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Abstract

This thesis concentrates on the topological defects of spin-1 and spin-2
Bose-Einstein condensates, the ground states of spin-3 condensates, and
the inert states of spinor condensates with arbitrary spin. Our work is
based on the description of a spinor condensate of spin-S atoms in terms
of a state vector of a spin-S particle.

The results of the homotopy theory are used to study the existence and
structure of the topological defects in spinor condensates. We construct
examples of defects, study their energetics, and examine how their stability
is affected by the presence of an external magnetic field.

The ground states of spin-3 condensates are calculated using analytical
and numerical means. Special emphasis is put on the ground states of
a chromium condensate, whose dependence on the magnetic dipole-dipole
interaction is studied.

A simple geometrical method for the calculation of inert states of spinor
condensates is presented. This method is used to find candidates for the
ground states of spin-S condensates.
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Chapter 1

Introduction

The Indian physicist S. N. Bose realized in 1924 that the statistics govern-
ing photons is determined by restricting the physical Hilbert space to be a
symmetric tensor product of single photon states. Soon after this A. Ein-
stein applied this idea to massive particles and discovered the phenomenon
that is now called Bose-Einstein condensation (BEC) [18, 19]. BEC is asso-
ciated with the condensation of atoms in the state of lowest energy and is a
consequence of quantum statistical effects. In his work Einstein considered
bosonic ideal gas. If it is trapped in a box and periodic boundary conditions
are used, the condensation occurs to a zero-momentum state which has zero
energy. At that time this phenomenon was viewed as a mathematical cu-
riosity with little experimental interest. It was thought that condensation
disappears as soon as interactions are properly taken into account.

In 1938 two laboratories working on liquid helium simultaneously re-
ported the discovery that below the so-called A-temperature T’ this liquid
appeared to flow through very narrow capillaries without detectable fric-
tion. In the same year F. London suggested that this phenomenon, superflu-
idity, might be a manifestation of Bose-Einstein condensation [33, 32|. He
believed that despite the strong interparticle interactions BEC was occur-
ring in this system and was responsible for the superfluidity. Over the last,
seventy years there has been overwhelming experimental and theoretical ev-
idence that London’s hypothesis is correct, and it is now almost universally
accepted by researchers in the field. However, it is extremely difficult to
verify directly that BEC occurs in liquid helium. The best direct evidence
comes from from high-energy neutron scattering and from the evaporation
of atoms from the *He surface. While consistent with a condensate fraction
of the order of 10% at T' = 0, it cannot be said to rigorously establish it.
Because the condensate fraction in helium is so low, it was necessary to



find substances with weak particle-particle interaction. The problem was
that most substances do not remain gaseous as the temperature is lowered,
but form solids or liquids, and thus the effects of interaction become large.

Due to advances in the laser cooling of alkali atoms, such atoms be-
came attractive candidates for Bose-Einstein condensation. In 1995 Bose-
Einstein condensation in dilute gases was obtained using rubidium [1],
sodium [15], and lithium [9, 10]. The dilute gas systems differ from lig-
uid helium in many ways. The most important differences are that the
gaseous systems are very dilute and weakly interacting, so that the per-
turbation theory in interatomic interaction is a very reliable method of
calculating their properties. Moreover, dilute gases are extremely sensitive
to manipulation of the external potentials in space and time. These dif-
ferences are also illustrated by the densities of these systems. The peak
density of a Bose-Einstein condensed gas cloud is of the order of 103 —10%°
cm 3, while the density of liquid helium is 10%? cm™2. In a gaseous BEC
the atomic velocities can be as low as 1 mm/sec. An important difference
is also that, unlike “He, alkali atoms can have non-zero nuclear spin and
therefore numerous internal hyperfine states which are stable electronic
ground states. Thus, there exists the possibility of creating a quantum
fluid simultaneously composed of several, distinguishable components by
Bose-Einstein condensing a gas of atoms in several hyperfine states. Im-
portant examples of multi-component Bose-Einstein condensates are spinor
condensates, whose creation became possible after the realization of an op-
tical trap [57]. A spinor condensate of spin-S particles is characterized by
an order-parameter with 25 + 1 components. Due to the many-component
nature of the order-parameter, several different ground states are possi-
ble in spinor condensates. One of these is chosen to be the actual ground
state by the strength of the particle-particle interaction and magnetic field
[13, 16, 23, 45, 63, 52]. The vectorial form of the order-parameter allows
various types of topological defects. The topological defects of spinor con-
densates are in general considerably more complex than the topological de-
fects of single-component condensates, which is why a systematic approach
is needed in order to classify and characterize them. This is achieved by the
use of homotopy groups [22]. Homotopy groups classify continuous maps
which can be converted into each other continuosly. This is physically rel-
evant since topological defects correspond to order-parameters which can-
not be continuously deformed into a uniform, position independent order-
parameter [37].

The structure of the thesis is as follows: in Chapter 2 the Gross-



Pitaevskii energy functional and the dependence of atomic energy levels
on magnetic field are discussed. The energy functional of a spinor Bose-
Einstein condensate and its ground states are studied in Chapter 3. In
Chapter 4 the magnetic dipole-dipole interaction and the ground states of
a spin-3 condensate are examined. Chapter 5 contains a brief survey of the
theory of homotopy groups and its physical applications. In Chapter 6 this
theory is used to study the topological defects of Bose-Einstein conden-
sates. Chapter 7 introduces a way to write a pure state of a spin-S particle
in terms of 25 pure states of spin-1/2 particles. This decomposition is put
into practise in Chapter 8, where the inert states of spinor condensates are
calculated. The work is summarized in Chapter 9.

10



Chapter 2

Energy functional and magnetic

field

In this chapter we briefly discuss the concept of a BEC, its energy func-
tional, and atomic energy levels in an external magnetic field. This chapter
is based mainly on [48].

2.1 Gross-Pitaevskii energy functional

As we have discussed above, Bose-Einstein condensation for non-interacting
particles can be defined as a macroscopic occupation of a single particle
state. The situation changes if one considers an interacting system. For a
system of N particles in an external potential V' and interacting via a pair
potential U(|r; — r;|), the Hamiltonian can be written as

Hy=>_ (—;—va + V(m) + Y Ul — 1)) (2.1)

i=1 1<i<j<N

Three and higher body interaction potentials could also be included, but
they are conventionally excluded. In a dilute gas the two-body collisions are
dominant and higher body scattering can usually be disregarded. Unlike
in the case of a non-interacting system, even at zero temperature it is not
entirely clear what is meant by a macroscopic occupation of a single particle
state, because the eigenfunctions of Hy are not products of single particle
states. The concept of a macroscopic occupation of a single particle state
acquires a precise meaning through the one-particle density matrix. If U is
a normalized N-particle state vector, the one-particle state determined by
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VU can be defined via

y(r, 1) N/ /(Hdrz> (r,re,...,tN)¥(r 1o, ...,rN), (2.2)

for which Tr[y] = [dr~(r,r) = N. BEC in the ground state of a ho-
mogeneous system means that this operator has an eigenvalue of order N
in the thermodynamic limit. By thermodynamic limit we mean the limit
where the particle number N and volume V' approach infinity with the
N/V constant. In an inhomogeneous system the thermodynamic limit has
to be replaced by an appropriate scaling of the potentials involved. This
definition of BEC was first presented in [47]. If more than one of the eigen-
values of v is of the order of IV, the condensate is said to be fragmented. In
this work we assume in general that the condensate is not fragmented, that
is, it can be described by one single-particle state only. In the orthodox
approach to Bose-Einstein condensation the N-particle state of condensed
particles is written as

N

U(ry, 1, ... xy) = | [ o(r), (2.3)

1=1

where the single-particle state ¢ is normalized to one. The gas is assumed
to be very dilute and cold, so that the interaction potential U can be
approximated by an effective potential

U(r; —r;) = go(r; — rj). (2.4)

Here g = 4mh*a/M, M is the mass of the atom, and a is the s-wave
scattering length. By inserting U into Eq. (2.1) and by using the contact
interaction potential one obtains

N

2 2 — 1 4
0= [ar | JoIvomP - volw - S o] @9

This can be written in a different form by using the wave function of the
condensate, which is defined by

V() = VNo(r). (2.6)

If terms of order 1/ are neglected, one obtains the Gross-Pitaevskii energy
functional

Bl = [ dr |5 Vo0P +VEOR@E+ el @)

12



It is experimentally possible to trap different types of atoms simultane-
ously. In the case of two species, the wave function (2.3) can be written
as

Ny No
\Ij(rla R Y\ IJl) s 7rlN2) - H¢1(rz) H ¢2<r;‘)7 (28)
i=1 j=1

where [ dri|¢1(r1)]* = [ dra|¢ge(rs)|> =1 and we assume that the particle
number of each species is conserved. The order-parameters describing the
condensates are ¥ = \/Ni¢; and ¥y = /Nop, and the energy functional
becomes

h? h?
Blonvel = [ dr|Sue VP + o (V0P + P + Vit
1 1
+5911W1\4 + §gz2|¢2|4 + gro|t P (2.9)

Here, like in Eq. (2.7), terms of order 1/N; and 1/N, have been neglected.
The masses M; and potentials V; may be different for the species i = 1 and
i = 2. The interaction between atoms is given by ¢;; = g = 2wha;;/M;;,
where a;; is the s-wave scattering length between atoms ¢ and j and M;; =
M;M;/(M; + M;) is the reduced mass for an atom ¢ and an atom j. Two-
component condensates have been produced by trapping ®’Rb atoms in
different internal states [43].

2.2 Atomic energy levels

Next we study the energy of an atom in an external magnetic field. We
denote the nuclear spin of an atom by I and the total spin of the electronic
shell by S. We assume that the orbital angular momentum of the electronic
shell is zero, which holds true for the alkali atoms.

In the absence of an external magnetic field the atomic levels are split
by the hyperfine interaction, which is described by a Hamiltonian of the
form

Hyy=AI-J = AIL.S. (2.10)

Here A is a constant and I and J = L+ S are the operators for the nuclear
spin and the electronic angular momentum, respectively. The latter consists
of the operator for the total orbital angular momentum of the electronic
shell (L) and of the operator for the total spin of the electronic shell (S).
Because we assume that the orbital angular momentum is zero, we can

13



drop the L part, as has been done in the second expression of Eq. (2.10).
The operator for the total spin of an atom is

F=1+S. (2.11)

From now on we assume that 7 = 1 in the angular momentum operators.

To take into consideration the effect of an external magnetic field, one
has to add to (2.10) the Zeeman energies arising from the interaction of
the magnetic moments of the electron and the nucleus with the magnetic
field. We choose the magnetic field to be parallel to the z-axis, so the total
Hamiltonian becomes

Htot = AI . S + CSZ + D]z (212)

Now we assume that [ = 3/2 and S = 1/2, which are the relevant values
for the atoms used most commonly in experiments on Bose-Einstein con-
densates, namely 8"Rb and 2*Na. Therefore the constants C' and D are
now

C =gupB, (2.13)

and

D= —%B. (2.14)

Here up = |e|h/2m, is the Bohr magneton, g is the g factor of the electron
and g is the magnetic moment of the nucleus. It is of the order of the nuclear
magneton uy = |e|h/2m,, so |D/C| ~ m./m, ~ 1/2000, which shows that
in most cases D can be neglected. The basis for the total spin of the atom
can be chosen to be {|m;,mg) |m; = +£3/2,£1/2, mg = +£1/2}. With the
help of the raising and lowering operators I+ = [, =4[, and Sy = S, £195,,
we can write

1

This expression commutes with F, = I, + S, so the Hamiltonian H;,
conserves the projection of the total spin F in the z-direction. This means
that H,, couples only states with the same value of mr = m; + mg and
hence the energy eigenvalues of H;, can be calculated straightforwardly.

