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ABSTRACT

Previous studies have demonstrated that clinical pulpal pain can induce the expression of pro-inflammatory 
neuropeptides in the adjacent gingival crevice fluid (GCF). Vasoactive agents such as substance P (SP) are known 
to contribute to the inflammatory type of pain and are associated with increased blood flow. More recent animal 
studies have shown that application of capsaicin on alveolar mucosa provokes pain and neurogenic vasodilatation 
in the adjacent gingiva. Pain-associated inflammatory reactions may initiate expression of several pro- and anti-
inflammatory mediators. Collagenase-2 (MMP-8) has been considered to be the major destructive protease, 
especially in the periodontitis-affected gingival crevice fluid (GCF). MMP-8 originates mostly from neutrophil 
leukocytes, the first line of defence cells that exist abundantly in GCF, especially in inflammation. With this 
background, we wished to clarify the spatial extensions and differences between tooth-pain stimulation and 
capsaicin-induced neurogenic vasodilatation in human gingiva.  Experiments were carried out to study whether 
tooth stimulation and capsaicin stimulation of alveolar mucosa would induce changes in GCF MMP-8 levels 
and whether tooth stimulation would release neuropeptide SP in GCF. The experiments were carried out on 
healthy human volunteers. During the experiments, moderate and high intensity painful tooth stimulation 
was performed by a constant current tooth stimulator. Moderate tooth stimulation activates A-delta fibres, 
while high stimulation also activates C-fibres.  Painful stimulation of the gingiva was achieved by topical 
application of capsaicin-moistened filter paper on the mucosal surface. Capsaicin is known to activate selectively 
nociceptive C-fibres of stimulated tissue. Pain-evoked vasoactive changes in gingivomucosal tissues were mapped 
by laser Doppler imaging (LDI), which is a sophisticated and non-invasive method for studying e.g. spatial 
and temporal characteristics of pain- and inflammation-evoked blood flow changes in gingivomucosal tissues.  
Pain-evoked release of MMP-8 in GCF samples was studied by immunofluorometric assay (IFMA) and Western 
immunoblotting. The SP levels in GCF were analysed by Enzyme immunoassay (EIA). During the experiments, 
subjective stimulus-evoked pain responses were determined by a visual analogue pain scale. Unilateral stimulation 
of alveolar mucosa and attached gingiva by capsaicin evoked a distinct neurogenic vasodilatation in the ipsilateral 
gingiva, which attenuated rapidly at the midline. Capsaicin stimulation of alveolar mucosa provoked clear 
inflammatory reactions. In contrast to capsaicin stimuli, tooth stimulation produced symmetrical vasodilatations 
bilaterally in the gingiva. The ipsilateral responses were significantly smaller during tooth stimulation than during 
capsaicin stimuli. The current finding – that tooth stimulation evokes bilateral vasodilatation while capsaicin 
stimulation of the gingiva mainly produces unilateral vasodilatation – emphasises the usefulness of LDI in 
clarifying spatial features of neurogenic vasoactive changes in the intra-oral tissues. Capsaicin stimulation of the 
alveolar mucosa induced significant elevations in MMP-8 levels and activation in GCF of the adjacent teeth. 
During the experiments, no marked changes occurred in MMP-8 levels in the GCF of distantly located teeth. 
Painful stimulation of the upper incisor provoked elevations in GCF MMP-8 and SP levels of the stimulated 
tooth. The GCF MMP-8 and SP levels of the non-stimulated teeth were not changed. These results suggest that 
capsaicin-induced inflammatory reactions in gingivomucosal tissues do not cross the midline in the anterior 
maxilla. The enhanced reaction found during stimulation of alveolar mucosa indicates that alveolar mucosa 
is more sensitive to chemical irritants than the attached gingiva. Analysis of these data suggests that capsaicin-
evoked neurogenic inflammation in the gingiva can trigger the expression and activation of MMP-8 in GCF of 
the adjacent teeth. In this study, it is concluded that experimental tooth pain at C-fibre intensity can induce local 
elevations in MMP-8 and SP levels in GCF. Depending on the role of MMP-8 in inflammation, in addition 
to surrogated tissue destruction, the elevated MMP-8 in GCF may also reflect accelerated local defensive and 
anti-inflammatory reactions.

Key words: blood flow, Capsaicin, gingiva, gingival crevice fluid, laser Doppler imaging, matrix metalloproteinase-
8, neurogenic inflammation, pulpal pain, substance P (SP)
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TIIVISTELMÄ

Tulehdusreaktioon liittyy kipua, verivirtausmuutoksia ja kudostuhoa. Verivirtausmuutokset 
perustuvat tulehduksen neurogeenisiin vaikutuksiin, joissa mediaattorina toimii 
kipuhermoista vapautuva neuropeptidi SP. Kudostuhoa aiheuttavat kollagenaasi-
entsyymit, joista parodontiumissa kollagenaasi-2:a (MMP-8) pidetään keskeisimpänä. 
Tämän tutkimuksen tarkoituksena oli selvittää kokeellisesti hampaan ja parodontiumin 
tulehdusreaktion aiheuttamia muutoksia ienkudoksen verivirtauksessa sekä ientaskunesteen 
MMP-8 ja neuropeptidi SP määrässä.

Kliininen tutkimus suoritettiin Helsingin yliopiston Hammaslääketieteen laitoksella, 
Biomedicumissa, Turun yliopiston Hammaslääketieteen laitoksella sekä Erlangenin 
yliopistossa Saksassa. Tutkimuksessa oli mukana terveitä koehenkilöitä. Kokeellinen 
tulehdusreaktio aiheutettiin hampaan sähköärsytyksellä ja ikenen capsaicin penslauksella. 
Ientaskuneste kerättiin standardoidulla stripsi-menetelmällä. Ientaskunesteestä määritettiin 
tulehdusreaktion aiheuttamat MMP-8- ja neuropeptidi SP-tasojen muutokset. Hammasta 
ympäröivän tukikudoksen verivirtausmuutokset kartoitettiin non-invasiivisesti laser Doppler 
imaging-laitteistolla.

Tutkimus osoittaa, että capsaicinin aiheuttama paikallinen hermovälitteinen tulehdusreaktio 
ikenessä ja limakalvolla ei ylitä yläleuan keskilinjaa. Capsaicin laukaisee myös MMP-
8:n vapautumisen läheisten hampaiden ientaskunesteessä, mutta tämä MMP-8 tason 
nousu ei myöskään jatku yli keskiviivan viereiseen yläleuan puoliskoon. Hermovälitteisen 
tulehdusreaktion suurempi voimakkuus ärsytettäessä limakalvoa kuin ärsytettäessä 
kiinnittynyttä ientä tukee hypoteesia, että suun limakalvo on kiinnittynyttä ientä herkempi 
kemikaalien ja bakteereiden aiheuttamille tulehdusreaktioille. Tutkimustulosten mukaan 
kokeellinen hammaskipu aiheuttaa paikallisesti ientaskunesteessä MMP-8- ja neuropeptidi 
SP-tason nousua. Tulokset tukevat hypoteesia, että tulehdusreaktio voi levitä hermovälitteisesti 
hammasytimestä sitä ympäröiviin kiinnityskudoksiin.

Tutkimus on kliinisesti merkittävä, koska se selvittää tulehdusreaktion neurogeenisiä 
mekanismeja sekä avain-välittäjäaineiden (neuropeptidi SP ja MMP-8) toiminnan 
tulehdusreaktion etenemisessä hampaan ja sitä ympäröivän tukikudoksen välillä. 
Tutkimustulokset luovat perustan tarkemmalle intraoraalisten tulehdustilojen diagnostiikalle 
sekä uusien täsmällisten hoitomuotojen kehittämiselle. 

Avainsanat: capsaicin, hammaskipu, hermovälitteinen tulehdusreaktio, ien, ientaskuneste, 
laser Doppler imaging, matriksin metalloproteinaasi-8, neuropeptidi SP, verivirtaus
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ABBREVIATIONS

a2-MG 		 alpha-2-macroglobulin

ANS		  autonomic nervous system

BM 		  basement membrane	

CNS 		  central nervous system

C-terminus	 carboxyl terminus

ECM 		  extracellular matrix

EDTA		  ethylenediamine tetra-acetic acid

EIA		  enzyme immunoassay

GCF 		  gingival crevice fluid

HR		  heart rate

IFMA		  time-resolved immunofluorometric assay

IL-1β		  interleukin1β

kDa 		  kilodalton

LDF 		  laser Doppler flowmetry  	

LDI 		  laser Doppler imaging

LPS 		  lipopolysaccharide

MAP 		  mean arterial blood pressure

MT-MMP	 membrane-type MMP

MMP		  matrix metalloproteinase

MMP-8 		 collagenase-2/ neutrophil collagenase

N-terminal	 amino terminal

PGE2		  prostaglandin E2

PMN 		  polymorphonuclear leukocyte, neutrophil leukocyte

RF		  reticular formation

SDS-PAGE 	 sodium dodecyl sulphate-polyacrylamide gel electrophoresis

SP 		  substance P

TIMP		  tissue inhibitor of matrix metalloproteinase

TNF-a		  tumour necrosis factor-a

TTBS		  10 mM Tris-HCl, pH 7.5, 0.05% Triton X-100, 0.2 M NaCl

VAS		  visual analogue scale

Zn		  zinc
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1 INTRODUCTION

Pain and inflammatory reactions are known to be associated with blood flow changes, and, for 

example, in migraine type of headache, pain is supposed to be vascular in origin (Goadsby 1997). 

There are also distinct signs of blood flow alterations in other types orofacial pain syndromes such as 

trigeminus neuralgia and pain-related masticatory dysfunctions  (Suvinen et al. 2005).

Pain-provoked alterations in blood flow are neuronal, driven via local axon reflexes and centrally 

mediated somato-autonomic vascular reflexes (Wallin 1990). It is well documented that activation of 

cutaneous nociceptive afferents induces local vasodilatation (Wårdell et al. 1993), which is caused by 

the release of inflammatory mediators from the peripheral nerve terminals, and thus called axonreflex-

mediated neurogenic inflammation (Holzer 1988). Unmyelinated nociceptive C-fibres, containing 

vasoactive agents such as substance P (SP) and calcitonin-gene-related peptide (CGRP), are mainly 

responsible for this inflammatory type of pain and associated blood flow increases (Holzer 1988). 

These vasoactive neuropeptides are released upon activation of C-afferent fibres leading to a local 

blood flow increase. Axon reflex vasodilatation usually spreads symmetrically around the nociceptive 

stimulus and corresponds to the size of the receptive fields of the stimulated nociceptive afferents 

(Wårdell et al. 1993). Interestingly, several recent studies in humans have demonstrated that especially 

orofacial C-fibre mediated pain (for example tooth pain) can evoke not only local axon reflexes but 

also centrally mediated blood flow alterations in various trigeminal regions (Kemppainen et al. 1994, 

2001a, b) and even central pain-sensitive structures (May & Goadsby 1999).

There are two types of afferent nerve fibres, A-delta and C-fibres, within the tooth pulp (Närhi et 

al. 1996).  Electrical tooth stimulation (pulse duration 10 ms, frequency 5 Hz) at pain threshold 

level activates selectively A-delta fibres, and by increasing stimulus intensity it is possible to activate 

also pulpal C-fibres (Närhi 1985; Virtanen 1985). In the present series of studies, we designed  

experiments to determine whether tooth stimulation would evoke MMP-8 levels in GCF. The present 

study was also conducted to clarify whether there are differences between tooth stimulation current 

and different pulpal nerve fibre population and stimulation-evoked MMP-8 levels in GCF. The 

preliminary findings indicated that only high intensity tooth stimulation, capable of activating pulpal 

C-fibres, induced elevations in GCF MMP-8 levels. Therefore, 3x the individual pain threshold was 

used (average current intensity 47 µA) in this study.
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In the present study, the laser Doppler imaging (LDI) technique was applied for the first time to record 

blood flow in human gingiva. Although it is an indirect measure, LDI has previously been shown to 

be a successful method for the documentation of orofacial blood flow changes (Kemppainen et al. 

2001a, b). In contrast to laser Doppler flowmetry (LDF), as used, for example, in the determination 

of blood flow in healthy (Baab et al. 1986) and diseased human gingiva (Baab et al. 1990), LDI has 

the advantage of giving simultaneously information on the spatial distribution of vaoactive changes 

from separate tissues. 

It has been recognised that toxins, enzymes and metabolites of various bacteria of the dental plaque 

are responsible for the initiation of the inflammation in the periodontium (Listgarten 1987). Recent 

animal studies (Fazekas et al. 1990; Kondo et al. 1995) have shown that similar inflammatory reactions 

in the gingiva can be induced experimentally by activating C-afferent nociceptors in gingivomucosal 

tissues. It has been suggested that intact function of these nociceptive fibres serves as a primary 

physiological defence mechanism in periodontal tissues (Kondo et al. 1995), the impairment of which 

can lead to reduced periodontal inflammatory function as found in diabetic rats (Györfi et al. 1996). 

However, to the best of our knowledge no systematic studies on the existence and characteristics of 

C-fibre mediated neurogenic inflammatory reactions in human gingivomucosal tissues have been 

performed. 
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2 REVIEW OF THE LITERATURE

2.1 STRUCTURE AND PHYSIOLOGY OF THE PERIODONTIUM

The periodontium, the supporting structures around the teeth, comprises: 1) the gingiva, 2) the 

periodontal ligament, 3) the root cementum, and 4) the alveolar bone. The periodontium balances 

masticatory forces and participates in the defence reaction against microbial infections, chemical and 

physical factors and irritants.

 
2.1.1 The gingiva

The gingiva surrounding the teeth consists of two parts: 1) free gingiva extends from the cemento-

enamel junction to the most coronal soft tissue margin and includes the interdental papillae; 2) 

attached gingiva is coral pink in colour and keratinised. Attached gingiva is situated between the free 

gingiva and the mucogingival junction and is tightly fastened to the alveolar bone.

In the apical direction the gingiva is continuous with the loose, darker red alveolar mucosa, from 

which the gingiva is separated by a borderline called the mucogingival junction. The non-keratinised 

alveolar mucosa is loosely bound to the underlying bone.

The gingiva is covered by three different kinds of epithelia: 1) the visible gingiva facing the oral cavity 

is covered by oral epithelium. The oral epithelium and the underlying connective tissue contain 

lots of blood vessels and nerve endings and have rapid metabolism. The oral epithelium is either 

keratinised or parakeratinised; 2) the oral epithelium continues as non-keratinised or parakeratinised 

sulcular epithelium, which faces the tooth and is not bound to the tooth surface. The sulcular 

epithelium and the tooth form the v-shaped gingival crevice, sulcus, which is the most critical area 

concerning the physiology of the periodontium. It allows bacterial growth in the crevice and may 

start periodontal diseases; 3) the junctional epithelium provides the contact between the tooth 

and the gingiva and forms the bottom of the gingival sulcus. It is non-keratinised. The epithelial 

attachment of the junctional epithelium, from the internal basal lamina, is fastened to the enamel via 

hemidesmosomes. Substance P and CGRP have been found immunohistochemically in nerve fibres 

supplying the junctional epithelium (Byers et al. 1987; Nagata et al. 1992). Junctional epithelium has 

a high cellular turnover rate and wide intercellular spaces allowing inflammatory cell emigration and 

gingival crevice fluid (GCF) flow.
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Underlying the gingival epithelial layer is the connective tissue layer. Type I collagen is the major type 

of collagen and fibroblasts are the major resident cells in the gingival connective tissue. Connective 

tissue has rapid metabolism, which allowes the fast recovery of small wounds in the gingiva.

