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ABSTRACT

Maternal care encompasses health care services for pregnant women during preg-
nancy, childbirth, and the postpartum period. Maternity care providers aim to ensure
a healthy pregnancy, safe delivery, and smooth transition to motherhood. Traditional
maternal care is offered through regular check-ups by health care professionals.
In recent years, the emergence of Internet-of-Things (IoT)-based systems has trans-
formed the way health care services are provided. These systems offer low-cost ubiq-
uitous monitoring in everyday life settings and can be used for maternal monitoring.
However, IoT-based maternal monitoring systems lack a comprehensive approach in
maternal care because they are limited by sensing capabilities, specific health prob-
lems, and short periods of monitoring. Moreover, the use of IoT-based systems for
maternal health monitoring requires addressing critical quality attributes, such as fea-
sibility, energy efficiency, and reliability and validity of the collected physiological
parameters. Quality assessment methods also must be integrated with such systems
to discard the noisy part of collected parameters and improve the data quality. Fur-
thermore, long-term, continuous IoT-based maternal monitoring by collecting data
that was not traditionally available provides new opportunities, including analyzing
the trend of physiological parameters during pregnancy and postpartum, as well as
detecting maternal health issues.
This thesis presents an IoT-based maternal monitoring system and explores its po-
tential in maternal care. We evaluate the system’s feasibility, reliability, and energy
efficiency. We also discuss the practical challenges of implementing the system.
Then, we validate the heart rate (HR) and heart rate variability (HRV) parameters
that the system collects while the user is asleep and awake. In addition, we propose
a deep-learning-based method for quality assessment of HR and HRV parameters to
discard unreliable data and improve health decisions. We use the system to collect
data from 62 pregnant women during pregnancy and three-months postpartum. Then,
the reliable HR and HRV parameters are used to track the trends during pregnancy
and postpartum.
Finally, we investigate maternal loneliness as a major mental health problem. We
develop two predictive models to detect maternal loneliness during late pregnancy
and the postpartum period. The models use the objective health parameters passively
collected by the system and achieve high performance (weighted F1 scores > 0.87).

KEYWORDS: maternal health, heart rate variability, remote health monitoring,
loneliness, photoplethysmography, quality assessment, Internet of things
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TIIVISTELMÄ

Äitiysterveydenhuollon tavoitteena on varmistaa terve raskaus, turvallinen synnytys
ja sujuva siirtyminen äitiyteen. Perinteistä äitiysneuvontaa tarjotaan säännöllisten
tarkastuskäyntien avulla terveydenhuollon ammattilaisten toimesta.
Viime vuosina Internet of Things (IoT) -pohjaisten järjestelmien kehittyminen on
mahdollistanut terveydenhuoltopalvelujen tarjoamisen entistä monipuolisemmin.
Nämä järjestelmät mahdollistavat edullisen ja laaja-alaisen terveydenseurannan ajasta
ja paikasta riippumatta. Kuitenkin tällä hetkellä IoT-pohjaiset järjestelmät ovat hyvin
vähäisessä määrin käytössä äitiysterveydenhuollossa.
Tämä väitöskirja esittelee IoT-pohjaisen äitiyshuollon seurantajärjestelmän ja tutkii
sen tuomia mahdollisuuksia ennenkaikkea äitiysterveyshuollossa. Järjestelmän to-
teutettavuutta, luotettavuutta ja energiatehokkuutta analysoidaan sekä käsittellään
myös järjestelmän käyttöönoton käytännön haasteita. Järjestelmä kerää käyttäjän
sydämen sykkeen (HR) ja sydämen sykkeen vaihtelun (HRV), jotka järjestelmä kerää
käyttäjän ollessa unessa ja hereillä. Lisäksi esitellään syväoppimiseen perustuvaa
menetelmää kerätyn sydämen sykkeen ja sydämen sykkeen vaihtelun laadun arvioin-
tiin epäluotettavan ja mahdollisesti virheellisen datan poistamiseksi ja sitä kautta
järjestelmän luotettavuuden ja käytettävyyden parantamiseksi. Tässä tutkimuksessa
hyödynnettiin dataa joka on kerätty tutkimuksen aikana 62 raskaana olevalta naiselta
raskauden aikana sekä kolme kuukautta synnytyksen jälkeen.
Tässä väitöskirjassa tutkittaan myös äitiyden yksinäisyyttä merkittävänä mielenter-
veysongelmana. Työssä kehitettiin kaksi ennustemallia äitiyden yksinäisyyden havait-
semiseksi myöhäisraskauden ja synnytyksen jälkeisen ajanjakson aikana. Mallit
käyttävät järjestelmän passiivisesti keräämiä objektiivisia terveysparametreja ja saavut-
tavat korkean suorituskyvyn (painotetut F1-pisteet > 0,87).

AVAINSANAT: äitiysterveydenhuolto, sykevälivaihtelu, etäterveyden seuranta,
yksinäisyys, laadunarviointi, esineiden internet
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1 Introduction

Maternity care refers to the health care services provided to women during preg-
nancy, childbirth, and the postpartum period. This care plays a crucial role in en-
suring the health and well-being of both the mother and her fetus. Maternity care
providers aim to provide comprehensive and compassionate care to women during
this special time to ensure that pregnant women have a healthy pregnancy, a safe
delivery, and a smooth transition into motherhood. In addition, health complica-
tions during pregnancy, such as hypertension or gestational diabetes, may increase
the mother’s risk of corresponding health issues in the future [1; 2]. Therefore, ma-
ternity care is essential to ensure the best possible pregnancy outcome as well as
to promote health at the population level. Conventionally, maternal care is offered
through regular monitoring and check-ups by health care professionals.

In recent years, digital health and systems based on the Internet of things (IoT)
have transformed the way health care services are provided. IoT-based health moni-
toring services enable cost-effective, continuous health monitoring everywhere [3].
The monitoring systems can collect real-time data from a user and her or his envi-
ronment, transmit the data to remote servers, analyze the data, and provide feedback.
The effectiveness of IoT-based maternal monitoring systems in improving health out-
comes for pregnant women and their fetuses has been shown in several studies [4; 5].
IoT-based maternal-monitoring systems can also provide opportunities for a deeper
understanding of physiological changes during pregnancy by continuously collect-
ing data from pregnant women that are not traditionally available. At the same time,
such systems enable personalized monitoring and intervention based on the history of
collected data by using machine learning and artificial intelligence (AI) techniques.

The current works on IoT-based maternal monitoring are constrained by their
narrow focus on specific health problems, limited sensing capabilities, and short-
term monitoring during pregnancy [6; 7; 8; 9; 10]. Furthermore, the implementation
challenges of long-term IoT-based systems for maternal monitoring have not been
explored in research. Moreover, using IoT-based systems for maternal health moni-
toring necessitates addressing some essential quality attributes, including feasibility
and usability, energy efficiency, and reliability and validity of the collected physi-
ological parameters. These attributes are crucial for enhancing the user experience
and engagement of users with the system as well as for ensuring the accuracy of the
results in health care services [11; 12; 13; 14; 15; 16; 17]. In addition, the effec-
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tiveness of using such systems to gain a deeper understanding of normal trends in
physiological parameters and to predict or prevent health issues during pregnancy
and postpartum should be investigated. However, IoT-based maternal monitoring
systems lack continuous data collection during the pregnancy and postpartum peri-
ods that can be used to analyze trends and detect health issues.

1.1 IoT-Based Maternal Monitoring Opportunities and
Challenges

IoT-based maternal monitoring systems offer many opportunities and present several
challenges and requirements. One opportunity these systems offer is investigating
physiological trends during pregnancy and postpartum. A pregnant woman’s body
undergoes physiological changes to prepare for a fetus’s development and delivery
[18; 19]. These changes affect the mother’s health parameters. For example, sev-
eral studies have shown a decrease in the level of physical activity and an increase
in heart rate (HR) as pregnancy proceeds [9; 20; 21]. Sleep quality also decreases
from the second to the third trimester [22]. Although some physiological changes are
normal during pregnancy, they can also be a sign of disease or disorder. Therefore,
it is important to distinguish normal physiological changes during pregnancy from
abnormal changes that could be signs of disease or health issues [18]. The early de-
tection of disease or health complications during pregnancy provides the opportunity
to perform the proper intervention and help to improve the health and well-being
of the pregnant woman and her child. Although several studies have investigated
the trends of maternal physiological parameters, they are limited to short-term and
episodic data collection [21; 23; 24; 25]. An IoT-based maternal monitoring system
that acquires health data continuously during pregnancy and postpartum can offer
adequate trends of maternal physiological parameters.

Another opportunity of IoT-based maternal monitoring is detecting mental health
issues that usually remain undetected during pregnancy and that affect the mother
and baby’s future health. Pregnancy increases the risk of mental health issues such
as anxiety and depression [26]. In the United Kingdom, mental health issues dur-
ing pregnancy are one of the major causes of maternal death [27]. However, these
issues usually remain undetected because the symptoms are assumed to be due to
pregnancy-related changes [28]. Detecting these issues and providing appropriate
intervention will reduce the risk of further complications during the perinatal period.
The rich continuous data collected by a long-term IoT-based maternal monitoring
system can be used to develop predictive models for major health issues such as
maternal loneliness.

Although IoT-based systems offer many opportunities for maternal health care,
several requirements and challenges must be addressed to use these systems. IoT-
based maternal monitoring systems should be feasible for mothers to use despite

2
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the physiological changes during pregnancy and postpartum. The system requires
reliability and energy efficiency. Moreover, because the system aims to be used for
a long time, it should provide other quality attributes (e.g., a good user experience)
and motivate users for long-tern use. Considering the lack of long-term, IoT-based
maternal monitoring in the literature, it is necessary to design, develop, deploy, and
evaluate such a system and explore the challenges.

IoT-based monitoring systems use wearable devices to collect data continuously
in everyday life settings. Using wearable devices as a part of an IoT-based system
enables collecting and analyzing comprehensive health data and providing personal-
ized health care over an extended duration [11]. Therefore, wearable devices offer
a wide range of health care services that are not available in traditional health care
[29]. For example, wearable devices can detect health risk indicators such as falls or
worsening disease conditions for older people who live alone [30; 29]. However, the
devices are prone to noise, especially when used in everyday life activities, which can
result in low-quality data and subsequently invalid health parameters [31]. Therefore,
wearable devices should be validated before use in health care applications.

In addition, the accuracy of physiological trends and mental health detection
offered by IoT-based maternal monitoring systems highly depends on the accuracy
of the collected data. Low-quality data may result in false predictions or alarms.
Therefore, it is necessary to use quality assessment methods to discard unreliable
data and only use reliable data in the analysis.

1.2 Aims and Objectives
The thesis investigates IoT-based maternal monitoring to improve the maternal care
provided during pregnancy and postpartum. For this purpose, the first aim of the
thesis is to design and develop a continuous IoT-based maternal monitoring system
offering low-cost continuous monitoring during the perinatal period. Such a sys-
tem could improve current maternal health care by providing essential monitoring
services that traditionally could not be provided by maternity care. Then, health pa-
rameters, including HR and heart rate variability (HRV), collected by the system will
be validated to ensure accurate monitoring and decisions. The aim is also to assess
the quality of collected HR and HRV parameters to improve the quality of decisions
and feedback the system offers. In the next step, the presented system will be used to
collect data from pregnant women continuously during pregnancy and postpartum.
The data are expected to be used to understand the trends in HR and HRV parameters
during pregnancy and postpartum. This understanding enables us to discriminate be-
tween normal and abnormal changes, which can be a sign of health complications.
Finally, the presented system will be further developed to include predictive models
to detect maternal loneliness based on the data the system collects.

To summarize, the main research objectives of the thesis are as follow.
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• Research Objective I: Present, develop, and evaluate a continuous IoT-based
maternal health-monitoring system

• Research Objective II: Validate and assess the quality of HR and HRV pa-
rameters collected by the developed IoT-based monitoring system

• Research Objective III: Deploy the IoT-based system for collecting data from
pregnant women during pregnancy and 3 months postpartum

• Research Objective IV: Investigate the trends of HR and HRV parameters
during pregnancy and the postpartum period

• Research Objective V: Develop predictive models to detect maternal lone-
liness during pregnancy and the postpartum period based on data collected
passively by the monitoring system

1.3 Contributions
In summary, the contributions of this thesis are as follow:

• Develop, implement, and evaluate a continuous maternal monitoring sys-
tem and analyze the implementation challenges: The dissertation presents a
long-term maternal monitoring system to monitor mothers’ objective and sub-
jective health parameters continuously during pregnancy and postpartum. The
system provides several monitoring services (e.g., sleep, stress, and physical
activity monitoring), resulting in a holistic view of the mothers’ health con-
ditions. The system is evaluated considering user engagement, reliability of
collected data, and energy efficiency. Then, the challenges and practical issues
in implementing such systems are investigated.

• Investigating the validity of HR and HRV parameters collected by the
presented system: The dissertation investigates the accuracy of HR and HRV
parameters collected by the presented IoT-based maternal monitoring system
against the corresponding gold standard of electrocardiogram (ECG) signals.

• Proposing and implementing a deep learning-based PPG quality assess-
ment method based on HR and HRV parameters: We introduce a deep
learning-based photoplethysmogram (PPG) quality assessment method to de-
termine the quality of the PPG signals collected by our presented system based
on the desired HR and HRV parameters. The proposed method uses convolu-
tional neural network (CNN) architecture and outperformed the existing PPG
quality assessment methods.
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• Continuous long-term monitoring of physiological health parameters of
pregnant women in everyday settings: We used the developed IoT-based ma-
ternal monitoring system to collect data continuously from 62 pregnant women
during pregnancy and 3 months postpartum.

• Analyzing the trends of HR and HRV parameters during pregnancy and
the postpartum period: The dissertation noninvasively assessed the trends of
HR and HRV parameters during pregnancy and postpartum noninvasively. For
this purpose, the continuous data collected by the developed maternal mon-
itoring system were used. Then, reliable HR and HRV parameters were ex-
tracted. The hierarchical linear mixed models (HLM) were used to investigate
the trends of HR and HRV parameters during the second and third trimesters
as well as the postpartum period.

• Proposing predictive models for maternal loneliness detection using pas-
sive sensing: Two predictive machine-learning models were developed for
maternal loneliness detection during late pregnancy and postpartum. The mod-
els use the objective data collected passively by our presented IoT-based ma-
ternal monitoring system.The results show the promising performance of the
presented models. In addition, important physiological parameters that are
associated with maternal loneliness are investigated.

1.4 Thesis Organization
This thesis is based on five original publications that were published in international
peer-reviewed journals. All five papers resulted from collaborations with other re-
searchers. The thesis is article-based and organized into two main parts. Part 1 con-
sists of eight chapters and provides an overview of the research, and Part 2 contains
original publications.

Part 1 aims to provide a big picture of the research published in the original pub-
lication. Chapter 1 presents the introduction, research objectives, and contributions.
Chapter 2 outlines the background of the thesis. Chapter 3 describes the state-of-
the-art IoT-based maternal health-monitoring systems and our presented long-term
IoT-based maternal monitoring system. The presented system is used in the follow-
ing chapters as well. Chapter 4 shows the validity and accuracy of HR and HRV
parameters collected by the smartwatch used in our IoT-based maternal monitoring
system. This chapter first provides the validation of HR and HRV parameters col-
lected by the smartwatch against an ECG device. Then it introduces a deep learning-
based PPG-based quality assessment method to assess the quality of HR and HRV
parameters extracted from PPG signals. The PPG signals were collected by smart-
watch that used in our presented system in free-living conditions. Chapter 5 presents
the data collection from pregnant women using the presented IoT-based system in
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Chapter 3. Then, we analyze the changes in nighttime HR and HRV parameters dur-
ing pregnancy and postpartum. Chapter 6 explains two machine-learning methods
developed for detecting maternal loneliness during late pregnancy and postpartum
as a major mental health issue. The developed models use passively collected data
using the presented IoT-based system. Research conclusions and future directions
are presented in Chapter 7. Finally, Chapter 8 presents a summarized overview of
the original publications and the author’s contributions to each paper.

