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Abstract

Current-day web search engines (e.g., Google) do not crawl and index a
significant portion of the Web and, hence, web users relying on search engines
only are unable to discover and access a large amount of information from the
non-indexable part of the Web. Specifically, dynamic pages generated based
on parameters provided by a user via web search forms (or search interfaces)
are not indexed by search engines and cannot be found in searchers’ results.
Such search interfaces provide web users with an online access to myriads
of databases on the Web. In order to obtain some information from a web
database of interest, a user issues his/her query by specifying query terms
in a search form and receives the query results, a set of dynamic pages that
embed required information from a database. At the same time, issuing a
query via an arbitrary search interface is an extremely complex task for any
kind of automatic agents including web crawlers, which, at least up to the
present day, do not even attempt to pass through web forms on a large scale.

In this thesis, our primary and key object of study is a huge portion of
the Web (hereafter referred as the deep Web) hidden behind web search in-
terfaces. We concentrate on three classes of problems around the deep Web:
characterization of deep Web, finding and classifying deep web resources,
and querying web databases.

Characterizing deep Web: Though the term deep Web was coined in
2000, which is sufficiently long ago for any web-related concept/technology,
we still do not know many important characteristics of the deep Web. An-
other matter of concern is that surveys of the deep Web existing so far are
predominantly based on study of deep web sites in English. One can then
expect that findings from these surveys may be biased, especially owing to
a steady increase in non-English web content. In this way, surveying of
national segments of the deep Web is of interest not only to national com-
munities but to the whole web community as well. In this thesis, we propose
two new methods for estimating the main parameters of deep Web. We use
the suggested methods to estimate the scale of one specific national segment
of the Web and report our findings. We also build and make publicly avail-
able a dataset describing more than 200 web databases from the national
segment of the Web.

i



Finding deep web resources: The deep Web has been growing at a
very fast pace. It has been estimated that there are hundred thousands of
deep web sites. Due to the huge volume of information in the deep Web,
there has been a significant interest to approaches that allow users and com-
puter applications to leverage this information. Most approaches assumed
that search interfaces to web databases of interest are already discovered
and known to query systems. However, such assumptions do not hold true
mostly because of the large scale of the deep Web – indeed, for any given
domain of interest there are too many web databases with relevant content.
Thus, the ability to locate search interfaces to web databases becomes a key
requirement for any application accessing the deep Web. In this thesis, we
describe the architecture of the I-Crawler, a system for finding and classify-
ing search interfaces. Specifically, the I-Crawler is intentionally designed to
be used in deep Web characterization studies and for constructing directories
of deep web resources. Unlike almost all other approaches to the deep Web
existing so far, the I-Crawler is able to recognize and analyze JavaScript-rich
and non-HTML searchable forms.

Querying web databases: Retrieving information by filling out web
search forms is a typical task for a web user. This is all the more so as
interfaces of conventional search engines are also web forms. At present, a
user needs to manually provide input values to search interfaces and then
extract required data from the pages with results. The manual filling out
forms is not feasible and cumbersome in cases of complex queries but such
kind of queries are essential for many web searches especially in the area of
e-commerce. In this way, the automation of querying and retrieving data
behind search interfaces is desirable and essential for such tasks as building
domain-independent deep web crawlers and automated web agents, search-
ing for domain-specific information (vertical search engines), and for ex-
traction and integration of information from various deep web resources.
We present a data model for representing search interfaces and discuss tech-
niques for extracting field labels, client-side scripts and structured data from
HTML pages. We also describe a representation of result pages and discuss
how to extract and store results of form queries. Besides, we present a
user-friendly and expressive form query language that allows one to retrieve
information behind search interfaces and extract useful data from the re-
sult pages based on specified conditions. We implement a prototype system
for querying web databases and describe its architecture and components
design.
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Chapter 1

Introduction

Current web search engines include in their indices only a portion of the
Web. There are a number of reasons for this, including inevitable ones, but
the most important point here is that the significant part of the Web is
unknown to search engines. It means that search results returned by web
searchers enumerate only relevant pages from the indexed part of the Web
while most web users treat such results as a complete (or almost complete)
set of links to all relevant pages on the Web.

In this thesis our primary and key object of study is a huge portion of the
Web hidden behind web search interfaces, which are also called web search
forms. These interfaces provide web users with an online access to myriads of
databases on the Web. At the same time, web forms are formidable barriers
for any kind of automatic agents, e.g., web crawlers, which, unlike human
beings, have great difficulties in filling out forms and retrieving information
from returned pages. Hereafter we refer to all web pages behind search
interfaces as the deep Web.