2.1.1.1 Gingival crevice fluid (GCF)

Gingival crevice fluid (GCF) is a mixture of serum origin and acts as a vehicle of  important 

defence mechanisms. After the onset of plaque formation, the permeability of the connective tissue 

vasculature increases, which can be clinically detected by increased gingival crevice fluid flow. In the 

healthy gingival crevice GCF is released only in small amounts. Quantification of the GCF volume 

has been used to reveal the inflammatory status of periodontal tissues. GCF volume increases in the 

order healthy gingiva, gingivitis, and periodontitis (Nakamura 2000), but the increased flow does not 

necessarily reflect periodontal disease activity.

The GCF composition has been evidenced to follow and reflect the health and disease of the adjacent 

gingiva (Cimasoni 1983). Qualification of the collected GCF can be used to reflect the activity 

of periodontal tissue inflammation. In periodontitis patients, repeatedly elevated GCF MMP-8 

concentrations may indicate sites at risk of progression of periodontitis as well as patients with poor 

response to conventional periodontal treatment (Mäntylä et al. 2003).

GCF can be collected by several techniques: with paper filter strips, micropipette tubes using gingival 

washing and capillary tubing. Harvesting by filter paper strips is the most commonly used method. 

The collection time can affect the harvested GCF. The composition of GCF can change if the tissue is 

irritated. The sampling time is usually 30 s or less (Mäntylä et al. 2003, 2006), but also 3 min or  up 

to 5 min has been used in GCF studies (Apajalahti et al. 2003).

2.1.2 Periodontal ligament

The periodontal ligament connects the tooth to the alveolar bone. The collagen ligaments (principally 

type I collagen) fill the 0.15-0.4 mm space between the root cementum and the alveolar bone process. 

The metabolism in the periodontal ligament is even more rapid than in gingival connective tissue. The 

periodontal ligament is divided into groups depending on its orientation. The principal cells of the 

periodontal ligament are differentiated fibroblasts. The periodontal ligament acts as a network that forms a 

defence barrier against mastication forces. The fibroblasts respond to the alterations associated with tooth 

mobility: connective tissue degradation increases in tissue pressure site where strong masticatory forces are 

directed, and the construction of the ligament fibres is elevated in stretching site. The periodontal ligament 

is able to adapt to normal forces and keep the periodontal space standard. Excessive non-physiological 

forces can cause damage to the periodontal ligament and lead to extension of the periodontal space.
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2.1.3 The root cementum

A thin layer of the cementum covers the root of the tooth. The root cementum  attaches the tooth 

to surrounding alveolar bone via the periodontal ligament. The root cementum is asymmetrically 

covered by cementocytes. The thickness of the root cementum is dependent on the masticatory forces: 

in the pressure site the cement is thinner than in the stretching site. The formation of the cement is 

linked to the adaptation mechanisms of the periodontium towards the masticatory forces.

2.1.4 The alveolar bone

The alveolar bone is dependent on the existence of the teeth, and the loss of teeth leads to resorption 

(Araújo & Lindhe 2005). The pressure towards the bone causes the activation of osteoclasts and 

leads to resorption of the bone, while the stretching forces via the periodontal ligaments activate the 

osteoblasts to bone formation. 

2.2 STRUCTURE AND PHYSIOLOGY OF TEETH

Complete deciduous dentition with 20 teeth and complete permanent dentition with 32 teeth, 

comprises: 1) enamel, 2) dentine, and 3) dental pulp. The tooth differs from the other organs of the 

body due to its structure and the exceptionally rich innervation of its pulp.

2.2.1 Enamel

Enamel is semi-translucent. It is grey or bluish-white in colour. Except at the unworn biting edges 

of the incisors, its colour is modified by that of the underlying dentine, producing the characteristic 

yellowish-white appearance of the crown. The hardness of enamel is considerable, and this is what 

allows enamel to withstand masticatory loads and protect the underlying dentine. The modulus of 

elasticity of enamel is lower than that of dentine just as well is the compliance of enamel lower than 

that of dentine (Pashley 2002). Enamel is indeed the hardest tissue in the body. In its mature state 

enamel is highly mineralised, containing by weight 96 per cent inorganic material, 1 per cent organic 

material and 3 per cent water. The inorganic component of mature enamel is mainly in the form of 

hydroxyapatite crystals (Berkovitz et al. 1978).

2.2.2  Dentine

Dentine forms the bulk of the tooth. In the crown, it is covered by enamel, from which it is demarcated 

by the amelodentinal junction. In the root it is covered by cementum, the boundary between them 
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being termed the cemento-dentinal junction. The dentine surrounds the pulp cavity. Dentine is pale 

yellow in colour, and this is what imparts the colour to the crown of the tooth through the semi-

translucent enamel. It is harder than bone and cementum, but much softer than enamel. Because 

it is traversed by a system of tubules, dentine is considerably more permeable than enamel. On a 

wet weight basis, dentine is composed of approximately 70 per cent inorganic material, 18 per cent 

organic material and 12 per cent water. Thus, dentine has a much higher content of organic material 

than enamel. As in other hard tissues, the principal inorganic component is hydroxyapatite. Most of 

the organic component is collagen (Berkovitz et al. 1978).

2.2.3  Dental pulp

The dental pulp cavity consists of a pulp chamber in the crown from which canal(s) pass down into 

the root(s). As a general rule, the pulp cavities follow the contours of the teeth. Each root canal opens 

by a foramen/foramina at the apex of the root. The pulp is continuous with the connective tissue 

of the periodontal ligament through the apex of each root and commonly lateral or accessory root 

canals. The components of the pulp are common to all loose connective tissue, comprising cells, 

fibres, blood vessels and nerves. The fibres of the pulp are principally collagenous. Three types of cells 

can be recognised in the dental pulp: odontoblast, fibroblast and defence cells. The pulp is composed 

of approximately 25 per cent organic material and 75 per cent water on a wet weight basis (Berkovitz 

et al. 1978).

2.2.3.1 Blood supply of the tooth pulp 

The neurovascular bundle enters the pulp at its apical foramen, which in young teeth is wide and 

may take the form of a delta with several canals. Arterioles are the largest vessels found in the pulp. 

The arterioles terminate in a rich, subodontoblastic capillary plexus from which small capillaries pass 

into the odontoblastic layer. Small venules drain the odontoblast layer and pass obliquely across the 

pulp chamber to join several small veins in the neurovascular bundle (Berkovitz et al. 1978). There 

are numerous anastomoses between venules and arterioles (Kramer 1960). 

2.2.3.2 Nerve supply of the pulpodentin complex

Compared to similar volume of connective tissue elsewhere in the body, the dental pulp is richly 

innervated. The number of nerve fibres entering the tooth is enormous; for example, the human 

premolar receives more than 900 sensory afferent nerve fibres (Reader & Foreman 1981). These fibres 

consist of nociceptive unmyelinated C-fibres (72 per cent) and thinly myelinated A-delta fibres (28 

per cent). Regardless of stimulus type (electrical, mechanical, thermal or chemical), the only sensation 

that can be experienced from the pulp is pain (Anderson et al. 1970). The course of the nerves follows 
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closely that of the blood vessels, terminating in a dense plexus beneath the odontoblasts (Raschkow’s 

plexus) (Berkovitz et al. 1978). The number of nerve fibres in the middle third of the pulp is estimated 

to be three times the number found in the apical area (Holland & Robinson 1983). It has been shown 

in histological studies that the location of the nerve terminals in dentine is limited to the inner 150-

200 µm of the tubules. The outer layers of dentine are not innervated (Byers & Matthews 1981; Byers 

1984).

The pulpodentin complex is among the most densely innervated tissues in the body. The profuse 

innervation of the pulp and dentin contains many neuropeptide-rich fibres that can release peptides 

when stimulated. The timing, concentration and location of secreted neuropeptides act as important 

signals for other pulpal cells about the status of the tooth. Neural agents are an important signal for 

neurogenic inflammation for stimulation and repair (Byers & Närhi 2002). 

The vasodilatory functions of sensory innervation in teeth are opposed by vasoconstriction by the 

sympathetic fibres (Olgart 1996). The sympathetic fibres are much less numerous than are sensory 

fibres (Fried et al. 1988). Sympathetic fibre distribution also differs from that of sensory fibres in that 

they are located mainly in deeper pulp and along blood vessels. Parasympathetic activity can affect 

blood flow in teeth, but it is not clear whether that is from intradental or periodontal sites; in any 

case, the relative importance of parasympathetic activity is much less than that of sympathetic activity 

(Olgart 1996).

Some afferent nerve fibres may branch to innervate both the dental pulp and the adjacent tissues or 

multiple teeth. To some extent, such organization may contribute to the poor localization of dental 

pain and may also allow neurogenic vasodilatation and inflammatory reactions to occur in an area 

of tissue wider than that affected by the original insult. Correspondingly, within the dental pulp the 

terminal branching of the nerve fibres may contribute to the spread of inflammatory reactions (Närhi 

et al. 1996). 

2.2.3.3 Differences between the nerve supply of the pulpodentin complex and the 
supporting tissues

The tooth pulp is surrounded by a capsule of hard tissue, and the pulp lacks the receptor structures that are 

typical of the skin. The fact that pain and the weaker prepain are the only sensations which can be felt by the 

stimulation of pulpal nerves is in accordance with the notion that the pulp contains only free nerve endings 

instead of specialised receptor structures. The pulpal nerve fibres have their cell bodies located far away in the 

trigeminal ganglion for sensory neurons. The apical region of the tooth is supplied with several nerve branches 

that are distributed both to the pulp and periodontium. The apical region is also innervated by branches 

coming through the alveolar bone and along the mucous membrane of the mouth (Byers 1984). 
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The nerve fibres in the pulp and dentin are components of a larger trigeminal peripheral nervous system 

that also includes sensory innervation of the gingiva, junctional epithelium, periodontal ligament, tongue, 

lips, mastication muscles, and the temporomandibular joint. Each part of the system contributes different 

kinds of somatosensory information needed for tooth use and preservation. For example, from the gingiva 

we perceive sensations of touch, pressure and temperature via activation of special mechanoreceptors or 

thermoreceptors. The junctional epithelium is richly innervated by sensory fibres that release neuropeptides 

to regulate vasodilatation and transmigration of leukocytes across the epithelium into the oral cavity in 

defence against oral pathogens. The periodontal ligament contains a number of Ruffini mechanoreceptors. 

These mechanoreceptors give us our sensation of tooth touch and occlusal plane during chewing, speech, 

and swallowing. Some part of the sensory information from the periodontal mechanoreseptors may remain 

unconscious and subserve automatic responses needed for the regulation of masticatory functions. All the 

orofacial tissues also have specific and polymodal nociceptive nerve fibres that initiate acute pain sensation 

if there is damage or inflammation. Together, the multiple nerve fibre systems of these regions provide an 

integrated regulatory system acting on teeth and their supporting tissues (Byers & Närhi 2002).

In the last few decades, a number of studies have addressed the question of bilateral innervation of the 

maxillary incisors. There is at present no consensus as to whether the nerves may cross the maxillary midline 

or not, since some reports (Anderson et al. 1977; Avery 1979; Fuller et al. 1979; Byers & Matthews 1981; 

Saag & Reid 1981) have demonstrated electrophysiological and anatomical evidence for such innervation. 

However, similar studies by some researchers have found little or no evidence of a bilateral supply (Matthews 

& Lisney 1978; Nord & Rollince 1980; Arvidsson & Gobel 1981; Byers 1984). It is possible that technical 

problems, such as spread of histological label from the pulp to contralateral tissues, might account for the 

discrepancy in observations (Sessle 1987).

2.3 PAIN 

The taxonomy committee of the International Association for the Study of Pain (Merskey 1979) 

considered definitions of pain and concluded as follows: ‘‘Pain is an unpleasant sensory and emotional 

experience associated with actual or potential tissue damage, or described in terms of such damage.‘‘ 

2.3.1 Transmission of orofacial nociceptive information to the central nervous 
system (CNS)

Pain in the orofacial region has a special biological, emotional, and psychological meaning to the 

patient. Furthermore, apart from headache, which may also involve structures in the mouth and face, 

acute orofacial pain accompanying acute pathologic states in the teeth and associated structures is 

probably the most common pain in all the body (Sessle 1987).
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2.3.1.1 Nociceptors (Pain receptors)

The peripheral terminals of sensory nerves are characterised by the ability to transduce different types 

of energy into nerve impulses. Peripheral unmyelinated and finely myelinated axons have in the 

periphery unmyelinated terminals, which have no specialised receptive structures and are termed free 

nerve endings. Pain is conducted by two different sets of neurons: thin myelinated A-delta fibres with 

conduction velocities of 12-30 m/s and neurons with unmyelinated C-fibre axons with conduction 

velocities of 0.5-2.5 m/s (Guyton & Hall 1996). 

Because of this organization, the sensation perceived in response to noxious stimulation consists of 

two discrete and different components: first sharp and well-localised pain mediated by A-delta fibres, 

and then delayed, dull pain that is mediated by C-fibres. This C-fibre mediated pain can radiate to a 

wide area surrounding the affected tissue (Mumford & Bowsher 1976; Närhi 2003). The activation of 

C-fibres leads to tension of muscles and activation of the autonomic nervous system (Holzer 1988).

2.3.1.2 Trigeminal nerve

The trigeminal nerve (the fifth cranial nerve) is the most significant nerve subserving the orofacial 

structures. The trigeminal nerve is a mixed nerve containing both sensory and motor fibres (Sessle 

2000). The trigeminal nerve is divided into three major divisions: the ophthalmic, the maxillary, and 

the mandibular. In addition to the trigeminal nerve, the facial nerve (the seventh cranial nerve) with 

its motor component supplies the muscles of facial expression.

The ophthalmic nerve carries sensory information from the scalp and forehead, the upper eyelid, the 

conjunctiva and cornea of the eye, the nose (including the tip of the nose), the nasal mucosa, and the 

frontal sinuses. The maxillary nerve carries sensory information from the lower eyelid and cheek, the 

nares and upper lip, the upper teeth and gums, the nasal mucosa, the palate and roof of the pharynx, 

the maxillary, ethmoid and sphenoid sinuses. The mandibular nerve carries sensory information 

from the lower lip, the lower teeth and gums, the floor of the mouth, the anterior ⅔ of the tongue, 

the chin and jaw. The mandibular nerve has both sensory and motor functions comprising the motor 

innervation of the jaw opening and closing muscles. The areas of cutaneous distribution (dermatomes) 

of the three branches of the trigeminal nerve have sharp borders with relatively little overlap (unlike 

dermatomes in the rest of the body, which show considerable overlap). 

The three branches converge on the trigeminal ganglion (also called the semilunar ganglion or 

gasserian ganglion), which contains the cell bodies of afferent sensory nerve fibres. The trigeminal 

ganglion is analogous to the dorsal root ganglia (also called the spinal ganglion) of the spinal cord, 

which contain the cell bodies of afferent sensory fibres from the rest of the body.



