
Towards a Vision-Based Mobile
Manipulator for Autonomous Chess

Gameplay

Master of Science in Technology
Thesis
University of Turku
Department of Computing, Faculty of
Technology
Robotics and Autonomous Systems
2023
Bowen Tan

Supervisors:
Ph.D. (Tech) Jorge Peña Queralta
MS.c. (Tech) Xianjia Yu
Prof. Tomi Westerlund

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin
OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing, Faculty of Technology

BOWEN TAN: Towards a Vision-Based Mobile Manipulator for Autonomous Chess
Gameplay

Master of Science in Technology Thesis, 58 p.
Robotics and Autonomous Systems
July 2023

With the rise of robotic arms in both industrial and research applications, a growing
need is observed for autonomous robotic arm applications. This thesis aims to provide
an example case of this need and also to showcase the possibility and limitations of
vision-based solutions, specifically in automating chess. The focus is on developing a
modular system that is able to autonomously recognize chessboard, detect and manipulate
chess pieces. The modular design allows for further exploration into autonomous mobile
manipulators. The key components include chessboard recognition using fiducial markers
to facilitate accurate chessboard recognition and utilizing image processing techniques
like segmentation, absolute difference matching, and perspective warping to analyze and
extract meaningful information. By mounting a camera above the chessboard, it enables
the detection algorithm to accurately capture and analyze the most important information
about the environment to determine the current state of the game. Using this information,
human move detection is enabled. Then, a custom protocol is utilized to communicate
between the detection algorithm and the chess engine, encapsulating information about
the game state changes within the system. The chess engine serves the purpose of game
analysis and provides legal moves for the robot manipulator to execute. Manipulation
happens through careful motion planning and execution, ensuring the safety of the robot
and its environment. Extensive evaluation proves that the system demonstrates high
accuracy and success rates for piece manipulation and move detection.

Keywords: Fiducial Markers, Robot Arm, OpenCV, ROS

Contents

List Of Acronyms 1

1 Introduction 2

1.1 Significance and Motivation . 3

1.2 Related works and contribution . 4

1.3 Structure . 6

2 Background 7

2.1 ROS . 7

2.1.1 tf2 . 8

2.1.2 MoveIt . 9

2.2 Franka Emika Panda . 9

2.2.1 Franka Control Interface . 11

2.2.2 PREEMPT_RT . 12

2.3 Combining the Franka Emika Panda and ROS 2 13

2.4 Camera and detection algorithms . 14

2.4.1 ArUco Markers . 14

2.4.2 Detection of ArUco Markers . 15

2.5 Chess engines . 16

2.5.1 Stockfish . 18

i

3 Hardware and Design 20

3.1 Hardware . 20

3.1.1 Franka Emika Panda Robot Arm 20

3.1.2 Design of an improved gripper 21

3.1.3 Camera system . 21

3.1.4 Husky - Unmanned Ground Vehicle 23

3.2 Experimental setup . 24

3.2.1 Chessboard . 24

3.2.2 Camera mount . 25

3.2.3 Robot Arm . 26

3.2.4 Unmanned Ground Vehicle . 27

3.3 Design . 28

3.3.1 Flow of the system . 28

4 Implementation 32

4.1 Calibration process . 32

4.1.1 Calibration of the camera . 32

4.1.2 Calibration of the chessboard’s offset 35

4.2 Image Segmentation . 35

4.3 Chess Engine . 37

4.4 Robot Movement and Coordinate Transformation 41

4.4.1 Interpreting a custom message 41

4.4.2 Transforming coordinates frames 42

4.4.3 Creating the movement interface 44

5 Results 47

5.1 Performative evaluation . 47

5.2 Comparative evaluation . 54

6 Conclusion 56

6.1 Future work . 57

References 59

List of Figures

2.1 ROS Nodes [15] . 8

2.2 The transforms of the Franka Emika Panda 9

2.3 tf2 tree of the Franka Emika Panda . 10

2.4 Franka Control Interface diagram [19] 11

2.5 ROS control [20] . 12

2.6 Example of ArUco markers [22] . 15

2.7 Removing the perspective of AruCo marker [22] 16

2.8 Bit extraction [22] . 17

3.1 Images of the Franka Hand and its schematics [28] 22

3.2 3D Model of the attachment and a real-life depiction of the model 23

3.3 The Husky UGV with the Franka Emika Panda Arm 24

3.4 Chessboard with ArUco markers . 25

3.5 Camera mount . 26

3.6 System functionality pipeline, from retrieving the images to moving the

arm. (Icons courtesy of flaticons.com) 28

3.7 Before and after warp transformation and center calculation 30

4.1 Full diagram of the system. Each yellow box represents a node in ROS,

each dotted box is an integral part of the application of the node and the

dotted lines represent the flow. 33

4.2 Example of a ChArUco board . 34

iv

4.3 Image segmentation process . 38

4.4 All tf frames visualized in rViz . 43

4.5 Hierarchy of interfaces used within the system 44

5.1 Full setup . 48

5.2 Correct and incorrect orientation of the marker on the arm 49

List of Tables

5.1 Accuracy results of all ten sets performed 50

5.2 Speed comparison per type move . 51

5.3 Move detection accuracy . 52

5.4 Comparison between three autonomous chess systems 54

5.5 Comparison between the human move detection 54

vi

List Of Acronyms

AB Alpha-Beta

DDS Data Distribution Service

FCI Franka Control Interface

FPS Frames Per Second

MCTS Monte Carlo tree search

Mbps Megabits per second

NASA National Aeronautics and Space Administration

ROS Robot Operating System

SRMS Shuttle Remote Manipulator System

TCEC Top Chess Engine Championships

UGV Unmanned Ground Vehicle

UWB Ultra Wideband

YOLOv5 You Only Look Once V5

1 Introduction

The usage of robotic arms is widespread and is observed in numeral different fields. They

are utilized for pick and place work within a factory to critical exploration missions.

Robotic arms offer a unique combination of freedom, complexity, and precision, making

them suitable for a wide range of applications. Notable examples are the Shuttle Remote

Manipulator System (SRMS) [1], The Mars rovers from The National Aeronautics and

Space Administration (NASA) [2], and the Da Vinci Surgical Systems [3]. The precision

of a robotic arm in these types of fields is of utmost importance. This is why many of these

applications are manually controlled through a control interface managed by a human op-

erator or controlled through predetermined movements. However, with the current rise

of vision-based detection algorithms and image-processing capabilities, real-time object

recognition has improved significantly and the exploration of vision-based autonomous

robotic arm applications has been relatively scarce, while the need for these applications

seems to grow. Especially in fields where it is seemingly dangerous for a human to oper-

ate, a mobile autonomous manipulator can be utilized to a great extent. This thesis aims

to bridge that gap by implementing a system in which the robot arm can autonomously

play chess using a vision-based solution. While the implementation of the system is

rather niche, it aims to showcase the possibilities and limitations of the current technol-

ogy within the field. The scope of the thesis is restricted to developing a vision-based

solution for autonomous chess gameplay using a non-moving robot manipulator. How-

ever, it is important to note that the components and techniques that are used can easily be

1.1 SIGNIFICANCE AND MOTIVATION 3

extended to incorporate mobility. By adding mobility, it allows the robot manipulator to

be transformed into a mobile manipulator, enabling it to navigate and interact with multi-

ple chessboards. Lastly, the modular design of the system lays the groundwork for future

exploration into autonomous mobile manipulation, expanding the potential applications

beyond chess-playing scenarios.

1.1 Significance and Motivation

The main objective of this paper is to showcase the possibilities and limitations of a vision-

based autonomous robot arm system. The combination of using off-the-shelf parts and

the software implementation proves the usefulness of this type of system which can then

be applied in other fields of work, like autonomous vehicle repair, or healthcare support

robots (e.g., RoomieBot) and especially those where autonomy and costs are a big factor

because it removes the need for any human operators. Also, the benefit of using off-the-

shelf parts makes the system more accessible, scalable, and allows for wider adoption

in other fields. This solution provides the underlying building blocks from which other

implementations can take inspiration.

One of the main benefits of this implementation is the overall generality of the sys-

tem. Although the paper discusses one version of object and pose detection using fiducial

markers, it is not bound to this implementation and other forms like the usage of the Opti-

Track system or ultra-wideband (UWB) solutions can also be explored as easily because

the system requires merely the positional and orientation data of several points. Thus,

even though the final product is an autonomous vision-based chess-playing robot, the

components which form the system can be taken individually and used for other purposes

as well.

Finally, the final implementation does not require the need of detecting every individ-

ual chess piece separately, thus removing the need of training any sort of neural network

1.2 RELATED WORKS AND CONTRIBUTION 4

or machine learning algorithm. Which in turn, simplifies the system, reduces compu-

tational requirements, and makes the components more reusable and not reliant on any

specific training data.

As for me personally, I have a strong interest in automated robots in general, but

especially those which are used for applications that are usually considered a human ac-

tivity, like chess or an automatic vacuum cleaner. Furthermore, while I have experience

previously working with computer vision and the Robot Operating System (ROS), the

thesis provides a great opportunity for me to learn more about the application of robotic

arms, motion planning, image segmentation, the integration of chess engines, and mobile

manipulators.