The second part of this thesis consists of five original publications. The attached
original publications support the research aspects presented in the first part of the
thesis. Paper I contributes to the content presented in Chapter 3. This paper presents
an IoT-based system for long-term remote maternal health monitoring and covers
Research Objective I. Paper II and Paper III correspond to the contents of Chapter 4.
These papers contribute to Research Objective II. Paper II validates the HR and HRV
parameters acquired by the smartwatch used in our presented system, and Paper III
introduces a deep learning-based PPG quality assessment method in everyday life
settings. Paper IV is in accordance with Chapter 5 and represents the HR and HRV
trends during pregnancy and postpartum and contributes to Research Objectives III
and IV. Finally, in Paper V, two machine-learning methods were developed to predict
loneliness and analyze physiological parameters that are associated with loneliness,
which is related to Chapter 6 and Research Objective V. An overview of the thesis
organization is illustrated in Figure 1.

Chapter 3

Research Objective I

Paper I

Chapter 4

Research Objective II

Paper II

Paper III

Chapter 5

Research Objectives III & IV

Chapter 6

Research Objective V

Paper IV Paper V

Figure 1. Overview of original publications, chapters, and research objectives of the thesis
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2 Preliminaries

This chapter briefly explains the essential concepts that have been used in the fol-
lowing chapters. First, IoT-based health-monitoring systems are described. Then,
the chapter outlines the cardiac activity measurement and HRV parameters that are
fundamental concepts in the following chapters.

2.1 Internet of Things-based Health-Monitoring Systems
The Internet of Things (IoT) is a network of physical and virtual objects or “things”
that interact with each other and a remote cloud server [32]. Each thing or object
in an IoT-based system is uniquely identifiable and has self-configuring capabilities,
and they can be integrated as an information network.

Advancements in wearable devices and activity trackers facilitate and increase
the use of IoT-based systems in health and well-being applications. The paradigm
enables ubiquitous monitoring everywhere continuously 24 hours everyday. In this
thesis, we presented an IoT-based maternal monitoring system which could contin-
uously monitor physical activity and sleep parameters. The system also collects 12
minutes of PPG signals every second hour to monitor heart activity due to battery-life
constraints of the wearable device. The PPG signals could provide an approximation
of changes in heart activity during the day.

IoT-based health-monitoring systems conventionally perform four main func-
tionalities: collecting health data using various data sources, transmitting data to
a cloud server, analyzing the data, and presenting the analyzed data [33; 34]. The
architecture of an IoT-based health-monitoring system based on the mentioned func-
tionalities consists of four layers and is represented in Figure 2:

1. Perception layer: The perception layer collects health data from the user
using various types of data sources such as wearable devices, smartphones, portable
devices, and background and demographic information.

2. Gateway layer: The gateway layer transmits the data collected in the percep-
tion layer to the cloud layer. The gateway can be a router or smartphone providing
the transmission functionality or can be a smart gateway [35] and provide more ad-
vanced functionalities such as local data analysis, data compression, and security.

3. Cloud layer: The cloud layer receives the data collected via data sources
in the perception layer using the gateway layer. The cloud layer enables the secure
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Figure 2. IoT-based health-monitoring architecture [34]

storage of the collected health data. Moreover, the cloud layer provides data anal-
ysis functionalities by incorporating AI, machine learning, and deep learning meth-
ods. As a result, the cloud layer provides personalized modeling, trend and anomaly
detection, and early detection of health issues. Moreover, the cloud layer allows
analyzed data to be visualized on the application layer.

4. Application layer: The application layer acts as an interface and facilitates
interaction with the IoT-based health monitoring system. This layer usually con-
sists of web and mobile applications to visualize and monitor the collected data and
communicate between caregivers and users. The mobile application enables users to
visually monitor their health data and gain awareness of their health. In addition, the
web application visualizes and models the users’ data for caregivers.

2.2 Cardiac Activity Measurement

Cardiac activity can be measured by various bio-signals. Bio-signals refer to sig-
nals that can be measured continuously from living organisms such as the human
body. Bio-signals represent the activities and nature of the corresponding physio-
logical process and can be in different forms, such as biochemical, electrical, and
physical [36]. Accurate measurement of cardiac activity is crucial for assessing car-
diovascular health and diagnosing various cardiac conditions. Several bio-signals,
including electrocardiogram (ECG), phonocardiogram (PCG), photoplethysmogram
(PPG), seismocardiogram (SCG), and gyrocardiogram (GCG), are employed to mon-
itor heart activity and extract related vital sign, contributing to the determination of
the health and well-being of individuals [36]. PCG represents a recording of the
sound signals generated by the heart [36]. SCG and GCG utilize accelerometers and
gyroscopes attached to the chest, typically positioned on top of the heart, to monitor
mechanical activity of the heart [37]. In this section, we will provide more detailed
explanations of ECG and PPG signals as they are used in subsequent chapters.
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2.2.1 Electrocardiogram

ECG is a conventional method for monitoring cardiovascular activity and related
health parameters, such as HR and HRV. ECG signals depict the electrical activity of
the heart and can be easily recorded by electrodes connected to the skin. This signal
is the most commonly used bio-signal and is used widely in clinical settings. Clinical
standard ECG measurement uses four electrode attached to the chest and limbs [36].
ECG considered as gold standard for collecting heart-related vital sign, This recog-
nition is primarily attributed to the simplicity and readily identifiable wave-forms
present in the ECG signals. Numerous studies have firmly established clinical ECG
as a standard procedure.

Additionally, ECG signals can be used to detect cardiovascular diseases and ab-
normalities because these diseases affect the shape of ECG signals [36]. However,
this method cannot be used for long-term health monitoring due to complicated stan-
dard ECG setup, which needs four ECG electrodes be attached to the limbs or chest
of the user. This may limits the user ability to engage in their daily activity. Fur-
thermore, loose or misplaced electrode connections can compromise the quality of
collected ECG signals.

Figure 3 depicts a 1-minutes cardiac template of ECG signals along with the
first 5 seconds of the signals. The ECG template maps all the cardiac cycles of the
ECG signal to one chart, therefore the abnormalities in the cardiac cycles can be
easily identified. The ECG template in Figure 3 shows that the cardiac cycles in a
normal ECG signal are aligned and similar. Additionally, in the five-minute signal
aslo shown that cardiac cycles have similar waveform. Figure 4 shows the 1-minute
template of an ECG sample of atrial fibrillation, along with the first 5 seconds of
corresponding ECG signals. As shown in the ECG template in Figure 4, the cardiac
cycles are different, and the alteration in the ECG signal are readily apparent. More-
over, the different shapes of cardiac cycles are noticeable in the first five seconds of
the corresponding signal.
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Figure 3. Template of 1-minute normal ECG signal and the first 5 seconds of the signal
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Figure 4. Template of 1-minute ECG signal with Atrial fibrillation and the first 5 seconds of the
signal

2.2.2 Photoplethysmogram

Photoplethysmography is an optical method used to monitor heart activity. This
method measures the volumetric variation of blood flow using a light emitter and
light detector. The method is enabled by emitting light to the skin and measuring
the light absorption using a light detector [38; 39]. The PPG sensors can easily be
placed on the finger or wrist and are used widely in various wearable devices for HR
and HRV monitoring. PPG signals can also be used to extract respiration rate and
oxygen saturation.

The PPG method is an easy-to-implement, inexpensive, energy efficient and con-
venient method that is widely used in both clinical and commercial devices [15].
PPG-based wearable devices can be used in remote health monitoring system and in
every day settings. However, PPG method is highly susceptible to motion artifacts
and environmental noise, which are inevitable in everyday life setting. For instance,
the light sensors might be exposed by environment light sources, or motion artifact
affect the signals when users are involved in various daily activities while using the
PPG-based wearable devices. A 5-second sample of filtered PPG signals is shown in
Figure 5.
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Figure 5. A 5-second sample of filtered PPG signal
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Table 1. HRV parameters with definitions [51]

Variable Units Description
AVNN ms Average of NNIs

RMSSD ms
The square root of the mean of the sum of the
squares of differences between adjacent NNIs

SDNN ms Standard deviation of all NNIs
LF ms2 Power in the low-frequency range (0.04–0.15 Hz)
HF ms2 Power in the high-frequency range (0.15–0.4 Hz)
LF/HF - LF to HF ratio

2.3 Heart Rate Variability

HRV shows the variation in the time interval between successive heartbeats and re-
flects alterations in the regulation of the autonomic nervous system (ANS) [40; 41].
Studies have shown that HRV is associated with stress level, sleep quality, and pain
intensity [42; 43; 44; 45; 46], and changes in HRV can be a sign of health issues such
as anxiety [47], preeclampsia [48], and hypertension [49].

HRV parameters are extracted based on interbeat intervals (IBIs), defined as the
interval between two consecutive heartbeats. IBIs will be processed further to re-
move abnormal IBIs based on the human HR range, which results in normal interbeat
intervals (NNIs). The time-domain HRV parameters show the NNIs variations in the
time domain, and the frequency-domain HRV parameters show the NNIs variations
in different frequency ranges. Time-domain and frequency-domain HRV parameters
used in this dissertation and their definitions are explained in Table 1. Root mean
square of the successive differences (RMSSD) reflects the vagal changes. Standard
deviation of NNIs (SDNN) during rest is associated with the fluctuations in respira-
tory sinus arrhythmia modulated by the parasympathetic nervous system. and is an
indicator of stress resilience. Power in the low-frequency range (LF) is affected by
the activity of both parasympathetic and sympathetic systems, whereas power in the
high-frequency range (HF) is mainly affected by the parasympathetic nervous system
[40]. LF and HF are correlated with mental stress [42]. LF/HF shows the LF to HF
ratio and is associated with psychological stress. Moreover, studies have shown that
stressful conditions affect average NNIs (AVNN), RMSSD, HF, and LF/HF [42; 50].

Wearable devices provide opportunities for low-cost continuous monitoring of
physiological health parameters, including HR and HRV parameters. The devices
mostly implement PPG sensors for HR and HRV monitoring. As described in Sec-
tion 2.2.2, PPG is a noninvasive optical method that measures changes in blood flow
volume. PPG signals are then used to extract pulse rate variability (PRV), which rep-
resents the variation of peak-to-peak intervals. PRV is widely used as a substitute for
HRV and can be used to extract HRV parameters such as AVNN, SDNN, RMSSD,
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PNN50, LF, and HF. Many studies have evaluated the agreement between PRV and
HRV. Few studies have indicated the difference between PRV and HRV in specific
situations such as cold exposure [52; 53]. However, even these studies claim that
HRV is the primary determinant of PRV. Moreover, authors in [51] showed that HRV
parameters could reliably be estimated by PPG signals with sufficient confidence.
Here, we also used HRV for PRV derived from PPG signals.

HRV parameters can be extracted from segments of IBIs with different lengths.
Based on the literature, three standards for HRV analysis exist [40; 54; 55]:

• Long-term HRV analysis: This method is the gold standard for clinical HRV
analysis and uses 24-hour recordings to extract HRV parameters.

• Short-term HRV analysis: This standard uses 5-minute recordings to extract
HRV parameters.

• Ultrashort-term HRV analysis: This method uses less-than-5-minute record-
ings to extract some of the HRV parameters.

In this thesis, the short-term HRV analysis was used to extract HRV parame-
ters. This standard was selected based on the battery life of the wearable device and
collected data in the case studies.
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3 IoT-Based Maternal Health Monitoring

In this chapter, we present a long-term IoT-based remote maternal monitoring sys-
tem. The system continuously monitors maternal stress, sleep, and physical activity,
and it can be extended to include other parameters such as diet. The system collects
subjective and objective data using various data sources, and it stores and analyzes
the data remotely on a cloud server. The data can then be visualized through web and
mobile applications. We evaluate the performance of the system in terms of feasibil-
ity, reliability, and energy consumption. We also discuss the practical challenges in
developing such systems.

3.1 Related Works
Many studies provide remote maternal-health monitoring that aims to improve ma-
ternal health. Some studies have used periodic measurements of health parameters
such as blood pressure, weight, and blood glucose to investigate specific issues such
as hypertension [6] and diabetes [56]. Other studies have used mobile applications
with periodic health parameter measurements to predict the risk of health issues such
as hypertension [57] and preterm birth [5].

Studies have also used wearable devices to collect health parameters continu-
ously from pregnant women. Lopez et al. [58] used a wristband to monitor HR,
sleep, and activity for 3 months. They used the collected data to monitor hyperten-
sion. Another study [8] presented a personalized sleep quality assessment method
using an IoT-based monitoring system. The system used a wristband to collect HR,
sleep, and physical activity. Kumar et al. [4] proposed a general architecture for
IoT-based maternal-monitoring systems.

These studies are limited as they only consider specific health issues in a short
time and use limited data sources. Thus, a long-term, IoT-based maternal monitoring
system is needed to provide continuous monitoring of health parameters and enable
a better understanding of normal and abnormal changes during pregnancy. Such a
system would improve the well-being of pregnant women by providing a holistic
view of their health and identifying the risk factors.

In the following, we first discuss the monitoring services that are essential for
maternal monitoring. Next, we introduce our presented IoT-based maternal health
system. Then, we evaluate the quality attributes of the system, including feasibility,
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reliability, and battery life. Finally, we discuss the practical challenges of this system.

3.2 Maternal Health Monitoring Services
This section highlights the importance of extended maternity care services, such as
physical activity monitoring, sleep monitoring, and stress monitoring, which could
be provided through IoT-based systems for remote maternal health monitoring.

• Physical activity monitoring: Physical activity is a key factor in well-being.
Physical activity normally decreases during the course of pregnancy [59; 9].
However, a decrease in physical activity during pregnancy increases the risks
of obstetric complications [60]. Continuous objective monitoring of physi-
cal activity provides accurate and detailed information for both health care
providers and pregnant women to improve counseling and to be alert to the
risks at an early stage.

• Sleep monitoring: Sleep disorders are common during pregnancy, especially
during the third trimester [61]. In addition, sleep disorders can increase the
risk of gestational hyperglycemia [62], preterm birth [63], and mood disorders
[64]. Continuous sleep monitoring will enable a deeper understanding of in-
dividual sleep parameters. As a result, health care providers can better help
a pregnant woman to have a healthy circadian rhythm, which also results in
better weight management [65].

• Stress monitoring: Pregnant women can experience more stress compared to
nonpregnant women due to pregnancy. For example, physiological changes,
pregnancy-related symptoms, and the fetus’s health can be sources of stress
during pregnancy. A high maternal stress level is associated with a higher risk
of depression, hypertensive disorders, and preterm birth, to name a few [66;
67]. Therefore, continuous stress monitoring during pregnancy will provide
the possibility to detect high-stress levels early and better enable health care
providers to consult with and support highly stressed pregnant women.

3.3 Presented Long-term IoT-Based Maternal Health
Monitoring System

In this section, we present our long-term, IoT-based maternal monitoring system.
This system continuously collects subjective and objective health data from preg-
nant women and provides a holistic view of their well-being. Figure 6 indicates
an overview of the presented system, which consists of four layers: perception layer,
gateway layer, cloud layer, and application layer. The data are collected using various
data sources in the perception layer. Then, collected data are transferred to the cloud
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Figure 6. An overview of the presented IoT-based maternal health monitoring system [34]

server using the gateway layer. Next, the data are stored and analyzed within the
cloud layer. Finally, the application layer presents the data to the users and provides
communication functionalities between users and caregivers and/or researchers. In
the following, we briefly describe these four layers in our implemented system.

3.3.1 Perception Layer

The perception layer collects data from various data sources including wearable de-
vices, smartphones, portable devices for periodic monitoring, and background and
demographic information. In our system, the data sources consist of a smartwatch,
a customized cross-platform mobile application, a blood pressure device, and back-
ground information.

Wearable Devices

We used the Samsung Gear Sport smartwatch [68] as a wearable device in the mon-
itoring system. The smartwatch was selected based on its sensors, configurability,
and providing access to raw signals. It also has an inertial measurement unit (IMU),
acceptable battery life, weight, and internal memory.

The watch has PPG, accelerometer, and gyroscope sensors that can be utilized
to extract HR, HRV, physical activity, and sleep parameters. The watch uses the
sensors and continuously collects HR, physical activity, and sleep parameters. The
smartwatch processes the collected signals and provides step counts, walking steps,
running steps, distance, activity duration, and activity intensity per 10 minutes. The
watch also provides duration, start and end of the sleep, and intensity of hand move-
ment during sleep. Moreover, HRV parameters as an indicator of stress can be ex-
tracted using raw PPG signals.

In addition, the watch runs the Tizen operating system (OS) [69]. Tizen OS is an
open-source OS used in various wearable devices [70] and enables the development
of customized data collection applications. In the presented maternal monitoring
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system, we developed several programs for 12 minutes PPG signals collection every
second hour and acquire daily activity and sleep data supplied by the watch. The
collected data were stored in the smartwatch’s internal memory. We developed an
application for compressing and sending the data to the cloud server using a Wi-Fi
connection. After successfully transferring the data to the server, the application
removes the data from the internal watch memory. The smartwatch has sufficient
memory to store data for more than a month. We asked the participants to wear the
watch continuously and upload the data to the cloud server frequently.