20

2.3.1.3 The orofacial pain pathways in the CNS

From the trigeminal ganglion, a single large sensory root enters the brainstem at the level of the pons. 

Immediately adjacent to the sensory root, a smaller motor root emerges from the pons at the same 

level. 

The areas that are reviewed here are the trigeminal nuclear complex, the reticular formation, the 

thalamus, the limbic structures and the cortex. They are discussed in the order by which neural 

impulses pass on to the higher centres. Additionally, a few specific comments about innervation and 

circulation of cranial blood flow are emphasised.

Following activation, the C-fibres and finely myelinated A-delta fibres from orofacial tissue such as 

dental pulp or gingiva transmit nociceptive signals, primarily via trigeminal nerves, to the trigeminal 

nuclear complex located in the medulla. The sensory complex can be subdivided into the main 

(principal) sensory nucleus and the spinal tract nucleus. The trigeminal spinal tract nucleus includes 

the nucleus oralis, nucleus interpolaris, and nucleus caudalis. The subnucleus caudalis extends into 

the cortical spinal cord and merges with the spinal dorsal horn (Sessle 1987). The nucleus caudalis is 

not simply a relay station where nociceptive signals are passively transferred to higher brain regions. 

Rather, this site plays an important role in processing nociceptive signals (Hargreaves 2002). Sessle 

and colleagues have further proposed that a large proportion of the nociceptive neurones in trigeminal 

nuclei showing extensive convergence from skin, mucosa, visceral (laryngeal), TMJ, jaw or tongue 

muscle, tooth pulp, and even neck afferents may underlie the spread and referral of pain which is 

frequently seen in many craniofacial and intra-oral pain conditions (Sessle 1987).

After the primary sensory afferent neurons synapse in the nucleus caudalis, the interneurons transmit 

the impulses up to the higher centres, some of them passing through an area called the reticular 

formation. Neurones in each part of the V brainstem complex have axons that may project directly 

or indirectly, via reticular formation, to the thalamus and are thus implicated as critical elements 

underlying perceptual as well as emotional and motivational responses to orofacial stimuli (Sessle 

1987). The reticular formation controls the overall activity of the brain by either enhancing the 

impulses on the brain or by inhibiting the impulses (Kalso & Vainio 2004). 

At the level of the thalamus the sensory information is sent to its specific nuclei. The thalamus 

is located in the very centre of the brain, and most of the impulses from the lower regions of the 

brain as well as the spinal cord are relayed through synapses in the thalamus before proceeding to 

the cerebral cortex (Dionne et al. 2006). The thalamus drives the cortex to activity and enables the 

cortex to communicate with the other regions of the CNS. Current theory states that the areas of 
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the brain involved in pain processing can be divided into two networks: the lateral pain system, 

which projects through lateral thalamic nuclei to the cerebral cortex including the primary and 

secondary somatosensory cortex (SI and SII); and the medial pain system, which projects through 

medial thalamic nuclei to brain regions including the prefrontal and anterior cingulate cortex. The 

lateral pain system is thought to be responsible for the sensory aspects of pain, such as its location 

and duration, while the medial pain system is thought to be responsible for the emotional aspects of 

pain, such as how unpleasant it feels. In the study of Jantsch et al. (2005), cortical representation of 

tooth pain was compared with that of painful mechanical stimulation to the hand. In this study it was 

concluded that the contralateral SI cortex was activated during painful mechanical stimulation of the 

hand, whereas tooth pain led to bilateral activation of SI. Thus, there are distinct differences between 

trigeminal pain and pain from other regions of the body, such as the hand. 

The limbic structures function to control our emotional and behavioural activities (Evers et al. 1981). 

Within the limbic structures are centres, the medial pain projection system, which are responsible for 

specific behaviours, such as anger and rage. The limbic structures also control emotions, such as fear, 

depression and anxiety. The limbic system is well known to play an important role in pain problems. 

Modern imaging studies in humans have indicated that the frontal cortical areas get input from 

the limbic structures (Bantick et al. 2002). More recently it has been shown that in frontal cortical 

regions especially trigeminal pain, e.g. tooth pain, has a greater impact compared to hand stimulation 

(Jantsch et al. 2005). It is concluded that trigeminal pain activates a cortical network which is in 

several respects different from that activated by painful mechanical stimulation of the rest of the body, 

not only in the somatotopically organised somatosensory areas but also in parts of the limbic medial 

pain projection system (Jantsch et al. 2005).

The trigeminal nerve innervation supplies a rich network of perivascular fibres to the cranial circulation, 

which contains powerful vasodilator neuropeptides (May & Goadsby 1999). Electrical stimulation of 

the trigeminal ganglion in both humans and the cat leads to increase in extracerebral blood flow and 

local release of both CGRP and SP (Edvinsson & Goadsby 1988).  Based on more extensive studies 

in humans it was concluded that the observed dilation of the cerebral vessels in trigeminal pain is not 

inherent to a specific headache syndrome, but is rather a feature of the trigeminal neural innervation 

of the cranial circulation. Clinical and animal data suggest that the observed vasodilatation is, in part, 

an effect of a trigeminoparasympathetic reflex (May & Goadsby 1999).
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2.3.1.4 Effect of orofacial painful stimuli on cardiovascular parameters via the autonomic 
nervous system (ANS)

The autonomic nervous system (ANS) is the part of the peripheral nervous system that controls 

cardiovascular, digestive and respiratory functions, as well as salivation, perspiration and diameter 

of the pupils. ANS is separated into two divisions: the sympathetic and the parasympathetic. 

Sympathetic and parasympathetic divisions typically function in opposition to each other. However, 

this opposition is better termed complementary in nature rather than antagonistic. As an analogy, 

one may think of the sympathetic division as the accelerator and the parasympathetic division as the 

brake. The sympathetic division typically functions with actions requiring quick responses, while the 

parasympathetic division functions with actions that do not require immediate reaction. Sympathetic 

can be considered as “fight or flight” and parasympathetic as “rest and digest”  (Tracey 2002). 

Both sympathetic and parasympathetic fibres have a preganglionic and a postganglionic nerve cell. 

They meet at a ganglion, where the nerve impulse is transferred from cell to cell, at a synapse, by the 

chemical transmitter acetylcholine. In parasympathetic fibres, the transmitter in postganglionic nerve 

fibres is again acetylcholine, while noradrenaline serves as the transmitter in the sympathetic system. 

Most of the sympathetic nerve filaments that have an effect on blood vessels cause vasoconstriction. 

The parasympathetic nervous system dilates blood vessels, for example those leading to the GI tract, 

increasing the blood flow (Nienstedt et al. 2004). Noxious stimulation of the orofacial structures has 

been shown to induce active somato-parasympathetic vasodilatation in the cat face (Izumi & Karita 

1992; Shoji 1996).

Nociceptive responses to noxious orofacial stimuli include muscle reflexes and autonomic responses. 

For example, changes in blood pressure, heart rate, respiration, and sweating have long been recognised 

as accompaniments of craniofacial pain and have indeed often been utilised as indirect measures of 

pain (Sessle 1987, 2000). 

Pain is able to produce central cardiovascular changes, and, in particular, blood flow changes in various 

peripheral structures mediated by sympathetic effects in most parts of the skin. However, in part of 

the face, the blood flow changes are probably mediated by parasympathetic nerves (Drummond 

1995; Kemppainen et al. 2001a). In parasympathetic nerves, acetylcholine often co-exists with 

vasoactive intestinal peptide (VIP), which is one of the body’s most potent vasodilator substances 

with a long half-life (Brayden 1987). There is evidence that orofacial organs like the tongue, lip 

and submandibular glands are innervated by both cholinergic and VIP-ergic parasympathetic nerves 

(Lundberg 1981, 1982; Kaji et al. 1988).
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2.4 DISEASED PERIODONTIUM

Chronic periodontal inflammation is characterised by increased irreversible degradation of periodontal 

ligament collagen fibres leading to loss of tooth attachment and apical and lateral migration of gingival 

sulcular epithelial cells. The initiation of the degradation of the periodontium starts with release of 

products from the bacteria. The bacterial products, including lipopolysaccharides (LPS), have been 

shown to be able to stimulate resident cells, including sulcular epithelial cells and gingival fibroblasts, 

but also recruited polymorphonuclear leukocytes and macrophages (Birkedal-Hansen 1993; Ding 

et al. 1996; Gemmel et al. 1997) to secrete pro- and anti-inflammatory cytokines and proteinases 

(Owen et al. 2004; Sorsa et al. 2006).

Polymorphonuclear leukocytes (PMNs) are triggered by pro-inflammatory signals and are the 

predominant phagocytic cells in the gingival crevice and gingival crevicular fluid (Taichman & Lindhe 

1989). Increased PMN numbers have been related to the severity of gingival inflammation (Taichman 

& Lindhe 1989). Infiltrating PMNs in inflamed gingiva and periodontal pockets are considered to be 

important and essential in the pathogenesis of periodontitis due to their ability to release molecular 

mediators involved  in both local host defence and periodontal tissue injury (Taichman & Lindhe 

1989). Activated PMNs migrate through blood vessels and move directionally through tissues to bind 

to and phagocytose harmful microorganisms. During phagocytosis PMN subgranular and lysosomal 

enzymes are released not only into the phagocytic vacuole, but also extracellularly (Weiss 1989; Page 

1991). The PMN enzymes that can be released into the extracellular fluid and mediate extracellular 

damage include several proteases with wide destructive capacity, such as serine proteinases (elastase 

and cathepsin G), and the matrix metalloproteinases MMP-8 (PMN collagenase) and MMP-9 (PMN 

gelatinase). It is noteworthy that certain MMPs such as MMP-8 and -9 have recently been found 

to exert, in addition to their surrogate tissue destructive properties, also unexpected protective and 

defensive anti-inflammatory properties (Balbin et al. 2003; Uitto et al. 2003; Sorsa et al. 2004; Owen 

et al. 2004; Folgueras et al. 2004; Gueders et al. 2005).
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2.5 INFLAMMATION

The inflammatory response is stimulated by the release and activation of several mediators. Inflammation 

has been classified into acute and chronic, using the duration of the process as the criterion. The acute 

inflammatory process is characterised by three main stages (Scott et al. 1994):

1.   	 Vasodilatation and increased blood flow to the area.

2.	 Increased vascular permeability with leakage of plasma from the microcirculation.

3.	 Migration of phagocytic leukocytes from the microcirculation into the surrounding tissue.

Among the critical processes in inflammation is the delivery of leukocytes to the site of irritation. 

As for example gingival or pulpal blood flow increases at the site of inflammation (due to vasodilatation 

and increased vascular permeability), leukocytes move to a more peripheral position in the vessels, a 

condition called margination. Eventually, the leukocytes roll along the endothelial wall and finally 

adhere to the endothelial lining. Then they move through the gaps between the endothelial cells and 

transmigrate along the chemotactic gradient through the basement membrane toward the site of 

inflammation. Bacterial products, such as LPS, acting as targets for the host’s endogenous inflammatory 

mediators (complement components and chemokines such as IL-8) may act as chemoattractants for 

the consequent leukocyte recruitment and extravasation (Fouad 2002).

In the earliest stage of inflammation (the initial lesion), increased vascular leakage and the accumulation 

of polymorphonuclear leukocytes results in tissue oedema and the destruction of perivascular collagen 

fibres. The earliest stages of inflammation are probably mediated in part by the release of histamine 

from mast cells (Listgarten 1987). Collagenolysis has been observed due to MMP-8, MMP-9 and 

serine proteases (elastase, cathepsin G and proteinase 3) being released from the PMNs. However, 

intracellular collagen degradation by fibroblasts cannot be discounted (Listgarten 1987; Uitto et al. 

2003; Sorsa et al. 2006).
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2.6 NEUROGENIC INFLAMMATION
 

Neurogenic inflammation is a general term used to describe the local neurogenic process induced by 

the release of neuropeptides such as substance P and calcitonin gene-related peptide (CGRP) from 

the peripheral nerve terminals of the afferent neurons. The release of these neuropeptides induces 

a local vasodilatation and can also be the initiating factor in the inflammatory response (Figure 1). 

This process appears to play an important role in the pathogenesis of some diseases, such as migraine 

(Moskowitz 1992). Moskowitz (1990) has provided a series of experiments to suggest that the pain 

of migraine may be a form of sterile neurogenic inflammation. Neurogenic plasma extravasation can 

be seen during electrical stimulation of the trigeminal ganglion in the rat (Markowitz et al. 1987). 

May and Goadsby (1999) took the view that certain disorders should be collectively regarded as 

neurovascular headaches to emphasise the interaction between nerves and vessels.

The vasodilatation evoked around the site of a noxious skin stimulus was suggested by Bruce (1913) 

to be the result of an axon reflex. The hypothesis was supported by Lewis (1937), who postulated 

that the flare component was mediated by local axon reflexes, called axon-reflex-mediated neurogenic 

inflammation. Later studies have identified the nerves involved in the vascular axon reflex to be 

capsaicin-sensitive, nociceptive C afferent fibres (Jancsó, Jancsó-Gábor & Szolcsányi 1967; Kenins 

1981; Chahl 1988). Lewis suspected a histamine-like substance to be the transmitter substance, but 

today substance P is generally thought to be the primary mediator.

Activation of capsaicin-sensitive sensory nerves by antidromic electrical stimulation or by chemical 

irritants such as capsaicin evokes the co-release of substance P and CGRP (Lundberg et al. 1985). The 

release of these peptides from peripheral terminals of sensory neurones is then followed by increased 

microvascular permeability, i.e. neurogenic inflammation (Holzer 1988). Presumably, a similar 

mechanism may also be involved in the aetiology of several inflammatory reactions of the oral mucosa 

through activating the primary sensory fibres in the case of uneven tooth-crown edges and fillings 

standing out and irritating the mucosa as well as strong chemical stimuli and various bacterial toxins 

(Fazekas et al. 1990). Antidromic nerve stimulation or cutaneous application of irritants not only 

produces vasodilatation but also increases vascular permeability, thereby allowing the extravasation of 

plasma proteins (Jancsó et al. 1967, 1968) and leukocytes (Helme et al. 1985). 

The phagocytic activity of both macrophages (Bar-Shavit et al. 1980; Hartung et al. 1986) and 

polymorphonuclear leukocytes (Payan et al. 1984) is enhanced by SP. The area of vasodilatation 

corresponds to the size of the receptive fields of afferent polymodal C-fibres.
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Figure 1. A schematic drawing of efferent activations of nociceptors:  Pain – Inflammation – Blood 

flow alterations: a model of neurogenic inflammation. Upon activating C-fibres in the oral mucosa, 

mediators, namely neuropeptides, are released from the peripheral terminals of afferent nerves, causing 

characteristic symptoms of neurogenic inflammation. Also activation of cutaneous nociceptive 

afferents with capsaicin and painful electrical stimulation causes  release of neuropeptides locally from 

the peripheral nerve terminals. A noxious stimulus leads to action potentials in nociceptive fibres that 

propagate not only to the central nervous system but also antidromically into peripheral branches. 