1.2 Related works and contribution

In terms of intelligent robotic arms, many projects surrounding the idea of grasping ob-

jects have similar high-level goals, which are the picking and placing of objects to spe-

cific locations, whether through predefined joint locations (e.g., automated factory arms)

or specified vision-based end goals. Previous works in the area of an intelligent vision-

based robotic arm for grasping different-sized objects have been done using the approach

of Deep Reinforcement Learning [4] [5]. Where in the former the main finding is the

realization of a five-degrees-of-freedom robot arm that uses You Only Look Once v5

(YOLOv5) algorithm to detect and reach three-dimensional positions of specific targets

using inverse kinematics. In the latter the authors propose a system that detects robotic

grasps from RGB-D data using a two-stage deep learning approach, allowing them to

avoid hand-engineering features.

Non-Deep Learning approaches have also been considered in [6] and [7] where the

robotic grasp movements are done by object localization, pose estimation, grasp estima-

tion, and color and shape detection respectively. The approach for the Non-Deep Learning

1.2 RELATED WORKS AND CONTRIBUTION 5

method is to perceive the object through image recognition. The idea of an autonomous

robotic arm playing chess has been explored before in [8], [9], [10] and [11]. However,

in most of these implementations, some kind of neural network or deep learning algo-

rithm is implemented to either detect the chessboard or the chess pieces. Even though

artificial intelligence-based object recognition has improved quite substantially over the

past decades, it is heavily reliant on proper training data and a controlled environment.

Furthermore, detecting the state of a chess game requires the entire board to be visible,

which is most feasible by mounting a camera on top or at an angle from the chess board.

In the first case, it is complicated to differentiate the chess pieces from each other as they

are all relatively circular from above. In the latter case, a situation can occur where pieces

are occluded (partially) by one another, which may result in false game state detection.

Lastly, as mentioned before, proper training data is required for artificial intelligence-

based approaches. This means that a chess set that has not been trained properly may fail

to detect the pieces or game state completely.

There have been projects done where exact chess piece recognition is not used, like in

[12], where their approach was to detect the game state through the rules of chess and the

natural feature differences between the pieces and chess board. However, in their work,

the approach is limited by the specific reference frame which the algorithm calibrates to.

In other words, it is likely that the color calibration that is used is tuned for a specific

(modified) chess set. In this work, a fiducial marker approach is considered to detect the

size of the chess board, where then the game state is assumed using previous frames and

the natural progression of a move. Then, a chess engine is utilized to calculate the moves

to be made by the computer and lastly, the Franka Emika Panda Arm is used to move the

pieces. With this approach, the need for a modified chess set is removed and thus makes

the whole solution more scalable. The robot arm is also situated on an unmanned ground

vehicle (Husky) with the idea that multiple chess games can be played simultaneously

using multiple cameras. Not only that, with the addition of having the robot arm on

1.3 STRUCTURE 6

the Husky, further works with vision-based autonomous robotic arm movements can be

explored where the arm is a mobile entity rather than a stationary one. Summarized, the

core contributions of this thesis are as followed:

1. Showcase the possibilities and limitations of vision-based autonomous systems

with robotic arms by designing and implementing a chess-playing robot using fidu-

cial markers.

2. Provide working components of the system which can be used for other implemen-

tations and further work.

3. Design the system in a way that allows further exploration to be done using different

object detection based approaches (e.g., OptiTrack or UWB).

1.3 Structure

• Chapter 2 introduces the background information on the components used to create

this project.

• Chapter 3 will go over the hardware and setup of the system and how the system

functions on a high level, combined with a rationale that describes why certain

design choices were made.

• Chapter 4 focuses on the implementation details of the system and a more technical

overview of how the system works.

• Chapter 5 presents the results of the project, a performative, and comparative anal-

ysis.

• and finally, Chapter 6 will conclude the thesis and give recommendations for fur-

ther work.

2 Background

This chapter provides background information on the concepts used to implement the

system.

2.1 ROS

The Robot Operating System (ROS) is a set of open-source software libraries and tools

created for building robot applications. It provides the necessary services for hardware

abstraction, low-level control, and package management. Its main advantage comes from

the ability for developers to build and reuse code between robotics applications without

the need to go through a rewriting process, thus reducing the time needed between devel-

opment cycles. Knowledge from one robotics area can be applied across all platforms,

from drones, to robot arms, to mobile bases [13].

ROS 2 is the successor of the previous ROS 1, going through a complete redesign of

the framework, improving upon the shortcomings of the first generation, and adding new

packages and backward compatibility [14]. The main difference between the two versions

is the changes to the architecture. ROS 1 uses a Master-Slave Architecture while ROS 2

uses Data Distribution Service (DDS), which is designed to provide higher efficiency and

reliability, especially for real-time systems.

The main component that is used within ROS 1 and ROS 2 is nodes. A node in ROS

has the responsibility of a single, module purpose, for example, a node for controlling the

joints of a robot arm, another node for detecting objects. A complete system, therefore,

2.1 ROS 8

Figure 2.1: ROS Nodes [15]

consists of many nodes working together with one another. In Figure 2.1, a simplified ver-

sion of the communication path between nodes can be seen [15]. Communication works

through exchanging messages through topics. Nodes can subscribe and publish to topics

that are labeled with unique identifiers. The benefit of this architecture is that it is highly

customizable, nodes can easily be exchanged for others as long as the topics published

and subscribed to remain the same. For example, a node responsible for detecting the

fiducial markers and publishing its pose is easily exchangeable with a node that uses a

different method of pose estimation (e.g., OptiTrack or UWB).

2.1.1 tf2

tf2 [16] is the transform library of ROS2. It enables the user to keep track of multiple

coordinate frames over time. It also allows for maintaining the relationship between any

multiple coordinate frames, given they are linked together through the same tree structure.

For example, the robot arm has its own tree structure describing the relationship between

its joints, and the object detection system also has its own tree that showcases the rela-

tionship between itself and the objects that are detected. With tf2, it is possible to link

these two tree coordinate frames which allow for either tree to retrieve information from

2.2 FRANKA EMIKA PANDA 9

Figure 2.2: The transforms of the Franka Emika Panda

the other tree.

2.1.2 MoveIt

MoveIt [17] is the motion planning framework integrated with ROS. It provides a set of

tools and libraries specifically designed for motion planning, control, and manipulation

tasks in robotic systems. Furthermore, it offers key features that are useful in controlling

the robot arm. For example, collision detection, trajectory planning, and the usage of

(inverse) kinematics.

2.2 Franka Emika Panda

The Franka Emika Panda [18], also known as the Franka Emika Research 3, is a robot

system that includes an arm and a control. The arm features 7 degree-of-freedom with

torque sensors at each joint, is force sensitive, and comes with industrial-grade pose re-

peatability of +/- 0.1mm accuracy. Additionally, the control features an interface that

2.2 FRANKA EMIKA PANDA 10

Figure 2.3: tf2 tree of the Franka Emika Panda

2.2 FRANKA EMIKA PANDA 11

Figure 2.4: Franka Control Interface diagram [19]

offers developers to explore low-level programming and control schemes. Providing the

user with its current status and enabling direct torque control at 1 kHz.

2.2.1 Franka Control Interface

The Franka Control Interface (FCI) [19] is an interface designed to allow fast and direct

low-level bidirectional connection to the Arm and Hand. It provides the current status of

the robot and enables control with an external workstation PC. Using libfranka, which is a

library developed by the Franka Emika group to control the arm, real-time control values

are sent at 1 kHz for interfaces like gravity and friction, joint position, Cartesian pose,

joint data, and estimations of externally applied torques and forces, including various

collision and contact information. The FCI is used in this project to retrieve the joint

positions and robot state from the arm.

In addition to libfranka, franka_ros can be used to connect Franka Emika robots with

the ROS ecosystem including ROS Control. ROS Control is a set of packages designed

to take joint state data from a robot’s actuator’s encodes and enables output control using

generic control loop feedback mechanisms[20]. A general diagram of data flow between

2.2 FRANKA EMIKA PANDA 12

Figure 2.5: ROS control [20]

controllers in ROS Control can be seen in Figure 2.5.

2.2.2 PREEMPT_RT

In order for swift and reliable communication between the Franka Control Interface and

the Panda arm to be possible, there are some minimum requirements set for the worksta-

tion; one of which is a network card that supports 100BASE-TX, meaning it should be

able to carry data traffic at 100Mbps over Ethernet. Because of the 1kHz data frequency,

it is also recommended that the workstation is to be configured to minimize latency. For

example, by disabling CPU frequency scaling [21].

Another requirement is that the operating system runs Linux with a PREEMPT_RT

patched kernel (or a Windows 10 Experimental installation). PREEMPT_RT is a Linux

2.3 COMBINING THE FRANKA EMIKA PANDA AND ROS 2 13

real-time kernel patch that makes Linux into a real-time system. The main difference

between a real-time system versus a non-real-time system is that a real-time system is

time-bound and has fixed time constraints, which are necessary for the bridge between the

workstation, the FCI, and the robot arm to communicate effectively. The usage of a real-

time system however doesn’t necessarily correlate to improved performance, it simply

aims for reduced response latency instead of optimized throughput.

2.3 Combining the Franka Emika Panda and ROS 2

There are two main ways to control the robot arm, one of which is using the provided

library: libfranka by Franka Emika. The other one is communicating through ROS 1 or

ROS 2 using MoveIt.

To control the robot arm using libfranka there are two separate types of commands;

non-real-time commands and real-time commands. The non-real-time commands are

blocking and are based on the TCP/IP-based protocols. They encapsulate the commands

for the gripper and several configuration commands for the arm itself. The real-time com-

mands require a reliable and fast connection from the workstation to the Franka Control

Interface.

