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ABSTRACT 

Histamine acts as a neurotransmitter in the central nervous system. Brain histamine in 
synthesized in neurons located to the posterior hypothalamus, from where these neurons 
send their projections to different parts of the brain. Released histamine participates in 
the regulation of several physiological functions such as arousal, attention and body 
homeostasis. Disturbances in the histaminergic system have been detected in diseases such 
as epilepsy, sleep disorders, anxiety, depression, Alzheimer’s disease, and schizophrenia. 
The purpose of this thesis was to develop optimal culture conditions for the histaminergic 
neurons, to study their detailed morphology, and to find out their significance in the 
kainic acid (KA)-induced neuronal death in the immature rat hippocampus.  

The morphology of the histaminergic neurons in vitro was comparable with the 
earlier findings. Histamine-containing vesicles were found in the axon but also in the cell 
body and dendrites suggesting a possibility for the somatodendritic release. Moreover, 
histamine was shown to be colocalized with the vesicular monoamine transporter 
2 (VMAT2) suggesting that VMAT2 transports histamine to the subcellular storage 
vesicles. Furthermore, histamine was localized with γ-aminobutyric acid (GABA) in 
distinct storage vesicles and with neuropeptide galanin partly in the same storage vesicles 
suggesting different corelease mechanisms for GABA and galanin with histamine.

In the organotypic hippocampal slice cultures, KA-induced neuronal death was first 
detected 12 h after the treatment being restricted mainly to the CA3 subregion. Moreover, 
cell death was irreversible, since the 48 h recovery period did not save the cells, but 
instead increased the damage. Finally, neuronal death was suggested to be necrotic, since 
intracellular apoptotic pathways were not activated, and the morphological changes 
detected with the electron microscopy were characteristic for necrosis. 

In the coculture system of the hippocampal and posterior hypothalamic slices, 
histaminergic neurons significantly decreased epileptiform burst activity and neuronal 
death in the hippocampal slices, this effect being mediated by histamine 1 (H1) and 3 
(H3) receptors. 

In conclusion, the histaminergic neurons were maintained succesfully in the in vitro 
conditions exhibiting comparable morphological characteristics as detected earlier in 
vivo. Moreover, they developed functional innervations within the hippocampal slices in 
the coculture system. Finally, the KA-induced region-specific, irreversible and necrotic 
hippocampal pyramidal cell damage was significantly decreased by the histaminergic 
neurons through H1 and H3 receptors. 

Key words: histamine, hippocampus, kainic acid, neuronal death, epilepsy



TIIVISTELMÄ

Histamiini on keskushermostossa toimiva välittäjäaine, jota syntetisoidaan hypothala-
muksen takaosan neuroneissa. Histaminergisten neuronien aksonit ulottuvat kaikkialle 
aivoihin, ja hermosoluista vapautuva histamiini osallistuu mm. uni-valverytmin, ruoka-
halun, neste- sekä hormonitasapainon säätelyyn. Aivojen histaminergisen järjestelmän 
toimintahäiriöt liittyvät useisiin sairauksiin kuten epilepsia, unihäiriöt, ahdistuneisuus, 
masennus, Alzheimerin tauti sekä skitsofrenia. Tämän työn tarkoituksena oli kehittää 
optimaaliset viljelyolosuhteet histaminergisille neuroneille, tutkia niiden morfologiaa 
sekä selvittää histaminergisten neuronien suojavaikutusta kainaatti-indusoidussa eksito-
toksisessa hermosolukuolemassa kehittyvän rotan hippokampuksessa. 

Viljelmien histaminergisten neuronien morfologia vastasi aiemmissa tutkimuksissa 
tehtyjä havaintoja. Immunohistokemialliset värjäykset osoittivat, että histamiini oli va-
rastoituneena solunsisäisiin varastovesikkeleihin, jotka paikallistettiin aksonien lisäksi 
myös solun soomaosaan ja dendriitteihin, mikä saattaa viitata histamiinin somatodend-
riittiseen vapautumiseen. Histamiini esiintyi osittain samoissa vesikkelirakenteissa sitä 
kuljettavan monoamiinikuljettaja-2:n kanssa. Histaminergisissä neuroneissa havaittiin 
histamiinin lisäksi γ-aminovoihappoa (GABA), joka oli varastoitunut eri vesikkeleihin 
kuin histamiini sekä neuropeptidi galaniinia, joka oli osaksi samoissa vesikkeleissä his-
tamiinin kanssa. GABA:n ja galaniinin erilainen varastoituminen histaminergisissä neu-
roneissa saattaa viitata eroihin välittäjäaineiden yhteisvapautumismekanismeissa.

Hippokampuksen leikeviljelmissä kainaatilla aiheutettu solukuolema havaittiin en-
simmäisen kerran 12 h käsittelyn jälkeen, ja se rajoittui pääasiassa CA3 pyramidaa-
lineuronien alueelle. Solukuolema oli palautumaton prosessi, sillä viljely normaalissa 
kasvatusliuoksessa ei pelastanut CA3 alueen neuroneita. Solukuoleman pääasiallinen 
mekanismi oli nekroosi, sillä apoptoottiset signaalinvälitysreitit eivät aktivoituneet ja 
elektronimikroskoopilla havaitut muutokset olivat tyypillisiä nekroosille. 

Hippokampuksen ja hypotalamuksen kaksoisleikeviljelmämallissa osoitimme, että 
histaminergiset neuronit vähensivät merkittävästi epileptistyyppistä sähköistä aktiivi-
suutta ja solukuolemaa hippokampuksen pyramidaalineuroneissa. Tämä suojavaikutus 
tapahtui ainakin osittain histamiini 1 (H1)- ja 3 (H3)- reseptorivälitteisesti. 

Tulokset osoittavat, että aivojen histaminergisiä neuroneita voidaan kasvattaa in 
vitro olosuhteissa, ja että niiden morfologiset erityispiirteet vastaavat in vivo kokeissa 
tutkittujen neuronien piirteitä. Leikeviljelmissä histaminergiset neuronit muodostivat 
toimivan hermotuksen hippokampuksen alueelle, missä ne vähensivät CA3 alueen her-
mosolujen eksitotoksista, nekroottista solukuolemaa H1-ja H3-reseptorivälitteisesti.

Avainsanat: histamiini, hippokampus, kainaatti, hermosolukuolema, epilepsia
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1. INTRODUCTION

Histamine belongs chemically to the group of monoamines together with dopamine, 
serotonin, adrenaline, and noradrenaline. Drugs affecting the monoaminergic neuron 
systems are well known in diseases such as depression, anxiety, schizophrenia, and 
Parkinson’s disease. In the central nervous system (CNS), monoamines are considered 
as modulatory neurotransmitters acting mainly through the metabotropic monoamine 
receptors. These receptors activate intracellular signalling cascades, which in turn can 
modulate ion channel activity and regulate gene expression. 

The monoaminergic neurons are generally restricted to the specific nuclei of the 
CNS, but their projections cover almost the entire brain. They are known to release 
their neurotransmitters mainly from axonal varicosities (volume transmission) but also 
from the cell soma and dendrites (somatodendritic release mechanism). Furthermore, 
monoaminergic neurons usually contain several other compounds such as neuropeptides, 
glutamate or γ-aminobutyric acid (GABA), which together have been shown to produce 
more effective response than only one compound (see review Lapish et al. 2007). 

Even though the importance of monoamines in different diseases is well known, there 
are still many open questions about the basic functions of the monoaminergic neurons. 
For example, at the cellular level, the importance and mechanism of somadendritic 
release and corelease of several transmitters is not yet fully understood. Furthermore, 
it is not known, in which circumstances different monoamine receptor subtypes are 
activated, and what is the net effect of several subtype-specific intracellular cascades. 
At the level of the entire brain, it is not known, how monoamines tune the activity of 
different brain regions, and how this tuning sets the limits for neuronal activity carried 
out by fast ionotropic receptors. Finally, monoaminergic receptors are thought to control 
homeostatic balance of the body, and therefore, it would be important to know, how 
these neurons recognize the imbalance in homeostasis, and whether or not they are able 
to normalize it.

The thesis consists of two parts, the main focus being the brain histaminergic 
neurons. In the first part, the culture system for histaminergic neurons was created, 
and the morphology, histamine storage and colocalization with other compounds in 
the histaminergic neurons were studied in this system. In the second part, the region-
specificity, reversibility and nature of kainic acid (KA)-induced neuronal death was 
examined in organotypic slice culture of the developing hippocampus. Moreover, the 
coculture system of the hippocampus and posterior hypothalamus was created to study 
whether or not histaminergic neurons regulate KA-induced epileptiform activity and 
neuronal death in the developing rat hippocampus. 



14 Review of the Literature

2. REVIEW OF LITERATURE

2.1. The central histaminergic neurons

2.1.1. Histamine – a monoamine
Histamine (4-imidazolyl-2-ethylamine) belongs chemically to the monoamines, which 
contain one amino group connected to an aromatic ring by a two carbon chain (Fig.1). The 
other monoamines and also neurotransmitters in this group are for example dopamine, 
serotonin, noradrenaline, and adrenaline. 

 
Figure 1. Molecular structure of histamine

Monoamines are synthesized from aromatic amino acids such as histidine, tyrosine, 
phenylalanine, and tryptophan. They mediate their action mainly by binding to the 
metabotropic monoamine receptors, which in turn activate a second-messenger cascade 
inside the cell.  In the brain, cell bodies of the monoaminergic neurons are usually 
located to a restricted region, from where they spread their projections to other parts of 
the brain.  

2.1.2. A brief history of finding histamine
Histamine was first synthesized in 1907 (Windaus and Vogt, 1907), and a few years later 
the British pharmacologist, Sir Henry Dale and his colleagues isolated histamine from 
the plant fungus ergot, and described for the first time the physiological role of histamine 
in muscle contraction and capillary dilation (Barger and Dale 1910, Dale and Laidlaw 
1910). One year later they isolated histamine from the wall of the intestine demonstrating 
that histamine is actually an endogenous substance in the organism (Dale and Laidlaw 
1911). In 1919, Dale and Laidlaw introduced the physiological role of histamine in the 
organism by administrating histamine intravenously, which caused bronchoconstriction 
and shock-like syndromes (Dale and Laidlaw 1919). In 1920, histamine was shown to be 
a mediator of acid secretion in the stomach (Popielski 1920). During the 1930s, the search 
for antihistamines began at the Pasteur Institute, and in 1936 antihistamines proved to be 
effective in bronchospasm produced in guinea pigs by anaphylaxis or administration of 
histamine (Bovet and Staub, 1936). 



 Review of the Literature 15

Although histamine was known to be present in the brain tissue as early as 1919 
(Abel and Kubota, 1919), its role as a neurotransmitter became evident only in the 1970s, 
when decrease in L-histidine decarboxylase (HDC) activity was discovered in many 
brain regions after the lesions of the lateral hypothalamic area (Garbarg et al. 1974). Ten 
years later, the brain histaminergic system was revealed by antibodies against histamine 
(Panula et al. 1984) and HDC (Watanabe et al. 1983).

Today, histamine is known to be localized in the gastric enterochromaffin-like cells 
(see reviews Chen et al. 1999), and in the basophils and mast cells both in the periphery 
and the brain (see reviews MacGlashan 2003, Bischoff 2007). The central histaminergic 
neurons, which synthesize histamine, are located to the tuberomammillary nucleus (see 
review Haas and Panula 2003).  In addition, histamine containing neurons, which do not 
express HDC, have been found in the suprachiasmatic nucleus (Michelsen et al. 2005).

2.1.3. Organization of the brain histaminergic system
The central histaminergic neuron system can be found throughout the animal kingdom 
including mollusc (Elste et al. 1990, Soinila et al. 1990, Karhunen et al. 1990), insects 
(see review Nässel 1999), fish (Inagaki et al. 1991, Kaslin and Panula 2001), amphibians 
(Airaksinen and Panula 1990), reptiles (Inagaki et al. 1990a), and mammals such as rat 
(Watanabe et al. 1983, Panula et al. 1984), mouse (Airaksinen et al. 1992, Parmentier 
et al. 2002, Michelsen and Panula 2005), ground squirrel (Sallmen et al. 1999), sheep 
(Tillet et al. 1998), and human (Airaksinen et al. 1991, Jin et al. 2002, see review Yanai 
et al. 2007). 

2.1.3.1. The tuberomammillary nucleus
In the brain, cell bodies of the neurons, which synthesize histamine, are localized in the 
posterior hypothalamus, and more specifically, in the tuberomammillary (TM) nucleus. 
The TM nucleus is not a single group of cells but more like scattered subgroups of neurons 
located to the posterior hypothalamic region. In the rat brain, these subgroups were first 
described as 600 neurons of medial subgroup of the TM (TMM), 1 500 neurons of the 
ventral subgroup of TM (TMV), and the diffuse part of the TM (TMdiff) signifying 
about 100 neurons diffusively scattered within the posterior hypothalamic area (Ericson 
et al. 1987). TMV was further divided into the rostral (TMVr) and caudal (TMVc) parts 
with relation to mammillary bodies. The total number of the TM histaminergic neurons 
estimated by Ericson and co-workers (1987) was 2200. 

The classification of the subgroups was further developed to be equivalent to the 
nomenclature of other monoaminergic neurons, and according to this classification 
histaminergic neurons in rat are now divided to five clusters known as E1-E5 (Inagaki et 
al. 1990b, Zimatkin et al. 2006) (Fig. 2). The E1 and E2 groups are localized in the lateral 
region of the mammillary body, and the caudal E1 group is separated from the rostral 
E2 group by the lateral mammillary nucleus. The E3 and E4 groups are neuron clusters 
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in the ventromedial and dorsomedial regions of the mammillary body, respectively. The 
group E5 consists of diffusely distributed neurons between the E2 and E4 groups (Fig. 
2). 

2.1.3.2. Histaminergic pathways 
In the rat brain, histaminergic fibres are shown to form two ascending and one descending 
histaminergic pathways (Panula et al. 1989) (Fig. 3). The ventral ascending pathway 
leaves the TM nucleus ventrally innervating the major hypothalamic nuclei, nucleus 
of the diagonal band, septum and olfactory bulb (pathway 1 in Fig. 3), while the dorsal 
pathway leaves the TM nucleus dorsally and follows the lateral side of the third ventricle 
innervating thalamus, hippocampus, septum, and rostral forebrain structures (pathway 2 
in Fig. 3). The descending pathway innervates the midbrain, brain stem, cerebellum and 

Figure 2. Series of schematic drawings of frontal 
sections through the posterior hypothalamic 
region of the rat illustrating the topographic 
localization of histaminergic neurons and 
subgroups E1-E5. Abbreviations: Arc=arcuate 
nucleus, DM=dorsomedial hypothalamic nucleus, 
LM=lateral mammillary nucleus, MM=medial 
mammillary nucleus, PM=premammillary nucleus, 
3V=third ventricle, VHM=ventromedial  hypothalamic 
nucleus. (Modified from Wada et al. 1991, Zimatkin 
et al. 2006)
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spinal cord (pathway 3 in Fig. 3). Despite the prominent histaminergic pathways, there 
seems to be no selectivity between histaminergic subgroups and innervation of the certain 
brain areas (Ericson et al. 1987, Panula et al. 1989).  On the contrary, histaminergic 
neurons of one subgroup may send fibres to different directions.

Figure 3. Schematic illustration of the histaminergic pathways in the rat brain. Abbreviations: 
cb=cerebellum, cx=cortex, db=diagonal band, hc=hippocampus, hy=hypothalamus, ic=inferior 
colliculus, me=medulla, ob=olfactory bulb, pn=pons, sc=superior colliculus, sp=spinal cord, 
st=striatum, ta=thalamus, TM=tuberomammillary nucleus (modified from Panula et al. 1989).

2.1.3.3. Afferent fibres
The best studied input to the TM histaminergic neurons comes from the ventrolateral 
preoptic nucleus (VLPO) located to the anterior hypothalamus (Ericson et al. 1991a, 
Sherin et al. 1998, Steininger et al. 2001), and from the hypocretin/orexin neurons located 
to the lateral hypothalamus (Bayer et al. 2001, Ishizuka et al. 2002). Together these cell 
groups constitute a key center for sleep regulation (see page 33). 

The other prominent afferent inputs to the TM histaminergic neurons arise from 
prefrontal cortex (more specifically from the infralimbic cortex), lateral septum, diagonal 
band of Broca, and from brain stem adrenergic, noradrenergic, and serotonergic cell 
groups (Wouterlood et al. 1987, Wouterlood et al. 1988, Ericson et al. 1989, Ericson 
et al. 1991a). For example, adrenergic and noradrenergic neurons inhibit GABAergic 
inhibitory postsynaptic potential (IPSP) in the histaminergic neurons (Stevens et al. 
2004), and serotonin has excitatory effect on tuberomammillary neurons by activation 
of Na+/Ca2+-exchange (Eriksson et al. 2001). 

2.1.3.4. Morphology of the histaminergic neurons
  The morphology of histaminergic neurons has been described both in vivo and in 
vitro using both light and electron microscopy (Hayashi et al. 1984, Wouterlood et 
al. 1986, Ericson et al. 1987, Reiner et al. 1988, Airaksinen et al. 1991, Bajic et al. 
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2004, Zimatkin et al. 2006) (Table 1). The antibody against HDC shows that HDC is 
distributed diffusively throughout the perikarya, dendrites, and axon (Hayashi et al. 
1984).  The staining with histamine antibody shows that histamine is located to the 
vesicles, which are distributed throughout the cell (Michelsen and Panula 2002). The 
size of the histaminergic neurons varies from small (diameter 15-18 μm) to large (30-35 
μm) (Table 1). In the diffuse subgroup E5, histaminergic neurons seem to be larger than 
in the subgroups E1-E4, in which small and intermediate cells predominate (Zimatkin 
et al. 2006). The histaminergic cell body has been described as oval or fusiform with 
two primary dendrites, or as multipolar cells with several neurites (Fig. 4, Table 1). 
Moreover, most of the neurons in the E1-E3 subgroups are round, while those in the E5 
subgroup seem to be fusiform in shape (Zimatkin et al. 2006). 

Figure 4.  Different types of cell forms of histaminergic neurons. A, Oval or fusiform type. B and 
C, multipolar types of cells.

Dendrites of histaminergic neurons are usually long and constitute numerous branches 
(Hayashi et al. 1984, Ericson et al. 1987, Reiner et al. 1988) (Table 1). They also have 
enlargements or varicosities, which are full of histamine-containing vesicles (Hayashi et 
al. 1984, Airaksinen et al. 1987, Reiner et al. 1988). One histaminergic dendrite seems to 
be thick, while the others are thinner, and dendrites have occasionally spines (Wouterlood 
et al. 1986) (Table 1).  Axons are usually very thin and mostly unmyelinated (Hayashi 
et al. 1984, Wouterlood et al. 1986). Histaminergic axons rarely form synaptic contacts 
with other cell types (Hayashi et al. 1984, Wouterlood et al. 1986). 
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2.1.3.5. Other compounds in the histaminergic neurons
In addition to histamine and HDC, the tuberomammillary histaminergic neurons contain 
several other compounds including GABA (Ericson et al. 1991b, Airaksinen et al. 1992, 
Trottier et al. 2002), peptides galanin (Staines et al. 1986, Köhler et al. 1986, Airaksinen et al. 
1992), substance P (Köhler et al. 1985, Airaksinen et al. 1992), thyrotropin releasing hormone 
(Airaksinen et al. 1992), heptapeptide met-enkephalin-arg-phe (Airaksinen et al. 1992), and 
enzymes glutamic acid decarboxylase (GAD) (Vincent et al. 1983, Takeda et al. 1984, Staines 
et al. 1986), more specifically GAD67 (Esclapez et al. 1993), GABA-transaminase (Nagai et 
al. 1983), and adenosine deaminase (Nagy et al. 1984, Bajic et al. 2004).