These antidromic action potentials lead to the release of MMPs and neuropeptides such as substance 

P (SP), calcitonin gene-related peptide (CGRP), and neurokinin A (NKA). These substances can 

stimulate epidermal cells and immune cells or lead to vasodilatation, plasma extravasation, and 

smooth muscle contraction (modified from the original figure by Ian Suk, Textbook of Pain, 2006).

2.6.1 Mediators of inflammation

Most aspects of acute inflammation are due to the action of host-derived substances rather than the 

direct action of the offending agent. There is also interaction between mediators. The combination of 

mediators present is probably more important than the presence of any one mediator in determining 

the physiologic response to inflammation.



27

2.6.1.1 Cytokines

These are a group of more than 100 proteins or peptides that modulate and control body defence 

and repair, including inflammation. They are described as local hormones and cell-to-cell messengers. 

Although most of the cytokines present in an inflammatory process are produced by inflammatory 

cells such as monocytes/macrophages, lymphocytes, and neutrophils, they may also be produced by 

a number of noninflammatory cells, which for example in the dental pulp would include fibroblasts, 

and endothelial cells (Fouad 2002).

Cytokines include chemotactic cytokines (chemokines), interleukins, interferons and tumour necrosis 

factors. Cytokines can stimulate (chemokines and pro-inflammatory cytokines) or inhibit (anti-

inflammatory cytokines, interferons) the inflammation (Scott et al. 1994; Julkunen et al. 2003).

•	 IL-1 has several systemic effects such as fever and the synthesis of acute-phase proteins 

and prostaglandins (Fouad 2002). IL-1 is a cytokine with pro-inflammatory effects. IL-1 is 

expressed in two isoforms: IL-1a and IL-1b. At the moment the more important immune 

parameter in periodontal research is interleukin 1b (IL-1b). This substance has become a 

focus of interest since it is known to be the most potent osteoclast-activating factor in the 

human organism (Dewhirst et al. 1985; Alexander & Damoulis 1994). IL-1b enhances bone 

resorption and inhibits bone formation (Nguyen et al. 1991). For example, certain MMPs 

including MMP-8 can be secreted by gingival fibroblasts stimulated by IL-1b (Abe et al. 

2001, Cox et al. 2006). Stress might affect periodontal health by increasing local IL-1b levels, 

especially when oral hygiene is neglected (Deinzer et al. 1999).

•	 IL-8 is a activating factor for neutrophils.

•	 IL-6, a mediator of acute inflammation, which is produced by resident cells, especially in 

the macrophages, in the inflamed area (Meri 2003). IL-6 was initially thought to be pro-

inflammatory, but is now recognised to be an immunoregulatory and anti-inflammatory 

cytokine. The anti-inflammatory functions of IL-6 are caused by suppression of IL-1 and 

TNF-a (Tilg et al. 1997). IL-6 causes the formation of acute-phase proteins such as fibrinogen 

and C-reactive protein (CRP) in the liver. 

•	 TNF-a can stimulate MMP synthesis and osteoclastic bone resorption. TNF-a may 

contribute to tissue degradation in periodontitis (Hanemaaijer et al. 1997; Tervahartiala et al. 

2001).



28

2.6.1.2 Other mediators of inflammation

•	 PGE2, prostaglandin E2 participates in the development of the inflammatory reaction 

principally by potentiating the effects of other mediators rather by having a direct effect. The 

cyclo-oxygenase (COX) pathway leads to the generation of prostaglandins. It may be blocked 

by the addition of indomethacin, a prostaglandin synthetase inhibitor. Prostaglandins are also 

involved in the pathogenesis of pain. The direct involvement of prostanoids in for example 

pulpal pain has been proposed when the intravenous administration of nonsteroidal anti-

inflammatory drugs (NSAIDs), which are known to block the COX pathway, resulted in 

significant inhibition of stimulated nerve activity in cat pulp (Ahlberg 1978; Fouad 2002). 

•	 Histamine is a potent vasodilatator and mediator of vascular permeability. Histamine is 

found in connective tissue mast cells, basophils and platelets that are often located near blood 

vessels. Histamine is present in cell granules and is released by cell degranulation in response 

to a variety of stimuli (Fouad 2002).

•	 Serotonin (5-hydroxytryptamine, or 5-HT) is a neurotransmitter synthesised in the central 

nervous system (CNS) and gastrointestinal tract. In the central nervous system, serotonin 

is believed to play an important role in the regulation of body temperature, mood, sleep, 

vomiting, sexuality, appetite and inflammation. Low levels of serotonin have been associated 

with several disorders, namely clinical depression, tension-type headache, and fibromyalgia 

(Bendtsen et al. 1997; Wolfe et al. 1997).

•	 Bradykinin is a powerful algesic agent and is also considered a major mediator of pain in 

inflammatory conditions. Specific bradykinin receptors are found on nociceptive primary 

afferents (Steranka et al. 1988), and administration of bradykinin not only generates sensory 

impulses but may also cause the release of transmitters from peripheral sensory neurons. 

Evidence to support this comes from the observation that bradykinin-induced plasma protein 

extravasation in the skin is reduced in animals pre-treated with capsaicin (Jancsó et al. 1980), 

a neurotoxin which selectively destroys unmyelinated sensory fibres in the skin (Jancsó et al. 

1967).
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2.7 MATRIX METALLOPROTEINASES (MMPs) 

MMPs are a family of zinc-depended, structurally related but genetically distinct enzymes that degrade 

extracellular matrix (ECM) and basement membrane (BM) components. This group of 23 human 

enzymes is mainly classified based on substrate specificity and molecular structure. Humans have 24 

matrixin genes including duplicated MMP-23 genes; thus there are 23 MMPs in humans (Nagase et 

al. 2006; Sorsa et al. 2006). MMPs are involved in physiological processes such as tissue development, 

remodelling and wound healing (Uitto et al. 2003; Sorsa et al. 2006), and play important roles in 

the regulation of cellular communication and immune functions by processing bioactive molecules 

including cytokines, hormones and growth factors (Sorsa et al. 2004). MMPs are consequently 

functionally active and catalytically competent at physiological pH and temperature (Nyberg et al. 

2006). The importance of calcium ions for the optimal catalytic competence of MMPs is reflected by 

the inhibition of the enzyme activity by metal chelators such as EDTA and the tetracyclines (Golub 

et al. 1994; Visse & Nagase 2003).

2.7.1 General structure of MMPs

The MMPs share a common domain structure. The three common domains are the prodomain, 

the catalytic domain and the haemopexin-like C-terminal domain, which is linked to the catalytic 

domain by a flexible hinge region (Visse & Nagase 2003). The prodomain usually consists of about 80 

amino acids and contains a conserved cysteine residue that can bind to the zinc atom in the catalytic 

domain. The disruption of this bond, usually mediated as a result of cleavage(s) of the prodomain, is 

required for activation of the latent proenzyme to its catalytically competent form. The C-terminal 

domain is thought to be involved in protein-protein interactions, determines substrate specificity and 

is the site for TIMP interactions. 

2.7.2 Classification of the MMPs

The MMPs can be subdivided in different ways. The most commonly used groupings are based on their 

structural homology and substrate specificity. These six groups are 1) collagenases (MMP-1, -8 and 

-13), 2) gelatinases (MMP-2 and -9), 3) stromelysins (MMP-3, -10 and -11), 4) matrilysins (MMP-7 

and -26), 5) membrane-type (MT-)MMPs (transmembrane type and GPI-anchored elastase) and 6) 

other MMPs including metalloelastase (MMP-12), enamelysin (MMP-20), epilysin (MMP-28), CA-

MMP (MMP-23), and MMP-19, -21, and -27 (Visse & Nagase 2003). MMP-4, MMP-5, MMP-6 

and MMP-22 are missing from the list since they were shown to be identical to other members 

(Nagase et al. 2006). It is becoming increasingly clear that these divisions are somewhat artificial as 

there are a number of MMPs that do not fit into any of the traditional groups. 
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2.7.2.1 Members of the MMP family with a role in periodontal tissue remodelling

Collagenases are capable of initiating degradation of native fibrillar collagen types I, II, III and IX 

(Weiss 1989). Fibroblast-type collagenase MMP-1 is regarded to be more associated with normal tissue 

remodelling than with tissue degrading processes (Birkedal-Hansen 1993; Golub et al. 1998). MMP-

8 is synthesised by differentiating granulocytes in the bone marrow and stored in specific granules of 

circulating neutrophils. However, there are also other cellular sources of MMP-8. Expression of MMP-

13 has been reported in the pocket epithelium in human periodontitis, helping the pocket epithelium 

to invade into periodontal connective tissue (Tervahartiala et al. 2000; Kiili et al. 2002).

Gelatinases MMP-2 and MMP-9 degrade gelatins (collagens that have been denatured by interstitial 

collagenases), collagens IV, V, VII, X and XI, elastin, and BM components (Owen & Campbell 1999).

Other MMPs also have a role in periodontal tissue remodelling. The stromelysin subfamily members 
MMP-3 (stromelysin-1), MMP-10 (stromelysin-2), MMP-11 (stromelysin-3) and macrophage 
metalloelastase (MMP-12) do not themselves cleave collagen, but they act synergistically with collagenases 
and gelatinases.  The matrilysin subgroup member MMP-7 (matrilysin-1) is synthesised by epithelial cells 
and it can degrade several ECM and BM components as well as activate TNF- a and several proMMPs 
including proMMP-8 (Balbin et al. 1998). Membrane-type matrix metalloproteinases (MT-MMPs) 
mainly exert their activity on the cell surface. MMP-14 can be detected in periodontitis-affected GCF 

(Tervahartiala et al. 2000).

2.7.3 Activation

MMPs are expressed at low levels in normal tissues, but are upregulated during inflammation (Birkedal-
Hansen 1995). MMPs are mostly produced in latent, non-active form, and activation through a so-called 
cysteine switch is required for the enzyme function. In most cases, activation involves removal of the 
prodomain, resulting in lower molecular weight active forms (Nagase 1997), although the most recent 
studies indicate that in vivo, the proforms of at least certain MMPs may also be active while in full size or 
in complex with certain proteins (Bannikov et al. 2002; Fedarko et al. 2004). So, as MMPs are secreted as 
proenzymes they have to be cleaved in order to be activated. MMPs can be activated by serine proteases 
(trypsin and plasmin) (Sorsa et al. 1997; Moilanen et al. 2003), other MMPs, microbial proteases (Sorsa 
et al. 1992) as well as other factors such as oxygen-derived free radicals (Saari et al. 1990)(Figure 2). Most 
of the activation data have been gained from in vitro experiments, and the activation processes in vivo 
are not well characterised. Most likely MMP activation in vivo involves tissue and plasma proteinases 
and bacterial proteinases together with oxidative stress (Nagase 1997). Secreted MMPs are usually 
activated extracellularly or at the cell surface, the best-known example of cell surface activation being 
the activation of MMP-2 in the MMP-2/TIMP-2/MT1-MMP complex. Several MMPs may also be 

activated intracellularly by furin or related proprotein convertases (Nagase 1997). 
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Figure 2. Activation of MMPs (source derived from: Chakraborti et al. 2003; Sorsa et al. 2006).

2.7.4 Inhibitors

MMP activity is controlled by changes in the delicate balance between the expression and synthesis 

of MMPs and their major endogenous inhibitors, tissue inhibitors of matrix metalloproteinases 

(TIMPs). Also serum a-2 macroglobulin inhibits MMPs, but TIMPs are the major group of MMP 

inhibitors in tissues and body fluids (Sternlicht & Werb 2001). The catalytic competence of MMPs 

is controlled through the activation of proenzymes, and the inhibition of the activation by TIMPs 

(Uitto et al. 2003).



32

TIMPs comprise a family of four protease inhibitors: TIMP-1, TIMP-2, TIMP-3 and TIMP-4. 

Overall, all MMPs are inhibited by TIMPs once they are activated, but the gelatinases (MMP-2 and 

MMP-9) can form complexes with TIMPs when the enzymes are in the latent form. In addition to 

TIMPs, MMP activity can be controlled by synthetic inhibitors, which generally contain a chelating 

group such as EDTA, which binds tightly the catalytic zinc atom at the MMP active site. MMPs can 

also be inhibited by chlorhexidine  (Gendron et al. 1999).

2.7.5 Synthetic inhibitors

Synthetic inhibition of MMPs offers an interesting possibility to control MMP-related diseases in which extensive 

tissue destruction is involved (Owerall & Lopez-Otin 2002). A large number of synthetic MMP inhibitors have 

been designed and synthesised, and some have been clinically tested for the treatment of patients with cancer or 

arthritis, but they have shown little efficacy so far (Baker et al. 2002). A number of rationally designed MMP 

inhibitors, such as the gelatinase-specific CTTHWGFTLC-peptide (CTT) (Koivunen et al. 1999; Pirilä et al. 

2001; Heikkilä et al. 2006) and doxycycline and chemically modified tetracyclines (CMTs) developed by Golub 

et al. in 1987 have shown some promise in the treatment of pathologies involving excessive MMPs. Moreover, 

biphosphonates have been demonstrated to inhibit the activities of MMPs (Teronen et al. 1997, 1999; Heikkilä 

et al. 2002). 

One approach in MMP inhibition is aimed at chelation of the enzyme’s active site, Zn2+ ion (Hidalgo & 

Eckhardt 2001; Coussens & Fingleton 2002). The first MMP inhibitors to enter clinical trials in tumour 

treatment, batimastat and marimastat, base their MMP inhibitory effect on chelation (Coussens & Fingleton 

2002). Tetracyclines and their non-antimicrobial analogues, chemically modified tetracyclines (CMTs), inhibit 

MMPs through several mechanisms. In addition to Zn2+ chelation, they can downregulate MMP mRNA 

expression, interfere with the protein processing during activation, and render the MMPs more susceptible for 

degradation (Golub et al. 1998). 

2.7.6 MMP-8 (Collagenase-2) in periodontal tissue remodelling

Matrix metalloproteinase-8 (MMP-8, collagenase-2) along with MMP-1 (fibroblast-type collagenase-1) and 

MMP-13 (collagenase-3) are the major members of the interstitial collagenase subgroup of the MMP family. 

Interstitial collagenases mediate the initial step in interstitial collagen degradation by cleaving the three polypeptide 

chains at a single locus three-fourths of the distance of the collagen molecule from its N-terminal end (Gross & 

Nagai 1965). The three-fourth and one-fourth fragments generated denature spontaneously, and the denatured 

collagen fragments (gelatins) are susceptible to further cleavage by gelatinases (MMP-2 and MMP-9) and to lesser 

extent by other MMPs (including MMP-8) and gelatinolytic serine proteinases (Owen & Campbell 1999). The 

known ECM substrates of MMP-8 are collagens I-III, VII, X, gelatine, proteoglycans, bradykinin, 

substance P and pro- and anti-inflammatory cytokines/mediators (Sternlicht & Werb 2001).
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MMP-8 is stored as a latent enzyme (pro-MMP-8) within the specific granules of PMN (Murphy et 

al. 1977). Pro-MMP-8 is rapidly released from activated PMN undergoing degranulation (Hasty et al. 