14



The results are [48]

3 1 3
1 3., 1 )
E(mp=1) = —1A+Di ZA +Z(A+C_D)’
1 1
E(mp=0) = —ZAi\/AuZ(C—D)a (2.16)
1 3 ., 1 ,
B(mp=—1) = —;A=D# /7424 (A= C+Dp,
3 1 3

Because D/C' is very small, we set D = 0 which gives

3 1
o0 k
1, 31 1 I\ ¢
BW/A =~y arr- 123 | S (i 0)a |
k=0 |i=[k/2]
E(0)/A = _li 1 lbzz—liic—kb% (2.17)
1 4 4 1,::04]c )
o0 k
1, /3 1 1 I\ e
Ben/a = —da\Felaon o eS| 3 ()5 ™
k=0 I=[k/2]
3

where b = C/A and [j] is the smallest integer greater than or equal to j.
The + (—) sign in front of the square root refers to an F' = 2 (F = 1)
atom. For later use, we have expanded F(£1) and E(0) in the Taylor
series. These have been obtained using the fact that v/1+z =Y 7o, e,
where

(=1)*(2k)!
(1 — 2k)k124F

The series expansion for /1 + x is valid if || < 1. In E(1)/A we define
x = b/2 + b*/4, so this expansion of holds true if b < —1 + /5 ~ 1.23.

15



Figure 2.1: Energy of the hyperfine levels as a function of the magnetic
field b. The vertical line shows the limit of validity of the series expansions
of Eq. (2.17).

Under this condition the Taylor series of F(0)/A is also valid. To the best
of the author’s knowledge, these complete forms for the series expansions
of (2.17) have not been presented before, typically only the lowest order
terms are given. In Fig. (2.1) we plot the energy levels of Eq. (2.17) as a
function of b.
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Chapter 3

Spinor condensates

By a spinor condensate we mean a Bose-Einstein condensate which is de-
scribed by a state vector of a spin-F' particle. As the word "spinor" is used
in a different meaning in other fields of physics, a better name for a spinor
condensate could simply be a spin-F' condensate. However, because the
expression spinor condensate is common in the literature, it shall also be
used here, although interchangeably with the term spin-F' condensate.

A spinor condensate can be realized experimentally by confining the
condensate atoms in an optical trap [57|. If a BEC is in a magnetic trap,
only particles which are in a low-field seeking state with respect to the
quantization axis determined by the direction of the local magnetic field
remain trapped. In an optical trap the atomic spin is liberated from the
requirements of magnetic trapping and becomes a new degree of freedom.
When an optical trap is used there can still be magnetic fields present. In
this case the magnetic fields are not needed to trap atoms, but e.g. to
diminish the effect of stray magnetic fields [12, 31, 54, 58|. Next we show
how the Gross-Pitaevskii energy functional of Eq. (2.7) can be generalized
for spinor Bose-Einsten condensates.

3.1 Energy functional

A spin-F particle can be described by a state vector of the form

¢r(r)
om=|
¢_p(r)

17



for which [ dr ¢(r)'¢(r) = 1. We again assume that all atoms are condensed
in the same one-particle state, given by ¢. Therefore, the Hartree N-
particle wave function becomes

N

U(ry,1s,...,xy) = | [ 6(x). (3.2)

=1

Because we discuss bosonic atoms, F' has to be an integer. Notice that now
different spin components can be converted into each other, while in the case
of the two-component condensate discussed earlier the number of particles
in each component was conserved. Following Eq. (2.6), we define the
order-parameter describing a spinor condensate through 1(r) = v/ No(r).
Usually this is written in the form

Er(r)
o) = vt = vam | 0| (33)
-r(r)

where £(r) = ¢(r)/\/dT(r)d(r) and n(r) = N¢'(r)¢(r) is the particle den-
sity |23, 45]. When defined like this, 7(r)é(r) = 1 for all r for which ¢ is
defined. In the rest of the book we call £ the spinor. In some publications
this term refers to ¢, so one must be careful with the terminology.

As before, we assume that only the s-wave scattering has to be taken
into consideration and that the interaction can be approximated by the
contact interaction. For bosons the two-particle state vector describing
scattering particles has to be invariant in the interchange of the particle
coordinates. The orbital part of the state vectors describing the s-wave
scattering is left unchanged in this operation. Hence the spin part also
has to be symmetric in the interchange of the particle coordinates, which
means that only even values are possible for the total spin of two colliding
particles. Under this constraint we can write the contact interaction as

Ur—r)=6r—1)>_ gPr (3.4)

where P, is the projection operator onto a two-particle state with total

spin k£ and the summation is restricted to even values of k. The strength

: L 2 : ;
of the interaction is given by gp = WTG’“, where ay, is the s-wave scattering

length in the total spin k scattering channel, and M is the mass of the

18



atom. Using this form for the interaction potential, the Gross-Pitaevskii
energy functional describing a spinor condensate of spin-F' particles can be
written as |23, 45]

1 1
Bl = [ e 3 IVR@P V@3 3 an((P)e).
k=—F k=0,2,...,2F
(3.5)
Here V is the external potential and ((P;))e = £(r)T @ £(r)"Pié(r) ® &(r).
The external potential is assumed to be the same for all spin components.
The energy functional of Eq. (3.5) is invariant in arbitrary spin rotations
and phase changes of the spinor &. In this thesis the ground state spinors
of (3.5) play an important role. The interaction and potential terms do
not make any energetic difference between position dependent and position
independent spinors, but the kinetic energy is minimized by a constant
spinor. Furthermore, the term containing the external potential depends
only on the density, so the spinors minimizing E* can be found by finding
all position independent spinors which minimize

EnlE =D gl(P))e. (3.6)

k=0,2,...2F

The interaction term can be written in a different form by using the prop-
erties of spin matrices. We consider a two-particle system and denote by
F; the spin operator of particle i, that is, F1 = F® I,, Fs = I; ® F and
F is the spin operator of a spin-F' particle. The total spin operator is
F..: = F; + F5. The possible values for the total spin are 0,2,...,2F and

therefore we get F2, = iieven k(k + 1)Pg. The projection operators can
be written as
k
Pr= Y _|Fiat =k, mp,, =) (Fio = k,mp,, = jl. (3.7)

j=—h

The sum of the projection operators gives the identity operator,

I=L®L= Y P (3.8)
k=0,2,....2F
Now F, - Fy = (F2, —F? — F3)/2 = (F2, — 2F(F + 1)I)/2. By using the
expressions for F2  and I we get

FioFo= Y %[k(k +1) — 2F(F + 1)]Ps. (3.9)

k=0,2,...2F

19



Table 3.1: The possible zero-field ground state spinors of condensates with
F'=1and F' = 2. These are defined up to a spin rotation and a phase
change.

Phase Spinor O] | (F);
F =1 ferromagnetic (1,0,0) — 1
antiferrom. /polar (0,1,0) — 0
F =2 | ferromagnetic (1,0,0,0,0) 0 4
(0,1,0,0,0) 0 | 1
cyclic (1,0,/2,0,-1)/2| 0 0
antiferrom. /polar | (1,0,0,0,1)/v2 1 0
(0,0,1,0,0) T [ 0

By elevating this to n'" power we obtain

F Fyr= Y Qin[m: +1) = 28(F + 1)]" Py, (3.10)

k=0,2,...2F

This equation can be used to eliminate the projection operators from the
interaction energy. In practise, for F' > 1, it is favourable to leave Py but
to replace all the other projection operators with the powers of F; - F5.
Next we consider in more detail the interaction energies and ground state
spinors of spin-F' condensates with F' = 1,2 and 3.

3.1.1 Atomic spin F' =1

Now we get I = Py + Py and Fy - Fo = —2P, + P,. Using these Py and P,
can be eliminated and we obtain

Emi 1] = a1 + N (F);, (3.11)

where a = 28292 4y = 229 apd (F) = £'(r)FE(r). Depending on the
sign of 71, the energy is minimized either by |[(F)¢|| = 1 or (F) = 023, 45].
The former is called ferromagnetic and the latter antiferromagnetic or polar

phase, see Table (3.1).

3.1.2 Atomic spin F =2

Now the use of (3.8) and (3.10) shows that the interaction term can be
written as

ENTE] = ag + Bo|O(r)])? + 72<F>§- (3.12)

20



where oy = 492%,62 = 790_10+2+3g4,72 = #22 and © = 26§ 2 —261§ 1+
3. The ground state spinors of this equation have been studied in 13, 56,
62, 63|, and can be classified as follows: (i) If B5,72 > 0 the energy is
minimized when ||(F)¢|| = © = 0. Spinors with these properties are called
cyclic. (ii)) When (5 < 0,72 > 0 the minimum is obtained by making
|(F)¢|| = 2,0 = 0, and the ground state is ferromagnetic. (iii) If 5o >
0,72 < 0 the minimum is achieved by maximizing ©, i.e. |©] = 1, and
||(F)¢|| = 0. The ground state is called polar or antiferromagnetic. (iv)
Finally, if as and 35 are both negative, the ground state is ferromagnetic for
4|B2] > |72/, and polar otherwise. This is because ||(F)¢|| and |©| cannot be
maximized simultaneously. Explicit expressions for the ground state spinors
can be found in Table (3.1). All spinors obtained from them by a spin
rotation and gauge transformation are also ground state spinors. In Table

(3.2) we show the ground state spinors of some alkali atom condensates.

3.1.3 Atomic spin F' =3

Now

Y GPr = asl + TPy +sF1 - Fy + 63(Fy - Fy)?, (3.13)

k=0,2,4,6

where a; = — 70>+ 3194+ 1196, T05 = go— 392 1794 = 5306: 73 = 15(96—92)
and 03 = 5=02 — =014 + 16596- Eq. (3.13) gives

Eni (€] = as + Bs|O(0) P +(F)E +385 > (FF) (3.14)

/L7.7:‘/L17y?z

where © = 2636 5 — 26,6 o5+ 26,€_ 1 — &2 Following the notation of [52] we

define O;; = (FiFj)¢ and O = >, O3 In the calculation of the ground

state spinors the constant a3 can be dropped. If 73 # 0, the resulting
equation can be divided by |vs|, which gives

Er=3fe) = B o) £ (B2 +

mt |73|

03

mo? (3.15)

Here the + (—) sign refers to positive (negative) 73. The analytical min-
imization of this energy is complicated, and so far only numerical results
have been presented, see Refs. [16, 52| and Paper IV. The ground states
will be discussed in more detail in Chapter 4.
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Table 3.2: The zero-field ground states of some alkali atom condensates.
These are based both on theoretical and experimental results.