Some of the colocalized substances seem to be present in all histaminergic neurons, 
whereas the others are colocalized only in a subset of the histaminergic neurons. 
Moreover, the degree of coexistence seems to depend on species. For example, GABA 
or GAD is colocalized with histamine in most histamine or HDC immunoreactive 
neurons in the rat brain (Takeda et al. 1984, Airaksinen et al. 1992), whereas not more 
than 70-90 % of human HDC immunoreactive neurons are immunopositive to GAD67 
(Trottier et al. 2002). Galanin immunoreactivity is found in 28 % of the rat histamine 
immunopositive neurons (Airaksinen et al. 1992), whereas galanin is not found in the 
human HDC immunopositive neurons (Trottier et al. 2002).

2.1.3.6. Electrophysiology of the histaminergic neurons
Histaminergic neurons fire spontaneously in a slow (2-5 Hz), regular, pacemaker fashion. 
They have broad action potentials (1.8 ms mid-amplitude duration), and deep (15-20 mV) 
long-lasting (100-200 ms) afterhyperpolarization (see review Stevens et al. 2001). Firing 
of the histaminergic neurons vary across the sleep-wake cycle being highest during the 
waking state, slowing during the slow-wave sleep, and stopping during the rapid eye 
movement (REM) sleep (Takahashi et al. 2006). 

Histaminergic neurons are under tonic inhibition by histamine acting on histamine 3 
(H3) receptors (see review Arrang et al. 2007). Therefore, application of the H3 receptor 
antagonist increases firing of the histaminergic neurons in vitro, whereas histamine itself 
reduces firing or has no effect (see review Brown et al. 2001). In addition, GABA inhibits 
firing of the histaminergic neurons by acting on both GABAA and GABAB receptors (Yang 
and Hatton 1997, Stevens et al. 1999). Other modulatory effects (mainly depolarizing) 
on the histaminergic neurons are induced by glutamate, acetylcholine, serotonin, and 
orexin (Uteshev et al. 1996, Eriksson et al. 2001a and b, see review Brown et al. 2001). 

2.1.4. Metabolism and transport of histamine

2.1.4.1. Histidine transport and uptake to the brain 
Histidine, a precursor of histamine, is an essential amino acid because of the imidazole 
ring, which can not be synthesized in the mammalian organism (see review Reeds 2000). 
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Therefore, histidine must be received from food proteins, and as part of a dipeptide or 
as a single amino acid, it is further absorbed from the small intestine to the circulation 
(Moriarty et al. 1984, Anagnostines et al. 1984).

In order to get to the brain, histidine must pass the blood brain barrier, in which 
at least three different amino acid transport systems are responsible for the histidine 
transport. The most important transport system is the large essential neutral amino acid 
transport system (system L1 or LAT1). The other systems, which also participate in 
histidine transport, are the facilitative transport system of cationic amino acids (system 
y+), and the facilitative transport system for glutamine (system n) (see review Hawkins 
et al. 2006) (Fig. 5). 

Inside the brain, system A subtypes 1 (SNAT1=sodium-coupled neutral amino acid 
transporter 1) and 2 (SNAT2) are important in neuronal transport of histidine, while 
system N subtype 3 (SNAT3) is responsible for histidine transport to glia cells (see 
review MacKenzie and Erickson 2004). All these systems are not histidine specific, but 
more specific system, the brain peptide/histidine transporter has been cloned (Yamashita 
et al. 1997). This system is strongly expressed in several brain regions in neuronal and 
non-neuronal cells but also outside the CNS. Whether this system has any specific role 
in the histaminergic neurons is unknown.

Figure 5. 
histidine. Histidine travels to the 

endothelial cells of blood vessels 
take it up by system L1, y+ and 
n. In the 
up by neurons and glia cells by 
SNAT1, 2 and 3. Abbreviations: 
L1=large essential neutral amino 
acid transport system, 
y+=facilitative transport system 
of cationic amino acids, 
n=facilitative transport system 
for glutamine (system n), 
SNAT=sodium-coupled neutral 
amino acid transporter. (Based 
on Mackenzie and Erickson 
2004, Hawkins et al. 2006). 

.

Figure 5. Uptake systems 
for histidine. Histidine travels 
to the brain in blood, from 
where endothelial cells of 
blood vessels take it up by 
system L1, y+ and n. In 
the brain, histidine is taken 
up by neurons and glia 
cells by SNAT1, 2 and 3. 
Abbreviations: L1=large 
essential neutral amino 
acid transport system, 
y+=facilitative transport 
system of cationic amino 
acids, n=facilitative transport 
system for glutamine 
(system n), SNAT=sodium-
coupled neutral amino 
acid transporter. (Based on 
Mackenzie and Erickson 
2004, Hawkins et al. 2006).
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2.1.4.2. Histamine synthesis
In those cells, in which histamine operates as a signalling molecule, L-histidine is 
converted to histamine by HDC (EC 4.1.1.22.) in a single step decarboxylation reaction 
(Joseph et al. 1990, Bruneau et al. 1992) (Fig. 6). In the brain, HDC is found in neurons 
of the TM nucleus and in the brain mast cells (Martres et al. 1975, Watanabe et all. 
1983). HDC activity is highest in the hypothalamus, in which the cell bodies of the 
histaminergic neurons are located (Watanabe et al. 1983). Its activity is also high in many 
other brain areas such as upper brain stem, amygdala, bed nucleus of the stria terminalis, 
hippocampus and cerebral cortex. These are the areas, in which the histaminergic 
projections are abundant. HCD activity in the hypothalamus, near the histaminergic cell 
bodies, has been detected in the cytoplasm, whereas outside the hypothalamus, HDC is 
mainly found in the cytoplasm of isolated nerve endings (Watanabe et al. 1983). Histamine 
synthesis can be specifically blocked by α-fluoromethylhistidine (α-FMH), which is a 
time- and concentration-dependent irreversible inhibitor of histamine synthesis (Garbarg 
et al. 1980, Watanabe et al. 1990).

2.1.4.3. Histamine storage
After synthesis, histamine is transported to the subcellular vesicles, in which it is protected 
from degradative enzymes, and becomes more concentrated before it is released. A protein 
responsible for histamine transport to the subcellular vesicles is a vesicular monoamine 
transporter 2 (VMAT2) (earlier termed synaptic vesicle transporter) (Erickson et al. 1995, 
Merickel and Edwards, 1995, Erickson et el. 1996). VMAT2 together with the vesicular 
monoamine transporter 1 (VMAT1) transports all monoamines to the storage vesicles 
without certain substrate specificity, in contrast to the plasma membrane transporters, 
which show high substrate specificity (see review Torres et al. 2003). 

VMAT2 is an integral membrane protein having 12 transmembrane domains (TMD), 
of which TMD 5-8 and 9-12 seem to be required for the high affinity interactions of 
VMAT2 with monoamines (Peter et al. 1996). Particularly Pro-237 in TMD 5-8 is needed 
for the high affinity for histamine (Finn III and Edwards 1998). During the transport, 
VMAT2 uses the pH gradient across the vesicle membrane generated by vacuolar H+-
ATP-ase to drive the uptake (see review Johnson 1987). In the cell soma, VMAT2 is 
located to the trans-Golgi network (Nirenberg et al. 1995, 1996, 1997). In the axon, 
VMAT2 is found in large dense core vesicles (LDCV) and small synaptic vesicles (SSV), 
and in dendrites, in tubulovesicular structures (Nirenberg et al. 1995, 1996, 1997).



 Review of the Literature 23

Figure 6. Histamine synthesis and inactivation. The imidazole nitrogen next to the side-chain 
residue is designed as “pros” and one further “tele”. Grey area indicates the main metabolic 
pathway occurring in the CNS. (Based on Martres et al. 1975, Hough and Domino 1979, Joseph 
et al. 1990, Lin et al. 1993, Ambroziak and Maslinski 1998, Kitanaka et al. 2001, Elmore et al. 
2002). 
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2.1.4.4. Histamine release 
Tonic histamine release follows a circadian rhythm, which parallels the change in firing 
rate over the sleep-wake cycle (Mochizuki et al. 1992). In addition, histamine release 
from the posterior hypothalamus follows much faster, ultradian rhythm, which correlates 
with the delta and theta bands in the electroencephalographic recordings (Prast et al. 
1997).

Tritiated [3H] histamine synthesized from [3H] histidine is released from various 
brain regions by depolarization induced by K+ ions or electrical stimulus (Verdiere at al. 
1975, Arrang et al. 1983, van der Werf et al. 1987). Furthermore, release of [3H] histamine 
from depolarized slices is completely inhibited in the absence of Ca2+ suggesting that 
histamine release results from opening of the voltage-sensitive Ca2+ channels (Verdiere 
at al. 1975, van der Werf et al. 1987). The release mechanism is suggested to be similar 
to those operating for other neurotransmitters.

Morphologically, histamine is suggested to be released mainly from axonal varicosities 
by the mechanism of volume transmission, since histaminergic neurons rarely form 
synapses (Hayashi et al. 1984, Wouterlood et al. 1986). However, somatodendritic release 
mechanism is also possible, since it has been shown to occur in other monoaminergic 
neurons (Kalivas and Duffy 1991, Heeringa and Abercrombie 1995, see review Adell 
and Artigas 2004, see review De-Miguel and Trueta 2005, Huang et al. 2007). Whether 
somatodendritic release takes place also in the histaminergic neurons remains to be 
studied.

2.1.4.5. Histamine reuptake
After release, monoamine neurotransmitters are usually recycled by taking them back to 
the cell by the substrate specific plasma membrane transporters (see review Torres et al. 
2003). Histamine uptake system in neurons in the CNS has been a question mark, since 
no substrate specific system has been found so far. However, histamine uptake has been 
described in several other cell types such as in photo- and mechanoreceptors of arthropods 
(Stuart et al. 1996, Melzig et al. 1998, Morgan et al. 1999), murine hematopoietic 
progenitor cells (Corbel et al. 1995), vertebrate astrocytes, and cerebral endothelial cells 
of the capillaries (see review Huszti 2003). Moreover, studies with HDC knock out (KO) 
mice have shown that even if the animals can not synthesize histamine, they still have 
histamine in several tissues such as in brain, skin, stomach and spleen (Ohtsu et al. 2002). 
In addition, Michelsen and co-workers (2005) described histamine immunoreactivity 
without HDC immunoreactivity in mouse and rat suprachiasmatic nucleus indicating 
that these cells might have a specific uptake system for histamine. Recently, by using 
in vitro uptake techniques histamine uptake system has been detected in synaptosomes 
of the rat brain (Sakurai et al. 2006). These studies indicate that histamine might have a 
substrate specific uptake system, but further studies are needed to specify whether this 
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system is specific for only histamine or if it can take up several transmitters as organic 
cation transporters do (Amphoux et al. 2006).

2.1.4.6. Histamine inactivation 
In general, three main types of enzymes including methyltransferase, amine oxidase 
and aldehyde hydrogenase, are involved in monoamine degradation process (see review 
Medina et al. 2003). Histamine catabolism in most tissues, including the brain, begins 
with methylation reaction, in which histamine N-methyltransferase (EC 2.1.1.8.) 
catalyses the transfer of a methyl group from S-adenosyl-L-methionine to histamine 
producing N-tele-methylhistamine (Reilly and Schayer 1971, Kitanaka et al. 2001) (Fig. 
6). In the CNS and gastric enterocromaffin cells, methylated tele-methylhistamine can 
be further oxidized by MAO-B (EC 1.4.3.4.) (Hough and Domino 1979, Lin et al. 1993, 
Okauchi et al. 2004). In many peripheral tissues and to some extent also in the CNS, tele-
methylhistamine and histamine can be oxidized by diamine oxidase (previously known 
as histaminase, EC 1.4.3.6.) (Jimenez Diaz et al. 1950, Elmore et al. 2002). 

Oxidized compounds, imidazoleacetaldehyde and tele-methylimidazoleacetaldehyde
, are further hydrolyzed by aldehyde dehydrogenase (1.2.1.3.) producing the end products 
imidazoleacetic acid and tele-methyl imidazoleacetic acid, respectively (Gitomer and 
Tipton 1983, Ambroziak and Maslinski 1998, Ambroziak and Pietruszko 1991). 

2.1.5. Histamine receptors  
Released histamine mediates its response mainly through four histamine activated 
guanosine nucleotide-binding protein-coupled receptors (GPCR). In addition, histamine 
has been shown to activate chloride channels and N-methyl-D-aspartate (NMDA) 
receptors (see reviews Hill et al.1997, Haas and Panula 2003). 

GPCRs are among the oldest signal transduction proteins being present in yeast, plants, 
protozoa, and metazoan (see review Fredriksson and Schiöth 2005). These receptors are 
activated by a highly diverse set of signals including light, odorants, cations, amines, amino 
acids, peptides, large proteins, lipids and sugars (see review Deupi and Kobilka 2007). 

GPCRs have seven transmembrane domains, which are connected by three 
intracellular and three extracellular loops. The amino terminus is located in the 
extracellular space, whereas the carboxyl terminus shows an intracellular location (see 
review Kobilka 2007). The G protein, which is linked to the transmembrane receptor, 
consists of α, β and γ subunits. The classification of GPCRs is based on the amino acid 
identities and functional specialization of their G protein α (Gα) subunits (see review 
Simon et al. 1991). After ligand binding, the transmembrane receptor interacts with the G 
protein inducing a conformational change, which causes guanosine triphosphate (GTP) 
to displace guanosine diphosphate (GDP). The activated G protein then binds either to 
an ion channel changing its activity or to an effector enzyme, which in turn may change 
activity of an ion channel or other GPCRs (indirectly), activate intracellular enzyme 



26 Review of the Literature

cascades, or regulate gene expression. Distribution and responses of H1, H2, H3 and H4 
receptors are reviewed separately. 

2.1.5.1. H1 receptor
By using H1 specific radioligands, H1 receptors have been shown to be expressed in 
various tissues including mammalian brain, smooth muscle in airways, gastrointestinal 
tract, genitourinary system, cardiovascular system, adrenal medulla, endothelial cells 
and lymphocytes (see review Hill et al. 1997). In the rat brain, [3H]mepyramine labelling 
indicates high densities of H1 receptors in bed nucleus stria terminalis, hippocampus, 
hypothalamus, amygdala, pons, and medulla (Palacios et al. 1981), which mostly 
agrees with the H1 receptor messenger ribonucleic acid (mRNA) expression pattern 
(Lintunen et al. 1998). In the hippocampus, high densities of H1 receptor are found in 
the polymorphic and molecular layer of the CA3 region, and in the polymorphic layer of 
hilus of the dentage gyrus (DG) (Palacios et al. 1981). 

In the CNS, H1 receptor activation is mainly connected to the formation of inositol 
1,4,5-trisphosphate (IP3), and elevation of intracellular Ca2+ (Daum et al. 1984, Carswell 
and Young 1986, Claro et al. 1986, Sarri et al. 1995) (Fig.6). H1 receptor belongs to the 
Gq subfamily of GPCRs (based on the classification of the Gα subunit). The members of 
this subfamily are regulators of phosphatidylinositol-specific phospholipase C (PLC) β 
isoform, and include subunits Gαq, Gα11, Gα14, Gα15/16 (Ho and Wong 2002). 

 In more detail, H1 receptor mediated activation of PLC leads to the formation of 
two second messengers, inositol 1,4,5-trisphosphate (IP3) and 1,2-diacylglyserol (DAG) 
(Fig.7). The main physiological consequence of IP3 production, as previously mentioned, 
is the elevation of intracellular Ca2+, whereas DAG activates protein kinase C (PKC). 
Consequences of elevated intracellular Ca2+ are diverse: histamine-induced opening of the 
Ca2+-activated non-specific cation channel causes depolarization in vasopressin neurones in 
the supraoptic nucleus (Smith and Armstrong 1996), whereas opening of the Ca2+-dependent 
K+ channels causes hyperpolarization of the C6 glia cells (Weiger et al. 1997). Moreover, 
H1 receptor-mediated block of a leak potassium conductance results in depolarization in 
the thalamus (McCormick and Williamson 1991), striatum (Munakata and Akaike 1994), 
cortex (Reiner and Kamondi 1994), and suprachiasmatic nucleus (Li and Hatton 1996, 
Li et al. 1999). This has been shown to occur both Ca2+-dependently and independently. 
Alternative pathways (dotted lines in Fig. 7) such as the formation of a Ca2+/calmodulin 
complex and nitric oxide synthetase (NOS) activation, phospholipase A (PLA)-mediated 
formation of prostacyclin and tromboxane A2, and modulation of adenylate cyclase (AC) 
activity have also been shown to be related to H1 receptor activation (Baenziger et al. 
1980, Resink et al. 1987, Leurs et al 1994, Hishinuma and Ogura 2000, Li et al. 2003). H1 
receptor mediated responses through PLC-DAG-PKC pathway are not well understood 
but the pathway might be connected to the enhancement of the NMDA receptor activity 
(Chen and Huang 1992, Payne and Neuman 1997). 
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Figure 7. H1 receptor-mediated intracellular pathways. Dotted lines indicate the alternative H1 
receptor-mediated pathways in the case of AC or PLA activation. Abbreviations: AA=aracidonic 
acid, AC=adenylate cyclase, cAMP=cyclic adenosine monophosphate, cGMP=cyclic guanosine 
monophosphate, CREB=cAMP response element-binding protein, DAG=1,2-diasylglyserol, 
GC=guanylate cyclase, IP3=inositol 1,4,5-trisphosphate, NO=nitric oxide, NOS= nitric 
oxide synthetase, PKA=protein kinase A, PKC=protein kinase C, PKG=protein kinase G, 
PLA=phospholipase A and PLC=phospholipase C. (Based on Daum et al. 1984, Sarri et al. 1995, 
Smith and Armstrong 1996, Weiger et al. 1997, McCormick and Williamson 1991, Bredt  and 
Snyder 1990, Resink et al. 1987, Leurs et al 1994, Payne and Neuman 1997).

2.1.5.2. H2 receptor
H2 receptor-mediated responses have been detected in the brain, gastric mucosa, cardiac 
tissue, adipose tissue, airways, uterine, and immune system (see review Hill et al. 1997). 
[125I]-iodopotentidine binding and in situ hybridization studies in the guinea pig brain 
show high H2 receptor densities in superficial cerebral cortex (layers I-III), hippocampus, 
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basal ganglia, amygdala, bed nucleus stria terminalis, superior colliculus, substantia 
nigra, ventral tegmental area, and inferior olive (Vizuete et al. 1997). In the rat brain, in 
situ hybridization studies show the most prominent expression of H2 receptor mRNA in 
hippocampus, piriform cortex, subrachiasmatic nucleus, and cerebellum (Karlstedt et al. 
2001). In the hippocampus, highest levels of [125I]-iodopotentidine binding were detected 
in the CA1 region, and the pre- and parasubiculum (Vizuete et al. 1997). Moderate 
expression of H2 receptors was found in the DG, and low expression in the CA2, CA3 
regions, and in the subiculum. In situ hybridization studies in the hippocampal region 
show high H2 receptor mRNA expression in the pyramidal cells of CA1, CA2 and CA3 
regions, granular and polymorphic layers of the DG, and in subicular complex both in 
guinea pig (Vizuete et al. 1997) and rat  brain (Karlstedt et al. 2001). 

The main H2 receptor signalling pathway is positively coupled to the AC converting 
adenosine 5’-triphosphate (ATP) to cyclic adenosine monophosphate (cAMP), which 
acts as a second messenger molecule in the CNS (Palacios et al. 1978, Al-Gadi et al. 
1985, Ozawa and Segawa 1988, Agullo et al. 1990) (Fig. 8). G proteins of this subfamily 
include subunits Gαs, Gαs(long), Gαs(short), Gαolf, and XLGαs and they all stimulate AC (Ho 
and Wong 2002). AC initiates cAMP-protein kinase A (PKA) pathway activation, which 
may either modulate ion channel activity or regulate gene expression through the cAMP 
response element-binding (CREB). 