For this work, the choice is made to control the robot using the MoveIt interface from

ROS 2. Using the ROS 2 interface makes it easier and more clear how to communicate

between several nodes and setups (e.g., the detection of the chess board happens in a sep-

arate node). Furthermore, MoveIt has the benefit of providing built-in motion planning,

collision checking, and trajectory execution. All of which are useful in the final imple-

mentation of the system. Motion planning is used to determine whether a calculated move

is achievable by the robot in its current state, with respect to self-imposed objects in the

MoveIt world frame (collision checking). When the planning succeeds, the trajectory for

the arm executes automatically and safely. However, relying solely on the MoveIt motion

2.4 CAMERA AND DETECTION ALGORITHMS 14

planning algorithm meant that any loss of robot states in a crucial moment leads to fail-

ure in planning and execution. This is also one of the reasons why a reliable and strong

connection is required between the workstation and the FCI.

2.4 Camera and detection algorithms

One of the key implementation features of this system is the usage of an RGB camera to

detect the position of the chessboard and the arm. The position of the chessboard and the

arm in reference to the camera are used together with ROS 2 transforms to make the arm

able to move to specific locations on the chessboard. In this work, fiducial markers are

used to achieve the detection of the chessboard and the arm. The fiducial markers serve as

reference points for the camera and the detection algorithm to determine the position of

the chessboard. One benefit of this implementation is that any kind of RGB camera can

be used to achieve the same results, given the camera is calibrated correctly and has a high

enough resolution (e.g., 1920x1080x30 was used in this project). Calibration is needed

because the detection of the fiducial markers relies on a properly calibrated camera to

be able to accurately estimate the pose and orientation of the markers by correcting the

natural distortions of the camera image. Furthermore, a camera that can not output a

high enough resolution may fail to detect the markers entirely due to the lack of image

pixel data. Further explanation of the calibration process and detection of the chessboard

through fiducial markers can be found in Sections 3.3.1 and 4.1

2.4.1 ArUco Markers

ArUco markers are one of the most popular approaches when it comes to pose estimation

through computer vision. A marker is comprised of an inner binary matrix that determines

its identifier and an outer black border. The inner binary codification together with a

surrounding black border makes the ArUco marker especially robust and relatively easy

2.4 CAMERA AND DETECTION ALGORITHMS 15

Figure 2.6: Example of ArUco markers [22]

to detect by a camera. This also enables the possibility of applying error detection and

correction techniques like perspective transforms, which is one of the techniques used in

this project (see Section 3.3.1). One of the main benefits of using binary square fiducial

markers like ArUco is that a single marker alone can provide enough correspondences

(the four corners of the marker) to obtain the position and orientation [23].

2.4.2 Detection of ArUco Markers

To be able to retrieve the position and orientation of a marker, it first must be detected

and segmented from the camera image. This detection process comprises of two distinct

steps, the detection of marker candidates and the identification of the candidates [22].

• Detection of marker candidates: In this step, the image is analyzed to find possible

candidates that could be markers. This is done by applying an adaptive threshold

to segment the markers from other parts in the frame. Then, contours are extracted

from the image and the remaining contours that are convex enough (i.e., roughly

represents a square) are considered for identification.

2.5 CHESS ENGINES 16

Figure 2.7: Removing the perspective of AruCo marker [22]

• Identification of possible markers: After possible candidates are found, the inner

codifications of the markers are analyzed. This starts with transforming the per-

spective of the camera image to retrieve the canonical form of the marker. Then,

the candidates are segmented with a threshold to separate the white and black bits.

Then, these bits are analyzed to determine if they belong to any predefined dictio-

nary assumed by the ArUco library.

2.5 Chess engines

A chess engine [24] is a software program that can play and analyze chess positions.

They have been around since the 1900s but it wasn’t until 2005 that the first chess engine

was able to defeat the best human players. Surpassing even grandmasters, which is the

highest possible achievable rank within the chess world. Over time, humans have become

2.5 CHESS ENGINES 17

Figure 2.8: Bit extraction [22]

better and better at chess through learning from previous games and collective wisdom.

Chess engines have only accelerated this process by providing deeper knowledge and

understanding of the game.

A traditional chess engine works by looking at individual positions and evaluating

which position is better. A position is evaluated through numerous factors, like material

balance, piece activity, pawn structure, king safety, possible moves, and more. Most

chess engines display an evaluation number that indicates the advantage of one side over

another. (e.g., +1 means a one-point advantage for white, while -1 would mean a one-point

advantage for black). It evaluates which position is better by searching and comparing

each possible move and its reply and then the reply to that, up to a certain depth. Because

the comparisons for every move grow exponentially with the number of possible moves

available, traditional chess engines tend to use a strategy called "smart pruning". This

means the chess engine will deliberately ignore obvious bad moves and their respective

replies to reduce the number of moves needed to evaluate.

With the rise of artificial intelligence and machine learning, recent years have also

seen the introduction of neural network chess engines [24]. Neural network engines train

by learning from previously played games, or by playing games against themselves. It

differs from traditional engines in the way how they search for the best possible moves.

2.5 CHESS ENGINES 18

In traditional engines, only the best possible moves are evaluated using an alpha-beta

(AB) minimax search [24]. In neural network engines, a more common approach is to

use the Monte Carlo tree search (MCTS). MCTS works on a principle where the best

move is selected based on probable outcomes of many play-outs.

2.5.1 Stockfish

Stockfish [25] is an open-source and widely considered the strongest traditional chess en-

gine available for use, finishing in first place in 8 out of the last 10 seasons of the Top

Chess Engine Championships (TCEC) and coming second in the other two. To paint a

picture of how strong Stockfish is, the average human player who knows how to play

chess is around 800 Elo. Elo is a type of rating measurement system that evaluates how

strong a player is, where with each win you gain Elo and with each loss you lose Elo, de-

pending on the strength of your opponent. The world’s best player at the time of writing,

Magnus Carlsen, is around 2850 Elo, and Stockfish is estimated to be over 3500 Elo. Like

any traditional chess engine, its main purpose is to evaluate the position of a chess board

given a position. It’s mostly used by people who want to analyze either their own games

or games played by other people. It assists strongly in understanding the strengths and

weaknesses of each position, suggests alternative moves, and provides deeper insights for

future moves. In over-the-board chess tournaments, players are encouraged and some-

times even required to record their moves by writing them down in algebraic notation

[26]. Algebraic notation is a form of reading and writing chess moves that is universally

understood. With the exception of the knight piece, which starts with the letter ’N’, each

move begins with the first letter of its name in the English language (e.g., rook = R, queen

= Q, etc.) followed by the square it moved to (e.g., e4). So for example, the first ten

moves of a match could be:

1. Nf3 Nf6 2. c4 g6 3. Nc3 Bg7 4. d4 O-O 5. Bf4 d5 6. Qb3 dxc4 7. Qxc4 c6 8. e4

Nbd7 9. Rd1 Nb6 10. Qc5 Bg4

2.5 CHESS ENGINES 19

Naturally, there are more rules and standards when it comes to the algebraic notation but

the main takeaway is that this way of notation can be used easily with a chess engine like

Stockfish to analyze the game move-by-move. Additionally, games that are played online

are usually recorded automatically and can easily be exported and analyzed immediately

after a game.

3 Hardware and Design

This chapter goes over the hardware components and experimental setup of the project. It

solely covers which components were used, how it was set up, and gives a brief descrip-

tion of the integration of each component. Then, an overview is given of the design of the

system. For a more detailed implementation explanation, see Chapter 4.

3.1 Hardware

3.1.1 Franka Emika Panda Robot Arm

As mentioned before in 2.2, the Franka Emika Panda Robot Arm is a 7-degree-of-freedom

with torque sensors at each joint. Having an approximate weight of 18 kg, it is possible

to handle weights up to 3 kg, which is more than sufficient for this system. Via the

franka_ros2 interface, which is a ROS 2 integration of the libfranka library, joint positions

and velocities of the arm can be retrieved. Then, using ROS 2’s MoveGroupInterface [27],

which is a part of MoveIt, enables the planning and executing joint and pose trajectories

with the arm. The main benefit of using MoveGroupInterface over directly controlling the

robot’s motors through joint positions and velocity controls is that with each desired move,

a plan is created. The plan checks whether the move is reachable and most importantly,

safe. For example, moves that violate the constraints of the joints or will lead to a joint

colliding with itself or nearby objects will not be allowed to execute.

3.1 HARDWARE 21

3.1.2 Design of an improved gripper

Normally, the robot arm comes equipped with a Franka Hand (see Figure 3.1). However,

due to the irregular widths, heights, and forms of the chess pieces, the usage of this

specific end effector is not reliable enough. For example, the tallest piece, the king, has a

height of 9 cm while the shortest piece, the pawn, has a height of 4 cm. Because in this

implementation no piece detection algorithm is used and the detection of the chessboard is

not always accurate (more on this in Section 4.1.2) it means that even a slight inaccuracy

in either the detection of the chessboard or the difference in height of the pieces can lead

to the arm completely missing the desired piece and hit an adjacent one instead, causing

the safety features of the arm to abort the program. Luckily, the end effector can easily

be adapted and re-calibrated using the Franka Desk by measuring the new minimum and

maximum widths of the gripper. Therefore, A new gripper design is made that serves as an

attachment for the Franka Hand. This new design is one where the fingertips are extended

and widened to accommodate the previously mentioned limitations. The main benefit of

this new attachment is that there is a bigger surface area, so even when the pieces are

not completely centered, the new attachment is able to grab the piece. Furthermore, the

attachment makes the vertical and horizontal area uniform and flat, which makes grabbing

the different-sized and shaped pieces easier. The 3D model and printed-out version of the

attachment are depicted in Figure 3.2

3.1.3 Camera system

The images retrieved for this project come from a RealSense D435 camera. It is a depth

camera using a stereo solution and comes with four imaging sensors. Meaning it uses a

left and right imager, and an IR projector to estimate depth with a resolution of 1280x720

up to 90 frames per second (fps). Furthermore, it comes with an RGB sensor that supports

a resolution of 1920x1080 up to 30 fps. For this thesis, the usage of the depth module is

unnecessary due to the usage of fiducial markers. Therefore, using any RGB camera that

3.1 HARDWARE 22

(a) Franka Hand (b) Schematics of the Franka Hand

(c) Fingertip (d) Schematics of the fingertip

Figure 3.1: Images of the Franka Hand and its schematics [28]

3.1 HARDWARE 23

(a) 3D Model of the attachment (b) Printed out model

Figure 3.2: 3D Model of the attachment and a real-life depiction of the model

supports resolutions equal to or higher than 1920x1080 should suffice. It is not recom-

mended to go lower than this resolution due to the fact that with lower-quality images, it

becomes more difficult for the fiducial markers to be detected properly. Thus, it hinders

the detection algorithm of the chessboard and the functionality of the robot.