Smartphone

Smartphone can be used to collect self-report and sensor data. In our system, we
developed a customized cross-platform mobile application for smartphones to col-
lect self-report data by providing questionnaires on daily, weekly, and specific time
and random bases. (See Appendix A: questions provided by the mobile application
for more details). The mobile application includes components for users to send
health data (e.g., blood pressure) or report technical problems, or for caregivers or
researchers to send push notifications, as well as for authentication and authorization.
We developed the customized mobile application with Angular 2 [71] and Cordova
[72] open-source frameworks.

Portable Devices

Portable devices can be used to measure physiological parameters periodically. In
our monitoring system, each participant was provided with an OMRON M3 Intel-
lisense blood pressure device [73] and was asked to measure their blood pressure
at least once a week. The device is clinically validated, and even nonexpert users
can measure blood pressure accurately due to the 360-degree accuracy feature of the
cuff [74]. Moreover, a nurse researcher instructed the participants to use the blood
pressure device properly in a face-to-face meeting. The blood pressure values were
manually entered into our customized mobile application’s blood pressure measure-
ment component and sent to the cloud.

Background Information

Background information (age, previous miscarriage, weight before pregnancy, etc.)
can help to assess the risk of pregnancy complications. We collected background in-
formation by sending a questionnaire via our mobile application to the participants at
the beginning of the study. The questionnaire considers the history of previous preg-
nancies, diagnosed diseases, risk factors in the current pregnancy, lifestyle before
and during the pregnancy, and stress level.
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3.3.2 Gateway Layer

Two types of gateway devices (i.e., smartphone and Wi-Fi router) can be used in
the monitoring system to transmit data to the cloud layer. Our customized mobile
application uses the Internet connectivity of the smartphone to transfer the data to
our cloud server. In addition, the smartwatch connects to the Internet through a Wi-
Fi router to send the data.

3.3.3 Cloud Layer

The cloud server consists of user management, data management, and data analysis
modules. The user management module is responsible for creating and modifying
user accounts with different levels of authorization, creating and modifying question-
naires, creating and modifying various groups of users with specified question sets,
and scheduling questionnaires and notifications.

The data management module is responsible for receiving, basic validating, and
storing the received data. This module uses the functionality of the user management
module for authentication upon receiving the data from the smartwatch or the cross-
platform mobile application. Then, the data management module checks whether the
received data are corrupted. If necessary, the user will be notified to upload the data
again. For privacy concerns, no personal data are sent to or stored in the cloud server.

The data analysis module is responsible for preprocessing, analyzing, and mod-
eling the collected data and providing monitoring services. The monitoring services
provided by the data analysis module are stress monitoring, sleep monitoring, and
physical activity monitoring. This module can also be extended to provide other
monitoring services, such as diet monitoring.

Stress monitoring is performed by HR and HRV monitoring using PPG signals
collected from the smartwatch (see Section 2.3 for more details). Studies have shown
the correlation of several HRV parameters with different types of stress [42; 50].
Based on their results, stress is associated with AVNN, RMSSD, SDNN, LF, HF, and
LF/HF HRV parameters [42; 50]. Stress-monitoring services in this system provide
monitoring of HR and the aforementioned HRV parameters.

The sleep monitoring service uses the sleep events, hand movements, and phys-
ical activity events collected by the watch to extract sleep parameters such as to-
tal sleep time, sleep fragmentation, and wake after sleep onset, as described by
Mehrabadi et al. [75].

The physical activity monitoring service uses the activity data provided by the
watch along with wear-time data to extract physical activity parameters and time
spent being sedentary. To provide these monitoring services, the data analysis pipeline
used in this module comprised several steps as shown in Figure 7.

• Preprocessing: In the preprocessing step, unreliable data are detected and re-
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Figure 7. Data analysis pipeline in the presented IoT-based maternal monitoring system [34]

moved from processing. The data are collected in everyday life settings and are
prone to noise. Assessing the quality of the collected data improves the accu-
racy of decisions made based on the data. We used simple rule-based methods
for physical activity and sleep data [75] as well as deep-learning-based PPG
quality assessment [76] for PPG signals. The PPG quality assessment method
is described in detail in Chapter 4.

• Parameter extraction: This step uses reliable data from the previous step to
extract HR, HRV, sleep, and physical activity parameters.

• Missing-data imputation: The proposed missing-data imputation methods
by Azimi et al. [77] were used to fill in the missing values in the data.

• Modeling: In this step, machine-learning methods were used to detect anoma-
lies, find trends in the data, and create personalized modeling using methods
previously proposed by our research group [8; 78].

The server was implemented using Apache 2 [79], the Flask framework [80],
and MongoDB [81]. Apache 2 is an efficient, extensible, open-source server that
is widely used. Flask is a scalable and flexible open-source framework in Python.
In addition, MongoDB is a NoSQL flexible database that we used to store various
types of collected data. We also used the Secure Sockets Layer (SSL) Application
Programming Interface (API) to enhance the security of communication.

3.3.4 Application Layer

A web application was developed to visualize the data collected from participants.
The application provides monitoring functionalities for researchers to follow partici-
pants’ health parameters. The web application provides various reporting tools (e.g.,
daily and weekly trends and participants’ answers to the questionnaires). As with our
mobile application, the web application was implemented in Angular 2 [71]. This
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approach allows the same component to be used in both applications and decreases
the implementation overhead.

3.4 Data collection
The presented IoT-based maternal monitoring system was investigated and evalu-
ated in a longitudinal study on high-risk pregnant women. Pregnant women were
asked to wear a smartwatch programmed to continuously collect sleep and physi-
cal activity and 12 minutes of PPG signals every other hour. Moreover, participants
were asked to install our cross-platform mobile application on their smartphones
(Android or iOS). The mobile application provides a questionnaire that includes 2-
3 questions daily about the participants’ subjective mental and physical parameters.
(Daily questions can be found in Appendix A). The mobile application also provides
a component for participants to enter their blood pressure measurements and send
them to our server. A blood pressure measurement device was also provided for each
participant, and they were asked to measure their blood pressure and enter it into the
mobile application at least once a week.

Participants and Recruitment: We recruited 32 pregnant women with single-
ton pregnancies and previous preterm births (gestational weeks 22–36) or late mis-
carriages (gestational weeks 12–21) through advertisements in social media and ma-
ternity clinics. The participants were in early pregnancy (12–15 gestational weeks),
were older than 18 years, and were able to understand Finnish. The recruitment
happened in January-December 2019 in Southwest Finland.

The eligible pregnant participants attended a face-to-face meeting with the re-
searcher, where the study’s objectives were explained, and written consent was ob-
tained. Each participant received a smartwatch and a blood pressure device, along
with instructions on proper usage. The researcher also guided participants on in-
stalling our custom app on their phones. The participants agreed to participate in the
study from gestational weeks 12–15 to 3 months postpartum. Four women withdrew
from the study, resulting in a total of 28 participants who successfully completed the
study. This study was later extended by recruiting another group of pregnant women
with low-risk pregnancies. We used the data from the initially recruited group to
evaluate the system.

Research Ethics: This study received ethics approval from the Ethics Com-
mittee of the Hospital District of Southwest Finland (Dnro: 1/1801/2018). Written
informed consent was obtained from all participants.

3.5 System Evaluation
We evaluated the presented IoT-based maternal monitoring system by implementing
the system for recruited high-risk pregnant women. The evaluation considered the
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feasibility, reliability, and energy consumption of the presented system. We also
discuss the practical issues in the development of the system.

3.5.1 Feasibility

We investigated the feasibility of the presented maternal monitoring system in terms
of the wear-time of the smartwatch and the use of our customized mobile application
during pregnancy and postpartum.

Wearable Device Usage

Figure 8 depicts the average daily wear-time of the smartwatch during pregnancy
and postpartum. As shown in Figure 8, the participants used the watches around
18 hours/day in the first weeks after recruitment and the time decreased during the
course of pregnancy to around 15.5 hours/day. After the delivery, the average daily
wear-time was less than the wear-time during pregnancy. The wear-time during the
postpartum period began at 11 hours, then increased after the first weeks, reach-
ing 14.5 hours at the end of the study. In this study, the average wear-time during
pregnancy and the postpartum period was 17.01±4.20 hours/day and 13.72±5.71
hours/day, respectively.
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Figure 8. Average wear-time of the 28 high-risk pregnant women during pregnancy and
postpartum [34]

It should be noted that several technical and practical issues affected the wear-
time during the study, such as hospitalization during pregnancy, preterm births, hos-
pitalization of the newborn baby after delivery, work-related restrictions regarding
wearing the device, and technical issues in the server for a few days.

The results show the feasibility of using the wearable device in this system during
pregnancy and the postpartum period. Our findings align with [12], showing the
average wear-time of 17.3 hours/day during pregnancy and 14.4 hours/day during
1 month postpartum. However, our results are slightly lower compared with this
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work, which could have resulted from hospitalization and pregnancy complications
because our participants had high-risk pregnancies.

Cross-Platform Mobile Application Usage

This section investigates the usage of our cross-platform application in terms of an-
swering daily questions and uploading blood pressure measurements using the appli-
cation. Figures 9 and 10 show the average responses to daily questions and average
weekly blood pressure measurements during the study, respectively. As shown in
Figure 9, the question response rate of the questions began at 70% and slightly de-
creased during the pregnancy. During postpartum, the response rate was less than it
was during pregnancy. It began at around 50% after delivery and increased between
the second and fourth week postpartum, and then decreased until week 10 and again
slightly increased. In total, participants replied to 5493 daily questionnaires. Of the
replies, 3879 were during pregnancy and 1614 were after the delivery. The average
mobile application usage in terms of the response rate was 67.5% in pregnancy and
57.0% in the postpartum period.
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Figure 9. Average mobile application usage (response rate) of the 28 high-risk pregnant women
during pregnancy and postpartum [34]

Figure 10 displays the weekly average of blood pressure measurements that were
uploaded via the mobile application throughout pregnancy and the postpartum pe-
riod. We removed one participant as an outlier because she measured her blood
pressure daily. Moreover, 10 participants stopped uploading their blood pressure
measurement after delivery. The results show that the average weekly blood pressure
measurements during pregnancy and postpartum was 0.74 and 0.29, respectively.

To the best of our knowledge, this is the first study to explore the feasibility of
mobile application usage in terms of answering daily questions during pregnancy and
postpartum. Our results show the feasibility of the mobile application in our system
for maternal monitoring during pregnancy and postpartum.
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Figure 10. Weekly average blood pressure measurements of 27 high-risk pregnant women during
pregnancy and postpartum [34]

3.5.2 Robustness and Reliability of Measurements

Robustness and reliability of measurements are crucial features in remote health
monitoring systems. The reliability of the health decisions in these systems is corre-
lated with the reliability of the collected data. Therefore, it is critical to ensure the
reliability of collected data in such systems.

In the presented system, PPG signals are collected in everyday life settings to
extract HR and HRV parameters. The quality of PPG signals is highly affected by
environmental noise and motion artifacts. In this section, we discuss the reliability
of HR and HRV parameters by investigating the frequency and duration of collected
PPG signals, and we show that our system satisfies the requirements for reliable HR
and HRV data collection. The reliability and validity of the collected PPG signals
will be discussed in Chapter 4. We also introduced a PPG signal quality assessment
method for improving the quality of collected HRV data in Chapter 4.2.4.

Duration of PPG Signal Recording

In this study, the PPG signal was used to extract HR and HRV parameters. As ex-
plained in Section 2.3, three standards exist for HR and HRV measurements with
different durations of recording (e.g., 24-hour recording, 5-minute recording, and
less than 5 minutes recording [40; 54; 55]). A 24-hour recording can result in the
most accurate results because it captures changes across an entire day. However, it is
inapplicable in long-term health monitoring because wearable devices have limited
battery capacity. See the Section 3.5.3 for more details.

Considering battery limitation, we decided to use the short-term HRV measure-
ment standard with 5-minute PPG recordings in our long-term maternal monitoring
system. We developed an application for the watch to acquire 12-minute PPG data
every second hour. Therefore, after removing the sensor calibration data, we would

22



IoT-Based Maternal Health Monitoring

have two consecutive 5-minute PPG recordings. In this way, we reduced the effect
of noisy signals and increased the reliability of extracted HRV parameters.

Sampling Frequency of the PPG Signal

The sampling frequency of the PPG signal is another factor that affects the reliability
of HR and HRV parameters. Choi et al. [51] compared the reliability of HR and HRV
parameters extracted from PPG signals with sampling frequencies ranging from 5 to
10000 Hz with an ECG signal with 10000 Hz sampling frequency. They showed that
desired HRV parameters in this study, including AVNN, RMSSD, SDNN, LF, and
HF, could reliably be extracted with a minimum frequency of 20 Hz. Therefore, our
setup met the minimum requirement for extracting reliable HRV parameters.

3.5.3 Energy Consumption

The wearable devices used in remote health-monitoring systems have limited battery
capacity and must frequently be recharged. The energy consumption of wearable
devices is a critical issue in remote health-monitoring systems and can affect the
feasibility and usability of such systems. In this section, we investigate the energy
consumption of the smartwatch used in our system as one of the feasibility aspects
of the system.

PPG sensors in wearable devices and in the smartwatch used in our system have
high energy consumption [14; 82]. In the previous section, we discuss the PPG
collection duration and sampling frequency of PPG signals. Here, we investigate
the time interval between PPG recordings to optimize the energy consumption of the
smartwatch.

We performed an experiment on the battery life of the smartwatch with different
time intervals between PPG signal recordings. In this experiment, we programmed
three smartwatches to collect 12 minutes of PPG signals with 20-Hz frequency at
different time intervals (e.g., 15 minutes, 30 minutes, 1 hour, 2 hours, and 4 hours).
The watches were on a table and in flight mode to remove the usage bias. The
average battery life of the watches is reported in Figure 11. The battery life for 15-
minute intervals is about 25 hours and increased to 157 hours for 4-hours intervals.
Considering that daily usage of the smartwatch will also decrease the battery life,
we decided to have 2-hour intervals between PPG recordings. This interval results
in 2 to 3 days of battery life in a normal situation and ensures the feasibility of the
smartwatch in long-term monitoring.
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Figure 11. Smartwatch battery life with different intervals of PPG signal collection [34]

3.5.4 Practical Challenges

Long-term remote health monitoring raises several practical challenges, such as long-
term engagement of users, maintenance of systems and devices despite evolving
technologies, and user experience that we also faced during the course of this study.

To keep users motivated to use an IoT system for a long time, the system should
be usable and comfortable in everyday life settings, and the provided monitoring ser-
vices should be effective [11]. We selected a smartwatch that can be used easily in
everyday life activities. We also tried to minimize the effort to use the system by
minimizing the interaction needed with the system and selecting a reasonable bat-
tery life for the wearable device. We provided technical support through the mobile
application to help solve any technical issues our participants faced when using the
system. In addition, the monitoring of stress, sleep, and physical activity provided
by our system are essential to improve the health and well-being of pregnant women
as described in Section 3.2.

Moreover, the IoT-based monitoring system should be easily integrated with the
evolving technology in the long term. We used open-source frameworks such as
Flask, Angular, and MongoDB and development methodologies such as RESTFul
API that improve the maintenance of the system regardless of changing technology.
Moreover, backward compatibility in Tizen OS, which runs in the smartwatch, en-
ables our program to run on the watch regardless of updates on the OS. In the future,
we will also use other APIs, such as Validic API, to enable us to collect data from
various monitoring devices easily.
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4 Validation and Quality Assessment of
HR and HRV Parameters for Health
Monitoring

In Chapter 3, we presented a long-term IoT-based maternal monitoring system. We
indicated that the HRV collection in the presented system meets the requirements of
reliable measurements in terms of frequency and duration. In this chapter, we show
the necessity of validation and quality assessment of PPG-based HR and HRV pa-
rameters for health-monitoring applications. Then, we will investigate the accuracy
of the collected HR and HRV parameters in our monitoring system. Finally, we pro-
pose a deep-learning-based PPG quality assessment method to further improve the
quality of collected HRV parameters.