Electrophysiological data indicate that histamine activates cAMP-PKA pathway 
through H2 receptors leading to the suppression of the Ca2+-dependent K+ current (IAHP), 
and increase in neuronal excitability (Haas 1984). The second ion current, which has been 
shown to be regulated by H2 receptor, is the hyperpolarization-activated cation current 
(Ih) (McCormick and Williamson 1991), which is a slow inward current consisting of 
Na+and K+ ions, and is turned on by hyperpolarization of the cell. H2 receptor leads to the 
enhancement in Ih by changing the voltage sensitivity of Ih to more positive, which results 
in a strong reduction in the response of the neuron to hyperpolarizing current pulses, 
while the ability of depolarizing current pulses to generate action potentials is slightly 
enhanced. The third ion current related to H2 receptor activation and PKA phosphorylation 
modulates an outward current through the Kv3.2 containing potassium channels (Atzori et 
al. 2000). Kv3.2 is a potassium channel subunit, predominantly expressed in the inhibitory 
interneurons permitting high frequency firing in the hippocampus (Atzori et al. 2000, 
Lien et al. 2002). H2 receptor mediated modulation of Kv3.2 subunit occurs through 
phosphorylation of Kv3.2 by PKA, which lowers the maximum firing frequency of the 
inhibitory neurons, which in turn reduces high-frequency population oscillations in the 
principal cell layer (Atzori et al 2000). 

In addition to elevation of cAMP levels via Gs-proteins, H2 receptors have been 
described to activate PLC via different G proteins leading to increase in both IP3 and 
intracellular Ca2+ levels (Delvalle et al. 1992, Seifert et al. 1992, Kuhn et al. 1996, 
Koizumi and Ohkawara 1999) (dotted lines in Fig. 8). 
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Figure 8. H2 receptor mediated intracellular pathways. Dotted lines indicate the alternative H2 
receptor mediated pathways in case of AC or PLA activation. Abbreviations: AA=aracidonic 
acid, AC=adenylate cyclase, cAMP=cyclic adenosine monophosphate, CREB=cAMP response 
element-binding protein, IP3=inositol 1,4,5-trisphosphate, PKA=protein kinase A, and 
PLC=phospholipase C. (Based on Palacios et al. 1978, Haas 1984, Al-Gadi et al. 1985, Ozawa 
and Segawa 1988, McCormick and Williamson 1991, Atzori et al. 2000) 

2.1.5.3. H3 receptor
In the radioligand binding studies, H3 receptors have been detected in the CNS and 
several peripheral tissues including intestine, pancreas and lung (see review Hill et al. 
1997). Functional evidence suggests that H3 receptors are also expressed in sympathetic 
autonomic nerves and vascular endothelial cells (Hill et al. 1997). H3 receptor mRNA 
expression studies indicate that H3 receptor may also be expressed in several embryonic 
tissues including the liver and adipose tissue (Heron et al. 2001, Karlstedt et al. 2003).

In the brain, high or moderate densities of H3 receptor have been shown in cerebral 
cortex, hippocampus, amygdala, nucleus accumbens, striatum, olfactory tubercles, and 
substantia nigra (Pollard et al. 1993). The distribution correlates well with the histaminergic 
innervation suggesting autoregulation of histamine release in these regions. However, 
mismatches between the histaminergic innervation and the H3 receptor distribution 
have been detected in the hypothalamus, in which the histaminergic innervation is more 
abundant than the H3 receptor expression (Pollard et al. 1993). Moreover, in the thalamus, 
the H3 receptor expression is denser than histaminergic innervation. The high receptor 
expression and low histaminergic innervation might indicate inhibition of the release of 
other neurotransmitters through the heteroreceptor-mediated action. In the hippocampus, 
H3 receptor binding is most abundant in the DG and subiculum (Pollard et al. 1993).
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The H3 receptor inhibits formation of cAMP, which indicates that it belongs to the 
G protein subfamily known as inhibitory Gα subunits. These G proteins are negative 
regulators of AC having three Gαi subtypes (Gαi1, Gαi2, Gαi3), and in some cells Gαiz 

and Gαo, (Ho and Wong 2002). 
H3 autoreceptors are located in the histaminergic cell body, dendrites and axon (see 

review Haas and Panula 2003). Through this autoreceptor function, histamine is able 
to inhibit its own synthesis and release (see review Arrang et al. 2007). Autoreceptor 
mediated responces are regulated via the cAMP-PKA pathway (Morisset et al. 2000, 
Gomez-Ramirez et al. 2002). Finally, H3 autoreceptors show constitutive activity, which 
means that the intracellular cascades related to H3 receptor can be activated without 
receptor activation by a specific agonist  (see review Arrang et al. 2007).

H3 receptors are also located to the other cell types and this heteroreceptor function of 
the H3 receptor is related to inhibition of synthesis and release of glutamate (Brown and Haas 
1999, Garduno-Torres et al. 2007), GABA (Garcia et al. 1997, Arias-Montano et al. 2001), 
acetylcholine (Arrang et al. 1995), noradrenalin (Schlicker et al. 1992, Yamasaki et al. 2001, 
Seyedi et al. 2005), dopamine (Schlicker et al. 1993, Molina-Hernandez et al. 2000, Sanchez-
Lemus et al. 2004), and serotonin (Schlicker et al. 1988, Schworer et al. 1994). 

The other intracellular pathways related to H3 receptor include release of aracidonic 
acid (AA) (Morisset et al. 2000, Rouleau et al. 2002), the mitogen-activated protein kinase 
(MAPK) pathway (Drutel. et al. 2001), and negative coupling to PLC (Cherifi et al. 1992). 

2.1.5.4. H4 receptor
H4 receptor is expressed at high levels in blood mononuclear cells and in such tissues, 
which contain high concentrations of blood cells (Liu et al. 2001, Zhu et al. 2001). For 
example, bone narrow and lung express H4 receptors. In the brain, the in situ hybridization 
studies show H4 receptor mRNA expression in the hippocampus (Zhu et al. 2001).

Similarly to the H3 receptor, the H4 receptor belongs to the family of the Gi/o coupled 
receptors. This has been verified by cloning the H4 receptor, and also with studies carried 
out in transfected cells, which show that H4 receptor inhibits cAMP accumulation 
(Nakamura et al. 2000, Oda et al. 2000, Liu et al. 2001).

Physiological significance of the H4 receptor is not yet fully understood. In the first 
place, it seems to be related to the immune system. H4 receptor antagonists have shown 
promising effects on down-regulating immune responses in various animal disease 
models including acute inflammation, hapten-mediated colitis, and allergic airway 
inflammation (see review Zhang et al. 2007).

2.1.5.5. Ionotropic receptors regulated by histamine
In the insect eye and lobster olfactory receptor neurons, histamine directly activates a 
chloride channel (Hardie 1989, McClintock et al. 1989, Gengs et al. 2002, Witte et al. 
2002). Whether these channels are also activated by GABA remains to be studied. In the 
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vertebrate nervous system, oxytocin neurons of the supraoptic nucleus respond to single 
TM stimuli with fast inhibitory postsynaptic potentials (IPSPs), whose kinetics resemble 
those of GABAA receptors (Hatton and Yang 2001). Recently, Saras and co-workers 
(2008) reported that histamine can potentiate (and possibly even gate) GABAA receptor 
responses in Xenopus oocytes. 

Histamine also enhances NMDA receptor-mediated currents in acutely isolated and 
cultured hippocampal pyramidal cells (Bekkers 1993, Vorobjev et al. 1993). This effect 
could not be blocked by any of the H1, H2 or H3 antagonists suggesting that histamine 
acts primarily on the polyamine site of the NMDA receptor. However, the enhancing 
effect shown in cell cultures has been difficult to repeat in acute hippocampal slices 
(Saybasili et al. 1995, Bekkers et al. 1996). One explanation for that might be the pH 
dependence of this phenomenon (Saybasili et al. 1995).

2.1.6. Postnatal development of the brain histaminergic system 
In the rat brain, histamine content is usually low at birth but increases rapidly until 
postnatal day 4 (P4) (Pearce and Schanberg 1969) (Fig. 10) or P10 (Hough et al. 1982).  
In study of Martres and co-workers (1975), the brain histamine content is at the maximal 
level already at P1. After rapid increase, the brain histamine content decreases to the 
adult levels during the first 2-3 weeks. On the contrary, the HDC activity is low at P5 
increasing very slowly until P16, thereafter its rapid increase lasts until P30, when 
the adult level of the HDC activity is reached (Martres at al. 1975, Ryu et al. 1995). 
The discrepancy between the high histamine content and the low HDC activity during 
development is not fully understood, but one explanation can be histamine storage in 
mast cells, which has been discussed in several studies (Martres at al. 1975, Hough et al. 
1982). Indeed, high histamine levels seem to be distinct from neuronal histamine since 
the synaptosomal fraction of histamine increases from P5 until P30 (Martres at al. 1975). 
This indicates that levels of the neuronal histamine increase with the same pattern as 
the HDC activity, which in turn correlates well with the maturation of the histaminergic 
cells, fibres, and histamine receptors.

The histamine-immunoreactive neurons can be detected at the earliest at the 
embryonic day 13 (E13) (Auvinen and Panula 1988). During the first postnatal week, 
the histaminergic neurons occur in the three magnocellular nuclei, and by P14, the 
histamine-positive neurons show adult-like distribution (Auvinen and Panula 1988). 

The first histaminergic fibers can be detected around the histaminergic cell bodies 
at E15 (Auvinen and Panula 1988). At P1, densely packed fibres are seen in the 
hypothalamus, olfactory bulb and nucleus, septum and supraoptic nucleus. Fewer fibers 
are detected for example in the thalamus, cortex and amygdala. In the hippocampus, 
the histaminergic innervation can be detected only in the most temporal parts. By P14, 
the histaminergic innervation increases throughout the cerebral cortex having a very 
high or high density also in supraoptic and olfactory nucleus, diagonal band of Broca, 
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hypothalamus, septum, bed nucleus stria terminalis, amygdala, substantia nigra, and 
vestibular nucleus (Auvinen and Panula 1988). Temporal parts of the hippocampus 
receive moderate density of histaminergic innervation.

The H1 receptor binding is first detected in the hypothalamus at P2 (Ryu et al. 1995). 
From P2 until P9 is the period of slow increase in the H1 receptor expression in the 
hypothalamus, cortex, striatum, hippocampus, amygdala, thalamus and substantia nigra. 
From P9 to P16, the H1 receptor expression rapidly increases to the adult levels in the 
hypothalamus, hippocampus and amygdala (Fig. 9), whereas in the other studied brain 
areas the H1 receptor densities remain quite low. Moreover, although the histamine-
induced phosphoinositide hydrolysis is present already in the newborn rat, the potency 
of histamine to induce the H1 receptor-specific second messenger activation gradually 
decreases with the age (Claro et al. 1987). 

The H3 receptor binding is not detectable until P9 (Ryu et al. 1995). At P9, the 
densities of H3 receptor are higher in the substantia nigra than in other brain regions. 
The H3 receptor binding is gradually increased reaching the adult levels by P16 in 
the substantia nigra, and in other brain regions such as the cortex, striatum, thalamus, 
hypothalamus, hippocampus and nucleus accumbens by P23 (Fig. 9).

Figure 9.  Schematic picture of the development of the central histaminergic system. Abbreviations: 
H1 receptor=histamine 1 receptor, H3 receptor=histamine 3 receptor, HA=histamine, 
HDC=histidine decarboxylase. (Based on Pearce and Schanberg 1969, Martres at al. 1975, 
Auvinen and Panula 1988, Ryu et al. 1995).

2.1.7. Physiological significance of the central histaminergic system 
In several studies, histaminergic neurons have been shown to be involved in the regulation 
of brain functions related to arousal, sleep, attention, learning and memory. Furthermore, 
location of the histaminergic neuron system in the posterior hypothalamus makes it a 
powerful modulator in several hypothalamic nuclei. In this way the histaminergic system 
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can participate in the regulation of for example body temperature, blood pressure, liquid 
and food consumption, and hormonal release. 

2.1.7.1. Arousal and sleep regulation 
The sedative effect of the first generation antihistamines already indicated that histamine 
is involved in the regulation of alertness (Lin et al. 1988, Saitou et al. 1999, Kaneko et 
al. 2000). In the control of sleep-wake rythmicity, the suprachiasmatic nucleus (SCN) is 
suggested to play a key role, since the circadian clock genes of the SNC are switched 
on and off according to the endogenous rythmicity (see reviews Buijs and Kalsbeek 
2001, Mignot et al. 2002) (Fig. 10). Furthermore, neurons of the SCN control directly the 
wake-promoting orexin neurons of the lateral hypothalamus (LH), and sleep promoting 
GABAergic/galanininergic of the ventrolateral preoptic area (VLPO) (see review Mignot 
et al. 2002). Hypocretin/orexin containing neurons in turn increase histamine release, 
and induce wakefulness (Bayer et al. 2001, Eriksson et al. 2001, Huang et al. 2001, 
Ishizuka et al. 2002), while sleep-promoting VLPO neurons have inhibitory effect on the 
histaminergic neurons (Yang and Hatton 1997, Shering et al. 1998, Stevens et al. 1999, 
see review Mignot et al. 2002) (Fig. 10). Histamine together with the other monoamines 
controls thalamocortical activity causing desynchronization during wakefulness and 
synchronization during sleep (see reviews Steriade 1996, Pace-Schott and Hobson 2002).

Figure 10. Tuberomammillary histaminergic (HA) neurons participate in sleep regulation. A, A 
schematic picture of the rat brain, and the abbroximal location of the brain regions, which are involved 
in sleep regulation. Suprachiasmatic nucleus (SCN) controls diurnal activity of different cell groups 
in the hypothalamus. B, A schematic picture of the relationships between different brain regions 
which are involved in the sleep-wake regulation. Wake-promoting orexin neurons in the lateral 
hypothalamus (LH) activate histaminergic (HA) neurons in the tuberomamillary nucleus (TM), 
noradrenergic (NA) neurons in the locus coeruleus (LC), serotonergic (5-HT) neurons in the dorsal 
raphe (DR), and cholinergic (ACh) neurons in the basal forebrain (BF) and mesopontine tegmentum 
(MT). Sleep promoting GABAergic/galaniniergic (gal) in the ventrolateral preoptic area (VLPO) in 
turn inhibit histaminergic, noradrenergic and serotonergic neurons. Abbreviations: BS=brain stem, 
CX=cortex, HY=hypothalamus, TA=thalamus. (Modified from Mignot et al. 2002). 
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2.1.7.2. Attention, learning and memory
A well focused attention is an essential condition for learning and memory processes. A 
recent theory about attention suggests that attention is controlled by a set of independent, 
anatomically separate networks which control differentially intrinsic alertness, phasic 
alertness, orientation, and execution (which are separated functions of attention) (Posner 
et al. 2006, see review Raz and Buhle 2006, Fan et al. 2007). According to this definition, 
histamine is involved at least in the intrinsic alertness, as it was discussed in the previous 
chapter. Otherwise, role of histamine in modulation of attention has been studied in 
animal models of the passive avoidance and five-choice reaction time test, in which 
H3 receptor antagonists (i.p.), which increase brain histamine levels, enhance attention 
(Ligneau et al. 1998). 

Spatial learning and memory, in which the hippocampus plays a major role, are 
improved after the bilateral lesion of the TM nucleus (Frisch et al. 1998). In accordance 
with that, HDC KO animals display improvement in the water maze performance (Dere 
et al. 2003). Furthermore, the H1 receptor antagonist ameliorates spatial learning in old 
rats indicating that histamine mediated effects occur through H1 receptors (Hasenöhrl 
et al. 1999). Also in the contextual fear conditioning, which measures learning skills 
primarily based on activation of the amygdala, injection the H3 receptor agonist to the 
basolateral amygdala improves learning and memory (Cangioli et al. 2002), while and 
the H3 antagonist induces an amnesic effect, which is suggested to be caused by decrease 
in release of acetyl choline mediated by H2 receptor (Passani et al. 2001).

On the contrary to spatial learning, object recognition and social memory are impaired 
after the α-FMH and the H3 receptor agonist treatment and in the HDC KO mice, which 
all decrease brain histamine levels (Prast et al. 1996, Giovannini et al. 1999, Dere et al. 
2003), whereas an injection of histidine, histamine or the H3 receptor antagonist induces 
the opposite effect (Prast et al. 1996, Giovannini et al. 1999).  

In conclusion, different learning protocols seem to provide different results, which 
might be connected to the brain region related to certain learning protocol and type of 
histamine receptors, which are expressed in that brain region. In addition, when H3 
receptor function is modulated by agonists or antagonists, the constitutive activity of H3 
receptor may effect on results.

2.1.7.3. Histaminergic control of the body homeostasis 
Many nuclei controlling body homeostasis reside in the hypothalamus. Therefore, location 
of the histaminergic neurons to the posterior hypothalamus and dense histaminergic 
innervation in the surrounding area make histamine a powerful modulator of the adjacent 
hypothalamic nuclei. Physiological responses such as cardiovascular functions, fluid 
balance, lactation, and food intake are controlled by histamine.

Histaminergic neurons modulate cardiovascular responses directly through histamine 
receptors located to the vascular or cardiac cells or indirectly by activating sympatho-
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adrenal axis and/or regulating the release of vasopressin (Bealer and Abell 1995, Armour 
1996). Electrical stimulation of the TM nucleus or administration of histamine to the 
paraventricular nucleus of a conscious rat has been shown to increase the mean arterial 
blood pressure, which is suggested to occur through histamine-mediated activation of 
the noradrenergic neurons (see Table 2) (Akins and Bealer 1993, Bealer and Abell 1995). 
Heart rate can be modulated by electrical stimulation of the TM nucleus or histamine 
administration to the paraventricular nucleus, both inducing tachycardia (Akins and 
Bealer 1993, Bealer and Abell 1995), while intracerebroventricular injection of histamine 
results in bradycardia (Klein and Gertner 1981, Poulakos and Gertner 1989). 

Fluid balance of the body is controlled primarily by the regulation of vasopressin 
release. In general, increased levels of vasopressin in the organism increase water 
resorption from the kidney, which leads to the concentration of urea increasing the 
amount of water in the organism (see review Antunes-Rodrigues et al. 2004). In the rat, 
histamine increases release of vasopressin through both H1 and H2 receptors, and partly 
by activating the noradrenergic system (Kjaer et al. 1998, Knigge et al. 1999, Radács et 
al. 2006). Furthermore, dehydration has been shown to activate histaminergic neurons, 
which in turn induces release of vasopressin via both the H1 and H2 receptors (Kjaer et 
al. 1994, Kjaer et al. 2000). 

Release of oxytocin and consequently oxytocin-mediated physiological responses 
in pregnancy, parturition, lactation and sexual behaviour are also modulated by the 
central histaminergic system. Histamine administered intracerebroventricularly or to 
the paraventricular nucleus induces increase in oxytocin mRNA levels and release of 
oxytocin through both H1 and H2 receptors (see Table 2) (Kjaer et al. 1998, Bealer and 
Crowley 1999, Knigge et al. 1999, Radacs 2006). This is in accordance with the natural 
physiological responses during pregnancy and lactation, as the expression of HDC 
mRNA in increased at the end of pregnancy and during lactation (Luck man and Larsen 
1997). Furthermore, inhibition of histamine synthesis or blocking of H1 receptors cause 
decrease in suckling-induced oxytocin release and delay in the birth of pups, respectively 
(Schagen et al. 1996, Luckman and Larsen 1997, Bealer and Crowley 2001). 

Hypothalamus is involved in the control of feeding behaviour. Destruction of the 
hypothalamic ventromedial, paraventricular and dorsomedial nuclei results in an 
abnormal increase in appetite and food intake, while lesions of the lateral hypothalamus 
reduces food intake (see review Horvath and Diano 2004). An intracereproventricular 
injection of histidine, histamine or H3 receptor antagonist, which all increase the brain 
histamine levels, depress feeding (Sheiner et al. 1985, Itowi et al. 1988, Masaki et al. 
2003, Malmlöf et al. 2006, Malmlöf et al. 2007). In addition, H1 receptors seem to be 
involved in the feeding behaviour since their activation depresses feeding (Lecklin et 
al. 1998), whereas H1 receptor antagonists elicit it (Sakata et al. 1988, Mercer et al. 
1994). Table 2 summarises the main physiological responses related to the histaminergic 
modulation of body homeostasis.
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Table 2.  Examples of physiological responses, which are modulated by the central histaminergic 
neurons. 