The deep Web is not the only part of the Web, which is badly indexed by
search engines. For better understanding the subject we start with a brief
description of the non-indexable portion of the Web in general.

1.1 Non-indexable Web

The non-indexable Web (or invisible Web [97]) consists of web documents
which are poorly indexed or not indexed at all by current-day search engines.
According to the study conducted in 1999 by Lawrence and Giles [72] no
engine of that time indexed more than one-sixth of the Web.

A web crawler, an automatic tool used by search engines to collect web
pages to be indexed, browses the Web in the following way: it starts with
a predefined list of URLs to visit (called the seeds) and, as the crawler
processes these URLs, it extracts all hyperlinks from visited pages and adds
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Figure 1.1: Sketchy representation of the Web (for simplicity, an arrow from

one website to another website means that there is at least one hyperlink on some

page of the former site to some page of the latter one).

them to the list of URLs to visit (called the crawl frontier). URLs from the
frontier are recursively visited according to a set of crawler’s rules. Clearly,
web pages which URLs are neither in the seeds nor in the frontier are not
added to search engines’ indices. Figure 1.1 gives an schematic illustration of
this. While websites A, B, and C are connected to each other via hyperlinks
on their pages no incoming links to any page of website D exist. Thus, all
pages of website D remain unindexed until the crawler visits a page with
a link to some page on site D or some URL of the D is appended to the
crawler seeds.

Limited resources of web crawlers are a further factor restricting engines’
coverage of the Web. Specifically, huge volumes of web data imply that a
crawler can only download a fraction of a particular website within a given
time. In a like manner, large web documents are not indexed fully by search
engines - any text that extends beyond certain size limits is, in fact, disre-
garded1. One can expect, however, that these limitations will be gradually
overcome over the next few years. Indeed, until 2001, web documents in
non-HTML formats such as, for instance, PDF or MS Office (Word, Excel,
PowerPoint) were ignored by searchers due to high computational costs of
indexing non-HTML files. The situation was changed during last years when
search engines began to recognize and index several document formats and,

1According to Bondar, in 2006, the limits of three leading search engines were 210KB
for Yahoo!, 520KB for Google, and 1030KB for Live Search. (http://www.sitepoint.
com/article/indexing-limits-where-bots-stop)
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hence, the corresponding portion of the Web turned out to be indexed.
Protection of web content is another roadblock for web crawlers. There

are generally two types of web page protection (website C depicted in Fig-
ure 1.1 are protected using both types):

• For a variety of reasons a website owner can specify which parts of a site
should not be crawled and indexed by search engines in a file named
robots.txt [9]. There is a page-specific prevention as well: NOINDEX
meta tag in the head of a web page does not allow a searcher to crawl
this page.

• Pages can be protected with a login and password, which are obtain-
able either on a free or a paid basis. Crawlers cannot access such pages.
Though little can be done about pages accessible on a paid basis it is
a matter of concern that freely available password-protected pages are
unknown to search engines. Note that according to our point of view
“web” pages which are only available when visited from within a cer-
tain network, i.e., a corporate intranet, or which are only accessible
by employees of a certain company do not belong to the Web because
such pages are not intended for large audience as conventional web
pages (even with a paid access) are.

Lastly, dynamic web content poses a challenge for search engines. A
dynamic web page is a page which content is generated at run-time, i.e., after
a request for this page has been made, by a program executing either on a
server or on a client. This is in contrast to a static web page which content
already exists on a server, ready to be transmitted to a client whenever a
request is received. Dynamic pages can be divided into two classes. First
group of pages is those that include parameters used for page generation in

3



their URLs2. Technically these pages are indexable since they are accessible
via hyperlinks. But, in reality, crawlers have troubles with such pages and
frequently prefer to avoid them. The main threat here is so called “crawler
traps”[32], i.e., a dynamically-generated page may have a link to another
dynamic page which may lead to next page and so on. Following “Next
month” link on a web calendar is an example of a “fair”3 endless loop formed
by dynamic pages. Second class of dynamic content is pages generated based
on parameters provided by a user via search interfaces (also known as search
forms). These interfaces provide web users with an online access to myriads
of databases on the Web. In order to obtain some information from a web
database of interest, a user issues his/her query by specifying query terms in
a search form and receives the query results, a set of dynamic pages which
embed required information from a database. However, issuing a query
via arbitrary search interface is an extremely complex task for any kind of
automatic agents including web crawlers, which, at least up to the present
day, do not even attempt to pass through web forms on a large scale. To
illustrate, website A shown in Figure 1.1 has one page containing a search
interface and this particular page is known and indexed by search engines.
However, dynamically-generated pages with results of a query issued via this
search interface are not indexed by web searchers due to their inability to
query web forms.