4.1 Necessity of Accuracy and Quality Assessment of
HR and HRV Parameters Collected by Wearable
Devices

HR and HRV parameters can be continuously collected by wearable devices at a
low cost. The devices mostly implement PPG sensors for HR and HRV monitor-
ing. PPG-based wearable devices provide opportunities to collect data in everyday
life settings. However, the devices are prone to noise, such as motion artifacts and
environmental noise, when people engage in various activities. The noise is unavoid-
able and negatively affects the PPG-signal quality and, consequently, the reliability
of extracted HR and HRV parameters [83; 38]. The unreliable physiological param-
eters can lead to false predictions or decisions in health care applications, such as
loneliness prediction, which is discussed in Chapter 6.

Moreover, the noise affects HR and HRV parameters differently, because the
accuracy and reliability of HR and HRV parameters depend on different factors of
the signals. For example, RMSSD, which shows the short-term variation in the NNIs,
can be affected by small distortion in signals [40]. However, SDNN, which indicates
the long-term variation of NNIs, will be unreliable if the noise affects the signal
variations [40]. Therefore, a PPG signal can be reliable for extracting some HRV
parameters and unreliable for extracting other parameters, as illustrated in Figure 12.

Figure 12 shows three different 1-minute segments of PPG signals that are af-
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(a) PPG with reliable HR, AVNN, and
SDNN, and unreliable RMSSD

(b) PPG with reliable HR, AVNN, and
RMSSD, and unreliable SDNN

(c) PPG with reliable HR and AVNN,
and unreliable RMSSD and SDNN

Figure 12. Three 1-minute samples of PPG signals with varying accuracy for HR and HRV
parameters [84]

fected by different types of noise. The extracted HR and HRV parameters are shown
with their error compared to the ECG baseline. In Figure 12a, only a small part of
the signal was affected by the noise, highlighted in red. In this example, HR, AVNN,
and SDNN have acceptable errors compared with the ECG baseline. However, the
error rate for RMSSD is high because noise affects the short-term variations of the
signals. In Figure 12b, the peaks are not distorted, but the noise affected the variation
of the NNIs compared to ECG peak-to-peak intervals. In this example, HR, AVNN,
and RMSSD can be extracted reliably. However, SDNN, which is correlated with
long-term variations of the signal, is unreliable. In Figure 12c, part of the signal is
corrupted, and the noise affects the short-term and long-term variation of the signals.
Therefore, SDNN and RMSSD extracted from this signal are unreliable, whereas
HR and AVNN can be extracted reliably. The above examples were for time-domain
HRV parameters, but the situation is the same for frequency-domain parameters.

We must assess the quality of the smartwatch used in our IoT-based maternal
monitoring system to ensure the reliability of extracted parameters. Then, quality as-
sessment of the signals is required to distinguish the low- and high-quality segments
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of PPG signals and discard the unreliable parts of the signals. Moreover, based on
the above examples, the validation and quality assessment should be performed sep-
arately for HR and each HRV parameter.

4.2 Accuracy Assessment of the Smartwatch HR and
HRV Parameters

In this section, we assessed the accuracy of the Samsung Gear Sport smartwatch in
terms of HR and HRV parameters. We selected this smartwatch for accuracy assess-
ment because it was utilized in our system developed in Chapter 3. The evaluation
was performed against a medical-grade ECG device during 24 hours of data collec-
tion in an everyday life setting. The evaluation was performed separately for HR and
each HRV parameter during sleep and when awake.

4.2.1 Related Works

Several studies have assessed the HR accuracy extracted by wristbands in different
situations in various population groups. Accuracy of HR measurement using multi-
ple wristbands, including Apple Watch [85], Basis Peak [85], Empatica E4 [86], Fit-
bit Surge [85], Microsoft Band [85], PulseOn [85], Samsung Gear S2 [85], Garmin
Forerunner [87], Mio Alpha 2 [85], the Everlast Smartwatch[88], Fitbit Charge HR
[89], and Basis Peak [90] have been examined in the previous studies. The stud-
ies indicate high accuracy of HR measurement for the PPG-based wristband while
participants engaged in low-intensity activities. They also showed that HR accuracy
decreased with an increase in the intensity of activity. The studies only assessed the
accuracy of HR and were limited to predefined activities in laboratory settings.

Other studies have investigated the accuracy of HRV parameters considering var-
ious smartwatches and smart rings. Accuracy of HRV parameters extracted from the
Empatica E4 [91; 92], Microsoft Band 2 [93], the Wavelet wristband [94], Apple
Watch [95], and Oura ring [31; 96; 97] were evaluated against a medical-grade ECG
device. The studies showed that HR and HRV parameters collected by these devices
have high accuracy during rest. Moreover, they showed that the accuracy of the HRV
parameter was highly decreased by noise and motion artifacts. The studies were per-
formed in laboratory settings (mostly in seated positions) and are limited to less than
1-hour data collection. Thus, assessing the accuracy of the PPG-based smartwatch in
everyday settings involving various activities and situations is required. Moreover,
the accuracy of different HRV parameters should be evaluated separately because the
parameters are affected differently by noise.

Based on the limitation of previous works, the validation of the smartwatch HR
and HRV parameters should be performed separately for each parameter and in ev-
eryday life settings when participants can be involved in various activities.
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4.2.2 Participants and Recruitment

We recruited healthy adults aged 18 to 55 in Southern Finland between July and
August 2019. The exclusion criteria included having a previous diagnosis of cardio-
vascular disease or displaying symptoms of illness during the recruitment, as well as
having any restrictions in doing physical activities or wearing wearable devices.

The participants were recruited using snowball sampling. The researcher sched-
uled a face-to-face meeting with the eligible participants. In the meeting, the study’s
objectives were explained to the participants. After obtaining written consent from
the participants, the wearable devices (a Gear Sport smartwatch [68] and a Shim-
mer ECG device [98]) and the instructions /were delivered to the participants. The
Shimmer device was positioned on the chest, and the smartwatch was worn on the
nondominant hand. The researcher helped the participants to use and wear the de-
vices if needed. The participants were asked to wear the devices continuously for 24
hours while carrying out their daily routines. Forty-six participants (23 female and
23 male) were recruited.

The data from 28 participants, including 14 males and 14 females, were used
in this assessment. We excluded the data from other participants due to various
issues during the data collection, such as missing sleep data, ECG electrodes loosely
attached to skin resulting in noisy ECG signals, and insufficient ECG data due to
practical issues.

Research Ethics The study was conducted according to the ethical principles
based on the Declaration of Helsinki and the Finnish Medical Research Act (No.
488/1999). The study protocol received a favorable statement from the ethics com-
mittee (University of Turku, Ethics Committee for Human Sciences, Statement no:
44/2019). The participants were informed about the study, both orally and in writ-
ing, before the written informed consent was obtained. Participation was voluntary,
and each of the participants had the right to withdraw from the study at any time
and without giving any reason. To compensate for the time used for the study, each
participant received a 20-euro gift card to a grocery store at the end of the monitoring
period when returning the devices.

4.2.3 Data Collection

We collected data using a Samsung Gear Sport smartwatch and a Shimmer3 ECG
device as the gold standard. We instructed participants to wear the smartwatch on
the wrist of the non-dominant hand. In addition, participants wore the ECG device
using a chest strap with four limb electrodes placed on the arms and the legs (see
[99] for more details). Moreover, participants filled out self-report questionnaires to
log their non-wear, sleep, and awake times.

Samsung Gear Sport Smartwatch: As described in Chapter 3, the Gear Sport
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smartwatch [68] is an open-source smartwatch that enables customized data collec-
tion remotely. For this study, a customized smartwatch application was developed to
collect 16 minutes of PPG signals every 30 minutes with a frequency of 20 Hz. The
data collection duration was chosen to have a battery life of more than 24 hours. The
data were stored in the internal storage of the smartwatch and then sent to our cloud
server.

Shimmer ECG Device: We used the Shimmer3 ECG device [98] as a gold
standard for the collection of ECG data. The Shimmer is a lightweight device that
can be placed on the chest with a strap and utilizes four electrodes connected to the
skin for ECG signal collection. We configured the shimmer device to collect ECG,
accelerometer, gyroscope, and skin temperature data continuously. The collected
data were saved on the device. The Shimmer device has a battery life of more than
24 hours and did not need to be charged to collect our data. We sent the data to
our cloud server after data collection. We used Lead II ECG (right arm - left leg) to
extract HR and HRV parameters.

4.2.4 Data Analysis

In this case study, as with other case studies in this thesis, we used short-term HRV
analysis based on the duration of recordings (see Section 2.3). Therefore, we used
5-minute segments of ECG and PPG signals to extract HR and HRV parameters. The
segments were used as an input to our data analysis pipeline. The pipeline consisted
of preprocessing, peak detection, abnormal peak removal, feature extraction, and sta-
tistical analysis, which are explained in the following. Figure 13 shows the overview
of our data analysis pipeline.

Preprocessing Peak detection
Abnormal peak 

removal
Feature 

extraction

Statistical 
analysis

Figure 13. Data analysis pipeline [100]

Preprocessing

Preprocessing consists of synchronization and filtering.

• Synchronization: The ECG and PPG signals were collected by different de-
vices. Therefore, it was necessary to synchronized the signals. To find the time
difference between ECG and PPG, we used cross-correlation between acceler-
ation signals collected by the Shimmer ECG device and the smartwatch. Then
we shifted the ECG signals to synchronize them with the PPG signals.
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• Filtering: For HR and HRV parameter extraction, only the frequencies in hu-
man HR ranges are used. Consequently, other frequencies were eliminated
using the Butterworth filter. A 5th-order high-pass Butterworth filter with a
cutoff frequency of 0.5 Hz was applied to the PPG signals, while a Butter-
worth bandpass filter with cutoff frequencies of 0.5–100 Hz was employed
for the ECG signals. The choice of cutoff frequencies was determined by the
frequency of the PPG and ECG signals.

Peak Detection

The peak detection step involves identifying peaks in both ECG and PPG signals.
The following will describe the peak detection methods for PPG and ECG signals
separately.

PPG Peak Detection
The PPG peak detection method proposed by Kazemi et al. [101] was used for

PPG peak detection. The method uses dilated CNNs and returns a probability of
being a peak for each signal point. Then, the peaks are detected as local maximums
within the points with a higher probability than a predefined threshold. Figure 14
shows the detected peak in a 30-second window of PPF signals.

ECG Peak Detection
A two-round moving threshold-based ECG peak detection method was used to

detect peaks in ECG signals. First, the average of all signal points in an ECG signal
window was used to detect peaks. Then, the average of the detected peaks served
as a new threshold to update the detected peaks. Moreover, the normal human HR
range was used to add undetected peaks. The method was used in [31; 100] and
performs well compared with the state-of-the-art methods [31]. Figure 14 shows
detected peaks in a 30-second ECG signal window.

Abnormal Peak Removal

The normal HR for humans ranges from 20 to 200 per minute. As a result, NNIs
range from 300 ms to 3000 ms. The ranges were used to remove abnormal peaks.
Moreover, the average NNIs in a single segment of the signal were used as a thresh-
old, and the NNIs with a variation of more than 20% of the threshold were discarded.
If more than half of a signal segment were removed due to abnormal peaks and NNIs,
the segment would be removed from the analysis.

Feature Extraction

We used the peak detected in the previous step to extract HR and HRV parameters.
The NNIs extracted from detected peaks were used to extract the following time-
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Figure 14. A peak detection sample for a 30-second segment of PPG and ECG signals

domain and frequency-domain parameters: AVNN, RMSSD, SDNN, PNN50, LF,
HF, and LF/HF.

Statistical Analysis

We used the Pearson correlation coefficient, linear regression analysis with R-squared
value (𝑟2), and Bland-Altman analysis to validate the parameters extracted from the
watch against the ECG device. The statistical analysis was implemented in Python
using Scipy [102], sklearn [103], and Statsmodels [104] libraries.

4.2.5 Results and Discussion

We assess the validity of HR and HRV parameters during sleep and while awake.
The sleep time was extracted from self-report questionnaires that participants filled
in manually.

Table 2 illustrates the Pearson correlation coefficient, 95% confidence interval
(CI), mean difference, and 𝑟2 values of the HR and HRV parameters of the smart-
watch compared to the ECG gold standard. All p values for Pearson correlation are
less than 0.001; therefore, Pearson correlation coefficient values are statistically sig-
nificant. As shown in Table 2, all values are positively correlated. During sleep,
the correlation values for HR, AVNN, SDNN, and pNN50 are high. In addition,
RMSSD, LF, and HF have high but slightly lower correlations than previously men-
tioned parameters. LF/HF values are also moderately correlated. When awake,
AVNN values are highly correlated, whereas HR values are moderately correlated.
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All other HRV parameters have low positive correlations.

Table 2. Pearson correlation coefficient, 95% CI, mean difference, and 𝑟2 values between the
smartwatch and Shimmer3 HR and HRV parameters in 5-minute segments of PPG signals [100]

Parameters
Pearson
Correlation
Coefficient

95% Confidence
Interval

Mean
Difference

𝑟2

Sleep
time

HR 0.941 [-7.53, 6.77] -0.38 0.882
AVNN 0.960 [-83.87, 108.59] 12.36 ms 0.909
RMSSD 0.778 [-68.49, 32.01] -18.24 ms 0.405
SDNN 0.802 [-72.66, 28.29] -22.19 ms 0.246
PNN50 0.964 [-13.21, 11.58] -0.81 0.926
LF 0.784 [-1763.66, 834.77] -464.45 ms2 0.206
HF 0.782 [-1188.67, 693.23] -247.72 ms2 0.462
LF/HF 0.622 [-2.24, 1.72] -0.26 0.216

Awake
time

HR 0.675 [-43.58 , 24.65] -9.47 0.293
AVNN 0.833 [-135.12 , 254.44] 59.66 ms 0.582
RMSSD 0.251 [-79.59 , 91.89] 6.15 ms -0.191
SDNN 0.404 [-76.99 , 61.36] -7.81 ms 0.099
PNN50 0.277 [-26.0 , 60.99] 17.5 -1.62
LF 0.350 [-1727.72 , 1402.18] -162.77 ms2 0.075
HF 0.130 [-1215.82 , 1599.31] 191.75 ms2 -0.493
LF/HF 0.211 [-3.38 , 2.12] -0.63 -0.453

Figures 15 and 16 depict the regression lines for parameters extracted from PPG
collected by the smartwatch compared with ECG during sleep and while awake,
respectively. The ideal line is also illustrated in black. As shown in these figures,
during sleep, the regression line of HR, AVNN, and PNN50 are close to the ideal
line, and when awake, only the fitted line of HR and AVNN follow the ideal line.
The fitted lines of other HRV parameters diverge both during sleep and when awake.
In addition, the 𝑟2 values, which indicate how well the data fit the regression line,
are shown in Table 2. The 𝑟2 values of HR, AVNN, and pNN50 during sleep and 𝑟2

of AVNN when awake are high. HR also has moderate 𝑟2 when participants were
awake. However, other parameters have low 𝑟2 values during sleep and while awake.

The Bland-Altman plots during sleep and when awake are shown in Figures 17
and 18, respectively. The mean biases and 95% CIs are given in Table 2. As shown
in Table 2, during sleep, the smartwatch’s AVNN values have very low mean bias
with AVNN extracted from the ECG device. RMSSD, SDNN, pNN50, and LF/HF
also show low mean biases, whereas LF and HF have moderate mean biases. During
waking hours, RMSSD and SDNN have relatively low mean biases, whereas other
parameters show moderate mean biases. In addition, during sleep, HR, RMSSD,
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Scatter plots and regretion analysis for HR and HRV parameters during sleep

Figure 15. The scatter plots and regression analysis of the HR and HRV parameters collected
from the Samsung smartwatch and Shimmer ECG in 5-minute segments during sleep. The
regression lines and ideal lines are indicated in red and black, respectively. [100]

SDNN, and pNN50 have narrow CIs, whereas AVNN, LF, HF, and LF/HF have wide
CIs. During the awake time, HR and all HRV parameters have wide CIs.