Physiological system involved Func�onal effect of histamine Reference

Cardiovascular system Rise of blood pressure and  
increase/decrease of heart rate 

Klein and Gertner 1981, Poulakos 
and Gertner 1989, Akins and 
Bealer 1993,
Bealer and Abell 1995

Fluid balance Enhanced release of vasopressin 
(in vivo and in vitro) → 
concentra�on of urea → increase 
in amount of water in organism

Kjaer et al. 1998, Knigge et al. 
1999, Radács et al. 2006

Dehydrata�on induces ac�va�on 
of histaminergic neurons, 
which in turn induce release of 
vasopressin (in vivo)

Kjaer et al. 1994, Kjaer et al. 2002 

Pregnancy, parturi�on, lacta�on, 
sexual behavior

Enhanced release of oxytocin (in 
vivo and in vitro)

Kjaer et al. 1998, Bealer and 
Crowley 1999, Knigge et al. 1999, 
Radács et al. 2006

Food intake Suppressed food intake Sheiner et al. 1985, Itowi et al. 
1988, Meade and Denbow 2001, 
Masaki et al. 2003, Malmlöf et al. 
2005, Malmlöf et al. 2007

2.1.8. Histaminergic system and epilepsy
The brain histamine levels have been shown to be significantly lower in epilepsy-
prone Krushinski-Molodkina rats, when compared to the epilepsy-resistant Wistar rats 
(Onodera et al. 1992). This is in accordance with the clinical study, in which histamine 
concentration measured from the cerebrospinal fluid was significantly lower in children 
with febrile seizures, when compared to the group of febrile children without seizures 
(Kiviranta et al. 1995). However, in normal rats, systemic KA administration increases 
brain histamine levels and number of histamine-immunoreactive fibres in several brain 
regions, which might be a compensatory effect of histamine on KA-induced changes in 
the brain (Lintunen et al. 2005). 

Increased histamine levels or electrical stimulation of the posterior hypothalamus 
have been shown to inhibit seizures in several earlier studies, whereas lesion of the TM 
nucleus or inhibition of histamine synthesis shows the opposite effect. For example, 
in the pentylenetetrazol (PTZ)-induced seizures, injection of L-histidine and metoprine 
(inhibitor of HNMT) increase brain histamine levels and seizure threshold in mouse 
(Scherkl et al. 1991). In addition, histamine significantly and dose-dependently decreases 
frequency of seizures in the PTZ-induced seizure model in mouse (Yokoyama et al. 
1994a). In the PTZ kindling model in rat, L-histidine prolongs latency for onset of 
myoclonic jerks and generalized clonic seizures (Chen et al. 2002). Finally, deep brain 



 Review of the Literature 37

stimulation of the posterior hypothalamus during the PTZ-induced seizures in rat activates 
the histaminergic system and cause desynchronization of cortical electroencephalogram 
(EEG) decreasing the seizure-like activity (Nishida et al. 2007).

In the amygdaloid kindling in rat, L-histidine, histamine and metoprine increase brain 
histamine levels and prolong latency to the onset of bilateral forelimb clonus (Wada et al. 
1996). In addition, they cause significant inhibition of seizure stage and decrease duration 
of afterdisharge (AD) (Kamei et al. 1998, Kakinoki et al. 1998, Okuma et al. 2001, 
Kamei et al. 2001). In electrically-induced seizures (100 Hz, 30mA, 0.1 s), histamine 
significantly and dose-dependently decrease duration of tonic, clonic, and convulsive 
coma phase in rat (Yokoyama et al. 1994a). Moreover, in vestibular stimulation-induced 
seizures in mouse, L-histidine and metoprine induce delay in onset of seizure episode 
(Yawata et al. 2004). Finally, in transauricular kindled seizures in rat, L-histidine dose-
dependently inhibits tonic hindlimb extension (Li et al. 2005).

On the contrary, lesion of the TM E2 nucleus or intracerebroventricular injection of 
α-FMH attenuates postictal seizure protection during intermittent maximal electroshock 
(MES) (Jin et al. 2007), which normally produces a progressive decrease in seizure severity 
with the motor pattern scores and durations of tonic fore- and hindlimb extension (Tortella 
et al. 1985). Furthermore, HDC-deficient mice show significantly accelerated development 
of amygdaloid and PTZ kindled seizures when compared to their respective wild-type 
mice (Chen et al. 2003, Hirai et al. 2004). In addition, AD duration and generalized seizure 
duration were prolonged in HDC KO mice (Hirai et al. 2004). 

H3 receptor is an important regulator of seizures because of its autoreceptor function. 
H3 receptor antagonists, which increase histamine synthesis and release in the brain, 
inhibit also epileptiform activity. H3 receptor antagonists, thioperamide and clobenpropit, 
significantly and dose-dependently decrease duration of tonic, clonic and convulsive coma 
phases in seizures induced by MES in mouse (Yokoyama et al. 1993 and 1994b, Fisher 
and Goot 1998, Harada et al 2004a). In PTZ-induced seizures in mouse, thioperamide 
significantly and dose-dependently prolonges latency and reduces the incidence of clonic 
generalized seizures (Vohora et al. 2000). In addition, clobenpropit dose-dependently 
inhibits seizure stages and prolongs latency for myoclonic jerks and clonic generalized 
seizures after PTZ kindling in rat (Zhang et al. 2003). In amygdaloid kindling model in 
rat, thioperamide and clobenpropit cause significant and dose-dependent inhibition of 
seizure stage and decrease in duration of AD (Kakinoki et al 1998, Kamei et al. 2001, 
Harada et al. 2004b). Also other H3 antagonists such as AQ-0145, iodophenpropit, VUF 
4929, VUF 5514, and VUF 5515 have been shown to be effective in inhibiting seizures 
(Murakami et al. 1995, Kamei et al. 2001, Harada et al. 2004a).

Histamine is suggested to produce partly its anticonvulsive effect through H1 
receptor. When H1 receptor is blocked by H1 receptor antagonists mepyramine and 
diphenhydramine (intravenous injection, 10 mg/kg), seizures can be induced without any 
other convulsive compound indicating that H1 antagonists are strongly proconvulsive 
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(Kamei et al. 2000). In addition, in several seizure models, H1 antagonists have been 
shown to eliminate the anticonvulsive effect of L-histidine, histamine, or H3 receptor 
antagonist (Yokoyama et al. 1993, 1994a and b, Murakami et al. 1995, Zhang et al. 2003, 
Kamei et al. 1998, Kakinoki et al. 1998). 

In amygdala kindling in rat, H1 receptor antagonists, mepyramine (pyrilamine) and 
ketitofen accelerate the rate of electrical stimulation to develop fully convulsive seizures 
(Yokoyama et al. 1996). In addition, mepyramine, ketotifen and diphenhydramine result 
in ictal activity in EEG and behavioural seizures in amygdala kindled rats at doses, which 
cause no or negliable seizures in sham rats (Fujii et al. 2003). In seizures induced by 
MES, ketitofen significantly diminish electroconvulsive threshold (Swiader et al. 2001). 
In addition, in 3-week-old rats, ketitofen and diphenhydramine significantly and dose-
dependently increase duration of ictal activity in EEG and tonic phase of behavioural 
seizures induced by MES (Ishikawa et al. 2007). Furthermore, in seizures induced 
by vestibular stimulation, mepyramine and diphenhydramine significantly and dose-
dependently decrease the number of tosses required to develop convulsive seizures, and 
increase duration of seizures (Sturman et al. 2001. On the contrary, most of the second 
generation antihistamines such as terfenadine, astemizole, epinastine, and loratadine, 
which do not penetrate the blood brain barrier, show no proconvulsant effect (Yokoyama 
et al. 1993, 1994a, 1996, Kamei et al. 2001). 

H1 receptor KO mice show accelerated development of PTZ-induced seizures when 
compared to their respective wild type mice (Chen et al. 2003). The development of 
amygdaloid kindled seizures was significantly accelerated in H1 receptor KO mice when 
compared to the wild-type mice (Hirai et al. 2004). In addition, duration of AD and 
generalized seizure were prolonged in H1 receptor KO mice (Hirai et al. 2004). 

H1 receptor agonist 2-thiazolylethylamine in turn decreases seizure susceptibility to 
PTZ and electrically induced seizures in mouse (Yokoyama et al. 1994a). In addition, 
2-methylhistamine and 2-thiazolylethylamine show dose-dependent suppressive effect 
on seizure stage and duration of AD in amygdaloid kindled seizures in rat (Kamei et al. 
2001). Finally, systemic KA administration induces increased expression of H1 receptor 
mRNA in the caudate-putamen and dentate gyrus, which may be seizure-induced 
compensatory effect (Lintunen et al. 1998).

In different seizure models, H2 receptor antagonists show no effect on several 
measured seizure parameters (Scherkl et al. 1991, Yokoyama et al. 1993, 1994a and 
b, Kakinoki et al. 1998, Seeley et al. 1999, Kamei 2001, Chen et al. 2002). Four H2 
receptor antagonists administered intracerebrally induced convulsions with ED50 values 
for convulsive occurrence: cimetidine 997 nmol, ranitidine 662 nmol, famotidine 23.4 
nmol, and nizatidine 404 nmol (Shimokawa et al. 1996). However, the concentrations 
of the H2 antagonists in the brain in this study were considerable higher than those 
penetrating to the CNS when H2 antagonists are used clinically.
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H2 receptor agonist drimaprit and amthamine have dose-dependently reduced the 
incidence of leptazol- and picrotoxin-induced seizures (respectively) in mouse (Seeley 
et al. 1999, Seeley and Sturman 2001).

Histaminergic system seems to potentiate the effect of the antiepileptic drugs. In the 
MES-induced seizures in mouse and transauricular kindled seizures in rat, L-histidine 
significantly enhanced the protective effect of carbamazepine (CBZ) and phenytoin 
(PHE) (Kaminski et al 2004). On the other hand, gabapentin (GBP) and PHE increased 
histamine levels in several brain regions in both MES- and PTZ-induced seizures in 
mouse (Vohora and Pillai 2001). Furthermore, H3 receptor antagonist thioperamide at 
the subeffective dose together with GBP (also at subeffective dose), prolong latency to 
myoclonic jerks, clonic generalized seizures, and duration of tonic and clonic phases 
(Vohora et al. 2001). The duration of the tonic phase was also reduced with PHE used 
together with thioperamide. Finally, the protective effect of clobenpropit have been 
observed in model of amygdaloid kindled seizures in rat, in which clobenpropit inhibited 
the seizure stage and decreased duration of AD at subeffective doses with diazepam, 
valproate, and muscimol (Ishikawa et al. 2000).

In conclusion, increased brain histamine levels, which can be induced by increasing 
levels of L-histidine or histamine directly, inhibiting histamine metabolism by metoprine, 
or increasing histamine synthesis and release by H3 receptor antagonist, have been shown 
to be anticonvulsive. In addition, histamine-mediated anticonvulsive effect seems to be 
mediated mainly through H1 receptor.

2.2. Kainic acid-induced epileptiform activity and cell damage in the 
hippocampus 

2.2.1. The hippocampus

2.2.1.1. Structure of the hippocampus 
The rat hippocampus is an elongated C- or banana-shaped subcortical structure with its 
long axis (named as septo-temporal axis) extending from the midline of the brain near 
the septal nuclei over and behind the thalamus into the temporal lobe (Fig. 11 A, B).  The 
hippocampus can be defined as part of the limbic system together with the amygdala and 
limbic association cortex or as an independent functional system called the hippocampal 
formation consisting of the hippocampus proper with its three subdivisions, CA1, CA2 
and CA3, and the dentate gyrus (DG), subiculum, presubiculum, parasubiculum, and 
entorhinal cortex (Amaral and Lavenex 2007). 

The hippocampus can be cut perpendicular to the septo-temporal axis (Fig. 11 B), 
and each section is organized in a lamellar fashion signifying that small strips of the 
hippocampus may operate as independent functional units, in which different subregions 
are connected to each other with unidirectional connections (Fig. 12). 
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In a simplified structural organization, cells in the entorhinal cortex send their axons 
(perforant path) to the dentritic area of the DG granular cells (molecular layer), their cell 
bodies located to the granular cell layer of the DG (Fig. 12 B, C) (Amaral and Lavenex 
2007). Granular cells in turn project their axons (mossy fibers) through the polymorphic 
layer to the CA3 layer stratum lucidum, which is a narrow zone next to the CA3 pyramidal 
cell layer (12 B, C). The CA3 pyramidal cell bodies are localized in the pyramidal cell 
layer directing their apical dendritic tree to the stratum radiatum layer towards the 
hippocampal fissure, and their basal dendritic tree to the stratum oriens (12 B, C). CA3 
pyramidal cells extend their axons (Schaffer collaterals) first to the stratum oriens of the 
CA3 region, from where they turn back crossing the pyramidal cell layer continuing to 

Figure 11. The schematic picture of 
the rat brain showing position and 
structure of the hippocampus. A. A 
three-dimensional organisation of 
the septo-hippocampal system in 
the rat brain. B. A coronal section 
of the hippocampus. Abbreviations: 
S=septal, T=temporal, DG=dentage 
gyrus. (A, B: modified from Amaral 
and Witter 1995).
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the apical dendritic layer of the CA1 pyramidal neurons, stratum radiatum. Axons from 
the CA1 neurons project further through the stratum oriens of the CA1 region to the 
subiculum, from where axons project to the presubiculum and parasubiculum, which in 
turn are connected back to the entorhinal cortex (Fig. 12 B, C). 

The hippocampal formation is connected to the neocortex through the entorhinal 
cortex and to subcortical regions such as amygdala through the external capsule, to the 
anterior thalamus through the thalamic radiations and supracallosal stria, and to the septum, 
hypothalamus, and brain stem through the fimbria-fornix (Amaral and Lavenex 2007). 

Figure 12. Lamellar structure of the 
hippocampus. A. Drawing of the neural 
circuitry of the rodent hippocampal 
section. B. Layers of different subregions 
in the hippocampal section. C. Schematic 
picture of the intrinsic pathways between 
different subregions.  Abbreviations: DG= 
dentage gyrus, EC=entorhinal cortex, fi= 
fimbria, gcl=granule cell layer of the DG, 
hf=hippocampal fissure, ml=molecular 
layer of the DG, ParaS=parasubiculum, 
plc=pyramidal cell layer of the 
hippocampus, pl=polymorphic layer of 
the dentage gurus, PreS=presubiculum, 
sl=stratum lucidum of the CA3, 
sr=stratum radiatum, sl-m=stratum 
lacunosum moleculare. Roman numerals 
indicate different cortical layers. (A: 
modified from Cajal 1911, B, C: based 
on Amaral and Lavenex, 2007).

2.2.1.2. Main cell types of the hippocampus
The main cell types in the hippocampus are the principal neurons including granular 
and pyramidal cells, and several types of interneurons (Amaral and Lavenex 2007). All 
principal cells are regarded as excitatory neurons releasing neurotransmitter glutamic 
acid, which depolarizes the membrane potential through ionotropic α-amino-3-hydroxy-
5-methylisoxazole-4- propionic acid (AMPA), KA and NMDA receptors, and has slower 
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modulatory effect through the metabotropic glutamate receptors (see reviews Dingledine 
et al. 1999, Nicoletti et al. 2007). 

The activity of the hippocampal principal neurons is tightly controlled by the 
inhibitory interneurons, which represent only 10% of the total neuronal population of 
the hippocampal formation, but despite of that, they form one of the most diverse cell 
populations having highly divergent anatomical and functional properties (Amaral and 
Lavenex 2007). The common feature for all interneurons is that they release GABA 
as a neurotransmitter. GABA is an inhibitory neurotransmitter, and its fast responses 
are mediated through GABAA ionotropic receptors, opening of which allows influx of 
Cl – ions into the cell causing increased membrane conductance (shunting inhibition) 
and hyperpolarization of the cell (see review Farrant and Kaila 2007), which in turn 
decreases the probability for action potential generation. The slow modulatory responses 
of GABA are mediated by metabotropic GABA receptors (Billinton et al. 2001). 

One of the most important roles of the inhibitory interneurons is synchronization of 
the principal cell activity, which means that interneurons enforce a large group of principal 
neurons to fire action potentials simultaneously. Moreover, the rhythmic oscillation of 
the specific brain region seems to be related to certain behaviour, for example theta 
rhythm (6-12 Hz) recorded from the hippocampus correlates with the rat’s movement 
through a space (see review Buzsaki 2005). 

2.2.1.3. Function of the hippocampus 
The function of the hippocampus has been studied intensively, and there is a strong 
evidence that the hippocampus is primarily involved in the formation of declarative 
memory (memory for everyday facts and events) in humans (see review Eichenbaum 
2004), and in spatial navigation and formation of spatial memory both in animals and 
humans (Ekström et al. 2003, see review Eichenbaum 2004, McNaughton et al. 2006). In 
addition, the hippocampus has been shown to have a modulatory function on amygdala 
in fear conditioning, which is type of a learning related to formation of anxiety-related 
behavior in humans (see review Maren and Quirk 2004). 

A lot of information about the human hippocampus in declarative memory has been 
received from patients, who have had hippocampal lesion connected to problems with 
memory functions. Probably the most famous study, which showed the obvious link 
between the temporal lobe region and memory, is the case of patient H.M., who went 
through bilateral temporal lobectomy in order to control intractable seizures (Scoville 
and Milner 1957). After surgery, H.M. unexpectedly showed persistent memory deficits 
including inability to recall stories and drawings that he has heard or sawn earlier. In 
addition, he had difficulties in making associations. However, he did not have any other 
neurological dysfunctions, and he still had good general intelligence, normal perception, 
abstract thinking, reasoning ability, and motivation. In the case of H.M., also several 
other brain regions in addition to the hippocampus were removed (Corkin et al. 1997). 
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During the last decades, more restricted surgical operations of the hippocampus have 
confirmed that the hippocampus is definitely related to memory functions (Jones-Gotman 
1986, Goldstein et al.1989, Frisk and Milner 1990, Helmstaedter 1997, Gleissner et al. 
2002, Martin et al. 2002, Crane and Milner 2005). In addition, hippocampal atrophy 
together with memory impairment have been observed in several illnesses such as severe 
temporal lobe epilepsy (Baxendale et al. 1998, Grunwald et al. 1998, Jokeit et al. 1999, 
Bergin et al. 2000, Pauli et al. 2000, Viskontas et al. 2000), viral infection (Yoneda et 
al. 1994, Kapur and Brooks 1999), depression (von Gunten and Ron 2004, Hickie et al. 
2005), and Alzheimer´s disease (Laakso et al. 1998, Garrido et al. 2002, Gilboa et al. 
2005). All these studies indicate that hippocampus is outstandingly important for human 
declarative memory. Moreover, different sides of the hippocampus are specialized on 
different tasks, since the left hippocampus seems to be more related to coding verbal 
information (Frisk and Milner 1990, Helmstaedter 1997, Gleissner et al. 2002, Martin 
et al. 2002), whereas the right hippocampus is more specialized on spatial information, 
abstract designs and object location (Jones-Gotman 1986, Goldstein et al.1989, Crane and 
Milner 2005). Finally, memory formation and storage seem to have a temporal pattern, 
in which the hippocampus participates in the memory formation only temporarily, and 
the long-term memory is stored in the neocortex becoming gradually independent of the 
medial temporal lobe structures (see review Frankland and Bontempi, 2005).

2.2.2. Kainic acid
Originally kainic acid (KA) was isolated from the seaweed Digenea simplex in Japan in 
1953 (Murakami and Takemoto 1953). Two decades later, Shinozaki and Konishi (1970) 
described for the first time the potent excitatory action of KA in the mammalian nervous 
system. In the early 1980´s, Robinson and Deadwyler (1981) showed that local application 
of KA on CA3 apical dendritic area of the hippocampus induces concentration-dependent 
increase in membrane depolarization, and spontaneous burst firing. Furthermore, at that 
time it was also demonstrated that the CA3 subregion of the hippocampus is especially 
vulnerable to KA-induced neuronal death (Nadler et al. 1978). KA, albeit showing a 
clear preference for KA receptors, can also bind and activate AMPA receptors (Lerma et 
al. 1993). Although KA receptors activate different cell types in a complicated manner 
in the CA3 region, AMPA receptors are mainly responsible for maintaining the recurrent 
activity between CA3 pyramidal neurons during the epileptiform activity (Traub et al. 
1996, Strowbridge 1999). 