1986; Balbin et al. 1998), and is then activated via the cysteine switch mechanism and is transformed 

into the active form of the enzyme (Springman et al. 1990). Activation can be achieved in vitro by 

organomercurials (Blaser et al. 1991), serine proteinases (Moilanen et al. 2003), MMP-3 (Knauper et 

al. 1993), microbial proteases (Sorsa et al. 1992) and reactive oxygen species (Saari et al. 1990). 

Previously it was thought that the expression and release of MMP-8 was limited to neutrophils (Weiss 

1989), but at present it is clear that many non-PMN-lineage cell types present in the normal and 

diseased human periodontium (gingival sulcular epithelial cells, fibroblasts and endothelial cells, 

monocyte/macrophages, plasma cells and gingival mast cells) can be induced to express distinct 

MMPs including MMP-8 (Hanemaaijer et al. 1997; Tervahartiala et al.  2000; Wahlgren et al.  2001; 

Kiili et al. 2002; Prikk et al. 2002; Næsse et al. 2003; Sorsa et al. 2004; Sorsa et al. 2006).

The expression of the 50 kD mesenchymal MMP-8 isoform has been detected in various non-PMN 

lineage cells, such as synovial fibroblasts and endothelial cells (Hanemaaijer et al. 1997), gingival 

sulcular epithelial cells (Tervahartiala et al. 2000), oral cancer cells (Moilanen et al. 2002, 2003) and 

plasma cells (Wahlgren et al. 2001). PMN-type MMP-8 is secreted in a latent 75-80 kD form and 

converted to a 65 kD active form upon PMN degranulation (Ding et al. 1996, 1997), and non-PMN-

type 55 kD latent MMP-8 isoform is converted to a 45 kD active species upon activation (Moilanen 

et al. 2002, 2003). MMP-8 can also be found elevated and activated in high-molecular-weight 

bands (>100 kD) representing complexed enzyme. The high molecular-weight immunoreactivity 

is probably MMP-8 complexed to its endogenous inhibitors, i.e., a-2 macroglobulin (a -2M) and 

tissue inhibitors of matrix metalloproteinase (TIMPs), or a result of dimerisation (Ingman et al. 1996; 

Chen et al. 1998). The low-molecular-weight at <30 kD species most likely represents degraded 

fragments of MMP-8 (Apajalahti et al. 2003).

The major collagenase species detected in inflamed human periodontium is MMP-8 (Sorsa et al. 1988, 

1999; Mancini et al. 1999; Romanelli et al. 1999). In contrast to a healthy patient’s gingiva, extracts 

of untreated gingival tissue and gingival crevice fluid (GCF) from periodontitis patients contain 

pathologically elevated levels of collagenase-2 (MMP-8) in catalytically active form (Kiili et al. 2002; 

Sorsa et al. 2004, 2006). Association between increased GCF collagenase activity and progressive 

loss of connective tissue attachment has been demonstrated (Lee et al. 1995). As in other inflamed 

tissues, MMPs are also present in inflamed dental pulp tissue (Wahlgren et al. 2002) and periapical 

lesions (Wahlgren et al.  2001, 2002). MMP-8 activity and release are regulated by cytokines (tumour 

necrosis factor-a, interleukin-1β and interleukin-8) and various periopathogenic bacteria and their 

virulence factors (Ding et al. 1996, 1997; Hanemaaijer et al. 1997). On the other hand, MMP-8 
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seems to have an anti-tumour activity in breast carcinomas (Agarwal et al. 2003). Recent data from 

Balbin et al. (2003) demonstrate that MMP-8 has an unexpected role in vivo in protecting male mice 

from the development of skin tumours in a chemical carcinogenesis model.

MMP-8 has been considered as the prime target for anticollagenolytic adjunctive low-dose doxycycline 

medication in the treatment of periodontitis (Golub et al. 1988; Suomalainen et al. 1992; Sorsa et al. 

2006; Reinhardt et al. 2007). 

2.8 NEUROPEPTIDES

2.8.1 Function of neuropeptides

Studies using anatomical, histochemical and immunological methods have revealed the presence of a 

variety of peptides in afferent neurons, and based on functional evidence, it would appear that at least 

some of these substances play a mediator or transmitter role (Holzer 1988).

Neurons use many different chemical signals to communicate information, including neurotransmitters 

and peptides. Neurotransmitters, such as glutamate and aspartate, generally affect the excitability of other 

neurons, by depolarising or hyperpolarising them (Dickenson 1989). Peptides have much more diverse 

effects; among transmission, they are able to cause both vasodilatation and protein extravasation due to an 

increased vascular permeability (Lembeck & Holzer 1979; Gamse et al.1980). 

Neuropeptides are released from the peripheral terminals of afferent nerve fibres. Unmyelinated and 

finely myelinated axons with unmyelinated terminals, which are not associated with specialised receptive 

structures, are termed free nerve endings. It is these unmyelinated C-fibres that are associated with the 

release of neuropeptides into the surrounding tissue (Scott et al. 1994).

Neuropeptides may contribute to the inflammatory process via several mechanisms. Firstly caused by the 

local vasodilatation/extravasation and followed by the release of inflammatory mediators such as histamine, 

PGE2, collagenases, IL-6, and tumour necrosis factor (TNF). There is also potentiation of chemotaxis, 

phagocytosis and lymphocyte proliferation (Payan 1989; Hargreaves et al. 1994; Brain 1997).

2.8.2 Substance P 

Neuropeptide substance P (SP) is a short-chain polypeptide that functions as a neurotransmitter and  

neuromodulator. It belongs to the tachykinin neuropeptide family. The endogenous receptor for SP is 

neurokinin 1 receptor (NK1-receptor, NK1R). 
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Data in the literature have shown it likely that the 11 amino acid residue polypeptide SP (Euler & Gaddum 

1931) has a crucial role in the pathogenesis of neurogenic inflammation. Lembeck (1953) was the first to 

propose that this peptide, isolated from the intestine, may be a primary neurotransmitter at the afferent 

fibre terminals as well (Euler & Gaddum 1931).

In addition to SP, also other neuropeptides released from the peripheral terminals of sensory fibres can 

act as transmitters in evoking neurogenic inflammation (Andersson et al. 1988). These include CGRP, 

somatostatin, vasoactive intestinal peptide (VIP), neurokinin A (NKA) and neurokinin B (NKB) 

(Rosenfeld et al. 1983; Fischer et al. 1985; Andersson et al. 1988).

The release of peptides such as SP, NKA and CGRP has long been implicated in neurogenic inflammation, 

and many studies support the hypothesis that neuropeptides are involved in the pathophysiology of 

inflammatory diseases (Maggi 1995; Alstergren et al. 1995; Olgart 1996a). Body fluids such as saliva and 

gingival crevice fluid can be used in identifying markers of inflammation. The composition of these fluids 

changes during inflammation. In this context, the levels of the neuropeptides SP and CGRP have been 

measured in human saliva from patients with migraine and cluster headache (Nicoldi et al. 1990). Both 

NKA and SP evoke the release of pro-inflammatory cytokines from human monocytes (Lotz et al. 1988).

When an acute injury occurs, SP is released from primary afferent fibres along with other neuropeptides, 

such as CGRP, to cause vasodilatation of blood vessels supplying the injured area. The presence of SP 

also increases blood vessel permeability, facilitating the passage of cells such as macrophages and other 

substances essential for protective and healing processes at the injured site. SP causes the release of 

histamine from mast cells (Bear et al. 2001). The transitory nature of this response may be an important 

self-regulatory mechanism, as extended extravasation of inflammatory mediators to the injured area might 

have deleterious consequences.

Substance P can be measured with several methods including radioimmunoassay (RIA), enzyme 

immunoassay (EIA or ELISA) and immunohistochemistry. RIA for substance P has been developed by 

several groups (Powell et al. 1973; Yanaihara et al. 1976; McGregor & Bloom 1983). RIA is a quantitative 

method that permits measurement of tissue levels of substances rather than the anatomic location 

information provided by immunohistochemistry. However, in terms of safety, sensitivity and ease of 

handling, there have been disappointments with RIA methods. In 1982, Stjernschantz  et al. reported an 

enzyme immunoassay (EIA) for substance P using a polystyrene plate coated with SP-poly-D-glutamic 

acid conjugate as a solid-phase antigen. The enzyme immunoassay (EIA) has been developed further  by 

academic (Takeyama et al. 1990) and industrial research teams over the past decade, and nowadays 

the EIA method has been found to be safe and effective.  On that account, we decided to concentrate 

on using a competitive EIA kit for substance P in this study.
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2.8.3 Neuropeptides in GCF in periodontal health and disease

Many studies support the hypothesis that neuropeptides in general and tachykinins (SP and NKA) 

in particular are involved in the pathophysiology of inflammatory disease (Maggi 1995). Changes in 

the levels of SP, NKA and CGRP have previously been reported in GCF in relation to periodontal 

health and disease (Linden et al. 1997; Lundy et al. 1999, 2000). Bartold et al. (1994) have shown 

that SP can influence human gingival fibroblast proliferative and synthetic activity, and suggested that 

the action of this peptide could switch from a catabolic pro-inflammatory mode to an anabolic tissue 

regenerative mode depending on the presence of other factors. 

Studies on innervation of the gingiva obtained from periodontitis-affected sites have provided some 

useful information with regard to the potential role of a neurogenic contribution to periodontal 

inflammation. In particular, the role of locally released neurogenic peptides as inflammagens cannot 

be discounted. Substance P, which is released from primary sensory afferent nerves, has significant pro-

inflammatory actions (Lembech & Holzer 1979) and has been proposed to play a role in neurogenic 

inflammation of the periodontal tissues (Bartold et al. 1994). Many neurogenic peptides have been 

identified in inflamed gingival tissues and observed to localise throughout the connective tissues 

and around blood vessels (Luthman et al. 1989). Although these neurogenic peptides are present in 

healthy tissues, an upregulation of these potent bioactive molecules could have a significant impact 

on the initiation and establishment of the inflammatory response.

In a previous study, Linden et al. (1997) reported an increase in SP and NKA levels in periodontitis 

compared with healthy GCF, with SP having a stronger correlation with periodontitis than NKA. 

CGRP was not detectable at any periodontitis site, and it was concluded that some components of 

GCF were responsible for degrading CGRP in periodontitis (Lundy et al. 1999). In their later study 

Lundy et al. (2000) reported that CGRP, but not SP or NKA, is degraded by a carboxypeptidase 

present in GCF from periodontitis-affected sites. 

The pathophysiology of periodontal disease is complex and the tachykinin SP in GCF may only 

play a part in the process, as it is unlikely that any single factor is responsible for the initiation and 

progression of disease. Therefore, it was crucial for us to study also the relationship of GCF SP levels 

to collagenase-2 (MMP-8), which is regarded to be among the major destructive proteases, especially 

in the periodontitis-affected gingival crevice fluid (GCF). Nevertheless, MMP-8 in GCF may also 

reflect initial protective or defensive processes (Owen et al. 2004, Gueders et al. 2005; Sorsa et al. 

2006)
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2.8.4 Neuropeptides in GCF of painful teeth

Whenever an insult causes activation of the intradental axons, the initial reaction in the pulp tissue 

is neurogenic vasodilatation mediated by the terminals of the afferent nerve fibres. Antidromic 

transmission along the collateral terminal branches of the axons results in the release of neuropeptides, 

which induce vasodilatation and an increase of permeability of the blood vessel walls.

Three neuropeptides are abundant in the dental pulp: SP, neurokinin A (NKA), CGRP (Akai & 

Wakisaka 1990). The mean levels of SP and NKA are significantly higher in gingival crevice fluid 

from painful teeth compared with non-painful teeth (Awawdeh et al. 2002b). During inflammation, 

sprouting of pulpal nerve fibres has been shown to be associated with increased expression of SP or 

CGRP closely surrounding the areas of inflammation or abscess (Kimberly et al. 1988; Byers 1992).

 

The extensive branching of the pulpal afferents also allows spreading of the neurogenic effects in a wider 

area of the pulp than was originally stimulated. It is also possible that activation of axons innervating 

the pulp and the surrounding structures may result in a spread of the neurogenic inflammatory 

reactions between the adjacent tissues in relatively early stages of inflammation (Olgart 1996b).

It is not clear what happens to the neuropeptides released from peptidergic nerve terminals in 

pulp tissue. They could be degraded locally or diffuse into the periodontal ligament through the 

apical foramen and, subsequently, the gingival crevice. However, after release the neuropeptides are 

metabolised by peptidases, which leads to termination of their activity (Lundy et al. 2000).

There is evidence that SP is responsible for the initiation of vasodilatation, whilst CGRP mediates 

the late and more dominant phase of vasodilatation in inflammation (Olgart 1996b), and there 

has been no evidence of a clear association between the levels of CGRP in GCF and dental pain 

(Awawdeh et al. 2002b). The aim of our present study was to compare the levels of SP and MMP-8, 

a potential proinflammatory compound, in human gingival crevice fluid of painfully stimulated and 

non-stimulated teeth.
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2.9 PAINFUL STIMULATION, VAS AND LDI-IMAGING

2.9.1 Tooth pulp stimulation

There has been a recent research focus on the neurobiology of the tooth pulp, largely because of the 

clinical relevance of the pulp to orofacial pain and the concept that the pulp is a most useful model 

for studying pain by virtue of its being a pure source of nociceptive input to the CNS. When stimuli 

are applied through the hard tissues, only electrical stimulation (Virtanen 1991) and cold stimulation 

(Jyväsjärvi & Kniffki 1986) are accurate enough for reproducible activation and characterisation of 

pulpal nerve fibres.

The dental pulp is well known to be densely innervated by the axons of sensory nerves (Byers 1984; 

Fried et al. 1988), the activation of which can produce severe pain (Van Buren & Kleinknecht 1979). 

Electrical stimulation of the tooth has been used as a method for selective activation of pain pathways  

in both human and animal studies (Mahan & Anderson 1970; Andersson et al. 1973; Janhunen & 

Närhi 1977; Martin & Chapman 1979; Toda et al.1980).

In the study of  Närhi  et al.(1982), tooth stimulation currents of up to 200 µA were used, but activation 

of periodontal fibres was not obtained, even when applied to the periodontium. This indicates that an 

electrical current below 200 µA does not activate extrapulpal fibres in monopolar tooth stimulation. 

In the present work, the average tooth stimulation was 47 µA. Accordingly, it is most likely that only 

intrapulpal afferent fibres were activated during tooth stimulation in this study.