3.1.4 Husky - Unmanned Ground Vehicle

In the experimental setup, the robot arm is situated on a Husky unmanned ground vehicle

(UGV). The Husky is a medium-sized, all-terrain, and rugged robot designed for devel-

opment in robotics. With a weight of around 50kg and a maximum payload of 75kg, it

can easily carry the robot arm, which weighs around 18kg. The husky with the robot arm

attached can be seen in Figure 3.3.

3.2 EXPERIMENTAL SETUP 24

Figure 3.3: The Husky UGV with the Franka Emika Panda Arm

3.2 Experimental setup

For this project, an experimental setup is created where the robot arm is mounted on the

husky, the chessboard is at a height of around the base of the robot arm, and the camera

is mounted roughly 2 m above the ground. This setup is depicted in Figure 5.1.

3.2.1 Chessboard

To facilitate accurate and reliable chessboard detection, four ArUco markers are strategi-

cally placed at each of the four corners of the chessboard. They form a frame of reference

for the camera detection system to be able to create the grid that is needed for getting

the coordinates of each of the squares of the chessboard. Each ArUco marker has a size

of 4x4 cm with a white border of 0.7 cm. The white border ensures that the inner bi-

3.2 EXPERIMENTAL SETUP 25

Figure 3.4: Chessboard with ArUco markers

nary codification of the marker is detected more reliably by providing a stark contrast

between the black outline of the marker and the inner codification. This, in turn, enables

the ArUco detection algorithm to more easily detect and identify the markers, leading to

a significantly improved effectiveness of the entire program.

Furthermore, next to the marker on the top-right of the chessboard in the camera

frame, another marker is placed. This marker’s purpose is for the detection algorithm to

determine where to put the captured pieces of the human player. Lastly, the chessboard is

situated roughly at the height of the base of the robot arm. The height of the chessboard

matching the base is merely coincidental and does not have a significant impact on the

functionality of the robot. However, if the chessboard is placed out of reach of the maxi-

mum limits of the arm, but still in the frame of the camera, the system will naturally not

be able to plan movements to the desired goals and thus fail to move.

3.2.2 Camera mount

As mentioned before, the camera is mounted roughly 2 meters above the ground on a

tripod. This decision is made based on the consideration that the robot arm that is mounted

3.2 EXPERIMENTAL SETUP 26

Figure 3.5: Camera mount

on the husky reaches a height of around 1.6 meters from the ground. So mounting the

camera above this point ensures that the chessboard and the arm are visible. Furthermore,

it guarantees that the marker on the arm (see Figure 3.7(c)) is visible when the arm is in

its Ready state. The Ready state is the state where the robot arm is programmed to move

to when waiting for a new command. This configuration allows for minimal obstruction

of all the markers needed by the detection algorithm but also maximizes their relative size

in the camera frame, making them more easily identifiable.

3.2.3 Robot Arm

The robot arm serves as the manipulator of the system, it moves the chess pieces that

are identified by square by the camera detection algorithm. By putting an ArUco marker

near the top of the arm, the detection algorithm is able to determine the position of the

arm in relation to the chessboard. This relation establishes an important link between the

3.2 EXPERIMENTAL SETUP 27

coordinates obtained from the camera and the internal transform tree of the robot arm.

Through this link, the system is able to move the arm to a desired goal identified by the

camera. Finally, attached to the end effector is the previously mentioned custom-designed

gripper (see Section 3.1.2) to enable a more secure and reliable grip on the pieces.

3.2.4 Unmanned Ground Vehicle

Placing the robot arm on the husky enables an otherwise stationary arm to be mobile.

Theoretically, this allows the system to play multiple chess games simultaneously over

multiple boards by moving the husky over to the board where another chessboard and

camera are set up. This way of playing multiple games at the same time is also known as

simultaneous chess or a simultaneous exhibition, which can be seen performed by masters

of the game to showcase their knowledge and memory. Not only that, manning the robot

arm on the UGV allows for future research in the field of mobile manipulation. For exam-

ple, the usage of the mobile manipulator in hazardous environments like a nuclear power

plant. These facilities often have dangerous levels of radiation, which pose a significant

risk to human workers. By deploying a mobile manipulator, the normally unsafe activities

can be performed with minimal risk by the robot.

3.3 DESIGN 28

Figure 3.6: System functionality pipeline, from retrieving the images to moving the arm.

(Icons courtesy of flaticons.com)

3.3 Design

This section will discuss how everything communicates and works together on a high

level. This section is especially important because it explains more generally how the

system functions, which is the base that is needed to understand the full implementation

details, which can be found in Chapter 4.

3.3.1 Flow of the system

Detection

Figure 3.6 showcases the general flow of the system that enables the system to commu-

nicate and function together. The process begins by retrieving the raw images from the

camera, which serve as input for the detection algorithm. The detection algorithm uses

these images in conjunction with the intrinsic parameters of the camera to accurately

identify and estimate the pose of the ArUco markers. The intrinsic parameters, such as

3.3 DESIGN 29

the focal length and the optical center of the camera, are pre-calibrated information about

the internal characteristics of the camera. Because each camera can have different focal

lengths or optical centers, it is important that the camera is calibrated. Otherwise, the pose

estimation of the ArUco markers becomes unreliable.

Once the ArUco markers are detected, the detection algorithm performs a warp trans-

form to convert the image into a 2D representation of the chessboard. This transformation

is made possible due to the strategically placed ArUco markers on each of the corners of

the chessboard. The warped image provides a top-down view of the chessboard, which

facilitates easier analysis. Using this new top-down view, an 8x8 grid is created by di-

viding the image. Because the warped image covers solely the chessboard, the 8x8 grid

can represent each square of the chessboard. Then, to determine the location of the chess

pieces, which for this project are assumed to be near the center of each square, the center

of each square is calculated. These center coordinates are then re-projected back to the

original image and into 3D space, using the intrinsic parameters of the camera.

Using these 3D re-projected points and the ArUco marker that is detected on the arm,

it is possible to create a link between the camera coordinate frame and the coordinate

frame of the arm using tf2. Subsequently, this link enables the detection algorithm to

transform the coordinates from the camera frame to the robot arm’s frame.

Chess Engine

The chess engine plays an important role in the system’s flow, especially when it comes

to determining the legality of the moves made by the human player and allowing the

game to progress. Depending on which player is making the next move, the flow of the

system differs slightly. If it’s the human player’s turn, the chess engine node sends a

message to the detection algorithm node, prompting it to capture the current frame of the

chessboard and save it. The player is then asked to make a move and input a keystroke

to back to the program. Once the move is made, another message is sent. This time, the

3.3 DESIGN 30

(a) Transformed image (b) Image with the center calculated

(c) Re-projection back to the original image

Figure 3.7: Before and after warp transformation and center calculation

3.3 DESIGN 31

detection algorithm captures the new frame and compares it to the previous frame. The

node then analyzes the differences between the frames and determines the squares that

have changed. These changes are then remapped back to the chessboard notation and fed

back to the chess engine, which will check the legality of the move. Naturally, a legal

move will be parsed and update the game state, while an illegal move will be ignored and

the user will then be prompted to make a new move.

If it is the robot’s turn, the chess engine does not have to send any message to the

detection algorithm, as the calculation of the next move is done internally within the

chess engine node. Because playing against a computer that is capable of calculating

moves up to a very deep depth with unbeatable accuracy is not fun, the design choice is

made to lower the overall difficulty of the program so that an average player could still

have a chance. However, adjusting the difficulty is very trivial and thus can be changed

easily accordingly to the player’s skill level.

Making the robot move

Once the next move calculated by the chess engine is completed, a custom message is

formed. This custom message encapsulates the type of the move (e.g., a normal move, a

capturing move, castling, etc.) followed by the squares that the robot needs to move to.

Then, the movement node generates desired arm trajectories for manipulating the given

chess squares. If the generation completes, meaning the trajectory is possible and within

the limitations of the joints, the robot is allowed to move and execute the trajectory and

manipulate the pieces. Once the movement trajectories are completed, the arm returns to

a Ready state, waiting for a new command.

4 Implementation

This chapter covers a detailed overview of the implementation of the system. Mainly,

it provides a more technical view of the components used in the project. Figure 4.1

showcases a fully integrated diagram of the system.

4.1 Calibration process

In this section, two different calibration processes are described: the calibration of the

camera sensor and the calibration of the chessboard offset from the base of the robot.