Atom F=1 F=2

2Na | antiferrom. /polar [14, 23, 58] antiferrom. /polar [13]
®Rb - ferromagnetic [13]
®Rb - antiferrom. /polar 28|
8'Rb | ferromagnetic [23, 54, 12, 28| | antiferrom./polar |54, 31, 28|

3.2 External magnetic field and magnetiza-
tion

3.2.1 Magnetic field

Thus far it has been assumed that there is no external magnetic field
present. Now we consider the situation where the condensate is placed
in a spatially uniform magnetic field directed parallel to the z-axis. The
energy arising from the presence of a magnetic field can be calculated using
the series expansions of Eq. (2.17). A straightforward calculation shows
that the energy of an F' = 1 condensate be written as

BEntv] = —A [ denir) 5+ 5u(0) + S0 F)e + [5.0) - Su(0) (£

(3.16)
where

S.(b) = i i (%Z_ z) %] bk (3.17)

k=0 Llil=k
oo [ 2k+1 / ¢
2k+1
S0 = 2| 2 (2k+1—l)W]b o 61
k=0 Ll=k+1
= C
Sy(b) = 24—’,‘;172’“, (3.19)
k=0

and ¢y is given by Eq. (2.18). The corresponding expression for an F' = 2
condensate is

A

=2 [t [3 F(E2 — Fie + 20(F, — F¥)e (3.20)

4, (D)(4F, — F?)¢ — 48, (0) (4F2 — F)¢ — 35,(0) (4] — 5F2 4+ F)e|.
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The only approximation used in the derivation of (3.16) and (3.20) is the
assumption that D = 0. As far as the author can tell, these expressions
have not been presented in the literature earlier. The only limitation for the
validity of (3.16) and (3.20) is that b be smaller than ~ 1.23. For 3’Rb and
*Na A = AEy;/2, where AE; is the hyperfine splitting between F' = 2
and F' = 1 states. Because b = C/A and C = gugB, using the numeri-
cal values relevant for 8’ Rb and ?*Na one finds that the largest magnetic
fields for which the series expansions can be used are of the order of 1500
Gauss and 400 Gauss for rubidium and sodium, respectively. Typically,
the magnetic fields used in experiments are much weaker than these, so
terms which are of third or higher order in b can be neglected. The energy
functionals can be simplified further by dropping the constant terms. Ad-
ditionally, because Eqgs. (3.16) and (3.20) are usually used to calculate the
ground state spinors, all terms which do not contain expectation values of
Fk k=1,2,3,4, can be omitted. After these steps the energy becomes

A

Emaglt] = 55 [ drn(x) [8b(F)e — ¥ (F2)e] (3.21)

where the upper (lower) sign refers to F' =2 (F = 1).

3.2.2 Magnetization

From the form of the projection operators (3.7) one sees that the interaction
(3.4) does not change the value of the z-component of the total spin of
two scattering particles, which means that the z-component of the total
spin of the condensate is a conserved quantity. The operator for this is
EN) =N 1L0L® @11 ®F, ® 141 ®---® Iy. Evaluating the
expectation value in the state (3.2) gives (F,(N)) = N [dr (F,),. We call
this quantity the z-component of the magnetization, and denote it by M,.
Using the definition of £ given below Eq. (3.3) one obtains

M, = / dr n(r)(F,)e. (3.22)

In general the magnetization M can be defined as M = [ drn(r)(F),. The
contact interaction is not capable of changing M, or the length ||M|| of M,
but it can rotate M about the z-axis.

In addition to the M, conserving scattering described by the contact
interaction, collisions (dipolar relaxation) that change the value of M, can
also occur. However, typically they are negligible over the lifetime of the
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condensate. Therefore, rather than calculating the global ground state of
the system, one must consider the lowest energy state under the restriction
of conserved M,. The conservation of (the z-component of) the magnetiza-
tion has been experimentally verified in Refs. [12, 54|. From the definition
(3.22) it follows that M, can have any value between —NF' and N F', where
N is the particle number. If we consider weak values of the magnetic field,
it is enough to include only the first term of Eq. (3.21) in the energy. For
a position independent magnetic field this term is just M, multiplied by a
constant. Thus the ground state is determined by M,, and does not de-
pend on the strength of the magnetic field, as long as the quadratic term
is negligible.
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Chapter 4

Magnetic dipole-dipole
interaction and spin-3
condensates

4.1 Magnetic dipole-dipole interaction

Previously we have modeled the atom-atom interaction as a contact inter-
action. This simplified form for the interaction potential is justified, as it
produces the same scattering as the actual interaction. The latter is the
van der Waals interaction, which is caused by the electric dipole-dipole in-
teraction between the atoms. It has approximately the form —a/r% where
r is the atomic separation. Although including only this interaction is in
many cases sufficient, for some atoms the contribution from the magnetic
dipole-dipole interaction has to be taken into account. For example in a
chromium condensate [21] its effect can be almost comparable to that of the
contact interaction. For a spinor condensate the dipole-dipole interaction
energy is

Eqalth] = g—O/dr n(r)/dr,n(r/)[<u>s(r> - <M>5<rf|)‘;_3g<| ‘.3<M>£<r))(5<- ()]

T

(4.1)
where pg is the vacuum permeability, X = (r — ') /(||r — 1'||), p = gru5F,
and gr is an effective g-value given by [69]

F(F+1)+S(S+1)— I(I+1)

gr =
p F(F +2P£)(F—g(1g + 1)+ I(I+1) (4.2)
iy 2F(F +1) '
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The integrand of Eq. (4.1) shows that the magnetic dipole-dipole interac-
tion is not isotropic. It may be either attractive or repulsive, depending on
the orientation of the dipoles. It decreases as 1/r3, thus it is a long-distance
force compared to the van der Waals interaction. It also enables conver-
sion of spin angular momentum into orbital angular momentum, which
makes possible the creation of vortices via spin dynamics |24, 52|. How-
ever, the spin dynamics driven by the magnetic dipole-dipole interaction
can be prevented by exposing the condensate to a strong enough external
magnetic field, which suppresses the conversion of spin angular momentum
into orbital angular momentum [24, 25, 52|. In this case the spinor £ can
be assumed to be position independent and the dipole-dipole interaction
energy becomes

oty — FolorHs) (B /dm(r) /dr,n(r’)[1—3<i-<F>s)z] w3

7 [lr —r/||? ’

where (F) = (F)/|(F)|. The relative strength of the dipole-dipole interac-
tion of different atoms can be approximated using Eqs. (4.2) and (4.3). If
I =3/2 and S = 1/2, we find that gp—; =~ —1/2 and gr—» ~ 1/2. For
2Cr I =0and S = F = 3, s0 gs—3 = g ~ 2. In our calculation we
have approximated g ~ 2 and u/up =~ 0. Thus, the maximal expectation
values for (u); are pp/4, up, and 36up for F =1, F =2,and S = F =3
systems, respectively. Therefore, the magnetic dipole-dipole interaction is
considerably stronger in 52Cr than in ?*Na or 8"Rb and one has to add the
contribution (4.3) to the energy functional of Eq. (3.5). By looking at Eqs.
(3.14) and (4.3) one sees that the effect of the dipole-dipole interaction is
to change the value of 73 and possibly the direction of (F),. The change
A~s in the value of v3 caused by the dipole-dipole interaction is

Ao =28ulul) (F)2 [ drnir?). (4.4

In most experiments the trap is weak in one direction and strong in or-
thogonal directions, which produces a cigar-shaped condensate. If (F)¢ is
parallel to the long axis of the trap, the cloud remains cigar shaped after
the introduction of the magnetic dipole-dipole interaction [17, 44].

4.2 Ground states of spin-3 condensates

Soon after the creation of a chromium condensate [21]| the ground states of
spin-3 condensates were studied independently by two groups [16, 52|. In
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these papers the zero-field ground states for arbitrary scattering lengths,
as well as the ground states of chromium as a function of the magnetic
field, were calculated. For chromium, the energy related to the presence
of an external magnetic field is easy to calculate. In ®?Cr the nuclear spin
vanishes, so in Eq. (2.12) A = D = 0. If the position independent magnetic
field is given by B = Bé,, the energy becomes simply

Enagld] = — [dr (m)e-B = —gupB [ drn(r)(F.).

4.5
- _g:uBBMm ( )

where in the lower equation we have used Eq. (3.22). If the spinor is
spatially constant, M, and ES  are determined by m = (F.)¢ = M./N.
Henceforth we call m the magnetization. According to Eq. (3.15), the
ground state spinors of a spin-3 condensate can be obtained by minimizing

E3

nt

€] = bO(r)|* + (F)2 + dO2. (4.6)

Here b = f(5/|vs], d = 63/|y3], and + (—) refers to positive (negative)
v3. In the energy 0 < |©] < 1 and 46 < O? < 85.5. This equation has
been obtained by including only the contact interaction. However, above
we showed that the contribution from the dipole-dipole interaction can be
taken into account by changing the value of v3, that is, by changing b and d.
In the presence of a magnetic field Eq. (4.6) has to be minimized assuming
that M, is conserved. This has been done in Paper IV for arbitrary values
of b, d, 3, and for some values of m. More specifically, m was either allowed
to vary freely or it was fixed to be equal to 0.5,1.5, or 2.5. Examples of
the ground states of (4.6) are shown in Table 4.1, whereas in Fig. 4.1 we
present two examples of the ground state phase diagrams.
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Table 4.1: Some of the ground states of S = 3 condensate, both in zero
field (free magnetization) and in non-zero magnetic field (magnetization
conserved). Here m gives the value of the magnetization. In I, a is a
function of b, d, and m.

Phase Spinor O] | (F); O?

A (1,0,0,0,0,0,1) 1 0 85.5

D (0,1,0,0,0,1,0)/v/2 1 0 48

F (0,1,0,0,0,0,0) 0 4 46

FF (1,0,0,0,0,0,0) 0 9 81

A, (\/“Tm,o,o,o,o,o, \/?’—Tm) 1—1m? | m?2 | 855—im?

Dy, | (0,24 m,0,0,0,v/2—m,0) | 1 —2m? | m? 48 — 2m?

H, | (o, \/“Tm,o,o,o,o, \/Q—Tm) 0 m? | 45 + (3 + |m))?

m 1-m
(Oa 07 \/ 2+T? 07 07 \/ T?O)
I, (V@ + 2,0,0,v/1 — 242, 0—1 | m? 46 — 85.5
0,0, —\/aZ — )
(a)
Fr | o
12 N
So \~\\\\ E vaR -
b ¢ / N
Z,
0 A ,
1, ==t D, :
~0.5-0.25 0 2 4 0.2 0 0.20.40.6
d d

Figure 4.1: The ground state phase diagrams for |m| = 1.5.