As shown in Figure 17 and Figure 18, the smartwatch underestimates AVNN
while overestimating HR and other HRV values during sleep. However, during wak-
ing hours, the watch overestimates AVNN, RMSSD, and pNN50 and overestimates
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Scatter plots and regretion analysis for HR and HRV parameters while awake

Figure 16. The scatter plots and regression analysis of the HR and HRV parameters collected
from the Samsung smartwatch and Shimmer ECG in 5-minute segments when awake. The
regression lines and ideal lines are indicated in red and black, respectively. [100]

other parameters (i.e., HR, SDNN, LF, and LF/HF).
The results show that during sleep, the smartwatch has high accuracy regard-

ing HR, AVNN, and pNN50 and acceptable accuracy for RMSSD, SDNN, LF, and
HF. However, during waking hours, only AVNN and HR values extracted from the
smartwatch have satisfactory accuracy. Therefore, we need to improve the signal
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Bland-Altman analysis for HR and HRV parameters during sleep

Figure 17. Bland-Altman plots of the HR and HRV parameters in 5-minute segments obtained by
the smartwatch and Shimmer3 during sleep [100]

quality by using noise cancellation techniques [105] or quality assessment methods
[106; 107] to discard the noisy part of the signals and only use the reliable part of
signals to extract HRV parameters accurately. In the following section, we introduce
a deep learning-based quality assessment method to distinguish the reliable and un-
reliable segments of the PPG signals compared with the ECG gold standard, which
can be used to improve the accuracy of extracted HR and HRV parameters.
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smartwatch and Shimmer3 during awake [100]
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4.3 A CNN-Based PPG Quality Assessment Approach
for HR and HRV Parameters

In this section, we propose CNN-based PPG quality assessment methods based on
extracted HR and HRV parameters. One 1-dimensional (1D) CNN and three 2-
dimensional (2D) CNN models are proposed for each HRV parameter. The proposed
models were evaluated using the data described in the previous section (see Section
4.2.2 and 4.2.3).

In the following, we first briefly explore the previous works in PPG quality as-
sessment methods. Then, we describe the data collection and data analysis. After
that, we introduce our proposed deep learning-based PPG quality assessment meth-
ods for HR and HRV parameters. The best method was selected for HR and each
HRV parameter based on the performance. Finally, we compare the performance of
the best proposed methods with the state-of-the-art PPG quality assessment methods.
The results show that the proposed methods outperform the other methods for HR
and HRV parameters.

4.3.1 Related Works

Various studies have proposed PPG quality assessment methods or PPG quality in-
dicators to distinguish reliable and unreliable segments of PPG signals. Several PPG
quality indicators based on the morphology of the signal, including baseline wan-
dering, skewness, and kurtosis, were used to estimate the quality of the PPG signals
[106; 108; 109].

Rule-based and template-matching methods have also been proposed to identify
low-quality segments of PPG signals [110; 111; 112; 113; 114]. These methods use
hierarchical rules or the similarity of the current segment of the signal with template
signals based on morphological features and predefined thresholds.

Moreover, several conventional machine-learning methods, including both su-
pervised and unsupervised methods, were used for PPG quality assessment. Several
traditional supervised methods such as decision tree [115; 116], random forest [117],
support vector machine (SVM) [118; 119; 116], K-nearest neighbors (KNN) [116],
and neural network [120] were developed for PPG quality assessment considering
the shape, and time and frequency domain parameters of the signals.

In addition, several deep learning-based PPG quality assessment methods have
recently been proposed, including real-time PPG quality assessment based on HR
value [76], 1D and 2D deep learning-based quality assessment for participants with
atrial fibrillation [121], a CNN-based method called DeepBeat [122], 1D CNN-based
quality assessment [123], and 2D CNN-based model in [124]. The deep learning-
based methods extract features automatically. However, even in these methods, the
labeling was performed based on HR and morphological features. In addition, most
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of the PPG quality assessment methods were evaluated based on the collected data
in predefined lab settings with limited noise or with a small number of participants.
Table 3 summarizes the PPG quality assessment methods and their features.

Reference Features Method Annotation
Source code
Availability

Proposed
method

Automatic
feature
extraction

1D CNN/ 2D CNN
Automatic labeling
based on HR and
HRV parameters

✓

Rule based
Methods

Orphanidou et al [110]
Extracted HR
and morphological
features

Threshold based rules
Manual
based on the
signal shape

×

Reddy et al [111] Predictor Coefficient
Hierarchical
decision rules

” ×

Tyapochkin et al [112]
Statistical parameters
of IBIs

Predefined
rules

” ×

Vadrevu et al [125]
Amplitude and
time-series features

Hierarchical
decision rules

” ×

Supervised
methods

Alam et al [117]
Morphological
features and
HR value

Random forest

Manual
based on the
signal shape
and HR values

×

Zhang et al [119]
Frequency domain
and time series
characteristics

SVM
Manual
based on the
signal shape

×

Preira et al [118]
Frequency-domain,
time-domain, and
non-linear features

SVM ” ×

Preira et al [116]
Frequency-domain,
and time-domain
features

SVM ” ×

Unsupervised
methods

Mahmoudzadeh et al [126] Statistical features Elliptical envelope ” ✓

Roy et al [127]
Entropy and
signal complexity
features

Self-organizing map ” ×

Deep learning
methods

Preira et al [121]
Automatic
feature extraction

ResNet18 ” ×

Soto et al [122] ”
Multi-task CNN
(pre-training with
CDAE)

” ×

Goh et al [123] ” 1D CNN ” ×

Roh et al [124] ” 2D CNN ” ×

Naeini et al [44] ” 1D CNN
Automatic labeling
based on HR

×

Table 3. Comparing PPG quality assessment methods [84]

To address previous works’ limitations, we propose PPG quality assessment
methods for HR and each HRV parameter. Moreover, the methods were evaluated
using data collected in everyday life settings. Thus, the model can be better general-
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ized for data in different conditions. In addition, we proposed automatic labeling of
the data based on HR and HRV parameters using the gold standard baseline.

4.3.2 Data Collection and Data Analysis

The data described in Sections 4.2.2 and 4.2.3 were used to evaluate the proposed
methods. The 210 hours of simultaneous ECG and PPG signals collected from 36
subjects were used to evaluate the proposed method.

We used the same steps as the Section 4.2 for data analysis and extracting HRV
parameters (see Section 4.2.4). However, here, different peak detection methods
were used, and HR, AVNN, RMSSD, SDNN, and LF/HF HRV parameters were
extracted. Then, the extracted parameters from ECG and PPG signals were used for
labeling. Here, we first explain the peak detection methods. Then, the automatic
labeling will be described.

Peak Detection

We used the deep learning-based method proposed in [128] for ECG peak detection.
This method uses Long Short-Term Memory (LSTM) architecture to find the location
of the peaks. Then it removes the false peaks by a peak-to-peak distance-based
anomaly detection method. This method was selected because it performs better
than traditional methods such as Hamilton [129] and Pan-Tompkins [130] (see [128]
for more details).

For PPG peak detection, the method Van Gent et al. [131] implemented in the
HeartPy package in Python was used. This method uses moving average, adaptive
threshold, and outlier detection to detect real peaks in PPG signals. This method also
has acceptable accuracy compared with traditional methods [131].

Automatic Labeling

We used the HRV features extracted from each 5-minute segment of PPG signals for
labeling. We compared each feature (e.g., HR, AVNN, RMSSD, SDNN, and LF/HF)
from one PPG segment with the same feature extracted from the corresponding ECG
segment. If the difference is less than a predefined threshold, then the signal is re-
liable for that HRV parameter; otherwise, it is unreliable with regards to that HRV
parameter. The result of this step was five labels. The threshold for each HRV param-
eter was selected based on the normal range of the parameter as described in [132].
The threshold can be changed according to the acceptable accuracy for the desired
application.
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4.3.3 Proposed PPG Quality Assessment Approaches

We present 1D and 2D CNN-based deep learning approaches for PPG quality assess-
ments. CNN-based architectures automatically identify the significant features with
low-to-zero preprocessing of the input data [133]. CNN also reduces the number of
parameters by sharing the parameters between layers, which speeds up the network
and training [134].

The architecture of our proposed CNN methods is illustrated in Figure 19. The
proposed 1D CNN method comprised two convolution layers, as shown in Figure 19.
A batch normalization layer follows each convolutional layer to prevent overfitting of
the model. Then, we used a max pooling layer to reduce the dimensionality. Finally,
we added a flattened layer, and a sigmoid function provided the classification results.
The kernel size used in this model was 1*3, which is common. We used 32 filters in
the first and 64 filters in the second convolutional layer. The optimization function
was stochastic gradient descent with a learning rate of 0.00001, and the loss function
was binary cross entropy.

Moreover, we used pretrained 2D CNN models VGG16 [135], ResNet50 [136],
and MobileNetV2 [137], which have shown good performance in similar applica-
tions, and we tuned them for our purpose. To make the models work with 2D input
(images), we converted PPG signals to images using the Garmin angular field (GAF)
method [138]. The GAF preserves the temporal dependencies in PPG signals while
transforming them into images. We used the transformed PPG image along with the
corresponding label as an input for the models.
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Figure 19. Overview of our CNN-based PPG quality assessment models [84]
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4.3.4 Model Implementation and Evaluation

The Keras Sequential API, which implements Tensorflow in Python, was used to im-
plement and train the presented models [139]. We used Adam optimizer and binary
cross-entropy as optimizer and loss functions for our models. Moreover, the accu-
racy, F1 score, and area under the curve (AUC) were used to evaluate the models.

The proposed models were trained separately for HR, AVNN, RMSSD, SDNN,
and LF/HF. Each model used the corresponding label generated from our automatic
annotation. Therefore, five models were trained for each method.

We first trained and validated the proposed models. Then, the model with the
best performance was chosen for comparison with state-of-the-art methods. We used
80%, 20%, and 20% of the collected data for training, validation, and test sets, re-
spectively. The distribution of class label in dataset is shown in table 4.

Table 4. Distribution of class labels for each parameter [84]

parameters
Train+ validation Test

Reliable Unreliable Reliable Unreliable
HR 46175 12413 11544 3104
AVNN 50925 7663 12732 1916
RMSSD 16327 42261 4082 10566
SDNN 25823 32766 6456 8192
LF/HF 42388 16200 10597 4050

Table 5 shows the performance of the proposed models on the validation set. As
shown in the table 5, the 1D CNN models outperform 2D CNN models for all HR and
HRV parameters. Therefore, we used the 1D models for HR and HRV parameters
and compared the 1D models with current methods. LF/HF achieved the highest
performance, whereas RMSSD had the lowest performance for all models.

Table 5. Validation Set performance results of different CNN models for various HR-HRV features
[84]

Model 1D CNN MobileNet ResNet50 VGG16

Metric ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC

HR 95.63 96.11 96.21 94.58 93.93 94.63 92.49 92.44 93.52 92.38 94.42 94.87
AVNN 96.71 97.68 97.71 95.68 95.95 96.93 90.43 90.22 91.32 93.36 94.29 94.85
RMSSD 91.42 91.48 91.69 89.68 89.44 89.46 86.47 85.81 87.17 85.72 85.09 85.79
SDNN 96.01 96.97 97.09 92.66 93.91 93.66 92.52 92.12 93.66 93.42 93.82 93.99
LF/HF 97.71 97.71 97.71 91.92 91.95 92.93 90.22 90.22 91.31 94.36 94.29 93.99
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Table 6. Performance of the proposed and state-of-the-art models on Test sets [84]

Label HR AVNN RMSSD SDNN LF/HF
Metric ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC
Rule
Based[125] 61.19 77.28 67.80 63.08 72.44 68.35 52.13 59.95 61.81 63.08 75.44 71.35 67.65 76.15 65.70

KNN[118] 87.56 92.20 79.66 92.47 95.71 80.69 93.70 88.62 92.01 85.78 83.60 85.40 79.56 86.23 72.38
SVM[118] 78.70 88.08 50.00 86.84 92.95 50.00 89.54 79.52 84.46 78.39 75.84 78.24 72.42 84.00 50.00
DT[118] 78.70 88.08 50.00 86.84 92.95 50.00 89.54 79.52 84.46 78.39 75.84 78.24 72.42 84.00 50.00
Elliptical
Envelope[126] 71.54 81.94 57.39 78.89 87.85 53.64 67.35 41.28 59.33 61.76 56.54 61.19 62.54 74.14 53.10

Xception[121] 89.30 90.28 85.80 89.54 90.44 85.35 81.03 70.95 77.81 88.54 90.44 85.35 85.09 88.15 84.70
Proposed
Method 95.64 96.12 97.71 96.71 97.68 97.71 91.43 91.48 93.59 94.02 94.98 95.02 94.82 95.22 95.31

4.3.5 Comparison with the State-of-the-Art Models

The evaluation results showed that the proposed 1D CNN model outperformed other
deep learning-based models for HR and all HRV features. Thus, we compared the
1D CNN model with various types of PPG quality assessment methods, includ-
ing a rule-based method, several supervised machine-learning models, an unsuper-
vised machine-learning model, and a deep learning-based model. For the rule-based
method, we selected the hierarchical rule-based model introduced in [125]. For su-
pervised machine-learning methods, we selected SVM, KNN, and decision tree as
described in [116]. The elliptical envelope was chosen as an unsupervised learning
model [126]. We also selected Xception [121] as a deep learning-based model.

The performance of our 1D method in comparison with the selected state-of-
the-art PPG quality assessment method is shown in Table 6. For each HRV param-
eter, the corresponding label was used in the classification of the PPG signals and
evaluation of the performance of the methods. As shown in Table 6, the proposed
1D CNN method, in general, had better performance than the other methods had.
KNN had slightly better accuracy for RMSSD than the proposed 1D CNN method
had. However, for other performance metrics and for other HRV parameters, the
proposed 1D CNN method performed better. Moreover, Xception had better over-
all performance than the other selected methods had. After Xception, supervised
machine-learning methods had good performance. KNN has better performance for
AVNN and RMSSD than Xception had. Unsupervised elliptic envelope and rule-
based methods had the lowest performance.
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5 IoT-Based Maternal Monitoring During
Pregnancy and Postpartum: Analyzing
the Trends of HR and HRV Parameters

Chapter 3 presented a long-term IoT-based maternal monitoring for remote health
monitoring during pregnancy and postpartum. Chapter 4 investigated the accuracy
of collected HR and HRV parameters against the ECG gold standard in everyday life
settings. Moreover, Chapter 4 provided a quality assessment method to improve the
quality of collected HR and HRV parameters by discarding noisy parts of the data.

This chapter uses the presented IoT-based system to monitor physiological pa-
rameters during pregnancy and postpartum. Therefore, the system was used to col-
lect data from pregnant women. The data were then used to investigate HR and HRV
changes during pregnancy and postpartum. Hence, this chapter aims to provide a
better understanding of autonomous nervous system alteration during pregnancy and
postpartum. Here, we first describe our data collection using our IoT-based maternal
monitoring system, where physiological data of 62 pregnant women were continu-
ously collected during pregnancy and postpartum. Then, using the collected data,
we investigate the trends in nighttime HR and HRV during the second and third
trimesters and the postpartum period.

5.1 Data Collection
The data were collected by the IoT system introduced in Chapter 3. The partici-
pants used a smartwatch and our customized cross-platform mobile application dur-
ing the study. They also used a blood pressure device to measure their blood pressure
once a week. The smartwatch collected PPG signals and sleep and activity parame-
ters. Moreover, the mobile application collected responses to our questionnaires and
background information.

In this chapter, we used the nighttime PPG signal collected by the smartwatch
from the participants to monitor HRV during pregnancy and postpartum. The PPG
signals collected from gestational week 16 until 3 months postpartum were used in
this chapter. Moreover, we used background information such as BMI, age, edu-
cation level, and delivery- and infant-related information collected by the mobile
application in our analysis.
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5.1.1 Participants and Setup

Two groups of pregnant women (high-risk and low-risk) were recruited in this study.
The recruiting was performed in Southwest Finland through advertisements in ma-
ternity clinics and on social media. The inclusion criteria were as follow: (a) a
singleton pregnancy, (b) ability to understand the Finnish language, (c) possession of
an android or iOS smartphone, (d) 12–15 gestational weeks of pregnancy, (e) age 18
years or older, and (f) willingness to use the provided smartwatch and our customized
mobile application from recruitment to 3 months postpartum.

The high-risk pregnancy group had histories of preterm births (gestational weeks
22–36) or late miscarriages (gestational weeks 12–21) as described in Section 3.4.
The low-risk pregnancy group had no previous miscarriages or preterm births and
had histories of full-term births (gestational weeks 37–42).

Interested participants contacted the researcher via email and arranged a face-
to-face meeting. In the meeting, the researcher explained the procedures and de-
tails of the study. After obtaining written informed consent from the participant, a
smartwatch and a blood pressure device was delivered to the participant. Moreover,
our mobile application was installed on her smartphone. In the high-risk pregnancy
group, 32 pregnant women were recruited from January to December 2019, but four
participants withdrew from the study, resulting in 28 participants in this group. In
the low-risk pregnancy group, 30 participants were recruited from October 2019 to
March 2020.