In research, painful tooth stimulation is usually performed by a constant current tooth stimulator (Närhi 

et al. 1982; Kemppainen et al. 1985). The electrical tooth stimulator constructed for this purpose uses 

mostly a monopolar electrode, where the current passes from the cathode on the intact surface of the 

tooth crown through the pulp to the anode, which is attached to the skin. The electrical current flows 

through all the tissues between the cathode and anode. The cathode of the stimulator has to be fixed to 

the tooth. If the electrode moves along the tooth surface there is also a change in the resistance between 

the electrodes and in the spreading of the current into the tooth, which affects the number of the nerve 

fibres activated. Monopolar tooth stimulation is a reliable method for the activation of intradental 

nerves both in experimental animals and human subjects. The risk of exciting nerve fibres in tissues 

surrounding the tooth is minimal, provided that the stimulated tooth is adequately insulated and kept 

dry (Virtanen 1991). By using a constant current tooth stimulator, the intensity, duration and frequency 

of the pulse can be precisely controlled. The optimal pulse duration is the time needed to activate a nerve 

fibre with minimal current intensity. The duration of the current pulse most commonly used in tooth 

stimulation is 10 ms and the frequency 5 Hz (Närhi 1985; Virtanen 1985).
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There are two types of afferent nerve fibres within the pulp, which are activated in different ways (Närhi 

et al. 1996). Myelinated A-fibres, stimulated by cold, heat or drilling, cause fast, well-localised pain, 

whereas unmyelinated C-fibres, activated by stimuli which cause damage to pulp tissue, produce dull, 

poorly localised pain (Närhi et al. 1992). Electrical tooth stimulation (pulse duration 10 ms, frequency 

5 Hz) at detection level activates selectively A-delta fibres, and by increasing the stimulus current it is 

possible to activate also pulpal C-fibres (Närhi 1985; Virtanen 1985). In addition to activation of pulpal 

nociceptive fibres and following pain sensation, noxious stimulation of the tooth pulp also triggers 

the autonomic nervous system, leading to a more widely spread systemic reaction such as changes in 

systemic blood pressure and heart rate (Dellow & Morgan 1969; Kemppainen  et al. 1994, 2000a, b).

2.9.2 Capsaicin stimulation

Capsaicin, 8-methyl-N-vanillyl-6-nonenamide, is the strong ingredient in hot chili peppers of the 

Capsicum genus, and it selectively activates the unmyelinated C-fibre class of nociceptors (Caterina  et 

al. 1997). Capsaicin has been shown to be a non-invasive method to activate C-nociceptive fibres in 

human skin (Kilo  et al. 1995). Initial application of capsaicin to skin produces irritation and increase in 

sensitivity. This reaction is thought to be due to capsaicin-induced release of substance P from peripheral 

sensory C-fibres. After the initial exposure, capsaicin produces a long-lasting desensitisation to burn and 

pain (Bernstein 1988). Systemic capsaicin pre-treatment of adult rats causes a dose-dependent loss of 

unmyelinated fibres (Jancsó et al. 1987). Capsaicin is used as a therapy for temporary relief of neuralgia, 

and has been studied because of its properties as a stimulant of sensory nerves and neuropeptide release 

in vivo and in vitro. The in vivo effects of capsaicin on cutaneous sensation are known to differ depending 

on the dose and the duration of application (Green & Flammer 1988).

 Activation of capsaicin-sensitive sensory nerves by electrical stimulation or by chemical irritants such 

as capsaicin evokes the co-release of substance P and CGRP (Lundberg  et al. 1985). The release of 

these peptides from peripheral terminals of sensory neurons is followed by increased microvascular 

permeability, i.e. neurogenic inflammation (Holzer 1988). More recent animal studies (Fazekas et al. 

1990; Kondo et al. 1995) have shown that the application of capsaicin on gingivomucosal tissues induces 

similar inflammatory reactions in these tissues. 

2.9.3 Visual Analogue Scale (VAS)

In the present study, the subjects evaluated their pain experience to painful stimulation by the VAS 

method. Earlier studies have found the system to be very appropriate (Huskisson 1974; Seymour  et al. 

1985; Oliver and Knapman 1985; Wilson  et al. 1989; Ngan  et al. 1994; Awawdeh  et al. 2002a, b). 

On the VAS scale, 0 = no pain and 100 = the worst imaginable pain intensity. 
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2.9.4 Laser Doppler perfusion Imaging (LDI)

A laser Doppler perfusion imager (LDI) was introduced by Nilsson, Jakobsson & Wårdell in 1990. 

In the LDI technique, a low-power He-Ne laser beam (wavelength 632 nm) is directed through a 

computer-controlled optical scanner at the tissues, which are scanned by moving the laser beam 

step by step in a rectangular pattern over the selected regions. With this technique, the median 

sampling depth is about 0.2 mm. In the presence of moving blood cells, a fraction of the light is 

Doppler-shifted, detected and converted into an electrical signal for further processing. The output 

signal is then sampled and stored by a personal computer. From the captured perfusion values a 

colour-coded image is generated and presented on a monitor (Wårdell et al. 1993; Kemppainen  et al. 

2001a, b). LDI provides relative information about the movement of red blood cells in the superficial 

tissue structures and the ability to instantaneously measure relative blood flow without touching the 

tissue.

The LDI system employs the same working principle as other conventional laser Doppler flowmeters 

(LDF). LDF flowmeter allows the measurement of erythrocyte flux in approximately one cubic mm 

of the capillary bed. However, a conventional LDF can only provide measurements of tissue perfusion 

at a single location, whereas the LDI system, depending on the model, allows averaging and spatial 

mapping of blood flow changes for a selected tissue area from 1 x 1 mm up to 50 x 50 cm in width. 

Thus, the LDI system is far more suitable for studying e.g. spatial and temporal characteristics of 

pain- and inflammation-evoked blood flow changes in the skin and gingivomucosal tissues.

The information of vascular changes in experimental and clinical inflammation sites studied with 

the LDI system for other tissues of the body (Wårdell  et al. 1993) reveals its excellent value for 

monitoring vascular changes and clinical status in the gingiva and alveolar mucosa.
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3 AIMS OF THE STUDY

The main purpose of this work was to clarify neuronally driven reflex mechanisms underlying pain-induced 

circulatory and inflammatory changes in human gingival tissues. Experiments were carried out especially 

to find out the functional role of unmyelinated nociceptive C-afferent fibres in relation to pain experience 

and inflammatory reactions and blood flow regulation in the gingiva. 

Earlier animal studies have suggested that peripheral axons of the trigeminal nerves may cross the midline 

and innervate bilaterally maxillary incisors (Anderson  et al. 1977). Here, we designed a series of experiments 

to determine whether experimental tooth pain or capsaicin-evoked vasodilatation in the gingiva crosses the 

midline of the maxilla. If this axon reflex vasodilatation  crossed the midline, the experiments might show 

functional evidence for transmedian innervation in maxillary gingiva in humans.

Inflammatory reactions typically associated with pain have been shown to provoke expressions of pro-

inflammatory mediators such as interleukin-1β, tumour necrosis factor-α and prostaglandins (Uitto  et al. 

2003; Sorsa  et al. 2006). Matrix metalloproteinase MMP-8 is known to be the major MMP especially in 

periodontitis-affected GCF (Kiili et al. 2002). With this background, we also wished to study the effects 

of experimentally evoked tooth and gingival pain on GCF of MMP-8. Elevated levels of neuropeptide 

SP have been reported in GCF in relation to periodontal inflammation (Linden  et al. 1997). Therefore, 

experiments were also performed to determine the effect of inflammatory tooth pain on GCF levels of 

SP. 

The specific aims of this study were:

1. To clarify the spatial extensions and differences between tooth stimulation and capsaicin-induced 

neurogenic vasodilatation in human gingiva (I).

2. To study whether axon reflex vasodilatation in maxillary gingiva crosses the midline (I).

3. To demonstrate painful tooth and gingival stimulation evoked responses in MMP-8 levels in 

GCF (II,  III).

4. To investigate whether painful tooth stimulation provokes changes in GCF SP and MMP-8 

levels (IV).

 

5. To clarify the characteristics of SP and MMP-8 in tooth stimulation analysed from GCF (IV).
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4 MATERIALS AND METHODS

Detailed methods are described in the original publications I- IV.

4.1 SUBJECTS, STIMULATION TECHNIQUES, MEASUREMENTS AND 
SAMPLES

In all studies I, II, III and IV, the subjects were healthy graduate students or researchers ranging from 

21 to 45 years in age. All subjects fulfilled the following criteria: 1) no history of systemic diseases, 2) 

no history of antibiotics within the preceding 6 months.

Approvals for the studies were provided by the Ethics Committee of the Medical Faculty of the 

University of Erlangen-Nürnberg (study I) and the Ethics Committee of the Medical Faculty 

of the University of Helsinki (studies II, III and IV). All volunteers gave informed consent for 

participation.

In studies I,II,III and IV, during the experiments, heart rate (HR) and blood pressure (BP) responses 

were recorded semi-automatically from the arm by a non-invasive cuff method. These heart rate and 

blood pressure measurements were performed in order to clarify whether capsaicin-evoked pain and/

or pulpal pain may have induced cardiovascular responses. The subjective pain levels were evaluated 

by a visual analogue scale, VAS (0 = no pain, 100 = the worst imaginable pain intensity).

In study I seven healthy human volunteers were tested in three separate experiments. All subjects 

were adults and had excellent oral health. For experiments one and two, filter paper moistened with 

capsaicin was positioned unilaterally to either the attached gingiva or the alveolar mucosa between 

the permanent upper first and second incisor. For the third experiment, the dental stimulation was 

generated with a constant-current tooth stimulator. In all three experiments, stimulation-induced 

blood flow changes in buccal attached gingiva and oral mucosa were mapped by laser Doppler 

perfusion imager (LDI; MoorLDI-MS2, Moor Instruments Ltd., UK).

Study II was performed on eight generally and periodontally healthy human adult volunteers. The 

dental stimulation was generated with a constant-current tooth stimulator. The stimulation period 

lasted 90 s. GCF samples were collected from the stimulated upper right central incisor, from the 

non-stimulated upper left lateral incisor, and from the non-stimulated lower right central incisor. 
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Samples were taken before the stimulation began and during stimulation, followed by samples 

taken 4 and 8 min after the end of stimulation. After one week, in the second control session GCF 

samples were collected similarly without tooth stimulation from six subjects. The molecular forms of 

MMP-8 on GCF from the stimulation and control sides were analysed by the Western immunoblot 

method and the MMP-8 concentrations in the GCF samples were determined by  time-resolved 

immunofluorometric assay (IFMA).

Study III was completed with ten generally and periodontally healthy human adult volunteers. For 

stimulation, filter paper moistened with capsaicin was positioned in each subject unilaterally on 

alveolar mucosa at the site of the upper central incisor. The GCF samples were collected bilaterally 

from gingival crevices of several incisors in the upper jaw. The samples were taken before, during 

and after capsaicin stimulation. In the second control session, GCF samples were collected similarly 

without capsaicin stimulation from 10 subjects who had participated in the first session. The GCF 

samples from the stimulation and control sides were studied by Western immunoblotting. MMP-8 

concentrations in the GCF samples were determined by time-resolved immunofluorometric assay 

(IFMA).

Six generally and periodontally healthy human adult volunteers participated in study IV. The dental 

stimulation was generated with a constant-current tooth stimulator. The stimulation period lasted 90 

s. GCF samples were collected from the stimulated upper right central incisor and the non-stimulated 

lower right central incisor. Samples were taken before the stimulation began and during stimulation, 

followed by samples taken 4 and 8 min after the end of stimulation. After one week, in the second 

control session GCF samples were  collected similarly without tooth stimulation from six subjects. 

The substance P concentrations in the GCF samples were determined by enzyme immuno assay 

(EIA) and the MMP-8 concentrations were determined by time-resolved immunofluorometric assay 

(IFMA).

In studies I, II and IV the cathode of the stimulator was glued to an intact upper incisor through a 

metal cylinder glued to the tooth. The distance from the gingival margin was at least five millimetres. 

The anode was attached to the arm of the subject. The cathode was surrounded by material with 

high resistance to prevent connection between the cathode and extrapulpal tissues. Electrode paste 

was applied to the cylinder to ensure contact between cathode and the tooth. The stimulator had a 

built-in circuit for measuring the electrode resistance. The resistances of the stimulated teeth were 

monitored throughout the experiment in monopolar coupling, and they ranged from 1.5 to 4 MW. 

Dental pain thresholds were always determined prior to the experiments, and they ranged from 10-18 

µA. The permanent upper central incisor was electrically stimulated at an intensity of 1.5 x (study II) 

and 3 x (study II and IV ) the individual pain threshold.
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4.1.1 Blood flow measurements

In study I simulation-induced blood flow changes in buccal attached gingiva and oral mucosa were 

mapped by laser Doppler perfusion imager (LDI). Scanning times of 60 s (capsaicin experiments) and 

90 s (tooth stimulation experiments) were used, during which the spatially mapped bilateral images 

from the oral mucosa and attached gingiva of the anterior maxilla could be documented. The LDI 

information was given on the spatial distribution of possible vasoactive changes from separate tissues 

simultaneously. Sympathetically maintained vasoconstriction of peripheral skin vessels was monitored 

by blood flow measurements on the skin of the right index finger by laser Doppler flowmetry (LDF; 

Periflux Pf2B, Perimed AB, Stockholm, Sweden). 

4.1.2 GCF sampling 

In studies II, III and IV prior to GCF sampling the sampling site was isolated with cotton rolls, and 

supragingival plaque was carefully removed. The region was dried with a gentle air stream, and GCF 

was collected by using standardised filter paper strips. The strip was placed into the crevice until 

mild resistance was felt, and left there for 30 s. After that, each strip was immediately placed in a 

polypropylene tube. The GCF volume was measured by weighing the polypropylene tube with the 

filter paper strip inside, before and immediately after the sample collection.  Thereafter, each strip was 

eluted into buffer solution.

4.2 MMP-8 IMMUNOFLUOROMETRIC ASSAY (IFMA) 

In studies II, III and IV, MMP-8 concentrations in the GCF samples were determined by a time-

resolved immunofluorometric assay (IFMA) as described by Hanemaaijer et al. (1997) and Mäntylä 

et al. (2003). The monoclonal antibodies 8708 and 8706 (Medix Biochemical, Kauniainen, Finland) 

for MMP-8 were used as catching antibody and  tracer antibody, respectively. The tracer antibody was 

labelled using europium-chelate (Hemmilä et al. 1984). The assay buffer contained 20 mM Tris-HCl 

(pH 7.5), 0.5 M NaCl, 5 mM CaCl2, 50 µM ZnCl2, 0.5% bovine serum albumin, 0.05% sodium 

azide, and 20 mg/l DTPA. Samples were diluted in assay buffer and incubated for one hour, followed 

by incubation for one hour with tracer antibody. Enhancement solution was added, and after 5 min 

fluorescence was measured using 1234 Delfia Research Fluorometer (Wallac, Turku, Finland). 

The monoclonal MMP-8 antibody specificity corresponded to that of the polyclonal MMP-8 

antibody (Hanemaaijer  et al. 1997; Sorsa  et al. 1999; Mäntylä  et al. 2003). MMP-8 concentrations 

(µg/l)  determined during painful tooth stimulation were compared with the MMP-8 concentrations 

in gingivitis and periodontitis GCF published previously by Mäntylä  et al. (2003).
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4.3 MMP-8 WESTERN IMMUNOBLOTTING

In studies II and III, GCF samples from the stimulation and control sides were studied by using 

the ECL-Western blotting analysis system (Amersham Pharmacia Biotech, Piscataway, NJ, USA). 

Samples were treated with 4 x Laemmli buffer, without reductant, and heated for 5 min at 100˚C. 