In (a) for

v3 > 0 and in (b) for 73 < 0. In FF the superscript R means that the
spinor is obtained from F'F,, by a spin rotation. This holds also with F
and HE. In Z,, spinor all spin components are populated.
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Chapter 5

Homotopy groups and
topological defects

5.1 Order-parameter space

Bose-Einstein condensates of dilute gases have proved to be an excellent
system to create and observe several interesting phenomena, such as topo-
logical defects. The existence of topological defects is based on the fact
that a BEC can be described by an order-parameter. In general, an order-
parameter is a continuous map f : R — M, where R C R? is some region
of the physical space and M is the order-parameter space. Mathematically
the order-parameter space M is a topological manifold which is in one-
to-one correspondence with the possible values of the order-parameter. It
is usually possible to associate the order-parameter space M with a Lie
group G that acts on that space. The action G x M — M, (g,z) — g-x
is denoted now simply by ¢ - x. If this action is transitive, i.e for every
x,x’ € M there exists some g € G for which 2’ = g -z, we can choose some
arbitrary element x,.; € M which we call the reference order-parameter'.
Every element x € M can then be obtained from z,.; by acting on it by
a suitable element of G. Those elements of G which leave z,.; fixed con-
stitute a subgroup H,, . of G. This group is called the isotropy group (of
Tref) and it is explicitly given by

eref - {g E G | g ’ :Eref - xref}- (51)

!Note that the terminology is somewhat confusing. FEarlier order-parameter was
defined to be a map from the physical space into the order-parameter space, while here
the term reference order-parameter refers to an element of the order-parameter space.
However, because this terminology is well-established, we shall also use it here.
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From the continuity of the action it follows that H,, , is a closed subgroup of
G. If G acts transitively on M the quotient space GG/ H,,, can be identified
with M. The elements of the quotient space are of the form gH, =
{gh|h € H, , }, where gh denotes the element of G' which is obtained
by multiplying ¢ and h. It is possible to define a multiplication * in the
space G/ H,, , via (9H,, ;) *(9'H,,,;) = 99'H,,, ;. The map G/H, , — M
identifying G/H,, , and M is given by gH, , + g - Z;;. This map is
a homeomorphism, that is, a continuous bijection the inverse of which is
continuous. Homeomorphism is to topological spaces what isomorphism is
to groups.

As an example of the above concepts we consider a system described
by a normalized two-component vector with real components. We assume
that the physical space is two dimensional and R = R?, so the order-
parameter is a map f : R? — S' = M, where S' = {x € R?||[x|| =
1} = {cosfe, +sinfe, |0 € [0,2m)}. A group that acts transitively on S*
is U(1) = {e" |7 € [0,27)}, the action can be defined via €7 - (cosf e, +
sinfe,) = cos(6+7) e, +sin(f+7) e,. If e, is the reference order-parameter,
we find that He, = {1} and the order-parameter space becomes G/H, . =

U(1)/{1} = U(L). v

5.2 Topological defects

Now we move on to discuss topological defects. We approach this topic
through an example. Let fo, fi : R* — ST be given, using polar coordinates,
by fo(r,¢) = e, and fi(r,¢) = cospe, + sinpe,. These are illustrated
in Fig. (5.1). The value of f; remains unchanged as one traverses around
the dashed circular contour of Fig. 5.1 (a). However, if the same is done
for the contour of Fig. 5.1 (b), the vector rotates through 27. This holds
true irrespective of the radius of the dashed circle. Because f; does not
approach a constant value as the radius of the circle shrinks towards zero,
it cannot be continuous at the origin of R2. It is intuitively clear that the
configurations of Figs. 5.1 (a) and (b) cannot be deformed into one other
continuously. This is characterized by saying that f; and f; have a different
winding number. In the present case the winding number indicates how
many times the two-component vector rotates counterclockwise through
27 as the circular contour is traversed around counterclockwise. Thus the
winding number of f; is 0 and that of f; is 1. An important property of the
configurations of Fig. (5.1) is that the winding number can be determined
arbitrarily far from the actual location of the possible singularity of the
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order-parameter. This holds true for all singular topological defects.

(a) y (b)
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Figure 5.1: In (a) a graphical representation of fy and in (b) of f;. We
show both (part of) the physical space R? and the values of the order-
parameter in the same figure. The order-parameter remains unchanged if
one traverses around the dashed line of figure (a). If the same is done for
(b) in a counterclockwise direction, the order-parameter rotates through
27, also in the counterclockwise sense.

The question whether one map is or is not continuously deformable into
another plays a central role in the theory of defects. Two maps of a given
space into another space are said to be homotopic if one can be continuously
deformed into the other. The precise definition of a homotopy is as follows.
Let A, B be topological spaces and f, g : A — B be continuous maps. Then
f and g are homotopic if there exists a continuous map F : [0,1] x A — B
such that F'(0,x) = f(z) and F(1,z) = g(x) for all z € A. The map F is
called a homotopy. The concept of homotopy is fundamental to the theory
of topological defects, as it can be said that an order-parameter f : R — M
describes a topological defect if and only if f is not homotopic to a con-
stant map feons : R — M. For the latter f..s(r) = xo € M holds for
all » € R. Configurations (order-parameters) which are not homotopic to
feons are called topologically stable. On the other hand, if a configuration is
homotopic to f.ons, it is said to be topologically trivial. Physically, the de-
formation of a topologically stable configuration into a topologically trivial
one typically requires considerably energy. In this sense topologically sta-
ble defects are also energetically stable. However, it must be stressed that
topologically trivial configurations are not necessarily physically unstable.
To investigate the latter it is necessary to know the energy functional of the

31



system. If it is impossible to get from one configuration to the other with-
out passing through configurations of higher energy, then a topologically
trivial configuration may be physically metastable.

Whether or not topologically stable defects are possible depends on
the structure of the order-parameter space M. This can be analyzed by
calculating the homotopy groups of M.

5.3 Homotopy groups

By examining the properties of the order-parameter space one can see
what kind of, if any, topological defects are possible. This examination
can be carried out with the help of the homotopy groups of the order-
parameter space. The use of the theory of homotopy groups to charac-
terize the topological defects of physical systems was first used during the
late 1950s [20], but started to gain wider attention only in the 1970s, see
e.g. [27, 29, 30, 37, 38, 42, 55, 59, 68|. Since then it has been applied
successfully in several fields of physics, such as condensed matter physics,
particle physics, and cosmology [37, 49, 51, 60, 64, 65, 66, 67]. We will now
give definitions of the homotopy groups and relative homotopy groups and
state some of their properties, without giving any proofs. The following
discussion is very dense in order to keep this introduction compact enough.
A good book discussing the mathematics of homotopy groups is [22], while
a more physical insight can be found for example in [37]. The latter has
become a classic text in the field. The discussion below is based on these
two sources.

5.3.1 First homotopy group

As the name suggests, homotopy groups classify maps which can be contin-
uously deformed into one another. We start by defining the first homotopy
group, or the fundamental group, as it is also called. From now on we
assume that all maps are continuous. Let f,¢g : [0,1] — M be maps such
that f(0) = ¢g(0) = f(1) = g(1) = zo. We say that f, g are loops based at
xo. Because f(0) = f(1), f (and g) can be considered to be a map from S
into M. f and g are said to be homotopic at xy if they are homotopic and
the homotopy F' : [0,1] x [0,1] — M is such that F(¢,0) = F(t,1) = xg
for all ¢t € [0,1]. This means that F' determines a loop based at x, for each
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fixed ¢t € [0, 1]. The multiplication of f and g can be defined through

fog(t) = f(2t), 0<t<1/2,
"z g2t —1), 1/2<t<1. (5:2)

Clearly f o g is a loop based at xg, and it is obtained by traversing first
f and then g. If h is a loop based at x(, we define [h] to be the set of all
loops which are homotopic at x¢ to h and call [h] the homotopy class of
h. It can be shown that homotopy defines an equivalence relation among
the loops based at xg, thus [h] is an equivalence class. The multiplication
of two homotopy classes can be defined as [f|o]g] = [f o g]. With this
multiplication law the set of homotopy classes of loops at xy acquires group
structure. This group is the first homotopy group based at xy and is denoted
by m (M, xy). A topological space M is said to be path-connected if for all
x,y € M, there is a continuous map f,, : [0,1] — M such that f,,(0) =«
and fy,(1) = y. If M is path-connected, m(M,x) and m;(M,y) are iso-
morphic for all z,y € M. There is thus a single abstract group, m (M),
of which the based homotopy groups are isomorphic copies. If (M) con-
tains only the identity element, all loops are homotopic to a constant map.
Otherwise there can be stable topological defects characterized by 7w (M).
If the physical space is two dimensional, as in our example, these defects
are point-like singularities.

5.3.2 Higher homotopy groups

We now move on to discuss the definition of the n:th homotopy group.
Every M can be expressed as a union M = My U M; U My U ---, where
each M, is such that the only path-connected subset of M containing M;
is M; itself. M;’s are called the path components of M. Let I™ be the
n-dimensional unit cube, the product of n copies of the interval [0, 1]. The
boundary OI™ of I" is the subspace consisting of points with at least one
coordinate equal to 0 or 1. We define the n:th homotopy group of M at
xo, (M, x), to be the set of homotopy classes of maps f : (I™,0I") —
(M, xg), where the notation means that I™ is taken to M and OI" to xy by
f. The homotopies are required to be such that the image of the boundary
OI" is always .2 This definition extends to the case n = 0 by taking I° to
be a point and I° to be empty, so mo(M) is just the set of path components

2There is an alternative definition of 7, (M, z¢) as the set of equivalence classes of
maps (D", S"" 1) — (M, x). Here D" = {x € R"|||x|| < 1} is the n-dimensional disk
and S"~! = {x € R"|||x|| = 1} is the n-sphere. Clearly S"~! is the boundary of D".
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of M. In general there is no natural group structure for such a set, but if
M is a group G, then my can be given the group structure of G/Gy, where
(G is the path component containing the identity element of G. For n > 2,
a product of two maps, generalizing the composition operation in 7, is

defined by

ng(tl,tg,...,tn) = f(2t1,t2,...,tn), 0 S tl S 1/2,

The multiplication of two equivalence classes is defined as for m;. If M is
path-connected, m,(M,x) and m,(M,y) are isomorphic for all x,y € M,
and the notation m,(M) is used to denote any m, (M, z). While 7,(M) is a
commuting group for n > 2, m; (M) may be non-commuting.

In the physical applications of the theory of homotopy groups the order-
parameter space is expressed as M = G/H, where G is a Lie group and H
is a closed subgroup of G. We denote the path component of H containing
the identity element by Hy. It is a normal subgroup of H and the quotient
space H/Hy is a group. Now we can define mo(H,e) = H/Hy. The path
components {Hy |k =0,1,2,...} of H are cosets of H in Hy, that is Hy =
hipHy for some h, € H.

It can be shown that there is an exact sequence of homomorphism be-
tween homotopy groups. Exactness means that the image of a map is the
kernel of the following map. The exact sequence is given by

O Bn Tn Qp—1 Bn-1
— Wn(GO) — 7T?”L(G/[{) — 7Tn—l([—IO) — 7Tn—l(GO) i (5'4)
If 711(G) = m(G) = {e} and G is path-connected, i.e., mo(G) = {e}, 71 and
~v9 become isomorphisms, and we obtain the following theorem

Theorem 1. Let G be a Lie group with mo(G) = m(G) = mo(G) = {e}, let
H C G be a closed subgroup of G, and let Hy C H be the path component
containing the identity element of H. Then there are isomorphisms

m(G/H) = H/H,,

7o(G/H) = 7y (Hy). (5.5)

5.4 Physical interpretation

We have now given the mathematical definition of homotopy groups, but
their physical meaning is yet to be clarified. Let ¢ : R — M be the order-
parameter of some physical system. In the physical applications of the
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homotopy groups the maps S™ — M determining the elements of 7, (M) are
often obtained as a restriction of the order-parameter to S™. For example, if
d = 3 and cylindrical coordinates are used, one obtains a map 9|, , : St —
M from 1 by defining ¢|,.(¢) = ¥(r, z, ). Here r, z have fixed values. If
two defects, characterized by ¢1,9, € m,(M), are combined, the element
of m,(M) characterizing the resulting defect is obtained by multiplying ¢;
and go. Because m,(M) is a commuting group for n > 2, the resulting
vortex does not depend on the way the vortices are combined. On the
other hand, 71 (M) can be a non-commuting group. In this case defects are
characterized by the conjugacy classes of the first homotopy group. Defects
can still be labelled by the elements of 71 (M), but if these elements belong
to the same conjugacy class, corresponding defects can be continuously
deformed to one another. However, if they belong to different conjugacy
classes this is not possible.