Summarizing picture of the indexable and non-indexable portions of the
Web is given in Figure 1.2 (note that the portion sizes shown are not to
scale). There are four main types of web data: public, protected, static, and
dynamic. Though we do not consider intranet pages as a part of the Web
they can still be classified as protected pages. Dynamic web pages can be
divided into those with parameters specified within their URLs and those
generated based on provided-via-search-interface parameters. The indexable
Web or publicly indexable Web (PIW) [71] consists of publicly available
both static and parameter-known dynamic web pages. All other portions
of the Web belong to the non-indexable Web. In this thesis our principal
concern is the deep Web, i.e., a portion of the Web formed by intersection
of public and query-based dynamic parts of the Web. However, since most
problems related to the deep Web do not lie on the level of authorization
or registration our study is also relevant to the protected deep Web (and
intranet deep Web).

2They can often be detected by URLs with ’?’ and ’&’ symbols.
3It may be “unfair” as well. For instance, millions of similar but not quite identical

pages can be specifically generated to spam search engines indices.
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Figure 1.3: User interaction on Amazon.com.

1.2 Deep Web

With the advances in web technologies [1, 2, 5, 7, 45, 48, 54, 60, 84], web
pages are no longer confined to static HTML files that provide direct content.
This leads to more interactivity of web pages and, at the same time, to
ignoring a significant part of the Web by search engines due to their inability
to analyze and index most dynamic web pages. Particularly, query-based
dynamic portion of the Web known as the deep Web is poorly indexed by
current-day search engines.

There is a slight uncertainty in the terms defining the part of the Web
that is accessible via web search interfaces to databases. In literature, one
can observe the following three terms: invisible Web [97], hidden Web [46],
and deep Web [25]. The first term, invisible Web, is a superior to latter two
terms as it refers to all kind of web pages which are non-indexed or badly
indexed by search engines (i.e., non-indexable Web). The terms hidden
Web and deep Web are generally interchangeable, and it is only a matter
of preference which to choose. In this thesis we use the term deep Web
and define it as web pages generated as results of queries issued via search
interfaces to databases available online. In this way, the deep Web is a large
part but still part of the invisible Web (see Figure 1.2).

We further clarify the concept of the deep Web by three related notions
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introduced in [34]: a deep web site, a database, and a search interface (or
search form). A deep web site is a web site that provides an access to one
or more back-end web databases, each of which is searchable through one
or more search interfaces4. Appendix A provides additional information
regarding to the terms commonly used in deep Web-oriented studies.

The presence of at least one search interface on a web site is a key factor
that makes this site a deep web one. For example, website A depicted in
Figure 1.1 is a deep web site or, as Figure 1.3 shows, Amazon.com is a deep
web site too as it allows a web user to search for books in the Amazon’s
book database. Figure 1.3 schematically depicts a user interaction, in which
a user searches for books via one of the interfaces on Amazon.com and gets
a web page with search results. The search form shown in Figure 1.3 is
not the only one available on Amazon – depending on his/her search task
a user can use other forms which are depicted schematically in Figure 1.4.
For example, books which descriptions are stored in book database can be
searched via two different interfaces (called “simple search” at the Amazon’s
front page, and “advanced search”) while search in music database can be
performed using four different forms.

As mentioned earlier, current-day search engines do not index and, hence,
miss a large number of documents in the deep Web. We illustrate this by
the following two examples:

Example 1.1: The AutoTrader.com is one of the largest web services for
car searching with over 3 millions used vehicles listed for sale by private
owners, dealers, and manufacturers. One of AutoTrader’s search interfaces
is available at http://www.autotrader.com (see Figure 1.5). If we query
AutoTrader.com for any five-year-old “Ford Taurus”, it returns 1,916 possible
vehicles (results are shown in Figure 1.5). However, such major web search
engines as Google, Yahoo! and Live Search (search string is “2002 Ford Tau-
rus” site:autotrader.com) return links to only 245, 262 and 299 pages from
the AutoTrader correspondingly5. Browsing of search engine results further
reveal that most of them are “car dealers” pages, each listing several cars
offered by a dealer (including one 2002 Ford Taurus), rather than pages with
descriptions of 2002 Ford Tauruses exclusively. Moreover, approximately one
third of result pages are outdated in the sense that they did contain 2002
Ford Taurus at the time of crawling but do not contain these terms at the
time of our search. Thus, search engines index only a small subset of actual
AutoTrader’s data (around 10% according to this example) and even those
indexed pages are less relevant than original AutoTrader results.