To investigate the trend of HR and HRV, we used the PPG signals collected from
our participants. We combined the data from the low-risk pregnancy group with
the high-risk pregnancy group because no significant difference existed between the
HRV trends of the two groups. Therefore, the data of 58 pregnant women were
included in our analysis.

5.2 HR and HRV Trends During Pregnancy and Post-
partum

Studies have shown that HR increases and HRV parameters normally decrease dur-
ing pregnancy [21; 23; 24; 25]. At the same time, variations in HRV parameters
can be a sign of physical or mental health complications during pregnancy. For ex-
ample, higher LF/HF in early pregnancy compared with a normal pregnancy may
indicate hypertension [140]. Pregnant women with pre-eclampsia have lower LF and
higher LF/HF than normal pregnant women have [141; 142]. Moreover, women with
normal pregnancies have higher time-domain parameters compared with depressed
pregnant women [143]. Anxiety or induced stress during pregnancy could also cause
a decrease in HF [144]. Moreover, mindful pregnant women who can manage their
stress experience less reduction in RMSSD and HF during pregnancy [145]. There-
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fore, it is necessary to investigate normal HRV variation during pregnancy to distin-
guish normal changes from complication-related changes in HRV. This may help in
the early detection of health issues during pregnancy and, subsequently, the improve-
ment of the mother and fetus’s health. It also should be noted that HRV interpretation
is challenging because HRV behavior differs between people [40].

Many studies have investigated HRV during pregnancy. Table 7 summarizes
works on HRV trends during pregnancy and postpartum. As shown in Table 7, previ-
ous works used ECG signals (see Section 2.2.1) to measure HRV. Most of the studies
measured HRV once from pregnant women at several pregnancy weeks or during
labor, and they have one measurement from nonpregnant women [146; 147; 148;
149; 150]. These studies evaluated HRV changes by comparing HRV from differ-
ent women. Although these studies provided normal ranges of HRV parameters and
their changes during pregnancy, they could not consider individual variation in HRV
parameters [40].

Table 7. Summary of research on HR and HRv trends during pregnancy and postpartum

Study Results
Duration of study and
frequency of recording

Number of participants

Voss 2000 [149]
No significant changes
in HRV parameters

One recording during the
second half of pregnancy
(Gestational week 21-40)

27 women with normal
pregnancy
14 nonpregnant women

Stein 1999 [151]
HRV declined during
pregnancy

One time before pregnancy,
and 4 time during pregnancy
(week 6, 10, 18, and 34)

8 pregnant
12 nonpregnant women

Baumert 2012 [152]
AVNN: decreased significantly
SDNN: no significant changes

Once per month
during weeks 20 - 40

32 pregnant women

Garg 2020 [153]

SDNN and HF: decreased
significantly
LF and LF/HF: increased
significantly

Once per trimester
(gestational weeks
11-13, 20-22, and 30-32)

66 pregnant women

Walther 2005 [154]
HR and LF/HF: increased
HF: decreased

Once every four weeks during
the second half of pregnancy

16 pregnant women
with chronic hypertension
35 healthy pregnant women

Moertl 2009 [155]
HR: slightly increased
Frequency-domain HRV:
no significant changes

Once per gestational weeks
10-13, 15-18, 20-22, and >30
(During pregnancy)

20 healthy pregnant woman

Gandhi 2014 [156]

LF, HF, SDNN and RMSSD:
decreased significantly
HR and LF/HF:increased
significantly

During pregnancy
Once at 1st trimester
(weeks 6-12),
and one at 3rd trimester
(Weeks 25-36)

30 pregnant women
30 non-pregnant women

Heiskanen 2008 [25]

HR: No significant changes
LF and HF: significantly lower
during the 3rd trimester
compared to postpartum

Once at 3rd trimester
and once at postpartum

28 pregnant women

Other studies have few ECG recordings from the same pregnant women ranging
from per month to per trimester [25; 154; 155; 152; 153; 156]. These studies used
short-term ECG recordings ranging from 10 to 30 minutes while resting in laboratory
settings. The studies are limited because they have few short-term ECG recordings
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Figure 20. HR and HRV parameters analysis pipeline [157]

from pregnant women that could not accurately reflect the changes during pregnancy.
Moreover, the recordings are restricted to predefined positions in laboratory settings.
Only Stein et al. [151] performed four 24-hour ECG recordings during pregnancy in
everyday life settings. However, this work still lacks continuous HRV measurement.
Continuous HRV measurement during pregnancy and the postpartum period provides
accurate and reliable information about HRV trends and patterns of HRV changes.
Therefore, in this case study, we performed a continuous HRV measurement starting
from the second trimester to 3 months postpartum in everyday life settings. To the
best of our knowledge, this is the first study that has continuously measured PPG
signals from pregnant women to investigate HRV trends. In the following sections,
we will explain the method and the results of collecting and analyzing the trend of
HRV parameters collected continuously during pregnancy and postpartum.

5.2.1 HR and HRV Parameters Analysis

An overview of the HR and HRV parameters analysis pipeline, which was imple-
mented in our cloud server, is illustrated in Figure 20. As shown in the figure, we
first used a PPG quality assessment method to extract reliable signals from the col-
lected data. Then, we used the peak detection method to detect peaks and extract
IBIs. We then normalized the extracted IBIs. In the following step, we used IBIs and
normalized IBI to extract HR and HRV and normalized HRV parameters. Finally, we
used statistical analysis (i.e., HLM models) to investigate the trend of HR and HRV
and normalized HRV parameters during pregnancy and the postpartum period.

Reliable Signal Extraction

As mentioned earlier, PPG is a convenient, noninvasive optical method to measure
HR and HRV parameters. However, PPG is prone to noise such as ambient light or
motion artifacts when participants engage in their physical activity. The inevitable
noise affects the quality of the signals negatively [106]. The low-quality PPG sig-
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nals could result in inaccurate extracted parameters (e.g., HRV parameters [106]).
Therefore, we employed a PPG quality assessment method to identify and discard
unreliable segments of PPG signals. For this purpose, an SVM classifier was utilized
to differentiate between reliable and unreliable signals. The classifier was trained
using morphological features extracted from PPG signals, including skewness, kur-
tosis, approximate entropy, Shannon entropy, and spectral entropy, as described in
[126]. Subsequently, we applied this SVM classifier to detect and discard unreliable
5-minute segments from the collected PPG signals.

Peak Detection and IBI Extraction

In this step, we first enhanced the reliable PPG signals by filtering the noise that was
outside the human HR range. Therefore, we used a bandpass filter with 0.7 Hz and
3.5 Hz cut-off frequencies. Then, we used a moving average-based peak detection
method as described in [158]. The method included an adaptive threshold based on
the morphology and amplitude of PPG signals. After detecting the peaks, the IBIs
were calculated as the interval between two consecutive peaks. In the error detection
phase, too-large or too-small IBIs compared to the average IBIs of the segments were
discarded. The method was implemented in the HeartPy library in Python [159].

Parameter Normalization

Changes in HRV parameters are caused by variation in HR or alteration in average
HR [160]. Therefore, we must remove the effect of normal HR increase during
pregnancy [151; 21] on HRV parameters to investigate the trend of HR variation
during pregnancy. For this purpose, we computed normalized IBIs by dividing the
IBIs by the average IBIs in each 5-minute window of reliable signals [161].

HR and HRV Extraction

We used short-term HRV analysis to extract HR, AVNN, RMSSD, SDNN, LF, HF,
and LF/HF from IBIs as described in Section 2.3. The HRV parameters were cho-
sen because a previous study [51] showed that they can be reliably extracted at the
frequency at which we collected PPG signals (e.g., 20 Hz). Moreover, we extracted
nRMSSD, nSDNN, nLF, nHF, and nLF/nHF, which represent normalized RMSSD,
normalized SDNN, normalized LF, normalized HF, and normalized LF to normal-
ized HF ratio from normalized IBIs. Table 8 shows the normalized HRV parameters
and their definitions.
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Table 8. Normalized HRV parameters definitions [157]

Parameters Unit Description

Time-domain
nSDNN ms Standard deviation of normalized IBIs

nRMSSD ms
Square root of the mean of the sum of the squares of
differences between adjacent normalized IBIs

Frequency-
domain

nLF ms2
Power in low-frequency range from normalized IBIs
(0.04- 0.15 Hz)

nHF ms2
Power in high-frequency range from normalized IBIs
(0.15- 0.4 Hz)

nLF/nHF - Ratio of nLF to nHF

Statistical Analysis

We used the HLM model to investigate the HR and HRV trends during pregnancy and
the postpartum period. The HLM model is a multilevel statistical analysis method
that is used widely in longitudinal analysis. The model can analyze the trends in
between- and within-person variances while considering the correlation of data in
measurements from each individual [162].

We investigated the HR and HRV trends in three time periods; that is, the second
trimester (16–28 weeks of gestation), the third trimester (29–40 weeks of gestation),
and the postpartum period (12 weeks after delivery). Then, we compared the trends
in each period with other periods. In our analysis, we used days as the independent
variable and added age, education level, and BMI before pregnancy as controlling
factors.

We included the second trimester and the postpartum data from all participants
in our analysis. However, we removed seven participants who had preterm births
from the third trimester data. Therefore, the data of 51 participants were included in
the third trimester analysis. The data were analyzed using the statsmodels library in
Python [104].

5.2.2 Results and Discussion

Figures 21 and 22 represent the weekly mean of HR, time-domain, and frequency-
domain HRV parameters averaged from all participants during pregnancy and the
3-month postpartum period. In addition, trends (slope), and average initial value
(intercept) of HR and HRV parameters are shown in Table 9 and Table 10.

As indicated in Table 9 and Table 10, during the second trimester, HR increased
significantly, whereas the AVNN, SDNN, nSDNN, RMSSD, nRMSSD LF, HF, and
nHF decreased significantly. In addition, nLF/nHF increased significantly during the
second trimester. During the third trimester, HR decreased significantly, whereas
AVNN, SDNN, nSDNN, RMSSD, and HF increased significantly.

48



IoT-Based Maternal Monitoring During Pregnancy and Postpartum: Analyzing the Trends of HR
and HRV Parameters

55

60

65

70

75

HR
Pregnancy Postpartum period

800

850

900

950

1000

1050

1100

AV
NN

50

55

60

65

70

75

SD
NN

5.5

6

6.5

7

7.5

8

8.5

nS
DN

N

50

60

70

80

RM
SS

D

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
Pregnancy week

6

6.5

7

7.5

8

8.5

nR
M

SS
D

1 2 3 4 5 6 7 8 9 10 11 12
Postpartum week

Figure 21. Weekly mean and 95% CI of HR and time-domain HRV parameters during pregnancy
and the postpartum period. (The vertical line separates the second and third trimesters) [157]

During pregnancy, beginning from gestational week 16, HLM showed that HR
increased significantly, whereas HRV parameters AVNN, SDNN, RMSSD, LF, and
HF decreased significantly. However, analysis shows that starting from gestational
week 35, HR began to decrease, and the mentioned HRV parameters started to in-
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Figure 22. Weekly mean and 95% CI of frequency-domain HRV parameters during pregnancy
and the postpartum period. (The vertical line separates the second and third trimesters) [157]

crease. However, HR and HRV parameters did not reach their initial values (i.e., the
value at pregnancy week 16). In the postpartum period, most parameters were sta-
ble except nRMSSD, which decreased slightly, and LF/HF, which increased slightly.
Previous works have also shown an increase in HR during pregnancy [21; 154] and
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Table 9. Trends of HR and time-domain HRV parameters during the second trimester, the third
trimester, and the postpartum period [157]

HR AVNN SDNN nSDNN RMSSD nRMSSD

Second
trimester

Intercept
(P-value)

62.736
(P<.001)

916.443
(P<.001)

84.023
(P<.001)

9.079
(P<.001)

89.293
(P<.001)

9.986
(P<.001)

Slope
(P-value)

0.045
(P<.001)

-0.585
(P<.001)

-0.082
(P<.001)

-0.006
(P<.001)

-0.103
(P<.001)

-0.007
(P<.001)

Third
trimester

Intercept
(P-value)

81.324
(P<.001)

708.181
(P<.001)

69.787
(P<.001)

9.237
(P<.001)

70.275
(P<.001)

8.366
(P<.001)

Slope
(P-value)

-0.025
(0.006)

0.345
(0.002)

0.084
(P<.001)

0.007
(P<.001)

0.071
(P<.001)

0.006
(0.971)

Postpartum
period

Intercept
(P-value)

47.237
(P<.001)

1216.255
(P<.001)

115.321
(P<.001)

9.481
(P<.001)

135.233
(P<.001)

11.620
(P<.001)

Slope
(P-value)

-0.009
(0.366)

0.130
(0.464)

0.001
(0.954)

-0.001
(0.689)

-0.037
(0.115)

-0.004
(0.012)

a decrease in HRV parameters during the course of pregnancy [23; 24; 25].

Table 10. Trends of frequency-domain HRV parameters during the second trimester, the third
trimester, and the postpartum period [157]

LF nLF HF nHF LF/HF nLF/nHF

Second
trimester

Intercept
(P-value)

1045.893
(P<.001)

2.422
(P<.001)

2990.343
(P<.001)

4.727
(P<.001)

-0.248
(P<.001)

0.565
(0.002)

Slope
(P-value)

-3.109
(P<.001)

0.001
(0.718)

-4.224
(P<.001)

-0.007
(0.003)

-0.061
(0.103)

0.001
(0.007)

Third
trimester

Intercept
(P-value)

1008.979
(0.026)

4.248
(0.001)

1743.362
(0.010)

6.166
(0.001)

0.67
(0.839)

0.995
(0.003)

Slope
(P-value)

0.424
(0.443)

0.006
(0.093)

2.767
(0.007)

0.004
(0.209)

-0.097
(0.113)

0.001
(0.276)

Postpartum
period

Intercept
(P-value)

2124.653
(0.002)

2.486
(0.087)

4969.652
(P<.001)

6.670
(0.001)

-0.397
(0.269)

0.416
(0.022)

Slope
(P-value)

2.415
(0.053)

-0.005
(0.402)

-0.682
(0.626)

-0.001
(0.769)

0.234
(0.004)

-0.002
(0.050)

Association Between BMI, Age, and Education with HRV During Pregnancy
and Postpartum

We also investigated the association between BMI before pregnancy, age, and edu-
cation level with the HRV trends during pregnancy and the postpartum periods. We
added these factors as independent variables in our HLM models. Our models indi-
cated that BMI before pregnancy is not significantly associated with changes in HRV
during pregnancy and the postpartum period. Moreover, the results showed that age
is negatively associated with nSDNN, nRMSSD, and HF in the second trimester.
However, in the third trimester and in the postpartum period, age is positively asso-
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ciated with SDNN, nSDNN, RMSSD, nRMSSD, HF, and LF/HF. Studies have also
illustrated that HRV normally decreases when people age [40].

Our results showed a positive correlation between education level and SDNN,
nSDNN, RMSSD, nRMSSD, and HF during the third trimester. However, education
level is not significantly associated with HRV parameters during the second trimester
or the postpartum period. Lower HRV levels are associated with higher stress lev-
els [42], and these results may indicate lower stress levels in pregnant women with
higher education levels. Cardwell [163] showed that low education level is a predic-
tor of higher stress during pregnancy. Other studies have also shown that people with
higher education levels experience lower stress levels compared with less educated
people in the same stressful situation [164].
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6 Maternal Loneliness Detection Based
on Passive Data Sensing Using Our
IoT-Based Maternal Monitoring System

In this chapter, we focus on loneliness as an important mental health issue during
pregnancy. We develop two predictive models for detecting maternal loneliness us-
ing data collected passively by the IoT-based system introduced in Chapter 3. We
used the data collected in Chapter 5 from pregnant women during pregnancy and
postpartum to train and test the developed model.

6.1 Maternal Loneliness
Loneliness is a negative subjective feeling related to the perception of being alone
or isolated or having deficient meaningful relationships [165]. Social loneliness and
emotional loneliness are two kinds of loneliness. Social loneliness refers to the lack
of desired network or social relationships, and emotional loneliness refers to the lack
of intimate and close relationships [166; 167]. Loneliness is a global health issue
that considerable parts of the populations in many countries face [168], and it is
increasing, especially in the era of social isolation due to the COVID-19 pandemic
[169; 170; 171; 172].