The type of the defects classified by (M) depends on the dimen-
sion of the physical space. In three-dimensional space it classifies one di-
mensional defects, that is, vortices. In our example of the vectorial two-
component order-parameter the physical space was two dimensional and
the defects characterized by the first homotopy group were point-like de-
fects, monopoles. While these defects appear as singularities in the order-
parameter, non-singular defects can also be characterized by m(M). In
these the order-parameter 1 is everywhere continuous and the topological
stability follows from the boundary conditions imposed on 1. Let the phys-
ical space be three-dimensional and ¢ : R® — M be an order-parameter. If
Yo is some element of M and ) is such that lim, 1, ¥ (z,y, z) = 1 for all
y, z, € R, then 1) can be considered to be a map from S to M. As before, v
describes a topologically stable defect if it determines an element of 7, (M)
other than the identity element. Because 1 approaches a constant value
far from a plane, these defects are called planar solitons. If one relaxes
the boundary conditions on v, defects can be continuously deformed into
a uniform configuration.

In three-dimensional physical space mo (M) classifies monopoles, but in
lower dimensions it does not characterize any singular defects. It also clas-
sifies non-singular defects called linear solitons. These are analogous to
planar solitons, except that now the order-parameter approaches a con-
stant value far from a line.

Finally, w3(M) can be used in the study of particle-like solitons, or
skyrmions, as they are also called. These are non-singular defects which
live in three-dimensional physical space and which are characterized by an
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order-parameter which becomes position independent far from a point.
The calculation of m (M) and mo(M) can be summarized as follows.

1.

. Determine H,

Find a group G for which 7y(G) = 7 (G) = m(G) = {e} and which
acts transitively on the order-parameter space M.

. Pick some arbitrary element x,.; € M, the reference order-parameter.

. Calculate the isotropy group H,, . The order-parameter space can

then be written as M = G/H,,,.

the path component of the identity of H,

'ref07 ref”

. Calculate H,,/H,, o and 71 (Hy, o).

. Use the isomorphisms m(G/H,,.,) = Hg,/H.. o and

WQ(G/eref> = ,ﬂ-l(Hx
topy groups.

..;0) to obtain the first and second homo-
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Chapter 6

Topological defects of
Bose-Einstein condensates

In a BEC, a vortex appears as a long-lived line-like singularity in the par-
ticle density. In a non-rotating trap, a vortex state cannot be the ground
state of the system, but its decay is prevented by topological reasons. The
continuous deformations of the order-parameter needed in order to reach
the ground state require more energy than is available from e.g. thermal
excitations. In the presence of dissipation a vortex can move to the bound-
ary of the condensate and vanish, but even then it is stable as long as it
stays in the condensate.

6.1 On the order-parameter spaces of BECs

Before embarking on the study of the topological defects of Bose-Einstein
condensates, we briefly discuss the order-parameter spaces of these sys-
tems. For a single-component BEC the order-parameter can be written
as (r) = /n(r)e™. If we assume that the density n is constant, the
order-parameter space becomes U(1) = S*, since it consists of the possible
values of 6. In principle the order-parameter space should be written as
M = (Ry x M) U {0}, where R, is the set of real numbers larger than
zero giving the possible values of the square root of the density, and M
gives the order-parameter space related to the density-independent part of
the order-parameter. For a single component condensate M = U(1) and
for a spinor condensate it consists of the possible values of the spinor. The
point {0} denotes the case where the density is zero. One sees that if M’ is
the order-parameter space, there are no topologically stable defects. Any
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order-parameter can be converted into any other order-parameter via de-
formations which reduce the density to zero in an appropriate region of the
physical space. From a physical point of view this is unlikely to happen,
since reducing density to zero is not energetically favourable. At those
points where the order-parameter is zero, the medium is in a higher energy
state than at points where the order-parameter is non-zero. In principle
the energy needed for making the density vanish could come, for example,
from thermal excitations, but in practise this is unlikely to happen. Thus
one can ignore the zero of density. Then the order-parameter space be-
comes R, x M. For this m,(R, x M) = 7,(Ry) X m,(M) = m,(M), since
m(Ry) = {e}. Thus, from the point of view of topological defects, it is
enough to study the structure of M only.

6.2 Single component Bose-Einstein conden-
sate

Now M = S!' and 7 (M) = Z, thus vortices with an arbitrary winding
number are possible. Using the method presented in Paper III it can be
shown that a vortex with winding number m has the general form

(7, 2,0) = V/n(r, 2, p)e?m=?) (6.1)

where 0,,(r,z,0) = 0,0,,(r, z,2m) = 27m. One sees that the superfluid
velocity, defined by v = %V@, cannot vanish everywhere if there is a
vortex in the system. The continuity of the order-parameter requires that
n(0, z, ) = 0. If the condensate is in a trap which is cylindrically symmetric
with respect to the vortex axis, the density can also be assumed to be
cylindrically symmetric. In this case the angular momentum associated
with the vortex is L = Nmheé,. Furthermore, in the minimum energy state
the superfluid velocity in radial and z-direction vanishes, and thus 6 is a
function of ¢ only. Under this assumption the smallest kinetic energy is
obtained when 6,,(r, z, ) = mp. The order-parameter becomes

@bm(r, <, 90) = n(r, z>eimgo’ (62)
which is the form usually encountered in the literature.
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6.3 Mixtures of Bose-Einstein condensates

Now the order-parameter can be written as

v = wgg)(ﬁii) (63
= VA ( et )

where n = ny + ng, cosa = y/ny/n, and sina = y/ny/n. We first assume
that the total number of particles is conserved, but the number of particles
in each condensate can change. Then the order-parameter space becomes
M = S3. For this m(S?) = m1(S?) = m(S?) = {e}. However, m3(5?%) = Z,
which shows that skyrmions can exist. At this point it is important to note
that the energy functional of Eq. (2.9) is in general invariant only in phase
transformations of 1, and vy and therefore the order-parameter space, con-
sisting of the ground states, is S* x S! [39]. Taking the order-parameter
space to be S3 means that also those values of 1) which cannot be ground
states of the energy are allowed. Skyrmions have been studied both in sys-
tems where only the total number of particles is conserved [26, 50| and in
systems where the particle number of each condensate is conserved sepa-
rately |7, 53|. The existence of skyrmions in the latter system is explained
by the fact that even in the presence of a skyrmion the requirement of the
particle conservation of each condensate can be fulfilled, at least for some
particle numbers. A similar situation is met in Paper III, where a vortex
of a ferromagnetic /' = 1 condensate is found to be possible both in the
absence and presence of an external magnetic field.

If we consider only the ground states of Eq. (2.9), the order-parameter
space becomes S' x S'. Because (S x S) = m(S) x m(ST) =Z x Z,
vortices with an arbitrary winding number can exist. The vortex configu-
rations are given by order-parameters where each condensate has a vortex
of the form (6.1). In particular, it is possible to have a vortex in one con-
densate and a non-vortex state in another. In this case the total density
n = ni + no can be everywhere non-zero, even if there is a vortex in the
system. This has also been seen in an experiment, where a vortex was cre-
ated in a one spin component, while the other component was vortex free
|36]. As far as the author can tell, there have been no experiments with a
vortex in both spin components simultaneously.

The present analysis can straightforwardly be extended to the case of
a coherent mixture of k£ Bose-Einstein condensates. If the particles can
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convert into one another and also those values of ¢) which are not necessarily
ground states are allowed, the order-parameter space becomes S?*~1. The
only restriction for the order-parameter is ¢(r)y(r) = n(r). Below we
show that if & > 1/2 topologically stable defects are not possible. If we
choose the order-parameter space to be the set of ground states, the former
becomes S! x St x --. x S!, where S! appears k times. Hence vortices can
exist. Vortex configurations are those with a vortex of Eq. (6.1) in at least
in one of the condensates.

6.4 Spinor condensates

For a spinor condensate the order-parameter is ¢ (r) = /n(r)é(r). The
order-parameter space is set of the possible values of the spinor £. If the
normalization of & is the only restriction, the order-parameter space be-
comes ST, This space allows for no topological defects characterized by
7, with n = 0,1,2 or 3. This follows from the fact that m,(S¥* 1) = {e}
forn =0,1,2,3 and F = 1,3/2,2,5/2, ... (for spinor condensates F' is an
integer, but for multicomponent condensates in general it can also be a
half-integer). Instead of taking into consideration all possible values of the
spinor, we study what kind of defects can exist if £ is assumed to belong to
the set of spinors minimizing the interaction energy for some given scatter-
ing lengths. For example, in a ferromagnetic condensate of F' = 1 atoms
this set can consist of all spinors that can be obtained from |F = 1, mp = 1)
by a spin rotation. However, defects which are stable in this set can be
continuously destroyed by taking into use the whole order-parameter space
S°. Therefore, they can be topologically stable only because of the energy
barrier preventing the use of the whole order-parameter space. Thus far
no-one has studied whether the decay of topological defects is energetically
possible in this way in spinor condensates.

In the absence of an external magnetic field a group that acts transi-
tively on the set of ground state spinors is G = U(1) x SO(3). However,
because we want to use the Theorem 1 of Chapter 5, we use instead of
U(1) x SO(3) its covering group R x SU(2). This group acts on the set of
spinors via equation (z,U)-& = ¢ DY) (U)¢, where (z,U) € Rx SU(2) and
D) is the 2F + 1 dimensional irreducible representation of SU(2). The
elements of SU(2) and corresponding (2F + 1)-dimensional representation
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matrices can be written either as

;02 Boy : YOz

Ula,B,7) =e "2 e 2 e "2

. D(F)<O{, ﬁ’ 'Y) _ e—iane—iBFye—i'sz’
(6.4)
or as
U(T, 0, p) = e~ nl09)o/2 D(F)(T, 0,p) = e Tn(0)F (6.5)

where o0,,0,,0, are the Pauli o-matrices, F,,F,, I, are the spin
operators of a spin-F' system, o = (0,,04,0,), and n(f,¢) =
(cospsinf, sin psin b, cosh).