4.1.1 Calibration of the camera

As mentioned before in Section 2.4, camera calibration is a crucial step in ensuring ac-

curate detection of the ArUco markers. The camera’s intrinsic parameters and distor-

tion coefficients, which are obtained through the calibration process, remain fixed until

changes are made in the camera’s optics. This means that the calibration process only has

to be performed once. In order to calibrate the camera, a ChArUco board is utilized. A

ChArUco board is a printed grid that closely resembles a chessboard but with the white

squares populated by ArUco markers. In order to calibrate the camera to retrieve its in-

trinsic parameters and distortion coefficients, multiple frames of the ChArUco board have

to be captured at different angles [29]. Then, the built-in function of OpenCV, calibrate-

Camera() is used with the given images.

4.1 CALIBRATION PROCESS 33

Figure 4.1: Full diagram of the system. Each yellow box represents a node in ROS, each

dotted box is an integral part of the application of the node and the dotted lines represent

the flow.

4.1 CALIBRATION PROCESS 34

Figure 4.2: Example of a ChArUco board

4.2 IMAGE SEGMENTATION 35

The advantage of using a ChArUco board for camera calibration over a traditional

chessboard-like pattern or just ArUco markers is that the ChArUco board allows for par-

tial occlusions. This means that during the calibration process, it is not mandatory for all

corners of the markers to be visible at all times.

4.1.2 Calibration of the chessboard’s offset

Although the camera is calibrated using the ChArUco board and the pose detection of

ArUco markers is relatively accurate, the markers still suffer from ambiguity issues [30].

This means that regardless of calibration, there are some errors in the detection of the

markers. While this error margin is relatively small, in the context of this project it is

pretty significant. Because the chess pieces are positioned close to each other, these small

errors can cause the gripper to miss the piece or hit an adjacent one, causing the program

to engage its safety feature and abort the entire program.

To alleviate this problem, at the start of the program, a calibration process is done for

all the positions and orientations of the markers. Once the measuring is completed, the

median positions and orientation for each marker are saved. Then, the robot arm is tasked

to move to each corner of the chessboard. The user can then adjust the position and orien-

tation according to the error observed by the system. Once the chessboard is adjusted, the

calibration is complete. This manual calibration of the error and the chessboard’s offset

allows for the final setup to be more reliable.

4.2 Image Segmentation

In order for the chess engine to be able to respond to the player’s moves, accurate and

reliable move detection plays a crucial role in the system’s functionality. The primary

objective of the move detection algorithm is to identify the changes that occur on the

chessboard between consecutive frames. To achieve this, image segmentation is utilized.

4.2 IMAGE SEGMENTATION 36

Image segmentation is a computer vision technique that partitions a digital image into

multiple image segments. By partitioning the image into segments, it enables further

processing and analysis of the important aspects of the image, like color, contours, depth

features, etc.

The approach used in this work compares two consecutive frames captured by the

camera and analyzes the absolute difference between them. By analyzing the absolute

difference between these two frames, it is possible to identify the areas in which the

changes have occurred. Adding to this, because the analyzed frames include solely the

chessboard, the same technique described in Section 3.3.1 to divide the grid is used here

as well. The combination of analyzing the absolute differences and dividing the image

into an 8x8 grid allows the system to determine which chess squares have changed.

Naturally, relying solely on the technique of analyzing the absolute difference between

two consecutive frames is not reliable. While it does provide a straightforward measure-

ment of pixel-level changes between frames, it does not account for various factors that

may affect the detection accuracy. For example, changes in lighting conditions or the ac-

cidental movement of a chess piece that was not part of the final move. Therefore, several

checks were put into place to combat these limitations. In chess, a move can lead to the

following changes on the chessboard:

1. Two squares change: in the case of moving a piece without capturing another piece

and a piece capturing another piece.

2. Three squares change: in the case where a pawn captures another pawn through

en passant.

3. Four squares change: in the case where one side castles their king and rook.

Knowing these characteristics, at least two squares and at most four squares can

change at any given move. Therefore, any fewer or more changes can be discarded im-

mediately. Furthermore, the movement of a piece causes a relatively large change when

4.3 CHESS ENGINE 37

analyzing through absolute differences. Thus, another check is put in place where the

size of the detected change in the region of interest is compared to a threshold. If the size

does not exceed this threshold, the change is also discarded. Algorithm 1 showcases the

implementation of the image segmentation process.

Algorithm 1 Image segmentation algorithm
Require:

Two consecutive RGB images obtained by the camera: frame1 , frame2

Original image with coordinates of the divided grid

if receivedMessage then

Convert frame1, frame2 to grayscale

Blur frame1 and frame2

Get the absolute difference between frame1 and frame2: absDiff

Run a binary threshold on absDiff : threshImage

Find contours in threshImage

for contours = 1, . . . , N do

if contourSize ≥ threshold then

Add the corresponding chess square to changedSquares

end if

end for

Send changedSquares to chess engine

end if

4.3 Chess Engine

Determining the optimal move in the autonomous chess robot system is done by utiliz-

ing an existing chess engine named Stockfish, which has already been covered in detail

in Section 2.5.1. To reiterate, Stockfish is an open-source chess engine that uses sophis-

4.3 CHESS ENGINE 38

(a) Frame 1 (b) Frame 2

(c) Absolute difference (d) Threshold

(e) Merged (f) Grid division

Figure 4.3: Image segmentation process

4.3 CHESS ENGINE 39

ticated algorithms to evaluate chess positions and calculates the best position based on

chess principles and strategies.

The way Stockfish is integrated into this system is by utilizing its core functionality

of calculating optimal moves based on the current state of the board. As mentioned pre-

viously in 4.2, the player’s move is determined by way of image segmentation, and the

chess squares that correspond to the changes seen by the detection algorithm are fed to

the chess engine. For example: "33 35" (moving a pawn from squares ’e2’ to ’e4’).

Once the changes are fed to the chess engine, it parses the move by translating the

numerical values of the message to their corresponding alphanumeric name. It uses this

new alphanumeric value to determine whether the move made by the user is legal. If the

move is deemed to be illegal, it prompts the user to undo the move and make a new one.

If the move is legal, then the chess engine updates its own current state of the board and

generates a list of optimal moves. Then, a randomly chosen move out of the list is parsed

into a custom message, depending on what type of move Stockfish chooses, the message

is constructed in a different way:

• Moving a chess piece:"MOVE: startSquare endSquare"

• Capturing a piece: "CAPTURE: startSquare endSquare"

• En passant: "CAPTURE_EP: pawnCaptured pawnStart pawnEnd"

• Castling: "CASTLE: kingStart kingEnd rookStart rookEnd

The variable startSquare represents the chess square number corresponding to the current

position of the moving piece, while endSquare denotes the destination square of the piece

after the move. In cases where a pawn is involved in capturing, the variables pawnTo-

Capture, pawnToMoveStart, and pawnToMoveEnd are used to indicate the specific pawn

being captured, its initial position, and its final position as part of the capturing move,

respectively.

4.3 CHESS ENGINE 40

For castling moves, the variables kingStart, kingEnd, rookStart, and rookEnd are em-

ployed. These variables signify the starting and ending positions of the king and rook

pieces involved in the castling maneuver.

Using this custom protocol enables easy parsing of the type of move for the detec-

tion algorithm. This is necessary because each type of move requires a different set of

movements that are instructed to the robot arm.

Algorithm 2 Chess engine algorithm
Require:

Message received with the changed squares

if receivedMessage then

if message = empty then

Prompt user to make a (new) move

else

Parse the message into alphanumeric value: move_input

Check the legality of the move move_input

if move_input = legal then

Update chess board state

Generate a list of optimal moves: top_moves

Randomly choose a move out of top_moves: move

Construct and publish custom message using move

else

Prompt user to undo their move and make a new one

end if

end if

end if

4.4 ROBOT MOVEMENT AND COORDINATE TRANSFORMATION 41

4.4 Robot Movement and Coordinate Transformation

Moving the robot with respect to the camera’s coordinate frame is the final step of the

sequence. This section delves into the process of interpreting the message generated by

the detection algorithm and performing the necessary transformations to achieve accurate

movement of the arm.

4.4.1 Interpreting a custom message

In the previous section, a custom protocol was introduced. This custom protocol is used

by the detection algorithm and the movement node to be able to communicate with each

other. Different moves in chess require different sequences of movement. Therefore, it is

important that the message conveys the type of chess move so that the movement of the

arm can be planned and executed correctly.

For example, moving a piece requires just the movement of that specific piece from

one square to another, without other interaction of other pieces. Therefore, it is suffi-

cient to encapsulate the message with the starting square of the piece and the destination

square. However, in a more complicated move like capturing or castling, the sequence of

movements is more complex. In the case of capturing, the correct sequence would be to:

1. Pick up the piece that has to be captured.

2. Move the piece off the board to a discard pile.

3. Pick up the piece that did the capturing from its starting square.

4. Move the piece to captured piece’s original square.

and in the case of castling it would be:

1. Pick up the king from its starting square.

2. Move the king to the destination square.

4.4 ROBOT MOVEMENT AND COORDINATE TRANSFORMATION 42

3. Pick up the corresponding rook for the castling move.

4. Move the rook to the opposite side of the king.

Thus, depending on the move type, a specific set of movements have to be executed, and

using this custom protocol enables this possibility.