KA has been used in epilepsy research for two reasons. First, it induces seizures and 
mimics the synchronized activity involved in epilepsy, and second, it produces neuronal 
death within the hippocampus, which is suggested to mimic the pathology of temporal 
lope epilepsy. 
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2.2.2.1. KA and AMPA receptors in the hippocampus
KA and AMPA receptors belong to the group of ionotropic glutamate receptors. They 
respond to endogenous neurotransmitter glutamic acid (or glutamate) acting mainly as 
cation-selective ion channels (see review Dingledine et al. 1999). Moreover, AMPA and 
KA receptors display rapid opening and closing kinetics. Amplitude of the KA receptor-
mediated of excitatory postsynaptic current (EPSC) is usually less than 10 % of the 
AMPA receptor-mediated EPSC (Castillo et al. 1997, Frerking et al. 1998), and the KA 
receptor-mediated EPSC has considerably slower rise and decay times when compared 
to AMPA receptor-mediated responses (Castillo et al. 1997, Vignes and Collingridge 
1997). Because of the fashion of KA receptor-mediated postsynaptic response, it has been 
suggested that the KA receptor-mediated EPSCs primarily promote temporal summation 
(Frerking and Ohliger-Frerking 2002, Ito 2004, see review Pinheiro and Mulle 2006). 
KA receptors are also located presynaptically in axons where they modulate transmitter 
release (see reviews Lerma 2001).

Both KA and AMPA receptors consist of four subunits. In KA receptors, GluR5-
GluR7 are the low affinity subunits, whereas KA1 and KA2 are the high-affinity 
subunits (see review Pinheiro and Mulle 2006). In the formation of functional receptors, 
KA1 and KA2 subunits can form only heteromeric receptors together with the low-
affinity subunits, whereas the low-affinity subunits can form also functional homomeric 
receptors (see reviews Lerma 2001, Pinheiro and Mulle 2006). AMPA receptors in turn 
consist of GluR1-GluR4 subunits, and they seem to be mainly heteromers comprised of 
GluR2 plus GluR1 or GluR3 subunits at the hippocampal CA3-CA1 synapse as well as 
in cultured hippocampal neurons of the CA1/CA2 region (Craig et al. 1993, Wenthold 
et al 1996). 

In the CA3 region of the hippocampus, AMPA receptors mediate fast excitatory 
synaptic transmission and are important for maintaining recurrent activity between CA3 
pyramidal cells (Traub et al. 1996, Strowbridge 1999, see review Dingledine et al. 1999). 
KA receptor-mediated pre- and postsynaptic responses at the CA3 mossy fiber synapses 
depend on both stimulus frequency and KA concentration (Castillo et al. 1997, Kamiya 
and Ozawa 2000, Schmitz et al. 2000, Lauri et la. 2001, Kamiya et al. 2002, Lauri et al. 
2003). Moreover, KA receptors of the CA3 region play an important role in modulation 
of gamma oscillation (20-80 Hz), in which GluR5 subunit-containing KA receptors in 
axons of interneurons and GluR6-containing KA receptors in the somatodendritic region 
of both interneurons and pyramidal cells form a complicated functional interplay (Fisahn 
et al. 2004).

In conclusion, it is suggested that fast glutamatergic synaptic transmission in the 
hippocampus is primarily mediated by AMPA receptors (and NMDA receptors when 
Mg2+ block is alleviated), with the contribution of KA receptors, which is restricted to 
special conditions such as the high-frequency firing, during which KA receptors modify 
responses pre- and postsynaptically both in principal cells and in interneurons. 
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2.2.2.2. Mechanisms of KA-induced epileptiform activity
Clinically, epilepsy is a diverse disorder arising from the numerous underlying cellular 
and molecular mechanisms as well as from the spatial and temporal characteristics 
of seizure. The first step in the induction of epileptiform activity is a generation of 
paroxysmal depolarization shift (PDS) followed by a brief burst discharges, which 
correlate with the interictal spikes detected in EEG (see review McCormick and Contreras 
2001).  PDSs and subsequent intracellular bursts can be experimentally generated by 
several manipulations such as stimulating the ionotropic glutamate receptors, blocking 
the GABAA receptor-mediated inhibition, induction of rapid kindling through repetitive 
local electrical stimulation, increasing extracellular K+ concentration, and reduction 
of Mg2+ concentration in the extracellular fluid. These manipulations are suggested to 
induce imbalance between depolarizing and hyperpolarizing influences in the large 
interconnected network of neurons. The transition from the generation of single PDSs 
during interictal spikes to full seizures has been associated with the gradual loss of the 
burst after-hyperpolarisation and the progressive appearance of repetitive bursts activity 
during more and more prolonged after-depolarization. In many of these models (reduction 
of GABAA receptor-mediated inhibition, increase in K+ concentration, and repetitive 
stimulation), the initial burst of epileptiform action potential activity is mediated both 
by the non-NMDA and NMDA receptors, since it can be blocked by antagonists of 
these receptors. However, repetitive bursts of action potentials that follow this initial 
burst are sensitive to the NMDA receptor antagonists alone (see review McCormick and 
Contreras 2001). 

The CA3 neuronal network contains pyramidal neurons, which intrinsically generate 
bursts upon activation by a brief depolarization (Wong and Prince 1978, Hemond et 
al. 2008). Moreover, CA3 excitatory cells form a network, which is able to maintain 
recurrent activity within the CA3 region (Traub et al. 1996, Strowbridge 1999). These 
functional properties, which in normal physiological conditions allow CA3 region to 
perform varied complicated tasks, make the CA3 region also vulnerable to generation of 
epileptiform activity.

In the hippocampal slices, KA (0.05-0.1 μM) induce spontaneous burst activity, which 
originates in the CA3 region, from where it propagates to the CA1 region (Westbrook 
and Lothman 1983). KA (at these concentrations) does not change resting membrane 
potential or input resistance of the pyramidal cells, but increases excitability of CA3 
and CA1 pyramidal cells, and lowers the threshold for stimulus intensity necessary for 
the activation of action potential (Westbrook and Lothman 1983). This in turn causes 
augmentation and synchronization of bursting in pyramidal cells, and prolongs EPSP 
without an increase in amplitude. This kind of activity pattern is probably mediated 
mainly by KA receptors. However, when KA concentration increases, KA activates also 
AMPA receptors, which are especially important in maintaining the recurrent activity 
between pyramidal cells within the CA3 region. Also other mechanisms such as voltage-
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gated Ca2+-channels, and NMDA receptors are involved in KA-induced epileptiform 
activity and excitotoxicity (see review McCormick and Contreras 2001).

Postsynaptic KA receptors at the mossy fiber synapses containing GluR6 subunit 
seem to be particularly important in seizure generation, since in GluR6 KO mice, higher 
concentrations of KA are required to generate seizures (Mulle et al. 1998). Moreover, 
overexpression of fully edited GluR6 subunit leads to increased seizure activity and 
spontaneous bursting in vitro (Telfeian et al. 2000). In addition, GluR5 subunits, which 
are mainly expressed in interneurons, but also presynaptically in the mossy fiber synapses, 
seem to play an important role in the KA- and pilocarpine-induced seizures (Khalilov et 
al. 2002, Smolders et al. 2002).  

2.2.2.3. Mechanisms of excitotoxic cell death 
KA induces excitotoxic cell death in several brain regions, the hippocampus being one of 
the most vulnerable structures (Sperk et al. 1983, Ben-Ari et al. 1980, Covolan and Mello 
2000). The term excitotoxicity was first introduced by Olney and co-workers (1971, 
1972) to refer it as an acute process, in which glutamate or one of its structural analogs 
induces nerve cell death in the CNS. Excitotoxic neurodegeneration can be caused by 
interference of normal neurotransmission as it is the case in epileptic seizures, or by 
brain insults i.e. hypoxia/ischemia or brain trauma. 

Classification of excitotoxic cell death has been previously based primarily on 
morphological features, and has been divided into two categories: apoptosis and necrosis. 
Increasing number of different biochemical markers, which detect the intracellular 
cascades involved in cell death, has been questioned this classical division of cell 
death. Therefore, in the current classification, the more important criterion seems to be 
whether cell death is programmed or not. In many studies, the classical term apoptosis 
has been replaced by the term programmed cell death (PCD), which in turn has several 
subcategories such as morphological apoptosis, apoptotic PCD, necrotic PCD, caspase-
dependent PCD, and caspase-independent PCD (see review Leist and Jäättelä 2001). 
Moreover, within this classification, several biochemical markers of PCD have been used 
to specify the routes by which cells die. For example, family of caspases, cytochrome c, 
apoptosis inducing factor (AIF), anti-apoptotic Blc-2 protein, and pro-apoptotic Bax and 
BAD, and apoptotic-protease-activating factor 1 (Apaf-1) belong to the group of most 
studied markers of the PCD. There are not so many reliable markers for non-programmed 
or classical necrotic cell death, and therefore, when markers of the PCD are not detected, 
and morphological features resemble the classical necrosis, cell death is considered as 
necrotic.

The mechanisms of excitotoxic cell death have been extensively studied, and it 
seems that excess in glutamate release overactivates Ca2+ permeable glutamate channels 
and induces imbalance in the intracellular Ca2+ concentration. This in turn activates 
biochemical pathways leading to the PCD (see review Orrenius et al. 2003) or necrosis 
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(see review Syntichaki and Tavernarakis 2003) depending on the strength of the insult. In 
case of the programmed apoptosis by the mitochondrial pathway, increased Ca2+ levels can 
induce apoptosis either through caspase-dependent or caspase-independent pathways. In 
the caspase-dependent pathway, increased Ca2+ levels lead to formation of permeability 
transition pores in the mitochondrial membrane, and release of cytocrome c, whereas in 
the caspase-independent pathway, AIF or endonuclease G (Endo G)  are released into the 
cytocol (Fig. 13). Furthermore, in the caspase-dependent pathway, cytochrome c forms 
an apoptosome together with Apaf-1, pro-caspase-9, and deoxyadenosine triphosphate 
(dATP). Pro-caspase-9 is metabolized to its activated form caspase-9, which in turn 
activates caspase-3. Caspase-3 begins the degradation phase of apoptosis, in which 
various caspase enzymes are activated resulting in characteristic changes in the plasma 
membrane (blebbing and exposure of phosphatidylserine on the cell surface, which is a 
signal that stimulates cell phagocytosis by macrophages/microglia). Finally, the nuclear 
chromatin becomes condensed and fragmented.

Figure 13. Mitochondrial apoptotic pathway 
activated by overflow of Ca2+ ions. 
Abbreviations: AIF=apoptosis inducing 
factor, Apaf-1= apoptotic-protease-activating 
factor 1 (Apaf-1), dATP=deoxyadenosine 
triphosphate, Endo G=endonuclease G, 
NOS=nitric oxide synthetase. (Based on 
Orrenius et al. 2003. 



48 Review of the Literature

Although molecular mechanism of the classical necrosis is less clear than in apoptosis, 
some hypotheses have been suggested. Necrotic process is thought to be initiated, when 
conditions exceed the buffering capacity of the cell’s protective systems (see review 
Syntichaki and Tavernakis 2003). For example, when the intracellular concentration of 
Ca2+ ions exceed the buffering capacity of the cell, Ca2+ ions activate calpains in the 
cytoplasm causing the lysosome rupture. Lysosomes contain over 80 types of hydrolytic 
enzymes including cathepsins, which degrade cellular structures and interfere with 
normal metabolism.

One commonly used biochemical marker for cell damage is poly(ADP-
ribose) polymerase (PARP), which is a multifunctional protein involved mainly in 
deoxyribonucleic acid (DNA) repair after excitotoxic, oxidative, and nitrosative stress. In 
general, cell survives if PARP is able to repair DNA damage. Earlier PARP was thought to 
be involved only in apoptosis (Yu et al. 2002), but when mechanisms of PARP activation 
were studied in more detailed, it became evident that PARP is functional also in necrosis 
(see review Jagtap and Szabo 2005). The critical factor, which determines whether PARP 
activation leads to apoptosis or necrosis, is the cellular energetic depletion, which PARP 
partly causes, when trying to repair damaged DNA.

2.2.2.4. The KA-induced excitotoxicity in the developing hippocampus
Type and amount of KA-induced neuronal death is depends on how KA has been 
administered and what is the age of the studied animal. After an intrahippocampal 
injection, KA induces neuronal death already at P5 (Cook and Crutcher 1986), and intrac
erebroventricularly given KA (10 or 50 nmol) in the P7 rats leads to acute necrotic loss in 
the CA3 region, and at P14-P40 increasing amount of apoptotic neuronal death appears 
first in the CA3 region, and later also in the CA1 region (Humprey et al. 2002). 

If KA is admistered intraperitoneally, KA is able to induce seizures already at P1 
(Sayin et al 2004), and indeed, during the first two postnatal weeks, animals are even 
more prone to KA-induced seizures than later in their life (Hauser 1994). However, 
intraperitoneally induced seizures by KA results in neuronal death only after the second 
postnatal week, approximately at P19 (Ben-Ari et al. 1984). The same effect can be seen 
with the other seizure-inducing drugs suggesting that seizures do not cause neuronal 
death in the developing brain during the first two weeks (Cavalheiro et al. 1987, Hirsch 
et al. 1992, Sperber et al. 1999, Haas et al. 2001). The reason for this remains largely 
unknown. 
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3. AIMS OF THE STUDY

Histaminergic neuron system is well characterized in vivo. However, a lot of detailed 
information is still needed to understand the function of these neurons in the normal 
physiological conditions as well as in various diseases. 

The specific aims of this study were:

1. to set up an in vitro culture system for the histaminergic neurons

2. to study development and detailed morphology of the cultured histaminergic 
neurons, and to visualize storage and transport of histamine, as well as the 
subcellular localization of GABA and galanin in the histaminergic neurons

3. to study the mechanisms of KA-induced neuronal damage in the slice culture 
system of the immature rat hippocampus

4. to develop a culture system mimicking the immature brain structures, and to study 
the effect of histaminergic neuron system (separately from other monoaminergic 
system) on regulation of KA-induced epileptiform activity and neuronal death

5. to find out whether or not histaminergic neurons have a neuroprotective effect 
in the KA-induced neuronal damage in the coculture system of the immature 
hippocampus and rat posterior hypothalamus
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4. MATERIALS AND METHODS

4.1. Animals used in different culture systems (I-IV)

The 18-day-old embryos of Sprague–Dawley (SD) rats were used for the explant culture 
system of the histaminergic neurons. The appropriate permits were obtained from the 
Committee for Animal Experiments of the Abo Akademi University according to the 
ethical guidelines of the European Convention in Strasbourg (1986).

Hippocampal slice cultures were prepared from the hippocampi of 6–7 day-old 
(P6–P7) Wistar rats, and the cocultures of hippocampal and hypothalamic slice cultures 
were prepared from the P4 SD rats. All treatments of these animals were according to 
the European Community Council directives 86/609/EEC, and had the approval of the 
Animal Use and Care Committee of the University of Turku. All efforts were made to 
minimize the pain, discomfort, and the number of experimental animals.

4.2. The primary culture systems (I-IV)

4.1.1. The explant culture system (I, II)
The posterior hypothalamic regions of the 18-day-old embryos of the SD rats were 
dissected, cut into smaller pieces and placed on the coverslips coated with poly-L-lysine 
(10 µg/ml, Sigma) or laminin (10 µg/ml, Sigma). The culture medium consisted of 
Dulbecco’s modified essential medium, 20% fetal calf serum, 10% horse serum, 1% 
Glutamax, glucose (5.5 g/l) (Sigma), and 1% antibiotics (penicillin and streptomycin). 
The medium was then changed every third or forth day for up to 13 DIV. The incubation 
conditions were +37 °C temperature, 5% CO2, and 80-90% humidity.

4.1.2. The organotypic hippocampal slice culture system (III)
Hippocampal slice cultures were prepared from the hippocampi of P6–P7 Wistar rats 
using the method of Stoppini et al. (1991). Hippocampi were dissected in cold Gey’s 
balanced salt solution (Gibco) supplemented with glucose (6.5 mg/ml). Slices (400 μm) 
were cut perpendicular to the septotemporal axis of the hippocampus using the McIlwain 
tissue chopper, and placed on top of semipermeable membrane inserts (Millipore) in 
a six-well plate containing culture medium with the following composition: 50% of 
minimum essential medium, 25% Hanks’s balanced salt solution, 25% heat-inactivated 
horse serum, 25 mM HEPES, supplemented with 0.5 ml GlutaMaxII (Gibco) and 6.5 
mg/ml glucose. Slices were cultured in an incubator (37 °C, 5% CO2) for 7 DIV with 
medium change twice a week. After 7 DIV, slices were treated with KA (5 μM) (Sigma) 
for 6, 12, 24, and 48 h and stained with Fluoro-Jade B (FJB). For the Western blotting 
studies slices were treated with KA (5 μM) for 4, 8, and 24 h. After these time points, a 
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subset of inserts was further cultured in normal culture medium (without KA) for 48 h 
prior to immunoblotting and immunocytochemistry. 

4.1.3. The coculture system
The double slice culture system consisted of hypothalamic and hippocampal slices, taken 
from the P4 rats, and cultured together. The hippocampal slices were cut as previously 
described, and the hypothalamus was cut into 8 slices. Histaminergic neurons were 
usually found in the first four slices of the hypothalamus (considered as posterior part 
of the hypothalamus). The first coculture system consisted of the hippocampal slice, 
which was cultured together with the posterior hypothalamic slice (HI+HY, POST). The 
hypothalamic slices 6-8, which were taken from the anterior part of the hypothalamus, 
were used as control slices, since they did not contain histaminergic neurons (revealed 
by the immunostaining). They were used in the second coculture system consisting of 
the hippocampal slice cultured together with the anterior hypothalamic slice (HI+HY, 
ANT). Otherwise the cutting solution, culture medium, and the main culture protocol 
was the same as previously described for the hippocampal slices (HI).

4.2. Immunocytochemistry (I-IV)

4.2.1. Immunostainings in the explant culture systems (I, II)
After 4-13 DIV, the explants were washed with phosphate buffered saline (PBS), and 
fixed either with 4% 1-ethyl-3(3-dimethyl-aminopropyl)-carbodiimide (EDAC) (Sigma) 
and 0.5% paraformaldehyde (PFA) for histamine and GABA staining or with 4% PFA in 
staining of VMAT2 and galanin. Fixatives were diluted in phosphate buffer (PB), and the 
explants were fixed for 2-4 h at +4 °C, and washed with PBS containing 0.1% saponin 
(Sigma). The primary and secondary antibodies were diluted as described in Table 3. 
The antibody combinations in double-stainings were histamine/VMAT2, histamine/
microtubule associated protein 2 (MAP2), VMAT2/GABA and VMAT2/galanin. The 
explants were incubated overnight at +4 °C, washed with PBS+saponin, and incubated 
with the secondary antibody for 4-6 h at +4°C. After a wash with PBS+saponin the 
second similar immunostaining followed.  Finally, coverslips with the explant cultures 
were mounted on slides using 80% glycerol.
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Table 3. Primary and secondary antibodies used in the immunostainins. Abbreviations: GABA=γ 
aminobutyric acid, MAP-2=microtubule associated protein 2, VMAT2=vesicular monoamine 
transporter 2. 