SDS-PAGE standards (Bio-Rad, Richmond, CA, USA) served as low range molecular weight 

markers. Human polymorphonuclear leukocytes (PMNs) and rheumatoid synovial fibroblast 

culture media, as described by Hanemaaijer  et al. (1997), served as positive controls for PMN- and 

fibroblast-type MMP-8 isoforms. The samples were separated on 4 to 11% SDS-PAGE gels and then 

electrophoretically transferred onto nitrocellulose membranes (Bio-Rad, Richmond, CA, USA). The 

non-specific binding sites on the membranes were blocked with 5% dry milk powder (Valio, Finland) 

mixed with TTBS for one hour at 37˚C, after which the membranes were washed with TTBS six 

times, for 10 min each. The membranes were incubated overnight with I antibody, IgG fractions of 

specific rabbit polyclonal anti-human MMP-8 antibodies (1:250 dilution in TTBS). After six 10 

min washes with TTBS, the membranes were incubated with II antibody, IgG  fractions of ECL 

anti-rabbit  horseradish peroxidase (1:800 dilution in TTBS ) for one hour. After that, six washings 

with TTBS were done, each for 10 min. The molecular forms of MMP-8 on GCF were visualised by 

incubating the nitrocellulose membranes in ECL detection reagents, and exposing the membranes 

to x-ray films. The intensities  of different molecular weight forms of MMP-8 were analysed with 

quantitated computer image scanning (Model GS-700; Bio-Rad) as described by Hanemaaijer  et al. 

(1997); Kiili et al. (2002); Prikk et al. (2002); Apajalahti et al. (2003).

4.4 SUBSTANCE P ENZYME IMMUNOASSAY (EIA) 

4.4.1 Assay procedure 

We measured substance P in GCF from the stimulated and control teeth using a competitive enzyme 

immunoassay kit (Takeyama  et al. 1990; Fujishima  et al. 1997; Hanioka  et al. 2000; Yamada  et al. 

2002) as recommended by the manufacturer. The EIA kit for SP was the Substance P immunoassay 

(R&D Systems Inc, Minneapolis, MN, USA). The GCF samples were diluted in EIA assay buffer to 

perform assays for SP. The serial diluted standards for SP were 9.8-10,000 pg/ml, and all standards 

and samples were assayed in duplicate. Total activity (TA), non-specific binding (NSB), maximum 

binding (B0), and substrate blank wells were run with each assay as means of quality control for each 

assay. Substance P assay is based on the competitive binding technique, in which substance P present 

in a sample competes with a fixed amount of alkaline phosphatase-labelled substance P for sites on 

a rabbit polyclonal antibody. During the incubation, the rabbit polyclonal antibody became bound 
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to the goat anti-rabbit antibody coated onto the 96-well microplate. Following a wash to remove 

excess conjugate and unbound sample, a substrate solution added to the wells determined the bound 

enzyme activity. Immediately following colour development, the absorbance was read at  405 nm on a 

microplate reader (Labsystems Multiscan RC). The intensity of the colour was inversely proportional 

to the concentration of substance P (SP) in the sample. 

4.4.2 Calculation of results   

The dublicate readings were averaged for each standard and sample and the average NSB optical 

density was subtracted. Serial dilutions of standards were run for each plate and their optical densities 

(ODs) were used in constructing a standard curve by placing the mean absorbance for each standard 

on a linear y-axis against the concentration on a logarithmic x-axis. The concentration of substance P 

was calculated from the standard curve. The highest and lowest standard of these wells was taken as 

a cut-off point for detectability and any reading below or over that was considered undetectable. The 

concentration of substance P was multiplied corresponding to the dilution. Results were expressed as 

ng/l (=pg/ml) in the sample.

4.5  STATISTICAL  ANALYSES

In study I, all data (except rating) were normalised to baseline due to large inter-individual variability. 

The mean of the three baseline values was taken as 100%, and all succeeding values were expressed 

as a percent change of the individual baseline. For statistical analysis, the continuous data record was 

similarly reduced to average response values of three-minute time windows: one prior (= baseline) and 

four after the stimulation began.  To compare the responses in gingival blood flow, we performed an 

analysis of variance (ANOVA), repeated-measure design, with the factors stimulus type (capsaicin in 

oral mucosa, capsaicin in attached gingiva, and tooth stimulation) and time period.  Post hoc planned 

comparisons were performed on significant factors. Changes to baseline were tested by means of a 

Wilcoxon matched-pair test of the data from all subjects. 

In study II, MMP-8 values were normalised due to large inter-individual variability. The grand mean 

of all MMP-8 values from each measurement site was calculated separately. For ongoing statistical 

analysis, the means of baseline, stimulation, 4 min after, and 8 min after the end of stimulation 

values were extracted and normalised with this grand mean (percent change as compared with grand 

mean).  Friedman non-parametric ANOVA was then used to compare baseline, stimulation, and 

post-stimulation periods. In case of significance,  Wilcoxon’s matched-pair test was performed for 

post hoc comparisons.  
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In study III at each stimulation site, the two precapsaicin values (pre 1 and pre 2) of each subject and 

stimulation site were averaged to a single baseline value for ongoing analysis. Statistical comparisons 

between baseline and experimental positions were performed by Wilcoxon matched pair tests. 

Normalising was done by calculating relative changes as compared to baseline and using these values 

to compare responses between sites by Wilcoxon matched-pair test.

In study IV  A Friedman non-parametric ANOVA was used to compare baseline, stimulation and 

post-stimulation periods for MMP-8 values and SP values. In case of significance, a Wilcoxon 

matched pair test was performed for post hoc comparisons of baseline with stimulation and with post-

stimulation periods. To compare corresponding SP values of upper and lower tooth these values were 

normalised. For this, the grand mean of all SP values from each measurement site was calculated and 

each value was expressed as percent of grand mean. For comparisons, Wilcoxon’s matched pair tests 

using these normalised values were performed. The same type of normalisation was performed on the 

MMP-8 values and used for the mean values shown in the figures.

In all studies I, II, III and IV, a probability value (P) of less than 0.05 was considered to represent a 

significant difference. 
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5 RESULTS 

5.1 GCF FLOW, HR AND MAP 

Evaluation of clinical parameters of sites exposed to tooth or capsaicin stimulation and control sites 

demonstrated that in addition to the general health of the volunteers, their gingival and periodontal 

health was excellent. GCF flow rate was not affected by painful tooth stimulation and capsaicin 

application. In studies I, II, III and IV, stimulation had no marked effects on systemic heart rate or 

mean arterial blood pressure values.

5.2 VASODILATATION RESPONSES IN TOOTH AND CAPSAICIN 
STIMULATION 

In study  I the average pain magnitude estimates were significantly higher during tooth stimulation than 

during capsaicin stimulation of the alveolar mucosa and attached gingiva. The respective maximum 

VAS scores were 78 ± 4, 32 ± 3, and 17 ± 4. The capsaicin-induced vasodilatation rapidly attenuated 

in the midline. In ipsilateral gingiva, the vasodilatation responses were affected by the stimulation 

paradigm: The highest responses were caused by capsaicin on alveolar mucosa, the second highest by 

capsaicin on attached gingiva, and the lowest effects by tooth stimulation. On contralateral gingiva, 

the vasodilatation responses also depended on the stimulation paradigm: the highest vasodilatation 

was caused by painful tooth stimulation, the second highest by capsaicin on alveolar mucosa, and the 

lowest effects by capsaicin on attached gingiva. High-intensity tooth stimulation induced a transient 

elevation in MAP and HR concomitant with a significant blood flow reduction in the finger. Neither 

of the capsaicin stimuli provoked any significant changes in MAP or HR responses. In comparison 

with capsaicin stimuli, the more painful tooth stimulation tended to induce a more marked blood 

flow reduction in the finger. 

5.3 MMP-8 IN GCF WITH PAINFUL TOOTH STIMULATION

In study II the average intensity of painful tooth stimulation was 47 ± 2.2 µA. The respective average 

pain magnitude estimate on VAS scores was 74.4 ± 3.8, which can be considered quite a high discomfort 

on a scale from 0-100. Stimulation of tooth 11 significantly raised MMP-8 levels (IFMA analysis) 

in adjacent GCF. These pulpal-pain-evoked elevations in MMP-8 levels occurred during stimulation 
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and remained elevated four and eight minutes after the end of stimulation. Simultaneously, no marked 

changes in GCF MMP-8 levels could be detected at tooth 22 or tooth 41. The control session without 

stimulation showed that the repeated measurements themselves did not modulate GCF MMP-8 levels. 

The elevated MMP-8 levels in the GCF of the stimulated tooth were clearly lower than those of the 

gingivitis and periodontitis sites in our earlier study (Mäntylä et al. 2003). The representative Western 

immunoblot for molecular forms and degree of activation of MMP-8 of the stimulated incisor showed 

that the samples contained bands at 60 to 80 kDa corresponding to PMN-type active and pro-enzymes, 

and from 45 to 55 kDa corresponding to mesenchymal-type (non-PMN) active and pro-enzymes.  No 

marked changes appeared in blots for MMP-8 of the non-stimulated teeth. 

5.4 MMP-8 IN GCF WITH CAPSAICIN STIMULATION

In study  III the average pain magnitude estimate on VAS scores was 17 ± 4, which can be considered a 

very mild pain level on a scale from 0-100. Capsaicin stimulation of the alveolar mucosa was effective 

to induce significant elevations in MMP-8 levels obtained by IFMA measurement in the GCF of the 

tooth at the stimulation site (= tooth 21) and of the neighbouring tooth (= tooth 22). These elevations 

in MMP-8 levels already began to appear during stimulation and remained for 30 min after the end 

of stimulation. Responses were significantly higher at the capsaicin stimulation side than on the 

contralateral side. 

The control session without capsaicin stimulation showed that repeated measurement itself did not 

modulate GCF MMP-8 levels. We found that capsaicin stimulation elevated and activated the high 

molecular-weight-complex and PMN-type MMP-8 species and non-PMN-type MMP-8 species at the 

stimulation site. Capsaicin stimulation did not induce any marked changes in Western blots for MMP-8 

of the teeth on the contralateral side.

5.5 MMP-8 AND SUBSTANCE P IN GCF WITH PAINFUL TOOTH 
STIMULATION
 

In study IV the average intensity of painful tooth stimulation was 45 ± 6.6 µA. The respective average 

pain magnitude estimate on VAS scores was 67.5 ± 6.3. Stimulation of the tooth 11 significantly 

increased the SP and MMP-8 levels in the adjacent GCF. For SP, the maximal effect was found during 

the stimulation period, and for the MMP-8 the most significant elevation was noted 4 min after the end 

of stimulation. Simultaneously, no marked changes in GCF SP or MMP-8 levels could be detected at 

tooth 41. Control session without stimulation showed that the repeated measurements themselves did 

not modulate GCF SP or MMP-8 levels.
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6 DISCUSSION

In this study, capsaicin-induced inflammatory reactions in gingivomucosal tissues did not cross the 

midline in the anterior maxilla. The enhanced reaction found during stimulation of alveolar mucosa 

indicated that alveolar mucosa is more sensitive to chemical irritants than attached gingiva. These 

results indicated that capsaicin-evoked neurogenic inflammation in gingiva can trigger the expression 

and activation of MMP-8 in GCF of the adjacent teeth. It was also concluded that pulpal pain can 

induce local elevations in MMP-8 and SP levels in GCF. 

There has been a lack of overview in the field of the possible relation of oral diseases and neurogenic 

inflammation. The present studies were designed to find out whether the observation on the 

mechanisms of the neurogenic inflammatory reactions described for other organs and tissues (Holzer 

1988; Wårdell et al. 1993) are also valid in the gingiva and alveolar mucosa. We thus presumed that 

the activation of primary sensory fibres may play a role in the development of pathological reactions in 

those tissues of the mouth initiated and affected by bacterial toxins, metabolites, heat and masticatory 

forces. In general, occlusal interferences are a factor thought to contribute to the pathogenesis of 

periodontitis and may lead to poor response to periodontal treatment. The application of mechanical 

forces displaces the tooth and induces an inflammatory reaction by the compression of periodontal 

ligament (Giannopoulou et al. 2006). In a study by Giannopoulou et al. (2006), it was concluded 

that initial orthodontic tooth displacement by the use of separators induces pain and a rapid release of 

biochemical mediators. The study further revealed that the clinical findings in the expression of several 

pro-inflammatory mediators/neuropeptides, such as PGE2, IL-1 and substance P, were associated 

with initial pain intensity, which is in accordance with our experimental findings. It is possible that 

neuropeptides, either directly or through the action of these pro-inflammatory mediators, can induce 

the secretion of matrix metalloproteinases.

Inflammation is a local, protective response to microbial invasion or injury. It must be precisely fine-

tuned and regulated, because deficiencies or excesses of the inflammatory response cause morbidity 

and shorten the lifespan. The discovery that cholinergic neurons inhibit acute inflammation has 

qualitatively expanded our understanding of how the nervous system modulates immune responses. 

The nervous system reflexively regulates the inflammatory response in real time, just as it controls the 

heart rate and other vital functions (Tracey 2002). 
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Clinical inflammation and pain conditions are associated with blood flow alterations, and in some 

forms of pain syndromes, pain may be vascular in origin (Goadsby 1997). This project clarifies the 

functional role of nociceptive C-fibres in relation to a neurogenic spread of inflammation and blood 

flow changes in orofacial tissues. The knowledge these studies are providing is of clinical significance 

since it attempts to explain the mechanisms and the key substances such as SP and MMP-8 in 

the pathogenesis of neurogenic inflammatory reactions in human gingival tissues. Furthermore, the 

results of this project will be opening new and more adequate diagnostic and treatment possibilities 

of periodontal and orofacial inflammation.

Furthermore, it is becoming clear that bidirectional communication exists between sensory nerves 

and inflammatory/immune cells, sustained by release of chemical factors from both sides. The net 

result of such cross-communication is the establishment of a positive feedback cycle that could play 

an important role in the genesis and maintenance of both acute and chronic inflammatory processes. 

The importance of the interaction between the nervous system and immune system signalling has 

been demonstrated recently in the development of pathological pain. Watkins and Maier  (2002) 

have proposed that cytokines produced by inflammatory and glial cells change neuronal excitability 

and that this link contributes directly to the development of intractable pain. The ultimate goal 

of future functional studies of pain and inflammatory reactions in orofacial regions, including 

teeth and periodontium, is to improve our understanding of how to avoid insults and how to cure 

inflammation. 

6.1 THE SPATIAL EXTENSIONS AND DIFFERENCES BETWEEN 
TOOTH STIMULATION AND CAPSAICIN-INDUCED NEUROGENIC 
VASODILATATION IN HUMAN GINGIVA (I)

In study  I, capsaicin stimuli of the gingivomucosal tissues evoked a pronounced vasodilatation in 

ipsilateral gingiva that rapidly attenuated at the midline of the anterior maxilla. In contrast to this, 

painful stimulation of the upper central incisor produced comparable blood flow elevations bilaterally 

in the maxillary gingiva. The contralateral vasodilatations were increased as a function of increasing 

stimulus-evoked pain estimates. These results indicate that axon-reflex-mediated vasodilatation in 

the gingiva does not cross the midline of the maxilla, and importantly, that pain may contribute to 

trigeminal blood flow alterations in humans. 