4This definition is a slightly changed version of the one given by Chang et al.
5Unless otherwise stated all numbers in this section were retrieved at the end of Septem-

ber 2007. Note that the query itself is not ad hoc - it is easy to check that AutoTrader

pages about other car models are indexed in a similar way.
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Figure 1.4: A number of search interfaces and databases on Amazon.com.
“Advanced search for books” interface is shown in Figure 1.3.

Example 1.2: Consider the PubMed database [8]. The PubMed’s search
interface and page with search results are depicted in Figure 1.6. Query-
ing PubMed for documents with keywords “breast cancer” returns 163,871
matches while search on Google, Yahoo! and Live Search for pages on the
PubMed site with “breast cancer” return 80,100, 4,440 and 12,200 results cor-
respondingly6. Similar to the previous example, around one third of search
engine results are links to some pages on the PubMed rather than links to
articles in the PubMed database. Here one can see that coverage of deep
web data may vary among searchers. Additionally, as we did issue the same
queries to the PubMed database and to Google in July 2002 (when the PubMed
had 120,665 articles vs. 3,810 results returned by Google), we certainly ob-
serve the gradual improvement in indexing of the PubMed data during past
five years. This trend improvement in indexing of deep web data, is marked
by arrows in Figure 1.2.

In addition, there is another noticeable feature of search engines’ results.
Web searchers normally stop at about the 1000th result leaving all other
matching links hidden from a user. For instance, as Example 1.2 demon-

6These numbers are, in fact, approximate because searchers show only result count
estimates [104].
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Figure 1.5: Autotrader’s search interface and search results.

Figure 1.6: PubMed’s search interface and search results.
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strated, even Google is likely to be aware of approximately eighty thousands
documents with “breast cancer” on the PubMed site it actually returns links
to only the first thousand of these documents, which is in sharp contrast to
fully browsable and achievable PubMed results.

Search interfaces are formidable barriers for web crawlers, which are de-
signed to follow hyperlinks but fail to fill and submit search forms. The
examples above have shown that, indeed, information behind search inter-
faces are poorly covered by search engines. Now we discuss the scale of the
problem, i.e., how many deep web sites and databases are on the Web.

1.2.1 Scale of Deep Web

Historically, the first web gateway to a relational database system was cre-
ated by Arthur Secret at the CERN in September 1992 [11]. Less than eight
years after it has been estimated that 43,000–96,000 deep web sites existed
in March 2000 [25]. A 3-7 times increase during the period 2000-2004 has
been reported in the surveys by Chang et al. [34, 35], where the total num-
bers for deep web sites in December 2002 and April 2004 were estimated
as around 130,000 and 310,000 correspondingly. Moreover, even national-
or domain-specific subsets of deep web resources are, in fact, very large col-
lections. For example, in summer 2005 there were around 7,300 deep web
sites on the Russian part of the Web only [101]. Or the bioinformatics com-
munity alone has been maintaining almost one thousand molecular biology
databases freely available on the Web [47]. To sum up, deep Web is, beyond
all doubts, a huge, important and largely unexplored frontier of the Web.

1.3 Motivation

Search engines are clearly among those that can benefit from the information
behind search interfaces. Current searchers deal well with informational
(give me the information I search for) and navigational (give me the URL
of the site I want to reach) queries, but transactional (show me sites where
I can perform a certain transaction, e.g., shop, access database, download a
file, etc.) queries are satisfied only indirectly [28]. It is needless to say that
data in the deep Web is indispensable to use when answering transactional
queries that constitute about 10% of web search engine queries [63, 64].
The fact that the deep Web is still poorly indexed is another major issue for
search engines, which are eager to improve their coverage of the Web.