As an example of the calculation of topological defects we consider the
ferromagnetic phase of an F' = 1 condensate. As shown in Paper I, in
this case, instead of R x SU(2), we can use SU(2). The reference order-
parameter can be chosen to be |1,1) = |[F = 1,mp = 1). The isotropy
group Hj, 1y is found by solving the equation DW(7,0,¢)[1,1) = [1,1) (or
DW(a,B,7)|1,1) = |1,1)), and it is Hy 1y = {I,—I}. Clearly the path
component of the identity is Hj;1)0 = {I}, so using Theorem 1 we ob-
tain m (G/Hp,1y) = {£I} and mo(G/Hj11y) = 0. Thus one non-trivial
vortex is possible, but topologically stable monopoles cannot exist. The
order-parameter space is G/H|11) = SU(2)/{£l} = SO(3). This order-
parameter space has also been encountered in *He — A [42, 65]. In Paper
IIT it is shown that a vortex characterized by the element hHy of H/H,
can be obtained by finding a map f from the physical space to G which is
such that f(r, 2z, =0) =e and f(r, 2, = 27) € hHy. In the present case
we can define f(r, z, ) = e " M@DF where 7(r, 2,0) = 0, 7(r, 2, 27) = 2,
and a and [ are arbitrary functions of position. The vortex becomes
Y = /ne T™F|1 1), which is explicitly

(COS 5 —1cos 3 sin %)2
U(r, z,0) = /n(r, z,0) —V2¢sin 3 sin T (icos 5 + cos 3 sin §)
—e sin”® Zsin® 3
(6.6)
Now n(r = 0, z,¢) = 0 in order to keep the order-parameter well defined

at r = 0. The superfluid velocity is defined via
h
i T
v =—1—¢&'VE. 6.7
Cetve (67
When the vortex has the smallest possible energy the velocity in radial and
z-directions can be assumed to vanish and thus the spinor is a function of

© only. Additionally, in a cylindrically symmetric trap the density can be
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assumed to be cylindrically symmetric. Using these assumptions the Euler-
Lagrange equations obtained from the energy functional show that the vor-

™

tex energy is minimized when a = constant, 3 = 7 and 7(r,2,0) = ¢. A
simple calculation shows that when the energy is minimized the superfluid
velocity vanishes. Thus, in contrast to a single-component condensate, in a
spinor condensate the existence of a vortex does not have to lead to a non-
zero superfluid velocity. The same phenomenon can be seen in the orbital
angular momentum, which also vanishes in the ground state. The con-
densate does not have to contain any orbital angular momentum although

there is a vortex in it.

We have briefly described the calculation of homotopy groups of a fer-
romagnetic /' = 1 condensate. The calculation of the homotopy groups
of other phases of ' = 1 and F = 2 condensates proceeds in a similar
manner. This calculation can be found in Paper I, where, among other
things, it is shown that the first homotopy group of the cyclic phase of
F' = 2 condensate turns out to be a non-commuting group. Topologically
stable vortices are classified by the conjugacy classes of this group and are
those in which the spinor is suitably rotated and its phase changed by an
integer multiple of /3 as the defect line is encircled. In a system with
non-commuting first homotopy group the vortices can be classified further
using homology groups |29, 60, 61|. In the presence of other line singulari-
ties it may be possible to transform two line defects described by different
conjugacy classes into one another. This is achieved by splitting a defect
into two parts and combining these beyond a suitable line defect. Elements
of (M) can be grouped into sets in such a way that defects described
by elements in the same set can be deformed to one another either contin-
uously or using the splitting and recombination method. Performing this
grouping reveals that vortices with the same winding number can now be
deformed into one another. The results of Paper I are summarized in Table
6.1.

The order-parameter space of an antiferromagnetic phase of an F' = 1
system was found to be [U(1) x SO(3)]/O(2)g+s. This space can also be
written as [U(1) x SO(3)]/Z,, although in Papers I and II it was stated
otherwise. The latter form for the order-parameter space was first presented
in [72]. The order-parameter space and defects of the polar F' = 2 phase
were not discussed in Paper I. This was a consequence of paper [63], where
it was discovered that U(1) x SO(3) does not act transitively on the set of
polar spinors. It seemed that the symmetry group of the energy is larger
than SO(3). However, recently it has been shown that due to thermal
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Table 6.1: The order-parameter spaces and first and second homotopy
groups of the ground states of spinor condensates with F' =1 and F = 2
(for the ground state spinors, see Table 3.1). Now the physical space is
three-dimensional, so m; characterizes vortices and m monopoles. I de-
notes the trivial group consisting of the identity element alone.

Phase M 1 (M) o (M)
F=1| (ferromagnetic SO(3) Zy I
antiferrom. /polar U(olgzx)iff) ~ U(g;(s - Z Z
F =2 ferromagnetic SO(3)/Zy Z4 I
SO(3) Lo !
cyclic % Non-comm. 1
antiferrom. /polar — — —

and quantum fluctuations this accidental continuous degeneracy is lifted
|56, 62], after which the possible ground state spinors are |2,0) and (|2, 2) +
12, —2))/+/2. Similar degeneracy has been reported also in [34, 38|. Here it
should also be mentioned that in Paper III it was claimed that the order-
parameter space of the cyclic phase of an /' = 2 condensate consists of
two disconnected sets. In Ref. [71] it was shown that this is not true, but
the order-parameter space is a connected set. The incorrect claim resulted
from an erroneous form of the spin rotation matrix which lead the author to
believe that (|2,2) + |2, —1))/v/3 and (|2,2) ++/2|2,0) — |2, —2))/2 cannot
be obtained from each other by a spin rotation.
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Chapter 7

Decomposition of pure spin
states

In 1932 E. Majorana showed that it is possible to express the spin state
of a spin-S particle in terms of 2S5 spin states of spin-1/2 particles [35].
Therefore, because every pure spin state of spin-1/2 particle can be given
in terms of a point on the Bloch sphere, every pure spin state of a spin-S
particle can be characterized by 2S5 points on this sphere. Majorana used
this description to study the motion of a spin-S particle in a magnetic field.
In his paper the emphasis was put on the application of this decomposition,
while its derivation was very short. This, together with the fact that Ma-
jorana’s paper was not well known at the time, led F. Bloch and I. Rabi to
derive his result in more detail in 1945 [8]. As this decomposition is needed
in the next chapter, we shall now show how it is obtained. Our derivation
is based on [8], although the notation and details of the calculation are
different.

7.1 Majorana decomposition

In this chapter s is the spin operator of a spin-1/2 particle. Let H the
Hilbert space related to a spin-1/2 particle. Because now we consider the
spin states alone, we can exclude the orbital part and define H = C2
For 2S identical spin-half particles the relevant Hilbert space is ®2°H =

®¥5C?. Let {|+),|—)} be the basis of C2. Then the basis vectors of the
225 dimensional vector space ®2°C? are of the form

Y1) 172)2 - [v28)28 = [71)1 @ [12)2 ® - - - @ [729) 28, (7.1)
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where each +; is either + or —. Our intention is to write the spin states of
spin-S particles by means of 25 spin states of spin-1/2 particles. To achieve
this, we write the spin operator of a spin-S system as

S=>"s;, (7.2)

where S =1, ®- - ®I;,_1 @11 ®- - -Ryg. The operators S?, S, S? are
mutually commutative and hence they possess a complete set of common
eigenvectors. We denote by |S, M) a vector for which S?|S, M) = S(S +
1)|S, M) and S,|S, M) = M|S, M). The vector |S,S) can be written in
terms of the basis vectors of ®?°C? simply as

15,5) = [+)1l+)2- - - [+)as. (7.3)

The lowering operator is S_ = iil Sip_, where S =1 ® - 1 ®
| ie(+H] @1 ® - - - ® Iyg. If we act on |S,S) with this operator we find
that

15,8 —1) = +)2s-1]—)2s, (7-4)

S, +)1
fl S) = G5 1ivas Z |
where » p, denotes the sum over all different permutations of the + -signs.

Generally we obtain

25—r 25

5.6 — 1) = (zsjr)m 25—7’ ! PZ H ) H |=)&.  (7.5)

k=2S—r+1

Let ¢ = ag|+)rk+0k|—)x be the spin vector of the spin-1/2 particle labelled
by k. We define

A 25
' = ,Z@Sﬁk
Py
= ,ZH arl+)k + Bel—)k),

'P k=1

(7.6)

where A is an arbitrary non-zero complex number. The product appearing
n (7.6) can be written as

25 28 25—r 28
[ (ol +)n + Bl =) = Z i SOOI e+ I Bel-)l77)
k=1 P. k=1 k=25—r+1
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where ), denotes the sum over all permutations of the index k. Notice
that >, and ) p, are different operations. Using this Eq. (7.6) becomes

285—r 25
&= (25) 1222 25_ )] [Tewlt TI Bel-h
r= 0 P :t T T k=1 k=25— r—+1 (78)

25—r
— QS'ZZH% H ﬁ,/ )) 1S, S — 1),
r=0 P, k=1 k=2S—r+1

where in the lower line we have used Eq. (7.5). By defining

25—r

a, = QS—r CTSTE Z H Qg H Br (7.9)

P, k=1 k=2S5—r+1

we get
25
(25 —r)lr
[
g = A;ar 5] 15,8 —r)
25 oo ~1/2 (7.10)
— A;ar(r> 1S, —7)

The spin vector of a spin-S particle can be written as £ = Zi:_ s &m|S, M).
If we equate this with & we get

—1/2
{s—r = Aa, (2:) : (7.11)

In conclusion, we have shown that 25 spin vectors ¢, = ag|+)x + Br|— )k,
k=1,2,...,25, determine a spin vector of a spin-S particle through Eqs.
(7.9) and (7.11). As a matter of fact, because A can be chosen freely, a
better formulation of this statement is that 25 pure states |px)(px| deter-
mine a unique pure state |£)(¢| through these equations. The converse is
also true, as can be seen by writing

28

A H(Ozk.ﬂ? + ﬂk) = 0. (712)

k=1
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By expanding the product this becomes

25 25 25—r
AH(akx+ﬁk) = Z 'T'Z a7 H Qg H DBk
k=1 r=0 k=1 k=25—-r+1
(7.13)
- AZQZ’QS_TCLT
r=0
= 0.

Thus, if £, and therefore a,’s, is known, we get the ratios —0/ay as the
solutions of the equation

25 25 19g\ 1/2
A Z ¥ "a, = Z ( ) Eg_p 2*77T = 0. (7.14)
T

By defining M = S — r we obtain

S 0g \ /2 28
etMe = Al | (owz + 5i) = 0. 7.15
S (57h) # e = Al a0 (7.1

This equation establishes a bijective map between the pure states of a spin-
S particle and the set of 25 pure states of spin-1/2 particles. By choosing
A properly we can define oy, = cos %’“e_w’“/ 2 and 3, = sin %’“ei“"k/ 2 where
kE=1,2,...,25 and (0, k) give the positions of the points on the Bloch
sphere in spherical coordinates. The roots of (7.14) are then given by
— 0/, = — tan %’“ e’?k. We call the set of 2S points corresponding to &
the point distribution or point configuration of £&. The polynomial of Eq.
(7.15) is called the characteristic polynomial of €. If we are given two sets of
points, the characteristic polynomial of the point configuration consisting of
both of these sets is obtained by multiplying the characteristic polynomials
of the two sets.

It is important to notice that the point distribution is the same for
¢ and h &, where h is arbitrary non-zero complex number. Therefore the
point distributions are in one-to-one correspondence with pure states, not
with vector representatives of these states.