Primary an�body Dilu�on Origin Secondary an�body Dilu�on Study

Rabbit an�-histamine 1:10 000 P. Panula Alexa 568 goat 
an�-rabbit

1:1000 I, II, IV

Mouse an�-MAP2 1:5000 Sigma Alexa 488 goat 
an�-mouse

1:1000 II

Guinea pig 
an�-VMAT2

1:10 000 Euro-Diagnos�ca, SWE Alexa 488 goat 
an�-guinea pig

1:1000 II

Rabbit an�-GABA 1:2000-
1:5000

P. Panula Alexa 568 goat 
an�-rabbit

1:1000 II

Rabbit an�-galanin 1:1000-
1:2500

Peninsula Laboratories, 
USA

Alexa 568 goat 
an�-rabbit

1:1000 II

Rabbit an�-caspase-3 1:3500 Cell signalling, Technology 
Inc., Beverly, MA

Goat an�-rabbit IgG1 1:4000 III

4.2.2. Immunostainings in the slice culture systems (III, IV)
Immunocytochemical detection of histamine and active caspase-3 was carried out in 
slices after 7 DIV. During the entire staining procedure, cultured slices were attached 
to semipermeable membrane inserts. For caspase-3 staining, hippocampal slices were 
first washed with PBS, fixed with 4% PFA for 1 h at room temperature (RT), and then 
washed with PBS containing 2.5% Triton-X-100 (PBS-T). Fixation for histamine was 
the same as described in explant cultures. Slices were then incubated with the primary 
antibody, histamine or caspase-3 (see Table 3) overnight at +4 °C, washed with PBS-
T, and thereafter incubated with the secondary antibody, Alexa 568 for caspase-3 and 
Alexa 488 for histamine (Molecular Probes) (see table 3). Finally, slices were washed 
with PBS, and mounted with 80% glycerol on gelatin-coated glasses. Negative controls 
for the immunostaining included omission of the primary antibody, and incubation with 
the primary antibody together with 10% normal goat serum. We used the apoptotic cells 
from HELA-cell line as a positive control in caspase-3 staining.

4.3. Western blotting (III)

Western blotting was performed to determine whether caspase-3 and PARP proteins are 
cleaved in response to KA treatment as a consequence of an apoptotic cell death in the 
hippocampal slices. One control group, and the 4, 8, and 24 h KA-treated (5 μM) groups 
of slices from two different culture batches (n=93–96 slices in both batches of each 
time group) were collected in ice-cold homogenization buffer containing 50 mM Tris–
HCl, 1% SDS, 2 mM EDTA, 1 mM PMSF, and 0.7 mM dithiothreitol, homogenized. 
Homogenates were boiled immediately and then centrifuged at 12,000 rpm for 30 min 
at 4 °C. Supernatants were collected, frozen, and stored at −80 °C until used. Protein 
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concentration of the samples was measured using Lowry-based Biorad DC Protein assay 
(Biorad). Fifty micrograms (μg) of protein were applied to each lane for SDS-PAGE 
and separated by electrophoresis with a 10% acrylamide minigel, and transferred to a 
polyvinylidene fluoride immobilon-P (Millipore) membrane. Membranes were incubated 
at 4 °C overnight with the primary antibodies polyclonal anti-cleaved caspase-3 (see 
table 3), and monoclonal anti-PARP (1:3500) (Sigma), which detects the 116 kDa protein 
corresponding to PARP, and its 85 kDa apoptosis-induced cleavage product. Thereafter, 
samples were incubated for 1 h at RT with the HRP-conjugated secondary antibodies, 
goat anti-mouse IgG1 (γ1 chain specific, 1:3500) (SouthernBiotech) to detect PARP, 
and goat anti-rabbit IgG (1:4000) (Sigma) to detect the active caspase-3. The signal was 
obtained using chemiluminiscence ECL system and Hyperfilm ECL (Amersham). The 
optical signals were quantified with Image J 1.20s (NIH), and the results are given as 
arbitrary units (a.u.) per mg of protein. 

4.4. Fluoro-Jade B staining and verification of neuronal damage (III-IV)

Neuronal cell death was examined in cultural hippocampal slices using Fluoro-Jade B 
(FJB), which is an anionic fluorescein having excitation peaks are 362 and 390nm and 
emission peak 550nm. Slices were first washed with PBS, fixed with 4% PFA (Sigma), and 
moved to 0.06% potassium permanganate (KMnO4) solution for 2-5 min. After KMnO4 

–treatment, slices were washed with water and transferred to 0.001% FJB solution for 
30 min, washed with water, removed from membranes to gelatin-coated glasses, dried 
overnight at RT, immersed in xylene and coverslipped. 

For our scoring analyses, the area of stained neurons (i.e., degenerating neurons) was 
measured from maximum projections using ImageJ software (http://rsb.info.nih.gov/ij). 

The following scoring system was used to evaluate the extent of the damage: 0 = no FJB-
stained neurons (regarded as normal), 1 = 1–100 x 103 µm2, 2 = 101–200 x 103 µm2, 3 = 
201–300 x 103 µm2, and 4 = >300 x 103 µm2.

FJB-stained neurons were counted throughout the entire thickness of the slice within 
the 250-μm2 area of the central part of the CA3a/b pyramidal cell layer. For the counting, 
10 slices were blinded selected from three different groups: 1) control HI cultured in 
normal medium; 2) HI with KA for 12 h; and 3) HI+HY, POST treated with KA for 12 
h. In each slice, pyramidal neurons were counted in confocal optical sections of the 250 
μm2 region through the z-axis with Adobe Photoshop. 

4.5. Thionin staining (IV)

Slices were removed from semipermeable membranes to gelatin-coated glass slides and 
dried. For thionin staining, slices were rehydrated, stained in 0.1% thionin for 15-20 s, 
washed, dehydrated in alcohol series, cleared in xylene, and coverslipped. Digital camera 
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Olympus U-TV1 X was used to capture pictures using Olympus BX60 microscope, and 
pictures were further processed using Adobe Photoshop and Corel Draw.

4.6. Confocal microscopy (I-IV)

Histamine and FJB stainings were examined with a Leica TCS SP confocal microscopy 
system (Leica) equipped with an Argon-Krypton laser (Omnichrome). The excitation 
wavelength for FJB and Alexa 488 was 488 nm and for Alexa 568 568 nm. The 
fluorophores were chosen so that light absorption of the fluorophore was maximal at the 
given excitation wavelength, and emission wavelengths of the two fluorophores were 
as far apart as possible. The emission wavelength filter settings were for FJB and Alexa 
488 500-550 nm, and for Alexa 568 600-700 nm. The images were acquired at 0.5 or 
2 μm steps and analyzed with Leica TCS NT/SP Scanware software. The most used 
algorithm was maximum projection, which determines the maximum of all intensity 
values in a stack of sections. The picture of the whole hippocampus was reconstructed 
by connecting 10–15 maximum projections of different areas of the hippocampus. All 
figures were produced and edited with Adobe Photoshop and Corel Draw  software. 

4.7. Electron microscopy (III)

Slices were fixed with freshly prepared 5% glutaraldehyde (Electron Microscopy 
Sciences), the CA3a/b region was isolated by knife cuts, and the specimen was further 
prepared according to standard procedures as previously described (Fröjman et al., 
1992). For the light microscopy, orientation sections from the CA3a/b region were cut 
at 1 μm thickness and stained with toluidine blue. The ultrathin sections (70 nm) were 
stained with 5% uranyl acetate and 5% lead citrate in Ultrostainer (Leica), and examined 
in a JEM–1200EX (JEOL) transmission electron microscope.

4.8. Pharmacological studies (IV)

4.8.1. Alpha-fluoromethylhistidine
To find out an optimal concentration and time for the inhibition of histamine synthesis 
by α-FMH, HI+HY, POST was incubated with different concentrations of α-FMH (10 
nM, 100 nM and 1 µM) for 6 h, 12 h and 24 h. In addition, to find out whether histamine, 
which disappeared from histaminergic fibers after α-FMH treatment, would reappear in 
fibers during the next 12 h (the duration of KA treatment), a subset of cultures was further 
incubated in normal medium for 12 h. Immunostaining with the anti-histamine antibody 
was used to verify location of histamine in cell bodies and fibers. FJB staining was 
performed to study whether or not KA-induced neuronal degeneration was changed in the 
absence of endogenous histamine in histaminergic fibers innervating the hippocampus.



 Materials and Methods 55

4.8.2. Histamine
To study the effect of extracellularly applied histamine on neuronal survival in HI, 
different concentrations of histamine (1 nM, 10 nM, 100 nM, 1 µM, 10 µM and 100 µM, 
Sigma) were added to hippocampal slices after 7 DIV. After the 30-min incubation with 
histamine, KA (5 µM) was added, and slices were further incubated with both histamine 
and KA for 12 h. Neuronal degeneration was detected with FJB staining.

4.8.3. H1 and H3 receptor antagonists
The effect of the histamine H1 and H3 receptors on KA-induced neuronal damage was 
studied in HI+HY, POST, which was incubated together with different concentrations 
of the H1 receptor antagonists triprolidine (2 nM, 20 nM, 200 nM and 2 µM), and 
mepyramine (1 nM, 10 nM, 100 nM and 1 µM). The significance of H3 receptor was 
studied by treating HI+HY, POST with the H3 receptor antagonists clobenpropit (10 nM, 
100 nM, 1 µM, and 5 µM), and thioperamide (1 nM, 10 nM, 100 nM and 1 µM). KA (5 
µM) was added 30 min after the antagonists, and cultures were further incubated for 12 
h. Neuronal degeneration was detected with FJB staining.

4.9. Electrophysiology (IV)

HI and HI+HY, POST were cultured for 7 DIV and then incubated with 5 μM KA for 
6 h. Control HI had no KA treatment. An insert with a slice was briefly washed and 
transferred to a dish containing an artificial cerebrospinal fluid (aCSF) with the following 
composition (mM); 124.0 NaCl, 26.0 NaHCO3, 10.0 D-glucose, 4.5 KCl, 1.2 NaH2PO4, 
1.5 MgCl2, and 2.0 CaCl2. After equilibration (35 °C, max 1 h), the slice was transferred 
to the recording chamber (capacity 6 ml) mounted to a Leica DM IRB microscope. 
Slices were superfused with oxygenated (95% O2 and 5% CO2) aCSF during the entire 
experiment. 

Extracellular field recordings were carried out in the CA1 pyramidal layer with 
glass microelectrodes (<1 MΩ, tip diameter ~30 μm ) filled with 0.15 M NaCl. After 
stabilization, spontaneous activity was recorded in the CA1 pyramidal cell layer using 
Axoclamp 2B amplifier (Axon Instruments Inc.), data were stored, and analyzed using 
the pClamp software. Digitization was performed using the 12-bit A/D interface Digidata 
1200 (Axon Instruments Inc.). The burst was defined as continuous electrical activity 
lasting > 3 s.

4.10. HPLC (IV)

To exclude the possibility that external histamine in the culture medium could have an 
effect on survival of neurons, histamine content was determined in both horse serum and 
culture medium using high performance liquid chromatograph (HPLC) equipped with 
a fluorometric detector. Briefly, samples were diluted in 10 volumes of 2% perchloric 
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acid, and centrifuged at 15 000 g for 15 min. Histamine content was analyzed from 
the supernatants using HPCL with post-column derivatization and fluorimetric detection 
according to the method of Yamatodani (Yamatodani et al., 1985). The detection limit 
was 10 pmol/g of the original sample.

4.11. Statistical analysis (I-IV)

The overall group differences in score and neuron numbers after the FJB staining were 
assessed with one-way analysis of variance (ANOVA) with Tukey-Kramer Multiple 
Comparison Test as a post hoc test. The nonparametric one-way ANOVA with Kruskal–
Wallis Test was used to analyze the group differences (acute and recovery groups) in 
the immunoblots. In the electrophysiological recordings, the statistical significance 
was determined using nonparametric Mann–Whitney test. Prism program (GraphPad 
Software) was used in all statistical analysis, and the level of significance was set at p < 
0.05.
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5. RESULTS

5.1. Development of a culture system for the central histaminergic neurons 
(I)

In the primary culture system of the embryonic hypothalamic tissue, the histaminergic 
neurons attached and extended their neurites faster on the laminin as a coating molecule 
when compared to poly-L-lysine. Moreover, high serum content (30 %) was required to 
maintain the histaminergic neurons in the culture conditions and to promote migration of 
histaminergic neurites. Finally, at the beginning of the culture period, the culture medium 
was added with small amounts within several hours in order to avoid the detachment of 
the explants.

5.2. Detailed morphology of the histaminergic neurons in the explant 
culture system (I, II)

The most typical shapes of histaminergic neurons were ovoid, rounded or triangular, of 
which ovoid was the most common type with 73 % of the 133 examined neurons during 
the entire culture period from day 4 to 13. The size of the cell body was measured so 
that the length, width and thickness were measured separately. The average length, width 
and thickness of 212 neurons were 19.2 μm (range 12.3–28.4 μm), 12.5 μm (range 9.4–
15.3 μm) and 11.7 μm (7.6–15.8 μm), respectively. These parameters were not changed 
during the culture period from 4 to 12 DIV.

MAP2 was used as a marker for dendrites and cell bodies, while the unstained 
structures were supposed to be axons. Most of the histaminergic neurons (79 %) possessed 
two or three MAP2-positive dendrites, but in some histaminergic neurons, the number 
of dendrites was even five or six indicating that there might be different subtypes of 
histaminergic neurons. Histamine-positive but MAP2-negative axons were usually thin 
emanating from cell body or from the dendritic structure, but also thicker axons were 
detected. Both axons and dendrites had enlargements, which usually contained large 
amount of histamine-containing vesicles.

5.3. Histamine storage, transport and co-localization of GABA and galanin 
in histaminergic neurons (I, II)

5.3.1. Histamine storage and transport
Histamine-immunofluorescence was detected in granular structures in the TM neurons. 
This granular immunofluorescence was distributed evenly in the neurons including the 
cell soma, dendrites and axons. 

To study whether VMAT2 is codistributed with histamine, histaminergic neurons 
were double-stained with the histamine and VMAT2 antibodies. VMAT2 was found 
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in almost all histaminergic neurons indicating that VMAT2 transports histamine to the 
subcellular vesicles. In the histaminergic cells, three types of immunoreactive granules 
were seen: those, which were both histamine- and VMAT2-positive and those, which 
were either histamine- or VMAT2-positive. Similar to histamine-positive granular 
deposits, the VMAT2-positive deposits were also evenly distributed in the cells. Since 
VMAT2 was found in almost all histaminergic neurons and only few VMAT2-positive 
neurons in the cultures were histamine negative, VMAT2 was subsequently used as an 
indicator of the tuberomamillary histaminergic neurons in such cases when antibodies 
were not compatible with the histamine antibody in double-stainings.

5.3.2. Co-localization of histamine with GABA and galanin
VMAT2 and GABA were distributed throughout the neuron. Moreover, GABA was 
located in small granular deposits distinct from those containing VMAT2. Galanin 
was also located in the VMAT2-positive neurons, their morphology being identical 
with the tuberomamillary neurons. Neurons, which were both galanin- and VMAT2-
immunoreactive, were few in number. Moreover, galanin-immunoreactive structures 
were mainly located in neuronal somata but some immunopositive deposits were also 
seen in neurites. The colocalization of VMAT2 and galanin was found in some vesicles, 
but also vesicles which were immunopositive only to histamine or galanin, were found. 

5.4. Mechanism of KA-induced neuronal death in cultured hippocampal 
slices (III)

In order to find out the time course of KA-induced neuronal death, organotypic 
hippocampal slices were treated with KA (5 µM) for various time periods (6, 12 ,24 , and 
48 h), and the recovery period (without KA) in the normal medium after the treatment 
was performed to find out whether the damaged neurons could be rescued.  After the 6-h 
KA treatment, no cell death was detected in the cultured hippocampal slices. However, 
obviously cell death related cascades were switched on during that period, since neuronal 
death was detected in the CA3 region after the incubation of cultures in the normal 
medium for 48 h. Furthermore, longer KA treatment times (12, 24 and 48 h) induced 
time-dependent increase in neuronal death, which increased further after culturing slices 
in the normal culture medium for 48 h. Neuronal death was restricted mainly to the 
CA3 region, but occasionally damaged neurons were detected also in the DG, and CA1 
regions. 

In the subsequent experiments, the possible pathways involved in the KA-induced 
death process were defined. As hallmarks of apoptosis, expression levels of the active 
17-kDa form of caspase-3 and the 84-kDa cleaved fragment of PARP were studied by 
Western blotting. Neither caspase-3 nor PARP levels altered from the control levels in 
the cultures treated with KA for 4, 8, and 24 h. Furthermore, no caspase-3 labelled cells 
were detected in the immunocytochemical study 24 h after KA treatment in the acute or 
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in the recovery (48 h) groups. Electron microscopic studies revealed the hallmarks of 
an early phase of necrosis such as irregular broken areas in the cytoplasm, and ruptures 
of plasmamembrane in the CA3 region. The damage was more advanced in the cell 
processes in the neuropile, in which broken cell debris in the interstitial space between 
the perikaryons in the cell processes was found. Otherwise KA-treated neurons had no 
signs of apoptotic pyknosis or chromatin condensation. 

5.5. Decrease of KA-induced neuronal death in co-culture system with 
histaminergic neurons (IV)

The significance of the histaminergic neurons in the KA-induced neuronal death was 
examined by using an organotypic coculture system, in which the hippocampus was 
cultured together with the posterior hypothalamic slice containing histaminergic neurons 
(HI+HY, POST). Immunostainings in HI+HY, POST showed that histaminergic neurons 
survived well in the posterior hypothalamic slice, and histaminergic fibers grew into the 
hippocampal slice innervating the entire hippocampal slice in a diffuse manner.  When 
the hippocampus was cultured together with the anterior hypothalamic slice devoid of 
histaminergic neurons (HI+HY, ANT), no histamine staining was detected. 

No FJB-stained neurons were detected in control HI after 7 DIV in the normal 
medium indicating a good viability of slices in the culture system, whereas KA treatment 
(5 µM, 12 h) resulted in neuronal damage in HI, the highest amount of degenerating 
neurons being in the CA3a/b subregion. In the scoring system, the area of FJB-stained 
neurons was measured (see page 53). Cell damage was significantly (p<0.001) reduced in 
HI+HY, POST, when compared with the KA-treated HI. In HI+HY, ANT, the amount of 
FJB-stained neurons did not differ from the KA-treated HI ones. To confirm the results of 
scoring, number of the FJB-stained was counted focusing to the CA3 region. In accordance 
with the scoring results, the number of FJB-stained neurons was significantly (p<0.001) 
decreased in KA-treated HI+HY, POST (17 ± 4, mean ± SEM) when compared with the 
KA-treated HI (74 ± 7, mean ± SEM) in the 250 µm2 area of the CA3a/b region.

The conventional thionin staining showed that the decrease in neuronal degeneration 
was not attributable to the disappearance of CA3a/b neurons after the 12 h KA treatment. 
However, after the 48 h KA (5 µM) treatment with the 48 h recovery period, neurons 
in HI+HY, POST were more protected in the CA3a/b region than in HI with the same 
treatment. 

5.5.1. Role of histamine levels on neuronal death
Alpha-FMH (100 nM, 24 h) inhibited histamine synthesis and led to practically total 

disappearance of histamine-labelled fibers within the hypothalamus and hippocampus. 
The duration of the α-FMH blocking effect in histamine synthesis was further studied 
in experiments, in which cocultures were cultured in normal medium for 12 h (recovery 
phase) after the initial α-FMH treatment (100 nM, 24 h). The 12 h recovery phase did not 
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lead to the reappearance of histamine-positive fibers in cultured posterior hypothalamic 
slices, which confirmed that histamine will not reappear in histaminergic fibers during 

the 12 h KA treatment. The scoring analysis of the FJB-stained neurons showed that 
neuronal damage significantly (p<0.001) increased in HI+HY, POST treated with α-
FMH (100 nM, 24 h) and followed by KA (5 µM, 12 h) when compared with HI plus HY 
(POST) without the α-FMH treatment. 

Extracellularly applied histamine resulted in significant neuroprotective effect only 
at the 1 nM histamine, whereas histamine concentrations from 10 nM to 100 µM dose-
dependently attenuated the neuroprotective effect of histamine in the CA3a/b region.

5.5.2. Role of histaminergic receptors in neuronal death
In order to find out the mechanisms, by which histamine-mediated neuroprotection may 
occur in the hippocampus, the H1 and H3 specific antagonists were used in HI+HY, 
POST. The H1 receptor antagonist triprolidine (2 nM - 2 µM) and mepyramine (1 nM 

- 1 µM) dose-dependently decreased the neuroprotection this effect being significant 
(p<0.05) at low micromolar triprolidine (2 µM) and mepyramine (1 µM) concentrations. 
The H3 receptor-specific antagonist thioperamide (1 nM - 1 µM) significantly (p<0.05) 
increased the neuroprotective effect at 1 µM concentration in HI+HY, POST, whereas 
clobenpropit (10 nM to 5 µM) had no significant effect at any concentration. 

