be easy if 𝐾𝑞,h ∩𝐾𝑞′,h = 𝐾1,h for any
distinct primes 𝑞, 𝑞′ | 𝑄, but this is unfortunately not necessarily the case. However,
by Lemma 6.2.2 such intersections cannot be much larger than 𝐾1,h. One can hence
perform a finite casework on the behavior of the automorphism in such intersections,
after which the extensions 𝐾𝑞,h/𝐾1,h are practically independent of each other.

We thus consider whether there exists an automorphism of 𝐾𝑞,h fixing 𝐾1,h, not
fixing any of Q(𝜁𝑞ℎ𝑖

,𝑊
1/𝑞ℎ𝑖

𝑖 ) and satisfying a certain additional condition arising
from the previous step. The idea is that the extension 𝐾𝑞,h is “almost maximal”
(see Lemma 6.2.1), so that the Galois group Gal(𝐾𝑞,h/𝐾1,h) is easy to describe in
images of generators of 𝑊𝑖 (recall Lemma 6.2.3). Complications arise from the fact
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that 𝑊1, . . . ,𝑊𝑛 need not be multiplicatively independent of each other, or that basis
elements of 𝑊𝑖 may be perfect 𝑞th powers or their products may non-trivially yield
𝑞th powers.

We proceed by carefully keeping track of the “parts” in groups 𝑊𝑖 that are inde-
pendent of the other groups, categorizing the groups depending on the sizes of val-
uations 𝑣𝑞(ℎ𝑖) and handling separately groups whose valuations differ significantly
in size. We are able to reduce the problem to a system of linear congruences and in-
congruences modulo powers of 𝑞, from which one may compute whether a solution
exists in an effective manner.

It is essential that the computation in the last part takes only a bounded amount
of time, so that the number of steps in the whole process for determining whether h
lies in the image of Ψ is bounded by a linear function in the number of distinct prime
factors of lcm(ℎ1, . . . , ℎ𝑛) (assuming that operations with arbitrarily large integers
take negligible time).

Furthermore, by inspecting the proof one obtains a description of the image
of Ψ. Namely, one obtains that if a prime 𝑞 and 𝐼 ⊂ {1, . . . , 𝑛} are such that
min𝑖∈𝐼,𝑗∈{1,...,𝑛}∖𝐼 |𝑣𝑞(ℎ𝑖) − 𝑣𝑞(ℎ𝑗)| is large enough (in terms of parameters arising
from 𝐾,𝑊1, . . . ,𝑊𝑛), then (ℎ1, . . . , ℎ𝑛) is in the image if and only if (ℎ′1, . . . , ℎ

′
𝑛)

is, where ℎ′𝑖 = 𝑞ℎ𝑖 for 𝑖 ∈ 𝐼 and ℎ′𝑗 = ℎ𝑗 for 𝑗 ̸∈ 𝐼 . In other words, we may in-
crease the 𝑞-adic valuation of some elements, assuming that those 𝑞-adic valuations
are sufficiently “isolated” from the other valuations.

We further note that one may give simpler descriptions for the image of Ψ in
the case the groups 𝑊1, . . . ,𝑊𝑛 are separated, meaning that the rank of 𝑊1 · · ·𝑊𝑛

is strictly larger than the rank of 𝑊1 · · ·𝑊𝑖−1𝑊𝑖+1 · · ·𝑊𝑛 for any 𝑖. This means
that for each 𝑊𝑖 there is an element 𝑤𝑖 ∈ 𝑊𝑖 which is independent of the group
𝑊1 · · ·𝑊𝑖−1𝑊𝑖+1 · · ·𝑊𝑛, allowing one to control Ind𝑝(𝑊𝑖) more freely. We are
able to show that in this case there is some 𝐻 ∈ N such that (ℎ1, . . . , ℎ𝑛) lies in the
image of Ψ if and only if ((ℎ1, 𝐻), . . . , (ℎ𝑛, 𝐻)) does.

We again guide the reader to the original article for details of the proofs and other
results not presented here.
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[33] K. Matomäki and J. Teräväinen. Almost primes in almost all short intervals II. To appear in

Trans. Amer. Math. Soc., 2023.
[34] K. Matthews. A generalisation of Artin’s conjecture for primitive roots. Acta Arith., 29(2):113–

146, 1976.
[35] P. Moree. Artin’s primitive root conjecture -a survey -. Integers, 12, 01 2005.
[36] P. Moree and P. Stevenhagen. A two-variable Artin conjecture. J. Number Theory, 85(2):291–304,

2000.
[37] F. Pappalardi and A. Susa. On a problem of Schinzel and Wójcik involving equalities between
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