Since axon-reflex vasodilatation is known to spread symmetrically around the nociceptive stimulus 

and corresponds to the size of the receptive fields of stimulated nociceptive afferents (Wårdell  et 

al. 1993), the present results do not favour the hypothesis of functional transmedian innervation 

of gingival tissues in anterior maxilla, or that peripheral axons are crossing the midline of anterior 

maxilla in significant numbers. A similar asymmetric blood flow response in relation to the midline 
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has been found in the skin of the posterior part of the neck (Mentis & Lynn 1992). Our results are 

also in agreement with those from several anatomical (Fuller et al. 1979; Byers & Matthews 1981) 

and electrophysiological (Saag & Reid 1981; Foster & Robinson 1994) studies in animals showing 

that cross-innervation of maxillary and mandibular nerves exists rarely, if at all.

LDI, which was used in our study, provides relative information about the movement of red blood 

cells in the superficial tissue structures and the ability to instantaneously measure relative gingival 

blood flow without touching the tissue. These features and the sensitivity of the waveform to measure 

blood flow changes suggest its potential value for monitoring clinical status and early disease detection. 

In our investigation, we applied the LDI technique for the first time to record blood flow in human 

gingiva. The current finding – that tooth stimulation evokes bilateral vasodilatation while capsaicin 

stimulation of the gingiva mainly produces unilateral vasodilatation –emphasises the usefulness of 

LDI in clarifying spatial features of neurogenic vasoactive changes in the intra-oral tissues. 

In our investigation, the contralateral vasodilatations during tooth  and capsaicin stimulation were 

increased as a function of increasing stimulus-evoked pain responses. Interestingly, blood flow 

increases in the maxillary attached gingiva and oral mucosa were evoked bilaterally, not unilaterally. 

We hypothesised that such vasodilatations in the oral mucosa might be induced by the autonomic 

nervous system and mediated via parasympathetic vasodilator fibres. In other words, the current 

stimulation-related blood flow increase in oral mucosa and attached gingiva in the contralateral 

region could be based on centrally mediated, parasympathetic vasodilator mechanisms (Izumi & 

Karita 1992).

In the current study, painful stimuli of the tooth induced a short blood flow decrease in the skin of the 

finger. These blood flow decreases occurred simultaneously with the transient pain-induced HR and 

BP elevation. It has been shown that various stimuli causing arousal, mental stress and pain produce 

an increase in sympathetic nerve traffic and are associated with transient reflex vasoconstriction in 

the human skin (Lundberg et al. 1989; Wallin 1990). Thus, the most convincing explanation for the 

present pain-induced blood flow decrease in the skin of the finger is a sympathetic vasoconstrictor 

reflex.
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6.2 PAINFUL TOOTH AND GINGIVAL STIMULATION-EVOKED 
RESPONSES IN MMP-8 LEVELS IN GCF (II, III)

6.2.1 Painful tooth stimulation

In study  II, high-intensity stimulation of the upper right incisor induced a local elevation in the GCF 
MMP-8 levels of the stimulated tooth. In contrast, the GCF MMP-8 levels of the contralateral upper 
incisor or ipsilateral lower incisor remained unchanged. These results indicate that painful tooth stimulation 
can induce local inflammatory responses with enhanced proteolytic potential in the very adjacent gingival 
tissues, and that pulpal pain can contribute to the local regulation of MMP-8 levels in GCF. 

The average intensity of the tooth pulp stimulation was 47 µA, when the upper right central incisor 
(tooth 11) was electrically stimulated at an intensity of 3x the individual pain threshold. First we studied 
the tooth pulp stimulation at 1.5x the individual pain threshold with six volunteers (unpublished data), 
but as it did not have a significant effect on MMP-8 levels, in further experiments 3x the individual 
pain threshold was used (average current intensity 47 µA). Only the high intensity tooth stimulation 
induced increased elevations in MMP-8 levels. The high-intensity stimulus used (47 µA) activates not only 
pulpal A-delta fibres but also C afferent fibres (Närhi 1985; Virtanen 1985; Kemppainen et al. 2001a, 
b). Electrophysiological evidence indicates that the maximal strength (below 100 µA) of the electrical 
stimulation used in the present study for the dental stimulation, even when applied to the periodontal 
tissues, does not activate extrapulpal fibres (Närhi et al. 1982).

It is known that MMP-8 is present at very low levels in periodontally healthy subjects’ GCF (Mäntylä  
et al. 2003). In our study, experimental tooth pain induced significant elevation in GCF MMP-8 levels 
(reaching the average levels of 45-55 µg/L) of periodontally healthy volunteers. In patients having gingivitis 
or periodontitis the GCF MMP-8 levels reach up to 750 µg/l or 2500 µg/l, respectively (Mäntylä et al. 
2003). Thus the present elevated MMP-8 levels in the GCF of the painfully stimulated tooth were clearly 
lower than those of the gingivitis and periodontitis sites in our earlier study (Mäntylä et al. 2003).  The 
physiological relevance of the present results is that experimental tooth pain triggers an active process with 
increased levels of proteolytic enzymes in GCF similarly to e.g. those seen with tooth pain in symptomatic 
pulpitis (Awawdeh et al. 2002a) or caused by orthodontic tooth movement (Apajalahti et al. 2003, 
Giannopoulou et al. 2006). More generally, the GCF of teeth with elevated levels of MMP-8 regardless 
of the cause (tooth pain, gingivitis, periodontitis) may be at potentially elevated risk for increased/rapid 
periodontal breakdown in population with occlusal overload caused e.g. by bruxism or extensive occlusal 
interferences.  In other words, the pulpal pain does not induce an increase in GCF MMP-8 levels 

comparable to periodontitis-affected GCF, but it is possible that the slight increase in GCF MMP-8 

levels induced by pain does not alone cause tissue destruction, although it may well participate in 

tissue destruction when associated with other tissue damage promoting factors.
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6.2.2 Capsaicin stimulation

In study  III, capsaicin stimulation of the alveolar mucosa evoked significant GCF MMP-8 elevations 

and activations of the ipsilateral incisors of the anterior maxilla. No significant increases could be 

detected in MMP-8 levels in GCF contralaterally to the capsaicin stimulation. These results indicate 

that chemical irritation of the gingiva by capsaicin can provoke a local neurogenic inflammation with 

enhanced proteolytic potential in the closely adjacent gingival tissues, which reaction does not cross 

the midline in the anterior of the maxilla. Since capsaicin provoked matrix degrading enzymes in 

GCF, the study shows further evidence for a functional link between neurogenic inflammation and 

periodontal tissue destruction in humans.

Similarly to capsaicin-induced neurogenic vasodilatation in gingiva in study   I, the capsaicin-

evoked response in GCF of MMP-8 did not cross the midline of the anterior maxilla. It is likely 

that the capsaicin-evoked GCF MMP-8 elevation is based on an axon-reflex-mediated neurogenic 

inflammatory reaction in human gingivomucosal tissues. According to these results it is also possible 

that, similarly to the experimentally induced neurogenic inflammation, clinical gingival inflammatory 

reactions elicited by bacterial toxins and metabolites do not spread from one side to the other of the 

anterior maxilla.

6.3 PAINFUL TOOTH STIMULATION-INDUCED RELEASE OF SP AND 
MMP-8 IN GCF (IV) 

In study  IV, high-intensity stimulation of the upper right incisor induced a local elevation in the 

GCF SP and MMP-8 levels of the stimulated tooth. In contrast to this, the GCF SP and MMP-8 

levels of the ipsilateral lower incisor remained unchanged. This study is the first to report that painful 

stimulation of a tooth provokes significant elevations in GCF in both MMP-8 and SP levels of the 

stimulated tooth. These results indicate that painful tooth stimulation can induce local neurogenic 

inflammatory responses with enhanced proteolytic or tissue-modulating potential in the very adjacent 

gingival tissues, and that pulpal pain can contribute to the local regulation of SP and MMP-8 levels 

in GCF.

Animal studies have shown the existence of branched nerves innervating both intrapulpal and 

periodontal tissues (Foster & Robinson 1994). Branches of sensory nerves can innervate both adjacent 

pulps and surrounding periodontal tissues. On that account, when the branch that innervates the 

pulp is stimulated, the entire neurone depolarises, including branches innervating adjacent teeth 

and adjacent periodontal tissues. A noxious stimulus leads to rapid action potentials in nociceptive 

fibres that propagate not only to the central nervous system but also antidromically into peripheral 
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branches. According to this, the present data support the possibility of a local neurogenic spread 

of inflammation from intrapulpal to surrounding periodontal tissues. Moreover, this pulp-based 

neurogenic process may predispose such sites to the progression of periodontal destruction (Sorsa  

et al. 2004). Alternatively, depending on the role of MMP-8 due to its ability to modulate anti-

inflammatory cytokines and chemokines, this reaction may also be, at least in part, anti-inflammatory 

or defensive (Owen  et al. 2004; Gueders  et al. 2005).

Pulpal pain and inflammation lead to an increase in intrapulpal pressure (Byers & Närhi 1999). 

It is possible that an increase in the rate of fluid flow out of the root canal system, carrying with it 

released neuropeptides and MMP-8, could explain the increased levels of SP and MMP-8 found 

in the GCF of stimulated teeth. There are direct communication channels between the pulp cavity 

and the periodontal ligament by way of apical foramina, accessory lateral and furcation canals and 

dentinal tubules (Seltzer 1984; Trowbridge et al. 1998). In our study, none of the teeth sampled 

had gingival recession and it is therefore unlikely that SP and MMP-8 were carried into the gingival 

crevice from the pulp in dentinal fluid. Markers have been shown to migrate from the pulp to all areas 

of the periodontal ligament, including the marginal gingiva (Walton & Langeland 1978). However, 

although it is possible that neuropeptides in GCF could originate from the dental pulp, the long 

diffusion pathway that lowers concentrations by several orders of magnitude (Ghazi  et al. 2000) 

would tend to argue against this hypothesis (Awawdeh  et al. 2002).

6.4 THE CHARACTERISTICS OF SP AND MMP-8 IN TOOTH 
STIMULATION ANALYSED FROM GCF (IV) 

This cross-sectional study  IV demonstrated the significantly elevated SP and MMP-8 levels in GCF 

from painful teeth compared to GCF from non-painful teeth. These findings indicate that experimental 

pulpal pain can produce local elevations in GCF levels of pro-inflammatory neuropeptide SP and a 

potent host-tissue destructive or defensive protease, MMP-8. 

Clinical studies have shown that SP (Awawdeh et al. 2002b) and MMP-8 (Wahlgren  et al. 2002) 

are more abundant in pulp tissues from painful compared to healthy human teeth. Moreover, tooth 

pain in symptomatic pulpitis (Awawdeh et al. 2002a) or caused by orthodontic tooth movement 

(Apajalahti et al. 2003; Giannopoulou et al. 2006) is associated with elevated GCF MMP-8 and SP 

levels of these teeth. These clinical findings indicate that painful teeth may be allied with elevated 

levels of pro/anti-inflammatory SP and MMP-8 both in pulp tissue and in adjacent GCF. Now when 

an association between MMP-8 and SP levels can be established, the neuropeptides and MMPs in 

GCF might potentially be utilised as an indirect non-invasive diagnostic method of assessing pulpal 

status. 
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There is accumulating evidence that the nervous system can modulate inflammation in inflammatory 

diseases (Lowman et al. 1988; Naukkarinen et al. 1993; Scott et al. 1994). Mast cells are commonly 

found in close association with peripheral nerves (Scott et al. 1994) that may secrete neuropeptides 

(SP, VIP), which can trigger degranulation of the mast cells (Bunker et al. 1991; Scott et al. 1994). 

The previous finding by Næsse et al. (2003) postulates that mast cells in the gingival infiltrate can 

express MMP-8. Thus it is tempting to speculate that pulpal pain firstly evoked GCF SP release from 

the nerve terminals, which possibly triggered the consequent GCF MMP-8 elevations from mast cells 

and/or other inflammatory/immune cells. 

GCF can be collected by several techniques: with filter paper strips, micropipette tubes using gingival 

washing and capillary tubing. Before we started the data collection in study  IV, we performed a pilot 

study with seventeen volunteers (unpublished data) in order to find the most adequate method of 

collecting both MMP-8 and substance P. In this pilot study the GCF was collected in different ways, 

i.e. using the microdialysis method. Microdialysis permits collection of inflammatory mediators 

in awake dental pain patients who can simultaneously provide verbal pain reports (Hargreaves & 

Costello 1990). We used micropipette tubes based on capillary tubing and Ringer’s solution as a 

vehicle to carry MMPs and neuropeptides to the eppendorf tube. However, in terms of sensitivity, 

this method was less than satisfactory for us to detect both neuropeptides and MMPs. Finally we 

decided to concentrate on harvesting GCF by filter paper strips, which is the most commonly used 

method for GCF collection.

The fact that teeth which are not in occlusion have lower neuropeptide levels than teeth in occlusion 

(Kvinnsland & Heyeraas 1992; Byers & Närhi 1999) supports the hypothesis that neuropeptides 

may have a role in the pathophysiology of periodontal destruction in painful teeth with occlusal 

interferences and in bruxism. Moreover, these findings may also be the first step in studying these 

pulp-based neurogenic processes in the future in population suffering from periodontal problems 

simultaneously with bruxism, occlusal interferences and non-physiological strong masticatory 

forces. 
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7 CONCLUSIONS

1. Capsaicin produces an axon-reflex-mediated neurogenic inflammatory reaction in human 

gingivomucosal tissues that does not cross the midline of the anterior maxilla. The enhancement of 

this reaction during mucosal stimulation suggests that alveolar mucosa has a higher susceptibility 

than attached gingiva to inflammatory effects induced by chemical irritants in the oral cavity. The 

more extended vasoactive changes in contralateral gingivomucosal tissues during different stimuli are 

most likely based on a pain-evoked, possibly parasympathetic, vasoactive reflex mechanism. 

2. Painful tooth stimulation can induce local inflammatory responses with enhanced proteolytic 

potential in the very adjacent gingival tissues. Pulpal pain can contribute to the local regulation 

of MMP-8 levels in GCF. Pulpal stimulation-evoked increase in the GCF MMP-8 levels of the 

stimulated tooth could result from a local neurogenic, possibly axon-reflex-mediated, pro- or anti-

inflammatory mechanism. 

3. Chemical irritation of gingivomucosal tissues by capsaicin produces local elevation of the levels 

of a potent host-tissue destructive protease, MMP-8, in GCF of the neighbouring teeth. Similarly 

to the capsaicin-induced neurogenic vasodilatation in gingiva, the capsaicin-evoked response in 

GCF of MMP-8 does not cross the midline of the anterior maxilla. It is likely that capsaicin-evoked 

GCF MMP-8 elevation is based on an axon-reflex-mediated neurogenic inflammatory reaction in 

human gingivomucosal tissues. It is possible that, similarly to the experimentally induced neurogenic 

inflammation, clinical gingival inflammatory reactions elicited by bacterial toxins and metabolites  do 

not spread from one side of the anterior maxilla to the other.

4.  Experimental pulpal pain can produce local elevations in GCF levels of MMP-8 and substance P, 

the transmitter in evoking neurogenic inflammation. Analysis of these data supports the possibility 

of a local neurogenic spread of inflammation from intrapulpal to surrounding periodontal tissues. 

Neurogenic inflammatory response, on the other hand, may also be important for starting tissue 

protecting anti-inflammatory reactions. Thus, the pulp-based neurogenic process may predispose 

such sites to the progression of periodontal destruction and/or represent defence against gingival 

inflammation.
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