7.2 Linear transformations

Now we study how & changes in linear transformations of the spin vectors
of spin-1/2 particles. We assume that the linear transformation is the same
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for all particles, that is

ag — o) = aqy + by,
ﬁk'_) B;C:C(){k—{—dﬁk, k:1,2,25,

where a,b,c,d are arbitrary complex numbers. The components of the
transformed spin vector are given by

, A 29\ <
fS_T:@<T) > 11 e H 8. (7.17)

(7.16)

P, k=1  1=2S—r+1
where
Qﬁr N B 25—:7“ Z akb2S—r—k¢a1 .. O‘kﬁk—H . ﬁQS—r
k - | o . | 9
P = k(2SS —r —k)!
25 r ! ar—1
;o cd™ s ri1 Q25— ry1fos—ry141 - Bas
H ﬁl - ZZ l!(?“—l)! .
1=25—r+1 1=0 P,
(7.18)
Combining these gives
SN IETD 1 T ) Sh i i
O‘k ﬁk = T '
P kol h=3S-—rt1 o kOIOkZQS—r—k).(r—l).
X (Z Q- Oékﬁkﬂ e '52Sr> (Z Q25 —r41 " 'Oé2S—r+1525—r+1+l " 'ﬁzS)
Py
2871 1 kp2S—r—k d grl
b c'd 25 —r)lr!
; ; ENN2S —r — k)l(r —1)! ZOq $ Q41 Bt - Pas-
(7.19)

Here there are three summations over permutations, one in each paren-
theses and one at the beginning. Because there are 25 — r terms in the
first parentheses and r terms in the second, the combination of all three
summations corresponds to (25 —r)!r! times the first summation alone. By
using this result and Eqs. (7.9), (7.11) and (7.17) we obtain

E’ B A (25) 1/225-r r akaS—r—k‘cldr—l(QS B T)!T’!
S—r 7 oo\
(25)! L L RIN2S —r — k)l (r — 1)
E4+D2S —k—D!/ 25\
(0 A ) (k+l) Ehti—s (7.20)
S—r r
2 akaSTkldrl\/Qs_T'T'(k+l)(25 k—l)g
k=0 1=0 EUQ2S —r —k)(r —1)! ktl—S-
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By setting M =S —r and M’ = k+1— S we can write this as

Min{S+M,S+M'}

2 : E : _ I_ YRV
S;W _ ka—I—M kCS—I—M kdk: M—-M

M'=—S k=Max{0,M+M'}
V(S + M)I(5 = M)I(S + MN(S — M)
KIS+ M — k)(S+M—k)\(k—M— M)

e (7.21)

7.2.1 Spin rotation

As an example of a linear map we consider a spin rotation of the spin
vector of a spin-1/2 particle. The rotation matrix is given by U of Eq.
(6.4), for which a = cos ge_i(o‘ﬂw, b= —sin gem_o‘)/z, ¢ = sin ge_i(’y_o‘)m,
and d = cos gei(o‘ﬂ)/ 2. The elements of the rotation matrix D®)(«, 3,7)
of (6.4) become

Min{S+M,S+M'} 2%k—M—M'
D}f)M,(oz, B,7) = o~ i(MatM'y) Z (_1)S+M—k (cos ﬁ)
k=Max{0,M+M'} 2
B\ ITERMEMT (S M)I(S — M)I(S + M))I(S — M)
- (SmQ) KIS + M — k)(S + M — k)l(k — M — M)
(7.22)
Spin rotations can also be parameterized by the rotation angle 7 and the
rotation axis n = (sin 6 cos p, sin @ sin ¢, cos #) as shown in Eq. (6.5). Using
this parameterization, the 2 x 2 rotation matrix becomes

cosT —isinZcosf —ie sinl sm&
—e'¥singsinf  cos g+ sm cos
(7.23)
Using this and Eq. (7.21) we can now calculate the generating equation for
the rotation matrix for arbitrary S. This form of the rotation operator is
rarely presented in the literature. A straightforward calculation gives

U(r.0,p) = e 57007 (

r Min{S+M,S+M’
(—isinZ 81n9)25+M+M t f

e DY
cos = +4sin Zsinf
( 2 5+ 2 ) k=Max{0,M+M’}

X 1 " V(S M)(S = M)(S + M)(S— M)
( _Sngsm%)) KNS + M — k)I(S+ M —k)l(k— M — M)’
(7.24)

DE)(7,0,¢) =
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7.2.2 Change of phase

Now we show how the phase of an order-parameter ¢ changes in rota-
tions that leave the point distribution determined by this vector unchanged.
These rotations leave £ fixed up to a phase. We denote a symmetry axis of
the point distribution of £ by s.. Now

e—iarotSE-Sf — e’i5£ (725)

for some rotation angle a,,; and some § € R. We choose a rotation D =
DY) (a, 3,7) such that the symmetry axis of the point distribution of the
rotated order-parameter, ' = D¢, is Z, that is, s¢ = Z. Therefore

e—iarotszé-/ _ Giéf/, (726)
where a,.,; and § are the same than in Eq. (7.25). Eq. (7.26) gives
e~ Maror — ¢ whenever €5, # 0. (7.27)

Assume next that p, of the points characterizing £ are at the south pole.
Then ps of the ay’s in Eq. (7.15) are equal to zero, which is equivalent
with the order of (7.15) being 2S5 — p,. This means that £ = £, =
o =&y = 0,8, # 0. Similarly, if p, of the points are at the
north pole, then p,, of the §,’s are equal to zero, which is equivalent with
{s=E8gsg1==E&5,,1=0 85, #0. These results, combined
with (7.27), give

0 = (ps— S)aye (mod 27)

= (S — pn)ror  (mod 27). (7.28)

A similar expression has been given in |2, 4].

Finally, it should be stressed that the decomposition of spin states de-
scribed in this chapter, as well as all the equations presented, holds for
arbitrary S, including half-integer values.
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Chapter 8

Inert states

8.1 Definition

States which are stationary points of the energy regardless of the exact form
of the energy functional are called inert states |[65]. A stationary point
may change, for example, from a local maximum to a global minimum
as the parameters characterizing the energy vary, but for all parameter
values an inert state remains nevertheless a stationary point of energy.
The independence on the details of the energy functional is related to the
fact that inert states are determined by the symmetry group of the energy
and the symmetry properties of the order-parameter alone. Inert states
have been studied in the context of superfluid *He, where the analytical
minimization of the energy functional is a very complicated task, but the
inert states can be calculated straightforwardly |5, 6, 65|, see also [46]. Inert
states are always stationary points of the energy, but they do not necessarily
give the global minimum of the energy. In order to see whether or not some
given inert state is the global ground state of the energy functional, one
has to know the exact form of the latter. All inert states are stationary
points of the energy, but the reverse is not necessarily true. It is possible
that there are stationary points of the energy which are not inert states.
This is the case, for example, in 3He [65, 11].

To illustrate the concept of an inert state, we consider the following
simple example. Let fy : R — R be given by fy(z) = \z? + 2% If
A > 0, this function has one global minimum, located at the origin. On
the other hand, if A < 0, there are two degenerate global minima, located
symmetrically at z = +1/—\/2, and local maximum at x = 0. These two
cases are illustrated in Fig. (8.1). Because now x = 0 remains a stationary
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Figure 8.1: A schematic plot of f for (a) positive and (b) negative A.

point of f) regardless of the value of A\, one might assume that this point
is an inert state. This proves to be the case, as we show below.

Before embarking on the study of inert states, we have to define some
mathematical concepts. In the following we assume that G is a group that
acts on a manifold M. As before, g - x denotes the element of M obtained
by acting with ¢ € G to x € M, and the isotropy group of x is H, = {g €
Glg-x = x}. The orbit of x € M is given by G(z) = {¢g-x|g € G}.
If z,y € M lie on the same orbit, i.e. y = g - for some g € G, then
the isotropy groups H,, H, are conjugate, H, = gH,g~'. The stratum of
x € M is given by

S(z)={ye M|H, = gH,g " for some g € G}. (8.1)

Thus S(x) is the union of all orbits of points having isotropy groups that are

conjugate to H,. The calculation of inert states are based on the following
theorem [65].

Theorem 2. If an orbit G(xg) lies isolated in its stratum S(xq), i.e. if
there exists a neighbourhood U of G(xo) such that UNS(xy) = G(xg), then
every G-invariant smooth real-valued function on M is stationary at all
points of G(xg).

For a complete proof, written in French, see [40]. An English sketch
of the proof can be found in [41|. Here f : M — R is G-invariant if
f(g-x)= f(x) forall g € G,z € M.

In the physical applications of Theorem 2, M is the order-parameter
space, GG is the symmetry group of the energy, and the energy is given by a
G-invariant smooth function £ : M — R. The stationary points obtained
using this theorem are called inert states.
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Theorem 2 can be expressed in a different way by noting that because
G(zo) C S(wp), then also always G(x¢) C U N S(xg) for every neighbour-
hood U of G(xg). Therefore, if U N S(xy) # G(z0), there is an element
xy € U\ G(xg) such that H,, is conjugate to H,,. This result can be
stated in a simpler, although at the same time more inaccurate, form by
saying that xg is not an inert state if there is an element xy € M, which
is ‘infinitesimally close’ to zy and for which H,, and H,, are conjugate
groups. Here x; is not allowed to be on the orbit of xy. On the other hand,
if such an element does not exist, then x( is an inert state.

As a simple application of Theorem 2 we consider a symmetric function
f R — R. Clearly f, is such a function. Now the symmetry group
is G = Zy = {1,—1} and the isotropy groups are H,—o = {1,—1} and
H,.20 = {1}. From these and the definition (8.1) it follows that there are
two possible strata, S(z = 0) = {0} and S(x)|,20 = R\ {0}. The orbits
are G(x =0) = {0} and G(z)|y20 = {z, —x}. For any neighbourhood U of
the origin U N S(x = 0) = S(z = 0) = G(x = 0) holds and therefore, by
the above theorem, the origin is a stationary point of f. In other words,
the isotropy group of a point x # 0 is not conjugate to the isotropy group
of the origin, no matter how close to the origin x is.

8.2 Inert states of spinor condensates

In Paper V' we present a geometrical method to calculate the inert states
of a spin-S system. We assume that the system is described by a spin
vector of a spin-S particle, denoted by &, and that the energy functional is
invariant in rotations and phase transformations of £&. Thus the symmetry
group of the energy is G = U(1) x SO(3), where, as before, SO(3) acts
via its irreducible 2S5 4 1 dimensional representation and the action of U(1)
corresponds to the phase changes of &.

The method is based on using the spin decomposition of Chapter 7 to
calculate the isotropy groups of spin vectors. The elements of the isotropy
group H, consists of pairs (u,r), where u € U(1) and » € SO(3). The
latter are the elements of some subgroup K of SO(3) and they can be
determined by finding out all rotations which leave the point configuration
of £ invariant. In the following we call K the symmetry group or symmetry
of the point configuration. Because it contains only the SO(3) part of Hg,
it should not be mistaken for the isotropy group [70]. The isotropy group
is the same for ¢ and €€, so it can depend only on the spin state, not on
a particular vector representative of the state. The spin states are in one-
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to-one correspondence with the point configurations on the Bloch sphere,
so the isotropy groups are determined by the latter.

The inert states can be determined by finding all point distributions
which cannot be modified without changing the isotropy group to a group
which is not conjugate to the original isotropy group. In Paper V it is shown
that this is equivalent with finding all point distributions which cannot be
modified without changing the symmetry group of the point configuration.