Besides web search engines, at least two other parties also have a di-
rect interest in the deep Web. First, content providers (e.g., librarians)
are realizing that putting content “into Web-accessible databases will not
make it easily available, because commonly used search engines do not crawl
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databases” [110]. Due to a huge number of databases (estimated in the hun-
dreds of thousands) available on the Web today this is becoming a serious
problem. Indeed, a recently-created database with highly relevant infor-
mation on some topic may remain almost invisible for everyone as people
discover new content using web searchers that do a poor job of indexing deep
web content [55]. Second, mining deep web resources is invaluable and often
a must for specialized (also called vertical) search engines. These search ser-
vices are intended for a focused audience and designed to find information
on a specialized topic. For many topics, deep web sites are the only or the
most important data sources – for instance, it is unlikely that search engine
for apartment seekers does not aggregate information from at least several
deep web resources devoted to apartment search.

In this thesis, we concentrate on three classes of problems around the
deep Web: characterization of deep Web, finding and classifying deep web
resources, and querying web databases. We describe our motivations for
each class of problems in the following subsections.

1.3.1 Characterizing the Deep Web

Though the term deep Web was coined in 2000 [25], which is sufficiently
long ago for any web-related concept/technology, we still do not know many
important characteristics of the deep Web. Indeed, until now there are only
two works (namely, [25, 34]) solely devoted to the deep web characterization
and, more than that, one of these works is a white paper, where all findings
were obtained by using proprietary methods. As an example, the total size
of the deep Web (i.e., how much information can be accessed via search
interfaces) may only be guessed.

Another matter of concern is that the surveys mentioned above are pre-
dominantly based on study of deep web sites in English. One can then
expect that the reported estimates are most likely to be biased, especially
owing to a steady increase in non-English web content. In this way, survey-
ing of national segments of the deep Web is of interest not only to national
communities but to the whole web community as well.

1.3.2 Automatic Finding of Search Interfaces

It stands to reason that search for cars or for biomedical articles are better
performed via services similar to the ones described in Examples 1.1 and 1.2
(see Section 1.2) correspondingly. In other words, for many search tasks a
search process should ideally consist of two steps:

1. Finding search interfaces to web databases of interest. It is a transac-
tional search that can be performed using search engines or existing
web directories.
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2. Searching using interfaces found at the previous step.

The first step is not that naive as it sounds. In reality, finding search in-
terfaces in a particular domain is not an obvious task especially if a user does
not know this domain well [73]. A user may prefer to find search forms with
help of existing directories of deep web resources rather than conventional
search engines but, according to [34], even the largest such directory covers
less than one sixth of the total number of web databases. Therefore, there
is a need in a relatively complete directory of search interfaces available on
the Web. The scale of the deep Web suggests that such directory cannot be
built by manual efforts. Automatic detection of search interfaces will also
be useful for ranking of search engines’ results – web pages containing (de-
tected by the method) search interfaces should have ranking priority when
answering transactional queries.

1.3.3 Querying Web Databases

Retrieving information by filling out web search forms is a typical activity
for a web user. This is all the more so as interfaces of conventional search
engines are also web forms. At present, a user needs to manually provide
input values to search interfaces and then extract required data from the
pages with results. The manual filling out forms is not feasible and cum-
bersome in cases of complex queries but such kind of queries are essential
for many web searches especially in the area of e-commerce. For example,
a marketing analyst may provide lists of products and companies that are
of his/her interest, so that when a form query tool encounters an interface
requiring that a “company” or a “product” be filled-in, the query tool can
automatically fill in many such forms. Of course, an analyst could have filled
out the forms manually, but this process would be very laborious.

In this way, the automation of querying and retrieving data behind search
interfaces is desirable and essential for the following tasks:

• Building automated web agents searching for domain-specific informa-
tion (vertical search engines)

• Building deep web crawlers (see [91])

• Wrapping a web site for higher level queries

• Extracting and integrating information from different web sites

1.4 Challenges

Web pages in the deep Web (for example, see those in Figures 1.3, 1.5 or
1.6) are dynamic pages that are constructed by embedding database records
into predefined templates. The content of these pages usually have implicit
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structures or schemas and, thus, such pages are often referred to as semi-
structured web pages [16]. In regard to how structured the data is, the deep
web content is much different either from regular web pages that do not
have any structure or from structured data as stored in databases. Such
intermediate position of semi-structured data particularly means that many
challenges of the deep Web are unique both to the database community
working with structured data and to the information retrieval community
dealing with unstructured content. Specifically, while web search engines
do work well with unstructured web pages their general performance over
pages in the deep Web (semi-structured data) is open to question. For
instance, let us consider Example 1.1 again and let us assume that a web
search engine is able to fully index all the content of the AutoTrader’s car
database7. If so, the same search as in Example 1.1 would return at least
1,916 pages (besides the most relevant 1,916 pages with car descriptions
the searcher would also return some number of less relevant pages, e.g.,
“car dealers” pages and so on). However, for the search engine any of the
returned pages would be just unstructured data and, hence, it would not
take into account at all such useful parameters as, for example, car price or
car mileage. Because of that a web user would still prefer the AutoTrader