Several studies in the literature have investigated the health-related effects of
loneliness in different population-based groups. Studies have indicated that loneli-
ness is associated with psychiatric and physiological disorders such as depression
[173], anxiety [173], alcohol abuse [174], Alzheimer’s disease and cognitive impair-
ment [175], sleep problems [176], hypertension [177], autoimmune disorders [175],
obesity [178], and an increased rate of physiological deterioration. Loneliness dur-
ing adolescence is associated with a worse health condition and is worse in females
compared with males [179]. Loneliness can also increase the risk of mortality [180].

Loneliness during pregnancy and the postpartum period is also correlated with
various health problems for both the mother and her child. Many studies in different
countries showed that maternal loneliness during pregnancy is associated with de-
pression [181; 182; 183; 184; 185; 172]. Other studies have shown the correlation
between loneliness and postpartum depression [186; 187]. Moreover, several studies
during the COVID-19 pandemic showed the correlation of maternal loneliness with
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anxiety [188], cognitive distortion [183], psychological distress [189], and increase
of perceived stress [181]. Maternal loneliness also has adverse effects on newborn
babies, such as increasing the risk of respiratory tract infection [190]. Hence, the
early detection of maternal loneliness helps to improve the health and well-being of
the mother and her child by preventing the associated health issues through interven-
tion.

Conventionally, loneliness was investigated by self-reported questionnaires [172;
182; 181; 183] and interviews [191]. The subjective standard questionnaires or in-
terviews examined the association between loneliness and health problems such as
depression, anxiety, lack of social support, cognitive distortion, and stress. However,
these methods are not able to predict loneliness in individuals.

In addition, few studies have taken advantage of the rapid growth of IoT-based
systems and wearable devices and used passive sensing for loneliness prediction
[192; 193]. Wu et al. [193], investigated the association of momentary loneliness
with location and Bluetooth data collected from college students. In another study,
Doryab et al. [192] used sleep, activity, location, screen time, call logs, and Blue-
tooth information collected by activity trackers and smartphones of college students
for loneliness prediction. These studies were also restricted because they only con-
sidered college students on a campus.

To the best of our knowledge, no study in the literature has predicted mater-
nal loneliness based on objective data collected passively. This case study presents
two machine-learning models to predict maternal loneliness using passively collected
data. Using such models can help to improve the well-being of the mother and her
child with low cost and minimal engagement from mothers. We used a smartwatch
to collect objective physiological parameters (HR, HRV, physical activity, and sleep)
passively because previous studies have shown the association of these parameters
with loneliness [194; 195; 196; 197]. We developed decision tree and gradient boost-
ing models to predict maternal loneliness using the passively collected data. Finally,
we investigated the importance of physiological health parameters in each model.

6.2 Setup and dataset Preparation
In this section, we first briefly explain our participants and data collection. Then,
we describe our data analysis pipeline, which was used to extract features and create
datasets for this study.

6.2.1 Participants

For this study, we used the data collected from pregnant participants described in
Section 5.1.1. As mentioned, 62 pregnant women were recruited in total. However,
we only included participants in our loneliness prediction case study if they had an
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acceptable amount of missing data, resulting in 31 participants in this study.

6.2.2 Data Collection

We collected data using the IoT-based maternal monitoring system introduced in
Chapter 3. As mentioned in Chapter 3 and Chapter 5, we used a smartwatch and a
cross-platform mobile application for data collection. The smartwatch continuously
collected HR, HRV, sleep, and physical activity data during pregnancy and 3 months
postpartum. In addition, we used the University of California, Los Angeles (UCLA)
standard questionnaire to evaluate loneliness. The 12-item Revised UCLA ques-
tionnaire was provided to our participants using our customized mobile application.
The revised UCLA questionnaire includes six questions regarding social loneliness
and six questions regarding emotional loneliness [198]. Participants responded to
this questionnaire at week 36 during pregnancy and at 12 weeks after delivery. The
background information was also collected by our mobile application.

6.2.3 Data Analysis

We used the data collected by the smartwatch to generate seven datasets. Each data
record in our datasets contained the data from 7 days before and the day of respond-
ing to the UCLA questionnaire. Seven days was chosen because the UCLA instru-
ment examines a person’s feelings during the prior week. We only considered valid
days in our analysis, defined as having sleep data and having worn the smartwatch
for at least 10 hours while awake. Moreover, data records with less than 4 valid days
were discarded due to missing data. Our analysis of the data records comprised the
following steps:

1. Feature extraction

2. Labeling

3. dataset generation

4. Missing data imputation

5. Machine-learning models development

6. Important features investigation

Figure 23 summarizes these steps. We describe these steps in the following subsec-
tions.
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Figure 23. Data analysis pipeline [199]

6.2.4 Feature Extraction

We used the data collected by the smartwatch to extract resting HR and HRV, sleep,
and physical activity features. Here, we briefly explain the extracted features:

HR and HRV Features

We used the same pipeline described in Section 5.2.1 to extract HR and HRV param-
eters. We used resting HR at night and corresponding HRV parameters (i.e., AVNN,
SDNN, RMSSD, LF, HF, and LF/HF) for our analysis.
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Sleep Features

We extracted total sleep time (TST), wake after sleep onset (WASO), sleep fragmen-
tation, the average intensity of hand movement during sleep, a sleep quality indicator,
and a sufficient sleep parameter using the collected data from the watch. We defined
the sleep quality indicator as being awake for less than 20 minutes during the night
sleep and the sufficient sleep parameter as having TST between 7 and 8.5 hours dur-
ing the night [200]. Other sleep parameters were defined and calculated as described
in [75].

Physical Activity Features

The smartwatch continuously collected physical activity parameters, including step
counts, walking steps, running steps, distance, activity duration, and activity intensity
per 10 minutes. We accumulated the data to extract daily values. We also extracted
statistical parameters (i.e., mean, minimum, median, maximum, SD, interquartile
range, range, skewness, kurtosis, and root mean square) from the distribution of
hourly step counts and hourly activity duration. We defined a sufficient activity in-
dicator that indicates more than 7000 step counts during the day. Moreover, we
calculated sedentary time by subtracting active time from time spent awake.

The summary of extracted features in this study is illustrated in Table 11.

Table 11. Summery of extracted features [199]

HR and HRV features Sleep features Physical activity features
HR TST Step counts
AVNN Sleep fragmentation Walking steps
RMSSD WASO Running steps
SDNN Average hand movement Distance
LF Sleep quality indicator Activity duration
HF Sufficient sleep parameter Activity intensity
LF/HF Sedentary time

Sufficient activity indicator
Statistical features
from distribution of
daily steps
Statistical features
from distribution
of daily activity duration

57



Fatemeh Sarhaddi

6.2.5 Labeling

UCLA questionnaire scores were used as labels. The questionnaire has social and
emotional scores ranging from 0 to 24. The emotional scores were ignored because
we had a few participants with emotional loneliness, and only social scores were
used. UCLA social score ≥ 12 is considered loneliness, and UCLA social score
< 12 non-loneliness [198].

6.2.6 datasets

The extracted data from each data record, along with the corresponding label, were
used to generate seven datasets. The datasets include different combinations of sleep,
HRV, and physical activity features, which result in the sleep dataset, HRV dataset,
physical activity dataset, sleep and HRV dataset, sleep and physical activity dataset,
HRV and physical activity dataset, and sleep, HRV, and physical activity dataset.
The datasets were used for training and testing the developed machine-learning clas-
sifiers.

6.2.7 Missing Data Imputation

The data record in our datasets has at least four valid days. Therefore, the data record
may have missing data. We used the average value of the missing features within the
data record to fill in the missing values.

6.3 Predictive Machine-Learning Models

Several machine-learning models have been developed for maternal loneliness pre-
diction. The decision tree and gradient boosting models were chosen for prediction
because they have better performance than other models. We briefly explain the
decision tree and gradient boosting models in the following.

6.3.1 Decision Tree

The decision tree classifier is a supervised model that stands out because of its sim-
plicity and intelligibility. This model is a robust model well suited for complex data
[201; 202]. The model has a tree-like structure, including internal nodes and leaves.
Internal nodes represent a feature, and a split rule based on that feature and leaves
show the class label. The features in internal nodes are selected using the Gini index,
which shows the purity of classification.
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6.3.2 Gradient Boosting

The gradient boosting method is a machine-learning method that performs well on
complex data with high cardinality. The model provides speedy and accurate pre-
diction and usually outperforms other conventional machine-learning models [203].
Gradient boosting is an ensemble of weak prediction models that tries to build sev-
eral models sequentially, and the added models in each step eliminate the error of
previous models [203]. This model can find nonlinear relationships. Moreover, it
performs well in loneliness prediction studies [192].

6.4 Model Evaluation
We first employed the recursive feature elimination (RFE) method on physical activ-
ity features to remove the least important feature and prevent overfitting. Then, we
used the leave-one-participant-out cross-validation method to evaluate the developed
methods and report the average performance. The predictive models, RFE method,
training, testing, and evaluation were implemented in Python using the scikit-learn
library [204]. The predictive models were evaluated based on the following mea-
sures:

• Precision: percentage of predicted samples that actually belonged to a class
• Recall: percentage of correctly predicted samples per class
• F1 score: harmonic mean of precision and recall per class
• Weighted F1 score: weighted average of F1 scores
• Sensitivity: percentage of lonely participants correctly detected
• Specificity: percentage of non-lonely participants correctly detected

6.5 Results and Discussion
This section evaluates the performance of machine-learning models for maternal
loneliness prediction. Then, the important features of each model are discussed.

6.5.1 Performance of Maternal Loneliness Prediction

The performance of decision tree and gradient boosting classifiers based on preci-
sion, recall, F1 score, weighted F1 score, sensitivity, and specificity are summarized
in Table 12. Moreover, Figure 24 represents the performance of models in terms of
F1 scores.

For the decision tree model, the best performance was reached in the physical ac-
tivity dataset, HRV and physical activity dataset, physical activity and sleep features
dataset, and all features dataset. The results showed that physical activity features
are the most important features for loneliness prediction in decision tree models. In
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Table 12. Per class precision, recall and F1 score, weighted F1 score, sensitivity, and specificity
performance measures for the decision tree and gradient boosting models [199]

Model Dataset
Precision Recall F1 score Weighted

F1 score
Sensitivity Specificity

Non-
lonely

Loneliness
Non-
lonely

Loneliness
Non-
lonely

Loneliness

Decision
Tree

Sleep 0.778 0.619 0.636 0.765 0.7 0.684 0.693 0.765 0.636
HRV 0.6 0.528 0.614 0.514 0.607 0.521 0.567 0.513 0.614
PA 0 .905 0.833 0.864 0.882 0.884 0.857 0.872 0.882 0.864
Sleep & HRV 0.7 0.579 0.636 0.647 0.667 0.611 0.642 0.647 0.636
Sleep & PA 0 .905 0.833 0.864 0.882 0.884 0.857 0.872 0.882 0.864
HRV & PA 0.864 0.824 0.864 0.824 0.864 0.824 0.846 0.824 0.864
All 0.864 0.824 0.864 0.824 0.864 0.824 0.846 0.824 0.864

Gradient
Boosting

Sleep 0.611 0.476 0.5 0.588 0.55 0.526 0.540 0.588 0.5
HRV 0.553 0.471 0.591 0.432 0.571 0.451 0.516 0.432 0.591
PA 0.87 0.875 0.909 0.824 0.889 0.848 0.871 0.823 0.909
Sleep & HRV 0.667 0.524 0.545 0.647 0.6 0.579 0.591 0.647 0.545
Sleep & PA 0.833 0.867 0.909 0.765 0.87 0.812 0.845 0.765 0.909
HRV & PA 0.909 0.882 0.909 0.882 0.909 0.882 0.897 0.882 0.909
All 0.87 0.875 0.909 0.824 0.889 0.848 0.871 0.823 0.909

addition, the high specificity of the decision tree on the datasets with high perfor-
mance indicate that the model can identify non-lonely individual with high accuracy.
Moreover, the high sensitivity of the decision tree for physical activity or all features
datasets demonstrates that the decision tree performs well in accurately detecting
individuals experiencing loneliness.

Similar to the decision tree, the gradient boosting model performed best on the
datasets containing physical activity features. The highest performance of the model
was achieved on the physical activity and HRV dataset. For gradient boosting, adding
physical activity features to the dataset improved the results. Adding HRV features
also resulted in improvement, though less than with physical activity. However,
adding sleep features to physical activity features resulted in a decrease of perfor-
mance. Consequently, this model highlights the importance of physical activity and
HRV features for detecting maternal loneliness. In addition, the gradient boosting
model can identify lonely individuals with an accuracy higher than 88% for HRV
and physical activity features, while the accuracy of the model for identifying non-
lonely individuals is more than 90% for all the datasets containing physical activity
features. As you can see in Table 12, sleep features can have a negative impact on
the accuracy of detecting individuals experiencing loneliness, while having no effect
on detecting non-lonly individual.

The developed predictive models performed well in maternal loneliness predic-
tion. The gradient boosting and decision tree models achieved weighted F1 scores of
0.897 and 0.872, respectively. Additionally, both gradient boosting and decision tree
achieved the same sensitivity; therefore, both model had the same performance in de-
tecting participants experiencing loneliness. However, the gradient boosting model
achieved higher specificity, indicating its better performance in correctly detecting
non-lonely individuals. The results showed the feasibility and possibility of passive
sensing for maternal loneliness prediction.
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Figure 24. Performance evaluation (F1 score) of decision tree and gradient boosting for different
datasets [199]

As mentioned, a few have works used passive sensing with wearable devices to
predict loneliness in college students. Wu et al. [193] collected self-report ques-
tions regarding loneliness along with location and Bluetooth data. However, our
models achieved better performance and used standard loneliness measures as la-
bels. Doryab et al. [192] also used activity tracker and smartphone data and pre-
sented machine-learning models for loneliness prediction in college students. They
achieved an accuracy of 80.2%. Our models for maternal loneliness prediction
achieved higher performance. In addition, their model needed sensitive information
such as phone numbers of close friends, whereas our models only used physiological
parameters collected by a smartwatch.
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6.5.2 Important Features in Maternal Loneliness

In this section, the important features of loneliness detection in each predictive model
are discussed. For this purpose, the most important features in the datasets that
have weighted F1 scores ≥ 0.8 were investigated. Therefore, the datasets containing
physical activity features (four datasets) were considered for both models.

For the decision tree model, the most important features were the intensity of
activity and kurtosis of hourly steps per day. Other effective but less important fea-
tures include SDNN, LF, LF/HF, statistical features of hourly activity duration. For
the gradient boosting model, same as the decision tree, the most important features
were also the intensity of activity and kurtosis of the step count. Moreover, statistical
parameters of hourly step count and activity duration also contribute in loneliness
detection.

To summarize, the results show that the intensity and pattern of daily physical
activity during the day are the most important features of loneliness. Moreover, rest-
ing HR and HRV parameters are also correlated with loneliness. The results indicate
that more intensive physical activity is correlated with a lower level of loneliness. In
contrast, less intensive activity, when most of the activity happens in the morning or
early evening, along with low resting HRV, can be a sign of loneliness.

The finding of the negative association between physical activity and maternal
loneliness is very important for maternal health. It is known that physical activity
decrease while pregnancy proceeds due to physiological changes in the body [9].
Therefore, maternal care providers should be aware that lower physical activity could
also be a sign of maternal loneliness and be alert to other signs of loneliness.

In addition, Studies on college students have also shown the same results regard-
ing the negative correlation of loneliness with the duration of the activity, total step
counts, and activity duration in the evening [138; 192; 205]. Moreover, Ben-Zeev
et al. [206] reported that loneliness was not related to sleep duration, which is in
accordance with our results.

It is important to note that, considering the typical decrease in physical activity
during pregnancy, in order to generalize our models for the entire pregnancy or other
demographic groups, the models should also incorporate data from different popu-
lation groups. This is crucial, as the threshold for activity levels may vary among
different population groups.
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7 Conclusion

IoT-based health monitoring systems provide new opportunities in health care ser-
vices by providing low-cost continuous health monitoring all times in everyday set-
tings. However, using such systems in practice raises many challenges. In this re-
search, we presented and evaluated an IoT-based system for maternal health mon-
itoring during pregnancy and postpartum. We also investigated and discussed the
requirements and challenges of deploying such maternal monitoring systems. Then,
we validated the HR and HRV parameters collected by the presented system. In ad-
dition, we proposed a deep learning-based quality assessment method to assess the
quality of HR and HRV parameters collected with our system.