Algorithm 3 Parsing the custom message
Require: Custom message received

if receivedMessage then

if move_type = CALIB then

Start the calibration phase

else if move_type = MOV E then

Move piece from origin to destination

else if move_type = CAPTURE then

Capture piece: pieceToMoveSquare pieceToDiscardSquare discardP ile

else if move_type = CASTLE then

Castle: kingOrigin kingDestination rookOrigin rookDestination

else if move_type = CAPTURE_EP then

Capture: pieceToMoveSquare pieceToCaptureDestination discardP ile

pieceToCaptureOrigin

end if

end if

4.4.2 Transforming coordinates frames

Before being able to move the robot arm to pick up the chess pieces, it needs to know

where to move to in its own coordinate frame. Luckily, the franka_ros2 integration

keeps track of its own (joint) positions. This means that the robot at all times knows the

positions of each of the joints and their relation to each other. However, the positions of

4.4 ROBOT MOVEMENT AND COORDINATE TRANSFORMATION 43

Figure 4.4: All tf frames visualized in rViz

the chessboard’s squares retrieved from the detection algorithm do not reside in the robot

arm’s coordinate frame. Rather, they are part of the camera’s coordinate frame. Thus, a

link needs to be created between the camera’s coordinate frame and the robot’s coordinate

frame.

In order to achieve this, the usage of another ArUco marker is utilized. By strategi-

cally placing the marker in a fixed position next to one of the robot arm’s joints, a static

transform can be created between the ArUco marker and the joint in the robot arm’s coor-

dinate frame (The marker on the arm can be seen in Figure 3.7). Adding to this, because

the transform of the ArUco marker is linked to one of the joints, the marker is now also

part of the transform tree of the robot arm and therefore also shares a relation with all

other joints. This means that the relative position and orientation of the marker can now

be retrieved from every joint.

Furthermore, having this marker placed on the arm enables the detection algorithm

4.4 ROBOT MOVEMENT AND COORDINATE TRANSFORMATION 44

Figure 4.5: Hierarchy of interfaces used within the system

to identify the marker as well, but now in the camera’s coordinate frame. Now that the

position and orientation of the ArUco marker exist in both coordinate frames, a link be-

tween the two frames can be created. This allows for the system to transform positions

found in one coordinate frame to the other coordinate frame. For example, the detection

algorithm finds the coordinates of the squares that the robot needs to move to, but in its

own coordinate frame. Using this transformation link, the system is now also able to tell

the robot arm where those positions are in the robot’s coordinate frame. Figure 4.4 shows

all the tf frames visualized in rViz. Here, each of the joints of the Panda arm is showcased

alongside the frames for the ArUco markers and the camera.

4.4.3 Creating the movement interface

In this work, the MoveGroupInterface from the MoveIt library is used to manipulate the

robot arm. With this interface, before execution, the desired movement has to be planned.

4.4 ROBOT MOVEMENT AND COORDINATE TRANSFORMATION 45

The main benefit of this approach is that it disallows movements that are seemingly im-

possible to achieve by the robot arm. Thus, if the detection algorithm requests the robot

arm to move to a position outside of its reach, the planning phase for this movement fails

and in turn, does not get executed.

Furthermore, using the MoveGroupInterface also allows the imposing of (virtual) ob-

jects in the robot’s world frame, and also the addition of constraints to specific joints.

Adding objects to the robot’s world frame can simulate real-life objects that are in similar

positions. For instance, in this work, the robot arm is situated on the husky alongside an

aluminum frame that houses several sensors and computers. To avoid hitting this frame,

the sensors, or the computers, a virtual object can be added. This object is used to tell the

MoveGroupInterface to avoid planning a collision.

Adding constraints can be used to restrict the movement of a specific joint of the robot

arm. This can be useful in situations where it is unwise to move a specific joint past a

certain threshold. For example, to avoid hitting objects near that joint.

Building on top of the MoveGroupInterface, a generic robot arm movement interface

is created. The goal of this interface is to use the generic planning and execution func-

tions of the MoveGroupInterface in combination with the robot arm to allow the move-

ment of the arm. This in-between interface is specifically created with the idea to keep

it generic and thus further emphasizing the portability and re-usability of the system’s

individual components. However, as mentioned before, there are four different types of

moves within chess. Thus, the decision is made to create another interface that is specific

to chess-related moves. This chess-specific interface encapsulates all the different types

of movement sequences that are required.

Algorithm 4 showcases the picking and placing of one specific piece. All other types

of moves are based on this pick-and-place algorithm. In this algorithm, the origin and

destination locations of the piece and the current location of the gripper are required.

First, the robot is asked to move about 20 centimeters above the desired piece, followed

4.4 ROBOT MOVEMENT AND COORDINATE TRANSFORMATION 46

by moving the gripper down. The idea of first moving above the piece instead of going

in a straight line is to limit the possibility of knocking other pieces over during the trajec-

tory. Then, the piece is grabbed, moved up and to the desired square, moved down, and

released. Finally, the robot arm is told to return to the Ready position. The Ready posi-

tion is a pre-defined location for the arm to move to once it has completed a movement

sequence, allowing for the ArUco marker on the arm to be visible and further movements

to be planned.

Algorithm 4 Moving a piece
Require: Poses of origin square, destination square, and gripper: origin, dest, gripper

Ensure: p1 ... pn = completed before moving on to pn + 1

p1: Move above origin using gripper as start

p2: Move the remainder down

p3: Grab the piece

p4: Move up

p5: Move above dest

p6: Move the remainder down

p7: Release the piece

p8: Move to Ready position

5 Results

In this chapter, the results of the experimentation done with the autonomous chess robot

system will be presented. The performance of the system in terms of accuracy, speed, and

effectiveness of marker and move detection will be discussed. Additionally, the impact of

network speed on the overall performance of the system will also be explored. The aim

is to showcase the end results of the implementations alongside their limitations. Figure

5.1 shows the final setup of the system and lastly, to demonstrate the functionality of the

system, a time-lapsed full chess game was recorded and uploaded [31].

5.1 Performative evaluation

A big factor in whether the autonomous chess system can succeed is the accuracy of

the detection algorithm and the movement of the robot arm. As previously mentioned

in Section 4.1.2, the ArUco markers have an issue of ambiguity. In this work, it means

that the detection of the markers is not always reliable and accurate for the orientation.

Because the transformation of the coordinates from the camera’s frame to the robot arm’s

frame is reliant on the accurate detection of the orientation of the marker on the arm,

any inaccurate detection during the calibration of the markers can lead to undesired end

behavior of the system, where the system assumes the chessboard is at a different location

and orientation than it is in reality. Figure 5.2 showcases an example of correct and

incorrect orientation.

Furthermore, despite the correct detection and calibration of the orientation of the

5.1 PERFORMATIVE EVALUATION 48

Figure 5.1: Full setup

5.1 PERFORMATIVE EVALUATION 49

(a) Correct (b) Wrong

Figure 5.2: Correct and incorrect orientation of the marker on the arm

ArUco markers, the combination of error margins in marker detection, perspective trans-

form, and grid creation within the camera detection algorithm can introduce certain in-

accuracies. These inaccuracies exhibit variations in both direction and magnitude, which

are specific to each system restart. On average, these inaccuracies range around 0.75 cm

± 0.25 cm in any direction. Among these inaccuracies, the most problematic scenario

occurs when the y-direction of the gripper is affected. This is due to the horizontal space

between each chess piece being approximately 3 cm, while the width of the gripper when

fully open is around 6.5 cm. The gripper’s width is designed to accommodate the pieces

comfortably between its two fingers. Consequently, when there is a y-direction inaccuracy

of approximately 1 cm, the risk of the 3D-printed gripper’s lower part colliding with the

adjacent piece significantly increases. This poses a challenge to the accurate and precise

manipulation of the chess pieces. However, by utilizing the manual calibration sequence

done at the start of each system setup, the accuracy of the system can improve signifi-

cantly to the point where practically every move that is unhindered by other factors like

network issues, performs exceptionally well. This is due to the fact that the calibration

sequence saves the detected positions of the markers and keeps them as a static location.

5.1 PERFORMATIVE EVALUATION 50

Set Expected amount of moves Succeeded Failed Success rate (%) Comments

1 10 2 5 40% Joint limit reached after 7th move

2 10 0 1 0% Gripper hit chess piece on 1st move

3 10 2 4 33% Gripper hit chess piece on 6th move

4 10 1 1 50% Gripper hit chess piece on 2nd move

5 10 7 3 70%

6 10 10 0 100%

7 10 5 1 80% Robot state lost after 5th move

8 10 7 1 85.7% Robot state lost after 7th move

9 10 10 0 100%

10 10 2 1 66% Movement timed out after 3rd move

Table 5.1: Accuracy results of all ten sets performed

Thus, when the errors are accounted for, the detection of the markers and the movement

of the arm are consistently accurate.

Accuracy

To assess the accuracy of the arm movement and emphasize the significance of the cali-

bration sequence, a comparative experiment is conducted involving 10 sets of randomly

selected movements repeated 10 separate times on the system. The first 5 sets of move-

ments are performed without manually calibrating the chessboard, while the second set

of 5 is executed after a manual calibration process. The results of this experiment, as pre-

sented in Table 5.1, highlight the notable differences between the two scenarios. In each

set, 10 moves were expected to be completed. However, when the system fails for any

reason other than missing the piece (e.g., hitting an adjacent piece or the communication

timing out), the set ends and a new set begins.

As anticipated, the system that goes under manual calibration demonstrates better

performance compared to the non-calibrated system. However, it is important to note

that both systems showcase instances of both success and failure. In the case of the non-

calibrated system, despite its overall lack of accuracy in reaching some squares, certain

5.1 PERFORMATIVE EVALUATION 51

Type move Samples Min (s) Avg (s) Max (s)

Moving 50 21.99 24.04 27.31

Capturing 50 47.01 47.93 48.96

Capturing (en passant) 50 47.13 47.96 48.58

Castling 50 46.51 46.87 47.19

Table 5.2: Speed comparison per type move

squares display sufficient precision, enabling the robot to execute the intended moves.