5.5.3. Decrease in KA-induced epileptiform burst activity by the histaminergic 
neurons in the hippocampus 
In control slices, typically only infrequent spontaneous activity was seen in the CA1 
pyramidal cells. In HI treated with 5 µM KA, the spontaneous activity was characterized 
by frequent ictal-type bursting. In HI+HY, POST, only occasional ictal-type bursts could 
be seen and the activity mainly consisted of interictal-type discharges. The occurrence 
of KA-induced spontaneous burst activity was significantly (p<0.001) lower in HI+HY, 
POST (0.003 ± 0.0003 Hz) when compared with HI (0.024 ± 0.0027 Hz). Moreover, the 
interburst intervals were significantly (p<0.01) longer in HI+HY, POST (117 ± 33 s) 
compared with HI (32 ± 4 s), indicating the different bursting pattern in these two culture 
types. 
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6. DISCUSSION

6.1. Methodological considerations

6.1.1. The explant culture system for the histaminergic neurons
In order to study the basic mechanisms of histamine synthesis, storage, and release, the 
primary culture system for the histaminergic neurons was developed. The first step in 
this process was to create a culture system, in which the histaminergic neurons would 
survive. The second step was to define whether the basic morphology of these neurons 
as well as the coexisting transmitters and transporters were comparable to those reported 
in the in vivo studies.

Previously, the histaminergic neurons have been shown to grow in the slice culture 
system (Reiner et al. 1988, Diewald et al. 1997). The main purpose of our study was to 
develop a culture system consisting of a few cell layers in a way that the histaminergic 
neurons would grow on the top of the glia cell layer. This kind of culture system would 
be more suitable for further studies with different immunomarkers by using the confocal 
microscopy system. After our study in 2004, a dissociated histaminergic neuron culture 
was published by a group, which has a long history in culturing monoaminergic neurons 
(Bajic et al. 2004). They cultured the histaminergic neurons on the glial feeder layer 
taken from the cerebral cortex of the 2-3-day-old rats. The feeder layers consisted of 
the protoplasmic astrocytes type 1 without the fibroblast-like, spindle-shaped cells.  
Moreover, they did not use fetal bovine or horse serum, but instead, they used rat 
serum, which was more suitable for maintaining rat neurons in culture conditions for 
a long period (Dichter, 1978). In addition, the culture medium was conditioned, which 
means that the medium was incubated overnight with glial feeder layers. According to 
the previous finding, during the conditioning period, glia cells take up extra glutamate, 
which is suggested to be toxic for monoaminergic neurons (Baughman et al. 1991). In 
this culture system the histaminergic neurons survived up to 2 months.

When comparing these two primary culture systems for the histaminergic neurons 
i.e. the one developed by us and that published by Bajic and coworkers (2004), 
both systems fulfil the main purpose: the histaminergic neurons survive and can be 
maintained successfully well in the in vitro conditions. Moreover, the neurons seem to 
morphologically correspond to those detected in vivo. In the Bajic´s system, however, 
the culture conditions were defined in more detail, since they used only the certain glial 
cell type as the growth base for the histaminergic neurons, and moreover, they cultured 
cells in the conditioned culture medium. In our culture system, the critical issue was the 
coating molecules, from which laminin showed preference to poly-L-lysin. When using 
laminin, histaminergic neurons started to spread out from the explant and extend their 
axon and dendrites after day 4. The mechanism of laminin in enhancing cell survival in 
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our culture system is unknown. It is, however, generally known that different laminin 
molecules have multiple roles in the CNS. For example, they are important in Schwann 
cell segregation and growth, which in turn is important for the axon myelinisation (see 
review Colognato et al. 2005). In addition, laminin is known to regulate signalling of 
oligodendrocytes. Thus, laminin seems to play an important role in survival, growth and 
function of glial cells. Finally, in Bajic´s study (2004), conditioned medium was used to 
decrease the toxic effect of extra glutamate on the histaminergic neurons, which were 
plased on the top of the glial feeder layer. In our study, conditioned medium was not used 
but the explant might have protected the histaminergic neurons during the critical early 
phase of the culture period. 

Commercial fetal calf and horse serum was used in our culture system. It is possible 
that the rat serum used by Bajic and co-workers (2004) would be more suitable for 
cultures of the rat brain tissue. Interestingly, they used a low concentration (2 %) of 
serum, thus minimizing the amount of unknown molecules such as different growth 
factors in their culture medium. However, whether or not the rat serum was at equal 
quality in all experiments is not known. 

Although the culture system used in our studies was suitable for culturing 
histaminergic neurons, numerous histaminergic neurons remained inside the explant, 
and could not be studied separately. Therefore, the culture system for the dissociated 
histaminergic neurons would probably give higher amount of neurons for the further 
studies. Moreover, the dissociated histaminergic neuron culture system might be better 
for maintaining the monoaminergic neurons for a long time.

6.1.2. The organotypic hippocampal culture system
In order to understand the pathological phenomena related to human epilepsy, different 
in vivo animal models are valuable tools, since in these models different systems are 
activated simultaneously thus resembling the situation during the seizure activity in 
humans. However, this advantage can also lead to difficulties due to the many variables 
that must be taken into account. In order to decrease variables without loosing the 
functional network activity, the cultures of organotypic hippocampal slices have been 
widely used as an in vitro model to study physiological and pathological activity of the 
hippocampus. In this model, the hippocampus is cut through its septo-temporal axis, and 
each slice is considered as a functional unit having its intrinsic neuronal connections 
between different subregions. Therefore, both advantage and disadvantage of this model 
is that all the extrinsic connections from septum, thalamus, amygdala, hypothalamus, 
and brain stem are disconnected (see review Amaral and Lavenex 2007). Furthermore, 
also intrinsic three dimensional hippocampal connections such as innervation from CA3 
region to the CA3 and CA1 regions, as well as the CA1 projections to the subiculum 
through the septo-temporal axis are lost (Amaral and Witter 1989, see review Amaral and 
Lavenex 2007). In addition, the connections of CA3 pyramidal cells with the neurons 
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located in the contralateral side of the hippocampus are cut. Therefore, we should know 
the limits of this model and be aware of the connections, which are lost. It is therefore of 
importance that new findings are always confirmed in the in vivo model. 

Instead of using acute hippocampal slices, the organotypic culture system was found 
to be suitable for our studies, since we studied phenomena in time scale of a few days. 
Earlier studies have revealed that in these cultures synaptic organization, expression of 
receptors, and intrinsic hippocampal fiber pathways are developed corresponding to their 
in vivo counterparts (see review Frotscher et al. 1995, Holopainen and Lauren, 2003). 
However, the intrahippocampal connections are partly reorganized, and if the slices are 
cultured for longer periods, spontaneous activity resembling epileptiform activity can 
be detected in the in vitro conditions (Mohajerani and Cherubini, 2005, Lindroos et al. 
2005).

6.1.3. The coculture system
The coculture system consisted of hippocampal slices, which were cultured together 
with the posterior or anterior hypothalamic slices in the semipermeable membranes. 
Previously, this kind of coculture system has been used with slightly different culture 
protocol (Reiner et al. 1988, Diewald et al. 1997). Morphology and physiological 
features of the histaminergic neurons in the coculture system confirms that the system is 
physiologically relevant (Diewald et al. 1997). 

Our purpose was to create a system, in which we would induce physiologically 
relevant histamine release mimicking the function of the histaminergic neurons in 
the brain. Furthermore, our previous studies in the explant culture system suggested 
that histaminergic neurons contain also other neuroactive molecules such as GABA 
and galanin, which may be coreleased from the histaminergic neurons. Therefore, the 
net effect of histamine and other costored compounds during the KA treatment might 
only be achieved, when these molecules are released together from the histaminergic 
neuron. Interestingly, we actually showed that histamine released from the histaminergic 
neurons was neuroprotective, whereas commercial histamine, when added to the culture 
system, was protective only at low nanomolar concentrations. We therefore challenge 
the pharmacological experiments, in which compounds are added to the extracellular 
fluid and the phenomena are studied in the slices of one brain region. 

In the coculture system, however, the histaminergic innervation in the hippocampus 
might differ from the in vivo conditions. Moreover, different hippocampal slices 
received partly quantitatively different innervation, since only four slices of the posterior 
hypothalamus could be used in the cocultures, and they contained different amounts 
of histaminergic neurons. In the in vitro system, the innervation was always diffuse 
having no primary subregion target in the hippocampus (Diewald et al. 1997), which is 
not fully in agreement with that of the in vivo conditions, in which the most prominent 
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histaminergic innervation occurred in the subiculum and DG, whereas the CA3 and CA1 
regions received only weak innervation (Panula et al. 1989). 

6.1.4. Immunostainings
Monoamines, which are relatively small molecules, are usually not detected directly 
by antibodies. Instead, antibodies are developed against larger peptides or proteins, for 
example enzymes, which are involved in the synthesis and degradation of monoamines. 
However, Panula and co-workers (1984, 1988) worked out a method, in which histamine 
was coupled to a carrier protein with EDAC, and by using EDAC also in the fixation 
protocol, the histamine-conjugate was possible to stain directly. By using the antibody 
against this histamine conjugate it is possible to detect reliably the localization of 
histamine in the cellular structures. However, the atypical fixation with EDAC produces 
problems when doublestained with another antibody. Because of that, VMAT2 was used 
as a marker of histaminergic cells, when colocalization of histamine with GABA and 
galanin was studied. Thus, there is a small possibility that some of the VMAT2-positive 
cells were not histaminergic but for example dopaminergic cells, which are located in 
the hypothalamic region (Lindvall and Stenevi 1978). However, the initial preparation 
of the explant from the posterior hypothalamus was done carefully in order to exclude 
the surrounding areas to the culture. Indeed, when the neurons were doublestained 
with antibodies against histamine and VMAT2, only a few cells were VMAT2-positive 
without being histamine-positive. 

In order to clarify, whether the colocalization of different molecules was qualitatively 
reliable at the level of a subcellular vesicle several factors need to be considered. Firstly, 
whether the EDAC fixation (with 0.5% of PFA) compromised too much detection of 
VMAT2, for which the best fixation was 4% PFA. Indeed, when the amount of PFA was 
increased from 0.5% to 4%, as used in doublestaining of VMAT2 with galanin, also the 
amount of VMAT2-positive vesicles seemed to increase. Therefore, if the fixation were 
ideal for both histamine and VMAT2, there is a possibility, that all histamine-positive 
vesicles would also be VMAT2-positive. Secondly, the amount of antibody modified 
the results in a way, that at low concentrations, the amount of stained vesicles was low, 
whereas at high concentrations the amount of vesicles together with the unspecific staining 
increased. However, concentration of the antibody did not change the qualitative result 
of colocalization of the two compounds. Thirdly, different concentrations and incubation 
times of compounds used to increase penetration of the antibody did not change the 
results. Even though different variabilities of the stainings (EDAC-PFA-fixation, the 
amount of the antibody, and the compounds used to increase the penetration of the 
antibody) effected on the quantitative reseults, the fact that VMAT2 and GABA never 
coexisted in the same vesicular structures indicates that the antibodies really showed the 
reliable qualitative results. 
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6.1.5. FJB and estimation of the extend of neuronal damage
The exact mechanism of FJB staining is not known. It is suggested that the degenerating 
neurons express strongly basic molecule, which has high affinity for the strongly acidic 
FJB (Schmued et al. 1997). However, conventional histochemical staining methods such 
as hematoxylin-eosin and toluidine blue stainings, de Olmos´cupric-silver method, and 
propidium iodine uptake have shown similar results suggesting that FJB is a reliable 
marker for degenerating neurons (Schmued et al. 1997, Noraberg et al. 1999). However, 
although it is obvious that FJB-stained neurons are damaged, it is not clear whether or 
not they really die. There is a possibility that some of the cells may recover. 

The conventional thionin staining showed that the attenuated neuronal degeneration 
in HI+HY, POST when compared to HI was not attributable to the disappearance of 
CA3a/b neurons after the 12 h KA treatment. This suggests that at the beginning of the 
degeneration process FJB-stained neurons were damaged but not yet dead. However, 
after the 48 h KA treatment with the 48 h recovery period, thionin staining showed that 
in HI+HY, POST neurons were more protected in the CA3a/b region than in HI with 
the same treatment indicating that these neurons do disappear when the insult is strong 
or long enough, and that histaminergic neurons are protective even during the longer 
insult.

6.2. Morphology and neurotransmitter storage related to function of the 
histaminergic neurons 

Morphology of histaminergic neurons has previously been studied to characterize newly 
found neurons (Watanabe et al. 1983, Panula et al. 1984), to compare histaminergic 
neurons in different species (see review Nässel 1991, Kaslin and Panula 2001, Parmentier 
et al. 2002), and to understand the physiological properties of these neurons (Reiner et 
al. 1988, Diewald et al. 1997). In our study, morphology of the histaminergic neurons 
was examined to verify that the histaminergic neurons in our culture system were 
morphologically comparable to those in vivo, and that this kind of culture system would 
give reliable results in the following experiments.

6.2.1. Size and form of the histaminergic neurons
Size of the neuron is difficult to measure two-dimensionally, since shape of the neuron 
can be very complex, and it is not easy to define the axis, which gives the most reliable 
estimation of the size. The best way to measure the size would be to define the volume 
of the neuron by the three-dimensional reconstruction of thin slices and mathematical 
volume estimation. However, this method is rather laborious.

Previously, the size of the histaminergic cell body in vivo has been measured in the 
adult rats. Based on the size, the histaminergic neurons have been classified into two or 
three categories, in which cells are of small (< 18 μm), medium (~ 25 μm) or large (> 30 
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μm) size (Wouterlood et al. 1986, Ericson et al. 1987). In two studies, the histaminergic 
neurons have been shown to be mostly large (25-40 μm) (Hayashi et al. 1984, Airaksinen 
et al. 1991). There is no in vivo information about the size of the histaminergic neurons 
during the postnatal development. The in vitro study of Bajic and coworkers (2004) 
demonstrated that when the cultures are started from the 3-day-old rat and cultured for 
2 months, the soma diameter of the histaminergic neuron (only one value) varies from 
5 to 30 μm. The average value of the soma diameter of adenosine deaminase-positive 
neurons (18.8 μm) and histamine-positive neurons (16.3 μm) in Bajic´s work is close to 
our value for the long axis (19.2 μm). 

Although we did not cathegorize the histaminergic neurons by size, our values of 
size of the cell soma are similar to those found in the in vivo studies in the rat (see 
table 1 in page 19) (Hayashi et al. 1984, Wouterlood et al. 1986, Ericson et al. 1987). 
Our highest value of the long axis was 28.4 μm and the lowest 12.3 μm, which is in 
agreement with the earlier in vivo studies. The value of the long axis in our study may 
indicate the existence of a subpopulation of large histaminergic neurons, and the smallest 
value the subpopulation of small histaminergic neurons. However, categorizing of the 
histaminergic neurons does not so far give any additional information, since no functional 
characteristics have been connected to the cell size.

Three most common cell shapes of the histaminergic neurons were now detected: 
oval, rounded, and triangular. In our study, the most common shape was oval (73 % of 
the studied neurons). This is in accordance with the earlier studies, in which all these 
shapes (Hayashi et al. 1988, Reiner et al. 1988, Airaksinen et al. 1991), or only oval and 
round shapes (Ericson et al. 1987, Zimatkin et al. 2006), oval and multipolar neurons 
(Bajic et al. 2004) or mainly oval type of cells (Wouterlood et al. 1986) have been 
detected.  The cell shape might be correlated to the number of dendrites. Most of the 
histaminergic neurons are probably bipolar, which means that one neurite begins from 
each side of the elongated cell body. In case of multipolar cells, the higher number of 
dendrites may indicate that histaminergic neurons receive input from the more wide-
spread brain region.

6.2.2. Axon of the histaminergic neuron
In most histaminergic neurons, all neurites, which started from the cell soma, were 
MAP2-positive indicating that they were all dendrites. In some cases, a thin MAP2-
negative process beginning from the cell soma was detected. Occasionally, the axon was 
detected to arise from dendrite, which is in accordance with the earlier studies. (table 1 
in page 19) (Wouterlood et al. 1986, Reiner et al. 1988). 

The unusual morphology of the dendritic tree and initiation of the axon from one of 
the dendrites actually challenges the classical picture of the neuronal activation, which 
starts in dendrites, summates in the cell body, and if the threshold is exceeded, the action 
potential initiates in the axon hillock, and propagates along the axon. In the substantia 
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nigra dopaminergic neurons, an action potential has been shown to initiate in the axon, 
which grows from one of the dendrites. From there, the action potential backpropagates 
to the dendrite connected to the axon, and continues to the cell soma and other dendrites 
(Häusser et al. 1995).  In this study, the authors suggest that the dendrite bearing the axon 
represents a privileged dendrite, since its synaptic input may influence to the initiation of 
the action potential. Furthermore, since the action potential backpropagates from axon to 
the privileged dendrite and the cell soma, the privileged dendrite actually regulates the 
input to the soma and other dendrites (Häusser et al. 1995). 

6.2.3. Distribution of the histamine-containing vesicles 
According to our finding, histamine-containing vesicles can be detected all over the 
neuron including the axon, cell soma and dendrites, which is in accordance with the in 
vivo findings (Michelsen and Panula 2002). This kind of neurotransmitter distribution 
may indicate that histamine is released nonsynaptically from axon varicosities, dendrites, 
and soma.  In other monoaminergic neurons, in which the transmitter release has been 
measured in the awake animals by using microdialysis and in vitro studies, somatodendritic 
release has been shown to occur in dopaminergic (Kalivas and Duffy 1991, Heeringa and 
Abercrombie 1995, see review Adell and Artigas 2004), serotonergic (see review De-
Miguel and Trueta 2005), and noradrenergic neurons (Huang et al. 2007). Furthermore, 
subcellular location of VMAT2 in all subcellular compartments of the dopaminergic 
neurons in the substantia nigra and ventral tegmental area also suggests the possibility 
of the somatodendritic release mechanism (Nirenberg et al. 1996). In fact, replacement 
of certain amino acid residues in the C-terminal domain of VMAT2 disrupts sorting of 
VMAT2 to LDCV, and eliminates the regulated exocytosis of VMAT2 in dendrites, but 
only partly impairs exocytosis in axons (Li et al. 2005). Functionally, somatodendritic 
release of monoamines is suggested to be dependent on the stimulus frequency. For 
example,  in accompanied amperometry and patch-clamp study from noradrenergic 
neurons in the locus coeruleus brain slices, high frequency bursts (20-50 Hz) caused 
significantly increased secretion of noradrenaline from the cell soma, when compared to 
low frequency (4 Hz) or spontaneous activity (Huang et al. 2007).

6.2.4. Existence of GABA and galanin in the histaminergic neurons 
GABA and galanin have previously been shown to be located in the histaminergic 
neurons in vivo (Ericson et al. 1991, Airaksinen et al. 1992), but their intracellular 
location and functional importance in the histaminergic neurons has been less clear. Our 
results showed that both GABA and galanin are colocalized in the histaminergic neurons 
in a way that GABA was stored in the distinct vesicles, whereas galanin was partly 
colocalized with histamine in the same vesicles. 

Both GABA and glutamate have been shown to coexist in dopaminergic, 
serotonergic, and cholinergic neurons (see review Torrealba and Carrasco 2004). It is 
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poorly understood, in which circumstances monoamines are coreleased with glutamate 
or GABA, and what are the consequences of the corelease. However, it has been known 
already in the 1970`s that direct application of dopamine inhibits firing of neurons in the 
striatum, while stimulation of the dopaminergic neurons in the subtantia nigra generally 
produces excitation in the same region (Siggins et al. 1976). Recently, the functional 
relevance of corelease of dopamine and glutamate has been hypothesized to be connected 
to the formation of temporally precise information during learning process (see reviews 
Lapish et al. 2007, Schultz et al. 2007). It has previously been shown that dopaminergic 
neurons are important in prediction of the reward during learning, and if the reward is 
not predicted correctly, the phenomenon is called reward-prediction error (see review 
Schultz et al. 2007). Glutamate is suggested to be important in the precise timing of 
the dopaminergic action in the reward-prediction error signal (Lapish et al. 2007). The 
role of GABA in the histaminergic neurons is not known, but it would be interesting to 
speculate that the same kind of behavioural correlation might exist, when histamine is 
coreleased with GABA.