We used our system to conduct a study on pregnant women and collected contin-
uous data from 62 women during pregnancy and 3 months postpartum. The collected
data were used to analyze the changes in HR and HRV parameters comprehensively
during pregnancy and postpartum. Finally, we used the collected data to develop
predictive machine-learning models for maternal loneliness as a major mental health
problem during pregnancy and postpartum.

To achieve Research Objective I (i.e., present, develop, and evaluate a continuous
IoT-based maternal health monitoring system), Chapter 3 presents a long-term IoT-
based maternal monitoring system. The system was evaluated against both system-
level and user-level requirements, including reliability, feasibility, usability, and en-
ergy efficiency. The practical challenges of developing the system were also dis-
cussed in detail.

Research Objective II (i.e., validate and assess the quality of HR and HRV pa-
rameters collected by the developed IoT-based monitoring system) was achieved in
Chapter 4. In Chapter 4, we first validated the accuracy of the smartwatch, which was
used in our monitoring system, against a clinical-level ECG gold standard. The vali-
dation was in terms of HR and HRV parameters and was performed during sleep and
waking hours. The results revealed the need for a PPG quality assessment method,
especially during waking hours, because the accuracy of most parameters was not
acceptable during waking hours. We then introduced a deep-learning-based quality
assessment method for HR and HRV parameters. Four CNN-based models for HR,
RMSSD, SDNN, and LF/HF were proposed. The models demonstrated superior per-
formance compared to existing state-of-the-art models on the data set collected from
46 participants in everyday settings.
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Research Objective III (i.e., deploying the presented IoT-based system to collect
data from pregnant women during pregnancy and 3 months postpartum) was realized
in Chapter 5. In this chapter, we described our data collection from 62 pregnant
women. We collected data from two groups of pregnant women (i.e., high-risk and
low-risk groups). The high-risk group had a history of miscarriage or preterm birth,
whereas the low-risk group had a history of full-term birth. Our system continuously
collected the objective and subjective data from the participants for 9 months.

Research Objective IV (i.e., investigate the trends of HR and HRV parameters
during pregnancy and the postpartum period) was addressed in Chapter 5. In this
chapter, we employed the data collected during pregnancy and postpartum, which
was described in Research Objective II. We analyzed the trends of minimum HR and
corresponding HRV and normalized HRV parameters at nighttime using the hierar-
chical linear model. With this model, we analyzed the trend of parameters during
the second and third trimesters and the postpartum period. We then compared the
trend of changes in different trimesters and with the postpartum period. The effect
of age, BMI, and education level on the trend of HR and HRV parameters was also
investigated.

Research Objective V (i.e., develop predictive models to detect maternal loneli-
ness during pregnancy and the postpartum period based on data collected passively
by the developed monitoring system) was accomplished in Chapter 6. In this chap-
ter, we proposed two predictive models to detect maternal loneliness. The physio-
logical data collected passively through the IoT-based maternal monitoring system
developed in the thesis, along with loneliness scores, were used to train and test the
models. The results showed the high performance of the developed models in ma-
ternal loneliness detection. Moreover, the results indicated that intensity of activity,
activity in the evening, and resting HR and HRV are important features in predicting
loneliness.

In this thesis, we have contributed toward the above Research Objectives. How-
ever, there are still open directions to be explored. The IoT-based maternal moni-
toring system can collect a large amount of previously unavailable data. The data
can be used to predict mental and physiological health issues, including depression
and hypertension. Moreover, our current system lacks intervention functionalities.
The system should be extended to provide appropriate notifications, interventions,
and alarms in case of risk conditions. Furthermore, the system should be further de-
veloped to include other monitoring services, for example, diet, weight, and mobile
usage, and connect with other wearable and mobile applications that are currently
available.

Moreover, the accuracy validation of HR and HRV parameters was performed
using data from healthy nonpregnant adults in a 24-hour data collection. In the fu-
ture, we should consider validating the data with pregnant women experiencing var-
ious health conditions. During pregnancy, changes in body weight, hormonal levels,
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and the growing fetus can influence sleep patterns and body movements, potentially
resulting in different motion artifacts. These variations may impact HR and HRV
parameters and need further investigation. Additionally, the proposed CNN-based
PPG quality assessment method was based on the same data as the accuracy vali-
dation. This method can also be extended, providing data from different population
groups with various health conditions. Moreover, other HRV parameters should be
considered, including frequency domain and nonlinear HRV parameters.

We analyzed the nighttime trends of HR and HRV parameters during the second
and third trimesters and the postpartum period. Analyzing daytime HR and HRV
trends is an open direction in this research. Moreover, as suggested in [151; 147],
HRV changes occur mostly during the first trimester. In the future, we will analyze
the trends of HR and HRV parameters during the first trimester and compare them to
other trimesters and the postpartum period.

We presented machine learning models for maternal loneliness detection. How-
ever, our data set was small, and we only considered data at two-time points during
late pregnancy and postpartum. In the future, we should use data during the whole
pregnancy with a greater number of participants to generalize our models. Moreover,
participants with different health conditions should be considered.
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8 Overview of Original Publications

This chapter presents a brief overview of original publications and the author’s role
in each publication.

8.1 Long-Term IoT-Based Maternal Monitoring: Sys-
tem Design and Evaluation

In this paper, we present a long-term IoT-based maternal health monitoring system.
This system enables remote and continuous health monitoring of pregnant women
during pregnancy and the postpartum period. The system provides several monitor-
ing services, including stress, physical activity, and sleep, by collecting objective and
subjective physiological health data. The data are collected using wearable devices
and smartphones and transferred to our cloud server to be stored and analyzed. We
leveraged several machine learning-based methods to enhance the data analysis, such
as anomaly detection, personalized modeling, and quality assessment methods. The
presented system was implemented and used by pregnant women from the second
trimester to 3 months postpartum. The paper extensively investigates and discusses
the challenges of such a long-term maternal monitoring system.

Author’s contribution

The author is the first author of this publication. She had a significant role in de-
signing, developing, implementing, and deploying the maternal monitoring system.
She had a major role in collecting and analyzing the system’s usage data. She also
contributed to drafting the manuscript.

8.2 A comprehensive accuracy assessment of Sam-
sung smartwatch heart rate and heart rate variabil-
ity

In this paper, we investigated the accuracy of the HR and HRV parameters extracted
from PPG signals collected by the Samsung smartwatch in free-live settings. We uti-
lized short-term HRV analysis to assess the validity of HR, AVNN, RMSSD, SDNN,
pNN50, LF, HF, and LF/HF extracted from the collected PPG-signal in comparison
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with a medical-grade ECG monitor during sleep time and awake time. We used the
24-hour continuous data from 28 participants in home-based monitoring for evalua-
tion. The accuracy of HR and HRV parameters obtained from the Samsung smart-
watch was investigated using the linear regression method, the Pearson correlation
coefficient, and the Bland–Altman plot.

Author’s contribution

The author is the joint first author of this publication. She has contributed to the
design of the study. She had a major role in the setup and data collection. She also
contributed to the data analysis. She had a significant role in drafting the manuscript.

8.3 A Deep Learning-based PPG Quality Assessment
Approach for Heart Rate and Heart Rate Variability

In this paper, we propose a deep learning-based quality assessment for PPG signals
based on the HR and HRV parameters. We first indicated that conventional PPG
quality assessment methods could be improved by considering the desired HRV pa-
rameters. The quality of each extracted HRV parameter is affected by different signal
features. Therefore, we proposed different CNN-based models for each HRV param-
eter. We evaluated the proposed method for HR, RMSSD, SDNN, and LF/HF pa-
rameters compared with the state-of-the-art PPG-quality assessment methods. The
evaluation was performed using the simultaneous PPG and ECG data collected in
everyday life settings. Moreover, we presented an automated annotation method for
labeling PPG segments as reliable/unreliable based on the ECG baseline. The pro-
posed quality assessment models are implemented as an open-source portable model
in Python and are available for others to use in their studies.

Author’s contribution

The author is the second author of this publication. She had a major role in data
collection and data analysis. She contributed to the study setup, model development,
literature review, and manuscript drafting.

8.4 Trends in Heart Rate and Heart Rate Variability
During Pregnancy and the 3-Month Postpartum Pe-
riod: Continuous Monitoring in a Free-living Con-
text

In this paper, we investigate the trends of HR and HRV during pregnancy and the
postpartum period. We collected PPG signals from 58 pregnant women using the
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IoT-based maternal monitoring system presented in the first paper. The PPG signals
were acquired continuously during the second trimester, the third trimester, and three
months in the postpartum period in everyday life settings. We analyzed the minimum
HR and HRV parameters corresponding to min HR at night. We also investigate
the trends of normalized HRV parameters based on average HR. This normalization
enabled us to remove the impact of normal HR changes during pregnancy on HRV
trends. We utilized hierarchical linear modeling to investigate the trend of desired
parameters considering in-person and between-person differences. Moreover, we
investigate the effect of age, BMI before pregnancy, and education level on HRV
trends.

Author’s contribution

The author is the first author of this publication. She played a significant role in the
design of the study. She was the main contributor to the design, development, and
deployment of the long-term maternal monitoring system utilized for data collection
in this paper. Moreover, she had a significant role in data analysis and investigating
the parameters’ trends. She contributed to drafting the manuscript.

8.5 Maternal Social Loneliness Detection Using Pas-
sive Sensing Through Continuous Monitoring in Ev-
eryday Settings: Longitudinal Study

In this paper, we developed two machine learning models to predict maternal so-
cial loneliness using passive sensing. We used physiological data, i.e., HR, HRV,
physical activity, and sleep, collected passively by a smartwatch during pregnancy
and postpartum. We also collected the UCLA loneliness questionnaire in gestational
weeks 36 and 12 weeks after delivery, which was used to classify participants as
lonely or non-lonely. We utilized eight days of collected physiological data from
the smartwatch and the corresponding response to the UCLA questionnaire from 31
pregnant women. We leveraged these data for training and testing the decision tree
and gradient boosting models for loneliness prediction. These two models achieved
high F1 scores. Moreover, the results show that activity pattern, intensity of activity,
and resting nighttime HR and HRV parameters are important features of the models
to predict loneliness. This paper demonstrated the feasibility of maternal loneliness
prediction based on objective data and passive sensing. Therefore, it provides oppor-
tunities for maternal well-being improvement through early detection of loneliness.
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Author’s contribution

The author is the first author of this publication. She was the major contributor
to the study design. She also has a significant role in developing machine learning
models and data analysis. Moreover, she contributed to the design, development, and
deployment of the long-term maternal monitoring system used for data collection in
this paper. She contributed to drafting the manuscript.
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Appendix A: questions provided by the
mobile application

This appendix includes daily questions that were asked through our cross-platform
mobile application throughout pregnancy and postpartum. The questions were based
on the pregnancy week and day. The questions for day 7 for all pregnancy and
postpartum weeks are the same and are shown in Table 13 along with the answers.
Questions for other days of the week are yes/no questions and are determined based
on the specific pregnancy day and week, as shown in Table 14. Participants received
two or three questions available for that day.

Table 13. Day 7 questions

Questions Answers
Finnish English translation Finnish English Translation
Millaiseksi arvioisit
stressitasosi
viimeisen viikon
aikana?

How would you rate
your stress level
during the last week?

0 (Ei lainkaan stressiä) –
100 (pahin mahdollinen
stressi)

0 (No stress at all) -
100 (Worst possible
stress)

Millaiseksi arvioisit
liikunnan määräsi
viimeisen viikon aikana?

How would you rate
your exercises level
during the last week?

0 (Ei lainkaan) –
100 (Erittäin paljon)

0 (Not at all)-
100 (Very much)

Millaiseksi arvioisit
unen laatusi
viimeisen viikon aikana?

How would you assess
the quality of
your sleep over
the past week?

0 (Erittäin huono) –
100 (Erittäin hyvä)

0 (Very poor) -
100 (Very good)
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Table 14

Question in Finnish Question in English Weeks

DAY1
Onko sinulla raskauteen liittyviä
huolia?

Do you have concerns related to pregnancy? gwk 12 to the delivery

DAY4
Onko raskautesi sujunut odotustesi
mukaisesti?

Has your pregnancy progressed
as you expected?

gwk 12 to the delivery

DAY1 Onko sinulla ollut tänään pahoinvointia? Have you experienced nausea today? gwks 12-15
DAY2 Oletko oksentanut tänään? Have you vomited today? gwk 12–15
DAY3 Onko sinulla ollut tänään turvotusta? Have you experienced swelling today? gwks 12 and 14

DAY3
Onko sinulla ollut tänään kipuja
lantion alueella?

Have you had pain in the pelvic area today? gwks 13 and 15

DAY4 Onko sinulla ollut tänään närästystä? Have you had heartburn today? gwks 12 and 14
DAY4 Onko sinulla vauvaan liittyviä huolia? Do you have concerns related to the baby? gwks 13 and 15
DAY5 Onko sinulla ollut tänään suonenvetoja? Have you had cramps today? gwks 12 and 14
DAY5 Onko sinulla ollut tänään selkäkipuja? Have you had back pain today? gwks 13 and 15
DAY6 Oletko tänään onnellinen? Are you happy today? gwks 12 and 14

DAY6
Oletko tänään tuntenut itsesi
masentuneeksi tai alakuloiseksi?

Have you felt depressed or
downhearted today?

gwks 13 and 15

DAY1 Onko sinulla ollut tänään turvotusta? Have you experienced swelling today? gwk 16 to the delivery
DAY1 Oletko tänään onnellinen? Are you happy today? gwk 16 to the delivery
DAY2 Onko sinulla suonikohjuja? Do you have varicose veins? gwk 16 to the delivery

DAY2
Oletko tänään tuntenut itsesi
masentuneeksi tai alakuloiseksi?

Have you felt depressed or
downhearted today?

gwk 16 to the delivery

DAY3 Onko sinulla ollut tänään närästystä? Have you had heartburn today? gwk 16 to the delivery
DAY3 Pelottaako synnytys sinua? Are you afraid of childbirth? gwk 16 to the delivery
DAY4 Onko sinulla ollut tänään suonenvetoja? Have you had cramps today? gwk 16 to the delivery
DAY4 Onko sinulla vauvaan liittyviä huolia? Do you have concerns related to the baby? gwk 16 to the delivery
DAY5 Onko sinulla ollut tänään selkäkipuja? Have you had back pain today? gwk 16 to the delivery
DAY5 Onko sinulla ollut tänään supistuksia? Have you had contractions today? gwk 16 to the delivery

DAY6
Onko sinulla ollut tänään
kipuja lantion alueella?

Have you had pain in the pelvic area today? gwk 16 to the delivery

DAY6 Oletko tuntenut tänään vauvan liikkeitä? Have you felt the baby’s movements today? gwk 16 to the delivery
DAY1 Onko sinulla vauvaan liittyviä huolia? Do you have concerns related to the baby? Postpartum weeks 1-12
DAY1 Onko sinulla ollut tänään kipuja? Have you had pain today? Postpartum weeks 1-12
DAY2 Oletko tänään onnellinen? Are you happy today? Postpartum weeks 1-12
DAY2 Oletko tuntenut itsesi virkeäksi tänään? Have you felt energetic today? Postpartum weeks 1-12
DAY2 Onko sinulla ollut tänään supistuksia? Have you had contractions today? Postpartum weeks 1-4
DAY3 Oletko liikkunut tänään ulkona? Have you been outdoors today? Postpartum weeks 1-12
DAY3 Oletko imettänyt tänään? Have you breastfed today? Postpartum weeks 1-12
DAY4 Onko sinulla itseesi liittyviä huolia? Do you have concerns related to yourself? Postpartum weeks 1-12
DAY4 Onko sinulla ollut tänään jälkivuotoa? Have you had postpartum bleeding today? Postpartum weeks 1-4

DAY4 Koetko palautuneesi synnytyksestä?
Do you feel that you have recovered
from childbirth?

Postpartum weeks 5-12

DAY5
Oletko tavannut tänään muita
aikuisia puolisosi lisäksi?

Have you met other adults today
besides your spouse?

Postpartum weeks 1-12

DAY5
Onko sinulla ollut tänään
mielialan vaihteluja?

Have you experienced mood swings today? Postpartum weeks 1-12

DAY6
Oletko tänään tuntenut itsesi
masentuneeksi tai alakuloiseksi?

Have you felt depressed or
downhearted today?

Postpartum weeks 1-12

DAY6 Onko vauvasi ollut tänään kovin itkuinen? Has your baby been very fussy today? Postpartum weeks 1-12
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