Conversely, for the calibrated system, it is observed that instances of failure are pri-

marily attributed to a loss of robot state, where the system believes that a joint was at a

different position than it is. This phenomenon is potentially caused by the network card in

the workstation or network-related issues, which will be explored in detail in a subsequent

section.

Speed

Table 5.2 shows the minimum, average and maximum time taken per type of move. Mea-

surements are taken from 50 samples for each type of move to determine the time required

per move. For the experiments, the velocity and acceleration gain for the robot arm are

set to 20% of its maximum value. This is done to observe and monitor the movements

safely without risking damage to either the pieces, the chessboard, or the robot itself. The

decision is deliberately made not to increase the speed of the robot due to the likelihood

that the robot produces an error and causes the arm to make an unexpected movement. If

the speed is to be increased substantially, it can lead to a dangerous situation where the

arm would damage itself or its surroundings.

5.1 PERFORMATIVE EVALUATION 52

Moves made Correctly identified Incorrectly identified Percentage correct

Game 1 23 21 2 91.3%

Game 2 22 17 5 77.3%

Game 3 27 24 3 88.9%

Game 4 19 17 2 89.5%

Game 5 29 29 0 100%

Table 5.3: Move detection accuracy

Move detection

Table 5.3 shows the accuracy of the move detection algorithm over 5 full games of chess

that are played against the autonomous chess robot. The evaluation process involves com-

paring the detected moves with the actual move made by the human player. The number

of properly detected moves is used as a metric to assess the performance of the move

detection module. Notable things are that the incorrectly identified moves were mainly

caused by a white piece moving directly to another white square. In some situations,

the absolute difference in the comparison between the two frames does not yield a high

enough threshold for the algorithm to reliably conclude a move is made. Thus, prompt-

ing the user to make a new move. One possible explanation for this phenomenon is that

there is a high likelihood that the chess pieces are made from the same material as the

chessboard itself. Therefore, in certain lighting conditions where a distinct shadow is not

cast from the pieces to the chessboard, or the lighting is very uniform, the top-down view

of the camera might not be able to capture a distinct difference between the two frames.

Thus, causing the move detection algorithm to believe no move was made.

Importance of connectivity

During the experimentation for the results, a returning issue of the system is that the po-

sition of a seemingly random joint is not at the expected location. When this happens,

5.1 PERFORMATIVE EVALUATION 53

the franka_ros2 integration together with MoveIt prevents the arm from completing the

planned path for safety reasons. Because the manipulation and moving of a chess piece

are all planned out before the actual movement occurs, an error causing one part of the

plan to not execute results in the whole plan failing. The assumption is that the network

card used in the workstation PC does not fulfill the exact requirements of the system. This

is confirmed by running the communication and latency test provided as a benchmark by

Franka themselves. In this benchmark, 10000 robot states are requested by the worksta-

tion from the robot arm. It evaluates the number of robot states that are lost as well as the

minimum, average, and maximum control command success rate [32]. The results of this

test on the workstation PC give a warning, stating that the PC might not be suitable for use

with the FCI. Running this same benchmark on a different system with a more high-end

network card gives no warning. However, even on this workstation, the same reoccurring

issue of the joint positions remained. Thus, the causation of this error remains unknown

and could be caused by many different aspects like network congestion, connectivity to

the network, network cable, problems in the built-in library, or others.

5.2 COMPARATIVE EVALUATION 54

Name of the System Total manipulations made Successes Success Rate

Gambit 786 720 91.6%

WizardChess 80 64 80%

Developed System 696 657 94.4%

Table 5.4: Comparison between three autonomous chess systems

Name of the System Human move detection Successes Success Rate

WizardChess 40 35 87.5%

Developed System 120 108 90.0%

Table 5.5: Comparison between the human move detection

5.2 Comparative evaluation

This section aims to provide a comprehensive analysis and comparison of the results

obtained by the system at hand with two other autonomous chess robots. This comparison

allows for a deeper understanding of the performance of the system in relation to already

existing solutions. The two other chess robots, [33] and [34], selected for this evaluation

are chosen based on their similar objectives with move detection and piece manipulation.

The results of the evaluation can be seen in Table 5.4 and Table 5.5

Manipulation

In both [33] and [34] a distinction is made between a full move and the manipulations

needed. A full move, therefore, consists of multiple manipulations. In all three systems,

the manipulation mainly focuses on grasping a piece and dropping a piece at the right

place. As shown, the developed system in this thesis scores a slightly higher success rate

than the other two systems. The manipulations that are analyzed are based on a calibrated

final system, where the errors of the chessboard are accounted for.

5.2 COMPARATIVE EVALUATION 55

Human move detection

Regrettably, the Gambit chess system did not include any data on human move detection

and thus, only the WizardChess system is compared with the developed system here. The

developed system demonstrates a success rate of 90% over 120 total moves made, while

the WizardChess system achieves a success rate of 87.5% over 40 moves. Although

slightly lower than the developed system, the results still suggest that the other system’s

detection algorithm, which is based on a sixty-four magnetic reed switches along an X-Y

Cartesian board, is still capable and reliable for capturing the majority of human moves.

However, when comparing the two systems, it is noted that the vision-based detec-

tion algorithm used in this system is slightly superior to the other approach. This may be

attributed to the robustness of the image segmentation and grid creation algorithms imple-

mented in the system, which enable precise identification and analysis of the chessboard.

Having a high detection rate in an autonomous chess robot is crucial for the functionality

of the whole system and this approach showcases that a vision-based implementation for

human move detection can be reliable and robust.

6 Conclusion

Overall, this thesis has presented the development and implementation of an autonomous

chess robot system that utilizes a vision-based detection algorithm in combination with the

implementation of robotic arm manipulation using MoveIt. The system successfully inte-

grated and combined image processing, the design of an improved gripper, chess engine

integration, and movement control techniques to enable autonomous chess gameplay. To

prove its effectiveness, a performative and comparative analysis was done on the system

using measurements like accuracy, speed, and success rate of manipulation and human

move detection. In the end, the proposed system showcased a slightly higher success rate

in both the accuracy and human move detection than the two other autonomous chess

systems that were evaluated. To summarize:

• To identify and make the detection algorithm reliable, a camera calibration process

was done using a ChArUco board, which contains fiducial markers in the form of a

chessboard. The calibration sequence ensured that the intrinsic and extrinsic param-

eters of the camera used are retrieved which were necessary for an accurate pose

detection of the fiducial markers used. These fiducial markers are placed strategi-

cally on each of the four corners of the chessboard, on a table next to the chessboard,

and on the arm. The fiducial markers on the chessboard served for the detection al-

gorithm to be able to correctly warp the perspective of the camera and to create the

grid that was needed for imposing the coordinates required to tell the robot arm how

to move. The marker on the table next to the chessboard served as the identifier for

6.1 FUTURE WORK 57

the captured pieces to be placed, and the marker on the arm served as a crucial link

between the camera coordinate frame and the robot arm’s coordinate frame.

• A new gripper was designed to further enhance the grasping area of the robot’s

gripper to ensure a more reliable manipulation of the chess pieces.

• A generic movement interface was created for the Franka Emika Panda to enable the

movement of the arm. The decision was made to create a generic interface so that

the system could be reused in other applications than a chess robot. Specific chess-

related moves were then implemented on top of this interface to accommodate the

specific complex movements needed for playing chess.

• Stockfish, a chess engine, was utilized to check the legality of the human-made

moves and also to generate moves that the chess robot would play in response.

• To ensure the proper translation between coordinates captured by the camera and

the movement of the arm, the tf2 library from ROS2 was used.

• Lastly, experiments were done to prove the effectiveness of the system by measur-

ing its accuracy, speed, and detection rate over numerous tests. The results of these

tests were then compared to two other autonomous chess robots.

6.1 Future work

Although this implementation of an autonomous chess robot showcases great promise,

there are still several avenues for further exploration and improvement. Firstly, different

methods for the chessboard and piece recognition can be considered, like using Opti-

Track, UWB, or even machine-learning-based approaches. These technologies may pro-

vide more accurate and robust detection in certain scenarios.

Additionally, in this thesis, the exploration of simultaneous chess was not imple-

mented, where multiple chess games are played at the same time. With the robot arm

6.1 FUTURE WORK 58

situated on an unmanned ground vehicle, it is possible to dive deeper into the possibility

of adding multiple chessboards, all with different games, over a multitude of different

tables, and having the system be able to remember and play all the chess games at once.

Furthermore, the improvement of dynamic detection is something worthwhile to look

at. Currently, the system relies on a static calibration at the start of the program and

assumes this position for all other moves. Improving the dynamic detection may allow for

the capability of real-time changes in the chessboard or camera frame without disturbing

the core functionality of the system. This approach was considered at first for this thesis,

but due to the ambiguity issues of the fiducial markers, it was deemed too unreliable for

this implementation.

Then, due to safety issues and the unreliability of the arm, the maximum velocity and

acceleration were only set to 20% of the maximum value of the arm. This resulted in an

average of 24.04 to 47.96 seconds per move depending on the type of move. With the

improvement of the reliability of the arm, it could be considered to make the robot arm

move faster and thus, substantially reduce the time required per move.

Lastly, as mentioned many times in this thesis, the robot arm is situated on an un-

manned ground vehicle. With the creation of a generic movement interface for the robot

arm, further exploration could be done into mobile manipulators in other fields.