The possible symmetry groups of the point distributions are the sub-
groups of SO(3), that is, the continuous groups O(2), SO(2), and the finite
groups I,C,,, D,,T,O and Y. I is the trivial group consisting of the iden-
tity element alone, C,, (D,,) is the cyclic (dihedral) group of order n, T is
the tetrahedral, O the octahedral, and Y the icosahedral group. The inert
states can be calculated by first finding all configurations that have some
given group as their symmetry group, and by seeing then which of these
cannot be modified without changing the symmetry group.

In Paper V only those inert states with 7', O, or Y symmetry which are
obtained by placing points at the vertices of the convex regular polyhedra
have been calculated. These polyhedra are often called the Platonic solids,
and they are the tetrahedron (T), octahedron (O), cube (O), icosahedron
(Y) and dodecahedron (Y), see Fig. 8.2. The symmetry group is given
in parenthesis. Any change in the positions of the vertices of the Platonic
solids changes the symmetry group (assuming that rotations are excluded).
It is possible that there are also other ways to distribute points on the
surface of a sphere with, say, octahedral symmetry than to place them
at the vertices of the octahedron or cube. However, these distributions
correspond to polyhedra which are not regular, and therefore the points can
probably be moved without changing the symmetry group. An example of
a polyhedron which is not regular can be seen in the lower figure of Fig.
8.2 (b). This object has octahedral symmetry and it is obtained from the
octahedron by truncating it. The truncation of an octahedron is possible
if there are at least four points at each vertex, so these kinds of point
configurations do not determine inert states. Platonic solids have an even
number of vertices, which means that inert states with half integer S are
not possible.

The actual calculation of the inert states has been presented in Pa-
per V. However, because the inert states with icosahedral symmetry have
been discussed rather briefly there, we shall study them in more detail
here. An icosahedron can be truncated if there are five or more points
at each vertex, while for a dodecahedron this is possible if there are
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(a) Tetrahedron (b)

D, Octahedron
© T

Cube

Dodecahedron Icosahedron

Figure 8.2: In (a) we show examples of C5 and D, symmetries and the
Platonic solids, while in (b) we illustrate the truncation of an octahedron.

more than two points at each vertex, see Fig. 8.2. Thus these sym-
metries are possible if S = 6m + 10n, where m +n > 1, m < 4, and
n < 2. The vertices of the icosahedron can be chosen to be at (0,¢) =
(0,0), (7, 0), (Breos 2k7/5), (T —Oreo, (2k+1)7/5), where 07, = 2 tan~! Y21,
A dodecahedron is obtained by placing the vertices at (0, ©) = (Opode, (2k +
D)7 /5), (0poges 2k + )7 /5), (7 — Opode, 2k7/5), (7 — 040, 2k7/5), where

0 pode = sin~! @/z(f/gl) and 0, = 07 + 2sin™? (ﬁ) Here k runs

from one to five. Eq. (7.15) reads

S 99 1/2 25 0, / 0, /
S+Me iy, /2 . ioR/2\
T —A”a:cos—e + sin —e = 0.
M:Z—S <S + 4) ar k::l( 2 2 )

(8.2)
Using the right-hand side of this equation and the angles given above it
can be straightforwardly shown that the characteristic polynomial becomes
't —112° — 2 for the icosahedron and 2?0 + 22821 + 49421° — 2282° + 1 for
the dodecahedron. Comparing these with the left-hand side shows that the
inert states with icosahedral symmetry are for S = 6 and S = 10 systems

E1e0 = VT716,5) — V1116,0) — V/7(6, —5) (8.3)
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Table 8.1: The inert states for S = 1 — 4. The subscript of & gives the
symmetry group of the point configuration of &.

Spin Inert states
S=1 §so) = 11,1), Sow) =11,0)
S=2 Eso@) = 12,2) and |2,1), &p, = 12,2) + (2, -2),
50(2) - ’29 O>7 and gTetra = ’27 2> + Z\/§\2> 0> + |27 _2>
S =3 Eso@) = 13,3),13,2), and |3,1), {o2) = |3,0),
€D6 == |3, 3> + ‘3, —3>, and gOcta == ‘3, 2> + |3, —2>
S =41 &sop =14,4),14,3),14,2), and |4,1), (o) = |4,0),
EDS - ‘47 4> + |47 _4>7§D6 - |47 3> + ‘47 _3>
£D4 - |47 2> + ‘47 _2>7 €Tetra = \/7‘47 4> + 22'\/§|47 2>
—/10[4,0) + 2iv/3|4, —2) + /7|4, —4).
Ecube = V5|4, 4) — V/14]4,0) + /5[4, —4)

and
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Epode = V17[10,10)+v/57|10, 5)+ — 1o, 0Y—v/57|10, —5)+v/17]10, —10).

(8.4)
In Table 8.1 we list the inert states for integer-valued spin S = 1 — 4.
Comparing these with the ground state spinors of spinor condensates shown
in Tables 3.1 and 4.1 shows that for S = 1 and S = 2 there are no other
ground states than the inert states. However, there is one inert state,
namely |2, 1), which is never a ground state. In Papers I and II the cyclic
state of an F' = 2 condensate was found to have tetrahedral symmetry. The
same result was later obtained in [3] using the same graphical representation
of spin states than is used here. If S = 3, the inert states are ground states
but also numerous other ground states are possible, see Refs. [16, 52| and
Paper IV. These results suggest that the inert states for S > 3 are ground
states of spinor condensates for some values of the scattering lengths. This
has interesting consequences considering the topological defects of spinor
condensates. The symmetry group of £ contains those elements of H, which
belong to SO(3). All symmety groups except I, SO(2),0(2), and C,, are
non-commuting groups, so based on Theorem 1 one can argue that the first
homotopy groups of the ground states with D,,,T, O, and Y symmetries
are also non-commuting groups. Therefore, vortices with non-commuting
combination law can probably occur in spinor condensates for any S > 1
because then at least D,-symmetric inert states are possible.
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8.3 Monopoles

Finally we consider the monopoles of spinor condensates. This discussion
contains a new result, but it was left out of Paper V due to lack of space.
As before, we assume that the energy is invariant in phase changes and spin
rotations of spinor £&. In order to use Theorem 1, we again use instead of
U(1) x SO(3) its covering group R x SU(2), for which the first and second
homotopy groups consist of the identity element alone. We denote the
isotropy group of £ by H, and its connected component of the identity by
Heo. According to Theorem 1, monopoles are possible if the first homotopy
group mi(Hgo) is a nontrivial group, i.e. it also contains other elements
than the identity element e. Assume that H¢ = (R,I), where R is some
interval of R containing zero and I is the identity matrix. Now 71 (Hgp) =
m(R) x m({I}) = {e}. Therefore, if m(He) # {e}, the SU(2) part of
H¢p has to be a continuous set. Since the homomorphism between SU(2)
and SO(3) is continuous, the SO(3) part of the isotropy group is then a
continuous set, too. Thus, by finding all those point configurations on the
Bloch sphere that have a continuous part in their symmetry group, one
finds all spin states that may allow monopoles. Based on the results of
Paper V, these spin states are fgé\é) = |S, M), M # 0 and 58(2) = |5,0).
However, the isotropy group of the former is Zs);, so the only possibility
is 58(2). The point distribution corresponding to this vector has S points
at the north and south pole of the Bloch sphere. This configuration is
invariant in arbitrary rotations about the z-axis. For these p, = p, = S
in Eq. (7.28), which gives § = 2kw, k € Z. Another symmetry axis lies in
the xy-plane. For this p, = ps = 0 and a,.,, = 7, so according to (7.28)
0 = (2k + S)m. Hence the isotropy group is

His) = {(2km,e™'2%), ((2k + S)m, e7'27ve ™27}, (8.5)

where k is an arbitrary integer and 7 € [0,47). The connected component
of the identity is Hsoo = {(0,e%27%)}, which is topologically equivalent
with U(1) and therefore 7 (H|g0)0) = Z. According to Theorem 1 this
shows that monopoles with integer winding numbers are possible. Using
the results of Paper III we see that a spinor representing a monopole with
winding number m is given, for example, by

&(m;r,0,¢) = D9 (mp, m—6,0)|5,0), (8.6)

where (r, ¢, §) are the spherical coordinates and D™ (a, 3, 7) is given by Eq.
(7.22). In conclusion, in a spinor condensate of spin-S particles monopoles
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can be created, up to a spin rotation and a phase change, only from the
|S,0) vector, which is also an inert state.
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Chapter 9

Summary

In this thesis the topological defects, ground state spinors, and inert states
of spinor Bose-Einstein condensates have been studied. Their complexity,
and in most cases also their existense, arises from the multicomponent
nature of the order-parameter. This was discovered to enable numerous
ground states, inert states with various symmetries, and topological defects
characterized by complex spin textures.

The defects of spinor condensates were found to differ from the defects
of single-component condensates in many ways. For example, in a fer-
romagnetic F' = 1 condensate the presence of a vortex does not have to
imply non-zero orbital angular momentum or superfluid velocity, unlike in a
single-component condensate. Furthermore, vortices with fractional wind-
ing number and non-commuting combination law can exist. These type of
vortices were explicitly studied in the case of a cyclic spin-2 condensate,
but in view of the results of Paper V, these defects can occur in all spin-F'
condensates if F'is larger than one. It has also been shown that in spinor
condensates with U(1) x SO(3) symmetric energy monopoles can be gener-
ated only, up to a spin rotation and a phase change, from the |F, mp = 0)
vector.

In addition to the topological defects, we have discussed the ground
states of a spin-3 condensate assuming that the magnetization is conserved.
The ground state spinors for arbitrary and ground state phase diagrams for
some values of the magnetization were calculated. The expected ground
state spinor of a ®2Cr condensate has only two spin components populated,
and its form does not seem to depend on whether or not the magnetic
dipole-dipole interaction is taken into consideration. However, due to the
rapid incoherent dipolar relaxation taking place in °?Cr, the condensate
density needs to be decreased in order to make the condensate lifetime
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long enough for experiments.

We have also developed a simple geometrical method to calculate the
inert states of a spin-F' condensate. This technique is based on representing
the spin vectors of a spin-I" particle in terms of 2F" points on the surface of
a sphere and it is considerably easier to apply than the method presented
earlier in Ref. |71], which becomes increasingly cumbersome as F increases.
The motivation for calculating inert states is that they are good candidates
for the ground state spinors of a spin-F' condensate. For F' =1 and F' = 2
condensates they were found to correspond to the possible ground state
spinors. For F' = 3 condensates they are also ground states, although in
this case many other ground state spinors can exist as well.

During the writing of Paper V the decomposition of spin states discussed
in Chapter 7 was discovered to provide a simple way to obtain the results of
the first three publications. In Papers I, I, and III the explicit forms for the
spin rotation matrices were used in the calculation of the isotropy groups,
which made the computation cumbersome and prone to errors. The use
of the representation of spin states in terms of points on the Bloch sphere
makes this calculation faster and easier, as has been seen in Refs. |3, 4] and
in Paper V. One future application of this description of spin states might
be the determination of the isotropy groups and topological defects of the
inert states of spin-F' condensates for arbitrary spin.
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