In general, monoaminergic neurons contain several neuropeptides, which are usually 
co-localized with the amine transmitter in the LDCV (see review Zupanc 1996). Galanin 
for example has been shown to be colocalized with monoamines including histamine 
(Staines et al. 1986, Köhler et al. 1986, Airaksinen et al. 1992), serotonin (Xu et al. 1998, 
see review Hökfelt et al. 1998), noradrenaline and dopamine (Melander et al. 1986a), 
and acetylcholine (Melander et al 1986b). Release of neuropeptides seems to be highly 
dependent on frequency of the stimulus (Whim and Lloyd 1989, Karhunen et al. 2001), 
but in which circumstances neuropeptide and monoamine are released and what is the 
net effect of corelease, is not yet understood.

6.3. Mechanisms of KA-induced neuronal death 

The mechanism of KA-induced neuronal death is difficult to define, since apoptosis 
(Pollard et al. 1994, Simonian et al. 1996, Tuunanen et al. 1999, Dong et al. 2002), 
necrosis (Sperk et al. 1983, Fujikawa et al. 2000), and neuronal death having features 
from both apoptosis and necrosis (Portera-Cailliau et al. 1997, Humphrey et al. 2002), 
have been reported. In general, the KA-induced neuronal death depends on how KA has 
been administered, what is the concentration of KA, how far away is the brain region 
from the site of KA injection, how long after KA injection the samples have been studied, 
and what is the species, strain, and age of the studied animals.

6.3.1. KA-induced excitotoxic cell death in the immature hippocampus 
The cultured hippocampal slice taken from P7 rat and cultured for 7 days can be 
considered as immature. Different cell types and connections as well as functions related 
to the structural changes are still developing at that age and during the culture period 
(see reviews Frotscher 1995, Holopainen 2005, Gähwiler et al. 1997, Holopainen 2008). 
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In other studies, immature slices are considered the ones prepared from the animals not 
older than 10 days (see review Gähwiler et al. 1997).  There is a simple technical reason 
for that. The slices taken from older animals are difficult to maintain in culture conditions. 
Also slices from older animals have been successfully cultured, and morphology as well 
as the functional characteristics resemple those seen in the more mature animals (Xiang 
et al. 2000). However, we should keep in mind that separated brain slice cultured in an 
artificial environment forms an individual unit with reformed intrinsic connections and 
slightly different functional properties.

The culture system was created to study the mechanisms of neuronal death in the 
developing hippocampus. However, even though hippocampal sclerosis has been detected 
in pediatric patients with epilepsy, it is usually not known whether the hippocampal 
sclerosis occurred before the onset of seizures, thus being cause of seizures, or if the 
hippocampal sclerosis follows after the recurrent seizures thus being the consequence 
of seizures. In general, the highest incidence of epilepsy is during the first year of life 
(see reviews Hauser 1994, Haut et al 2004), even though at that time the brain is less 
vulnerable than later in life (see review Lado et al. 2002). During maturation, the seizure-
induced neuronal degeneration gradually increases (see review Haut et al 2004), which 
is in accordance with the impairment in cognition observed in pediatric patients, who 
suffer from epilepsy (see review Holmes 2004). 

In our model, the KA-induced cell death was detected in the CA3 pyramidal neurons, 
whereas CA1 pyramidal neurons remained intact.  This is in agreement with the previous 
studies in epileptic animals (Buckmaster and Dudek 1997, Zhang et al. 2002), and in 
the organotypic slice cultures (Bruce et al. 1995, Routbort et al. 1999, Liu et al. 2001). 
Moreover, the KA-induced damage of CA3 neurons was augmented during the 48 h 
culture time in normal medium, the finding which is partly in accordance with a study in 
immature cultured hippocampal slices (Bruce et al. 1995). In this study, the initial insult 
(KA 50 μM, 3 h) followed by the 48 h resting phase in normal culture medium resulted in 
a progressive neuronal loss not only in CA3 but also in CA1. Although the mechanisms 
of increased damage after the withdrawal of KA are not known, one reason could be 
that pathological electrical activity continues within the intrahippocampal network after 
KA withdrawal, and finally leads to neuronal death as recently suggested for glutamate-
induced toxicity in the cultured hippocampal slices (Lahtinen et al. 2001). 

6.3.2. Apoptosis vs. necrosis
KA-induced excitotoxic neuronal death in the developing animal is usually first necrotic 
showing later also apoptotic features (Humprey et al. 2002, Dong et al. 2003, Portera-
Cailliau et al. 1997). However, the type of death (apoptotic or necrotic) has been shown 
to depend on KA concentration and the time of the KA treatment (Humprey et al. 2002). 
Therefore, the concentration and time of the treatment we used is probably more suitable 
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for studying necrotic cell death, but at the lower KA concentration or by using a shorter 
treatment, it would be possible to detect also features of apoptosis.

In spite of the massive neuronal death comprising the entire CA3 region, the 
expression of the active caspase-3 and uncleaved and cleaved PARP proteins were not 
significantly changed after the KA treatment at any time point studied (4 up to 24 h) 
(Fig. 14). Moreover, active caspase-3 immunoreactivity was negative in both acute and 
resting groups, and no ultrastructural signs of apoptosis were detected after the 24 h KA 
treatment. 

Figure 14. Pathway of the cell death mechanism in our model. The caspase-3 activation was not 
changed after the KA treatment indicating that the mitochondrial pathway through the cytochrome 
c release and caspase-3 activation is not involved. However, the caspase-independent pathway 
through AIF and EndoG activation may be involved in KA-induced neuronal death, as well as 
pathways related to the NOS and different proteases, which are activated by increased intracellular 
Ca2+ levels. Abbreviations: AIF= apoptosis inducing factor, Apaf-1=apoptotic-protease-activating 
factor 1 (Apaf-1), dATP=deoxyadenosine triphosphate, Endo G=endonuclease G, NOS=nitric 
oxide synthetase. (Based on Orrenius et al. 2003, Syntichaki and Tavernarakis 2003).

Activation of the mitochondrial apoptotic pathway has been earlier detected in the 
KA-treated hippocampal slices, which were taken from 6-8 day-old rats and cultured for a 
longer period (20–25 DIV) (Liu et al. 2001). In this study, pyramidal cell death, induction 
of Bax expression, and increased cytochrome c and caspase-3 levels were detected within 
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24 h after KA (50 μM) application. Here apoptotic mechanisms are activated within 
hours after the initial insult (Liu et al. 2001), thus excluding the possibility that we might 
have missed the appropriate time for detection. Also in the in vivo study, a more delayed 
apoptotic cell death, i.e. 75 days after KA injection, has been reported in the developing 
animals (P7) (Montgomery et al. 1999, Humphrey et al. 2002). The fact, that we did 
not detect any changes in the caspase-3 activation, may indicate that neuronal death 
was either necrotic or caspase-independent apoptosis. However, electron microscopic 
studies showed mainly necrotic changes in the dying neurons indicating that cell death 
was mainly necrotic. 

The fact, that levels of the cleaved (85 kDa) and uncleaved PARP (116 kDa) did not 
show any KA-induced changes, is confusing, since according to the recent theories PARP 
should be activated both in apoptosis and necrosis. However, several studies show that 
PARP is activated in excitotoxic cell death, but mainly by the NMDA receptor agonist 
(Mandir et al. 2000, Wang et al. 2005, Andrabi et al. 2006, Duan et al. 2007). The reason, 
why KA-induced neuronal death does not activate PARP, is not known.

In addition to the importance of apoptosis in the pathological cell death, it also plays a 
central role in controlling cell numbers during the brain development (see review Kuan et 
al. 2000). We detected in our Western blots signals of active caspase-3, and the uncleaved 
and cleaved PARP in both control hippocampal slices, and in samples prepared from P14 rat 
hippocampi. These results suggest that the normal, developmentally regulated programmed 
cell death is still to some extent operational at this age in the rat hippocampus.

6.4. Mechanisms of histamine-mediated protection on excitotoxic cell death 
in the developing hippocampus 

6.4.1. Endogenous vs. exogenous histamine in neuroprotection
Our results showed that neuronal histamine is important in induction of neuroprotective 
effect in the KA-induced excitotoxicity in the in vitro model, since neuronal death was 
significantly decreased in the hippocampal slice when it was cultured with the posterior 
hypothalamic slice containing histaminergic neurons. Furthermore, inhibition of histamine 
synthesis by α-FMH eliminated the protective effect. However, commercial histamine 
applied to the culture medium was neuroprotective only at low nanomolar concentration. 
The concentration-dependent effect in neuroprotection suggests that neuronal histamine 
release and consequent increase in histamine concentration in the extracellular space is 
strictly regulated by H3 autoreceptors (van der Vliet et al. 1990, Morisset et al. 2000). 
High, not-neuroprotective concentrations of histamine probably inhibit histamine/corelease 
from the histaminergic neurons. The direct evidence of this is that application of histamine 
reduces firing of the histaminergic neurons (Brown et al. 2001).

Histamine has been shown to have both neuroprotective and neurotoxic effects. In the 
earlier studies, pre- or post-treatment with histidine or histamine has attenuated neuronal 
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death, whereas depletion of neuronal histamine by α-FMH or pre-treatment with H3 receptor 
agonist has aggravated neuronal degeneration in the animal models of ischemia (Sugimoto 
et al. 1994, Fujitani et al. 1996, Adachi et al. 2004), and in NMDA-induced death of cultured 
cortical neurons (Dai et al. 2006). As a neurotoxic compound, additional histamine causes 
death of cultured cerebellar neurons (Gepdiremen et al. 2003), and the dopaminergic neurons 
of the substantia nigra (Vizuete et al. 2000). Furthermore, histamine can cause NMDA-
dependent neuronal swelling in the neostriatum (Colwell and Levine 1997). 

Toxicity of histamine seems to depend on the histamine concentration, and on the 
brain region studied. In the cultured cerebellar neurons, additional histamine induces 
dose- dependent neuronal death, and for example, 10 μM histamine kills more than 50 
% of cells (Gepdiremen et al. 2003). Furthermore, in the study of Colwell and Levine 
(1997), 100 μM of histamine together with 10 and 100 μM NMDA caused neuronal 
swelling. In addition, different brain regions show different vulnerability, since 100 nM 
histamine induces selective damage of dopaminergic neurons in the substantia nigra 
without having any effect on dopaminergic neurons in the striatum, on cholinergic 
neurons in the medial septum, or serotonergic neurons in the medial lemniscus (Vizuete 
et al. 2000). 

According to our results, the proposed effect of histamine on KA-induced neuronal 
death is depicted in Fig. 15.  

Figure 15.  A hypothesized connection of histamine concentration to KA-induced neuronal death 
in the slice culture model. At the optimal histamine concentration the KA-induced neuronal 
death is minimal. H3 antagonist (or inverse agonist) blocks the H3 autoreceptor function in the 
histaminergic neurons inducing an increase in histamine release (an arrow from the left line to 
the central point of the area of the optimal histamine concentration), which further ameliorates 
the neuroprotective effect of the histaminergic neurons. Alpha-FMH in turn inhibits histamine 
synthesis and release, and increases KA-induced neuronal death in the coculture system. The 
histamine concentrations above the optimal range increase dose-dependently the KA-induced 
neuronal death. Abbreviations: α-FMH=α-fluoromethylhistidine.

The reason why high amount of histamine is not neuroprotective in our study may 
mimic the situation, in which high amounts of histamine are released from mast cells. 
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Increased histamine levels have been detected in the animal model of Wernicke´s 
encephalopathy, the disease, in which inhibition of histamine synthesis by α-FMH is 
neuroprotective (Langlais et al. 1994, McRee et al. 2000). Furthermore, in Wernicke´s 
encephalopathy, increased histamine release has been detected both in the hippocampus 
and thalamus, but granulocytes (including mast cells) were detected only in the damaged 
thalamic region (McRee et al. 2000). Moreover, when hippocampal neurons are co-
cultured with mast cells, excitotoxic injury is enhanced by 60 %, and it is abolished in 
the presence of diamine oxidase, which catalyzes inactivation of histamine (Skaper et 
al. 2001). Finally, degranulation of histamine from mast cells and consequent cell death 
may be preceded by an inflammatory reaction such as activation of astrocytes, as it 
has been shown to occur in the substantia nigra after an injection of 100 nM histamine 
(Vizuete et al. 2001). However, in our study, the high concentration of histamine (10-100 
μM) was not toxic itself, although it eliminated the neuroprotective effect of histamine 
seen in the coculture system after the KA treatment.

Histamine decreases neuronal death at least partly by inhibiting the KA-induced 
epileptiform activity in the CA3 region. However, other mechanisms may also be involved. 
For example, histamine may modulate cell death cascades primarily as in case of dopamine 
2 (D2) receptors, which activate anti-apoptotic pathway by replacing N-ethylmaleimide-
sensitive factor from the AMPA receptor (see review Bozzi and Borrelli 2006).

Finally, GABA and galanin, which are both inhibitory neurotransmitters, may induce 
an inhibitory and neuroprotective net effect if coreleased with histamine during the 
seizures. Galanin inhibits epileptic seizures through galanin 2 receptors, whereas galanin 
1 receptor shows proconvulsant activity (see review Mazarati 2004, Mazarati et al. 2005, 
McColl 2006). Interestingly, when galanin is coreleased with serotonin, both pro- and 
anticonvulsive activity of galanin can be detected (Mazarati et al. 2005). However, when 
serotonin is depleted, also the response to galanin is eliminated. 

6.4.2. Histamine receptors in neuroprotection
H1 and H2 receptors are involved in neuroprotection, since blocking of these receptors 
enhances neuronal death both in the animal model of ischemia and in cultured cerebellar 
neurons (Adachi et al. 1993, Fujitani et al. 1996, Diaz-Trelles et al. 1999, Diaz-Trelles et 
al. 2000, Adachi et al. 2001, Otsuka et al. 2003), whereas H2 agonists have been shown 
to be neuroprotective (Hamami et al. 2004, Dai et al. 2006). Our results showed that H1 
receptor is important in neuroprotection, but the exact mechanism is not known. 

Different effects of thioperamide and clobenprobit are difficult to explain, since they 
both are inverse agonists of H3 receptor, and they both increase histamine synthesis and 
release in the TM neurons (Moreno-Delgano et al. 2006). In our studies, thioperamide 
further decreased neuronal death in the coculture system, whereas clobenprobit did not have 
any effect. This suggests that H3 receptors might have different mechanisms, by which they 
respond on excitotoxicity. One explanation is the differences in their autoreceptor-mediated 
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effects on histamine synthesis and release. In addition, they may have also differences in 
the heteroreceptor function, for example in synthesis and release of GABA. The possible 
H1 and H3 receptor-mediated mechanisms of histamine-mediated protection against KA-
induced death of CA3 neurons have been compiled in Fig. 16. 

Figure 16.  The possible H1 and H3 receptor-mediated neuroprotective mechanisms in the CA3 
region of the hippocampus. Histamine is released nonsynaptically from the axon varicosities 
(volume transmission). In our model, H3 antagonist further decreased neuronal death, which may 
occur through two different mechanisms. First, the H3 antagonist can eliminate the autoreceptor-
mediated inhibition of the histamine release resulting in enhanced histamine release.  Second, the 
H3 receptor as a heteroreceptor can also inhibit GABA release. The H3 antagonist (or inverse 
agonist) in turn increases GABA release from interneurons, which might be neuroprotective. In 
our model, inhibition of the H1 receptor eliminated the neuroprotective effect of histamine, which 
indicates that H1 receptor at least partly regulates the neuroprotection. Whether the H1 receptor-
mediated neuroprotective cascades are activated in the interneurons or pyramidal neurons, is 
not known. Abbreviatons: AMPA=AMPA receptor, CA3=CA3 region of the hippocampus, 
GABA=γ-aminobutyric acid, HA=histamine, KA=KA receptor, NMDA=NMDA receptor, 
TM=tuberomamillary nucleus.
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7. CONCLUSIONS

The central histaminergic neuron system is a powerful regulator of different homeostatic 
states of our body. However, the basic mechanisms of histamine storage, release and 
colocalization of other compounds in these neurons are poorly understood. Furthermore, 
in epilepsy, the histaminergic system has been shown to control the threshold, duration 
and strength of seizures, but the importance of the histaminergic neurons in the KA-
induced seizures and consequent neuronal death have not been studied. Therefore, our 
purpose was to develop different in vitro culture models for the histaminergic neurons, to 
compare the morphology of these neurons to the previous findings in vivo, to understand 
the mechanisms of the KA-induced neuronal death in the immature organotypic 
hippocampal slice cultures, and finally, to study, whether or not the histaminergic neurons 
are neuroprotective in the KA-induced neuronal death.

We showed that the histaminergic neurons were maintained successfully in the in 
vitro conditions, and their morphological features were comparable to those detected 
previously in vivo.  Furthermore, histamine containing storage vesicles were distributed 
throughout the neuron consistent with the idea of volume transmission and suggesting a 
possibility for the somatodendritic release mechanism. VMAT2 was partly colocalized 
with histamine in the same subcellular vesicles suggesting that VMAT2 transports 
histamine to the vesicles. Finally, in the histaminergic neurons GABA was localized 
in distinct vesicles whereas galanin was partly colocalized in the same subcellular 
vesicles as VMAT2 suggesting different corelease mechanisms for GABA and galanin 
with histamine. This is the first evidence about costorage of GABA and galanin with 
histamine at the level of a single vesicle. These results are important for future studies, in 
which the mechanisms of histamine release/corelease and its regulation are considered. 

 KA-induced neuronal death in organotypic hippocampal slice cultures was region-
specific, restricted mainly to the CA3 region consistent with the previous results. 
Furthermore, the KA-induced death process was irreversible, since recovery period 
in normal culture medium did not save the cells but instead increased the damage. In 
addition, KA-induced neuronal death seemed to be necrotic, since the levels of the 
apoptotic markers did not change after the KA treatment, and ultrastructural changes 
were characteristic for necrosis.

The coculture system of the hippocampus and the posterior hypothalamus (HI+HY, 
POST) was created to mimic the physiologically relevant histaminergic regulation of 
hippocampal functions. In culture conditions, the histaminergic neurons innervated the 
hippocampal slice in a diffuse manner.

The histaminergic neurons significantly attenuated the KA-induced neuronal 
death of the CA3 pyramidal neurons in HI+HY, POST. The neuroprotective effect was 
eliminated when histamine synthesis was inhibited by the specific inhibitor α-FMH 
or when the hippocampus was cultured with the anterior hypothalamic slice devoid 
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of the histaminergic neurons. Furthermore, the KA-induced epileptiform activity 
recorded in the CA1 region significantly decreased in HI+HY, POST, when compared 
to the hippocampus cultured alone. Histamine when added to the hippocampal slices 
cultured alone was neuroprotective only at low nanomolar concentrations. This favours 
the idea that possible histamine-based antiepileptic and neuroprotective drugs should 
be designed to regulate the activity of the histaminergic neurons and not to increase 
histamine concentration in the brain.

The neuroprotective effect of the posterior hypothalamus was at least partly mediated 
through H1 and H3 receptors. The H3 antagonist thioperamide further increased this 
neuroprotective effect probably through autoreceptor-mediated increase in histamine 
synthesis and release. H1 receptor antagonists decreased dose-dependently the 
neuroprotective effect of the posterior hypothalamus. This suggests that H1 receptor has 
an important role in neuroprotection. 

Epilepsy is not a homogenous disease, which can be treated by one certain type 
of drug, but different solutions for the drug development are needed. Therefore the 
central histaminergic system, which can regulate activity of the entire system effecting 
simultaneously on several ion channels and downstream signalling pathways might be 
a good target for designing new drugs against some epileptic disorders. We showed 
for the first time that the central histaminergic neurons can at the same time inhibit 
epileptiform activity and decrease neuronal death in the in vitro model. This kind of 
doupleprotective effect is an important strategy in the development of new antiepileptic 
drugs, since the currently used drugs mainly decrease epileptiform activity but seem not 
to have significant neuroprotective effect.
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