References

[1] C. S. Agency, About canadarm. [Online]. Available: https://www.asc-

csa.gc.ca/eng/canadarm/about.asp (visited on 03/08/2023).

[2] E. Tunstel, M. Maimone, A. Trebi-Ollennu, J. Yen, R. Petras, and R. Willson,

“Mars exploration rover mobility and robotic arm operational performance”, in

2005 IEEE International Conference on Systems, Man and Cybernetics, vol. 2,

Oct. 2005, 1807–1814 Vol. 2. DOI: 10.1109/ICSMC.2005.1571410.

[3] “Davinci surgical systems”. (), [Online]. Available: https://www.intuitive.

com/en-us/products-and-services/da-vinci/systems (visited

on 03/08/2023).

[4] Hiba Sekkat, Smail Tigani, Rachid Saadane, Abdellah Chehri, “Vision-based robotic

arm control algorithm using deep reinforcement learning for autonomous objects

grasping”, 2021.

[5] Ian Lenz, Honglak Lee, Ashutosh Saxena, “Deep learning for detecting robotic

grasps”, 2015.

[6] G. Du, K. Wang, S. Lian, and K. Zhao, “Vision-based robotic grasping from ob-

ject localization, object pose estimation to grasp estimation for parallel grippers: A

review”, Artificial Intelligence Review, vol. 54, no. 3, pp. 1677–1734, 2021.

https://www.asc-csa.gc.ca/eng/canadarm/about.asp
https://www.asc-csa.gc.ca/eng/canadarm/about.asp
https://doi.org/10.1109/ICSMC.2005.1571410
https://www.intuitive.com/en-us/products-and-services/da-vinci/systems
https://www.intuitive.com/en-us/products-and-services/da-vinci/systems

REFERENCES 60

[7] M. Intisar, M. M. Khan, M. R. Islam, and M. Masud, “Computer vision based

robotic arm controlled using interactive gui.”, Intelligent Automation & Soft Com-

puting, vol. 27, no. 2, 2021.

[8] G. Ranganathan, “An economical robotic armplaying chess using visual servoing”,

Journal of Innovative Image Processing (JIIP), vol. 2, no. 03, pp. 141–146, 2020.

[9] C. del Toro, C. Robles-Algarın, and O. Rodrıguez-Álvarez, “Design and construc-

tion of a cost-effective didactic robotic arm for playing chess, using an artificial

vision system”, Electronics, vol. 8, no. 10, p. 1154, 2019.

[10] C. Matuszek, B. Mayton, R. Aimi, et al., “Gambit: An autonomous chess-playing

robotic system”, in 2011 IEEE International Conference on Robotics and Automa-

tion, IEEE, 2011, pp. 4291–4297.

[11] G. O. Larregay, F. L. Pinna Gonzalez, L. O. Avila, and O. D. Moran, “Design

and implementation of a computer vision system for an autonomous chess-playing

robot”, 2018.

[12] D. Urting and Y. Berbers, “Marineblue: A low-cost chess robot.”, in Robotics and

Applications, 2003, pp. 76–81.

[13] “Configuring environment”. (), [Online]. Available: https://docs.ros.

org/en/foxy/Tutorials/Beginner-CLI-Tools/Configuring-

ROS2-Environment.html (visited on 01/24/2023).

[14] “What is ros?” (), [Online]. Available: https://ubuntu.com/robotics/

what-is-ros (visited on 01/26/2023).

[15] “Understanding nodes”. (), [Online]. Available: bit.ly/3XUyO8C (visited on

01/27/2023).

[16] “About tf2”. (), [Online]. Available: https://docs.ros.org/en/foxy/

Concepts/About-Tf2.html (visited on 03/15/2023).

https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Configuring-ROS2-Environment.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Configuring-ROS2-Environment.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Configuring-ROS2-Environment.html
https://ubuntu.com/robotics/what-is-ros
https://ubuntu.com/robotics/what-is-ros
bit.ly/3XUyO8C
https://docs.ros.org/en/foxy/Concepts/About-Tf2.html
https://docs.ros.org/en/foxy/Concepts/About-Tf2.html

REFERENCES 61

[17] “Moveit concepts”. (2023), [Online]. Available: https://moveit.ros.org/

documentation/concepts (visited on 01/26/2023).

[18] “Franka emika panda robot”. (), [Online]. Available: https://www.franka.

de/research#tool-set (visited on 03/08/2023).

[19] “Overview - franka control interface (fci) documentation”. (), [Online]. Available:

https://frankaemika.github.io/docs/overview.html (visited

on 02/01/2023).

[20] “Ros_control”. (), [Online]. Available: https://wiki.ros.org/ros_

control (visited on 03/08/2023).

[21] “Disabling cpu frequency scaling”. (), [Online]. Available: bit.ly/3JZoupX

(visited on 03/15/2023).

[22] “Tutorial: Aruco detection”. (), [Online]. Available: https://docs.opencv.

org/4.x/d5/dae/tutorial_aruco_detection.html (visited on

02/22/2023).

[23] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marın-Jiménez,

“Automatic generation and detection of highly reliable fiducial markers under oc-

clusion”, Pattern Recognition, vol. 47, no. 6, pp. 2280–2292, 2014.

[24] C. Team. “Computer chess engines: A quick guide”. (), [Online]. Available: https:

//www.chess.com/article/view/computer-chess-engines (vis-

ited on 03/16/2023).

[25] “Stockfish chess engine”. (), [Online]. Available: https://stockfishchess.

org/ (visited on 03/16/2023).

[26] “Algebraic notation in chess”. (), [Online]. Available: bit.ly/46QVVVq (visited

on 01/06/2023).

[27] “Moveit’s movegroupinterface”. (), [Online]. Available: bit.ly/3rpPKaK (vis-

ited on 02/03/2023).

https://moveit.ros.org/documentation/concepts
https://moveit.ros.org/documentation/concepts
https://www.franka.de/research#tool-set
https://www.franka.de/research#tool-set
https://frankaemika.github.io/docs/overview.html
https://wiki.ros.org/ros_control
https://wiki.ros.org/ros_control
bit.ly/3JZoupX
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://www.chess.com/article/view/computer-chess-engines
https://www.chess.com/article/view/computer-chess-engines
https://stockfishchess.org/
https://stockfishchess.org/
bit.ly/46QVVVq
bit.ly/3rpPKaK

REFERENCES 62

[28] “Franka hand manual”. (), [Online]. Available: https://download.franka.

de / documents / 220010 _ Product % 5C % 20Manual _ Franka % 5C %

20Hand_1.2_EN.pdf (visited on 06/12/2023).

[29] “Tutorial - aruco calibration”. (), [Online]. Available: https://docs.opencv.

org/4.x/da/d13/tutorial_aruco_calibration.html (visited on

06/12/2023).

[30] “Aruco ambiguity issue”. (), [Online]. Available: https://github.com/

opencv/opencv/issues/8813 (visited on 04/13/2023).

[31] “Chess demo”. (), [Online]. Available: https://youtu.be/cG6JGErOyXs.

[32] “Troubleshooting - franka control interface”. (2017), [Online]. Available: bit.

ly/3pMbzke.

[33] S. Sarker, “Wizard chess: An autonomous chess playing robot”, in 2015 IEEE In-

ternational WIE Conference on Electrical and Computer Engineering (WIECON-

ECE), 2015, pp. 475–478. DOI: 10.1109/WIECON-ECE.2015.7443971.

[34] C. Matuszek, B. Mayton, R. Aimi, et al., “Gambit: An autonomous chess-playing

robotic system”, in 2011 IEEE International Conference on Robotics and Automa-

tion, 2011, pp. 4291–4297. DOI: 10.1109/ICRA.2011.5980528.

https://download.franka.de/documents/220010_Product%5C%20Manual_Franka%5C%20Hand_1.2_EN.pdf
https://download.franka.de/documents/220010_Product%5C%20Manual_Franka%5C%20Hand_1.2_EN.pdf
https://download.franka.de/documents/220010_Product%5C%20Manual_Franka%5C%20Hand_1.2_EN.pdf
https://docs.opencv.org/4.x/da/d13/tutorial_aruco_calibration.html
https://docs.opencv.org/4.x/da/d13/tutorial_aruco_calibration.html
https://github.com/opencv/opencv/issues/8813
https://github.com/opencv/opencv/issues/8813
https://youtu.be/cG6JGErOyXs
bit.ly/3pMbzke
bit.ly/3pMbzke
https://doi.org/10.1109/WIECON-ECE.2015.7443971
https://doi.org/10.1109/ICRA.2011.5980528

	List Of Acronyms
	Introduction
	Significance and Motivation
	Related works and contribution
	Structure

	Background
	ROS
	tf2
	MoveIt

	Franka Emika Panda
	Franka Control Interface
	PREEMPT_RT

	Combining the Franka Emika Panda and ROS 2
	Camera and detection algorithms
	ArUco Markers
	Detection of ArUco Markers

	Chess engines
	Stockfish

	Hardware and Design
	Hardware
	Franka Emika Panda Robot Arm
	Design of an improved gripper
	Camera system
	Husky - Unmanned Ground Vehicle

	Experimental setup
	Chessboard
	Camera mount
	Robot Arm
	Unmanned Ground Vehicle

	Design
	Flow of the system

	Implementation
	Calibration process
	Calibration of the camera
	Calibration of the chessboard's offset

	Image Segmentation
	Chess Engine
	Robot Movement and Coordinate Transformation
	Interpreting a custom message
	Transforming coordinates frames
	Creating the movement interface

	Results
	Performative evaluation
	Comparative evaluation

	Conclusion
	Future work

	References