interface to the search engine’s one since the results of the former are data
in a structured form that gives a significant flexibility with managing results
like sorting the results by attributes, refining query, etc. while the results of
the latter are unstructured pages, which are hard to handle.

Web pages either with semi-structured or unstructured content are de-
signed for human beings. In other words, information on the Web is over-
whelmingly provided in a user-friendly way (convenient for human percep-
tion) rather than in a program-friendly way (convenient for processing by
computer applications). This, in fact, explains the best part of challenges
we face with the deep web data.

To begin with, search interfaces are not created and not designed to
be used by computer applications. Such simple task (from the position of
a user) as filling out search form turns out to be a computationally hard
problem. For example, the Amazon’s search interface shown in Figure 1.3
is submitted correctly if a book title is typed into the second text field from
above (it should be a title since the field is described by the label “Title”).
This fact is trivial for any user8 who takes a quick glance at the interface
but absolutely non-trivial for an application which, unlike a human being,
cannot perceive anything from interface’s visual layout. Instead, an appli-
cation analyzes the code of web page with the interface to detect bindings
between so called field descriptors or labels and corresponding form fields.

7One way to do this is to retrieve, by issuing a set of certain queries, and then index
all pages, each describing one car object stored in the database.

8Who knows English of course.
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Recognition of field labels is a challenging task since there are myriads of web
coding practices and, thus, no common rules regarding the relative position
of two elements, declaring a field label and its corresponding field respec-
tively, in the page code. The navigation complexity is another challenge
to be considered. Particularly, navigating some web sites requires repeated
filling out of forms many of which themselves are dynamically generated
by server-side programs as a result of previous user inputs. For example,
the AutoTrader web site produces a web page containing results after at
least two successful form submissions (see Figures 5.1(a) and 5.1(b)). These
forms are collectively called consecutive forms.

Automatic recognition of search interfaces is a challenging task too. The
task can be formulated in the following way: for a given web page with a
form, identify automatically whether a form is searchable (search interface
to a database) or non-searchable. It is a tough problem due to a great
variety in the structure and vocabulary of forms and even within a well-
known domain (e.g., search for car classifieds) there is no common schema
that accurately describes most search interfaces of this domain.

In a similar way, data extraction from pages in the deep Web is an
arduous task as well. As we explained above, successful filling out form is not
enough: pages with query results are not interesting in themselves. To make
them useful, we need to extract structured data from these pages. However,
since result pages are generated for a human-perception they contain lots
of non-informative elements (headers, advertisements, menus, images and
so on) that prevent an application from retrieving structured content. In
particular, there are typically lots of unnecessary elements at the top or at
the left part of a page with query results. Moreover, each deep web site
has its own design, i.e., rules how informative and non-informative data are
presented.

1.5 Contributions

The thesis contributions are summarized below:

• We propose two new methods for estimating the main parameters of
the deep Web.

• We use the suggested methods to estimate the scale of one specific
national segment of the Web and report our findings.

• We build and make publicly available a dataset describing more than
200 web databases on the national segment of the Web.

• We describe the architecture of the I-Crawler, a system for finding
and classifying search interfaces. Specifically, the I-Crawler is inten-
tionally designed to be used in deep Web characterization studies and
for constructing directories of deep web resources.
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Figure 1.7: Topics addressed in this thesis.

• Unlike almost all other approaches to the deep Web existing so far,
the I-Crawler is able to recognize and analyze JavaScript-rich and non-
HTML searchable forms.

• We present a data model for representing search interfaces and discuss
techniques for extracting field labels, client-side scripts and structured
data from HTML pages. We also describe a representation of result
pages and discuss how to extract and store results of form queries.

• We present a user-friendly and expressive form query language that
allows one to retrieve information behind search interfaces and extract
useful data from the result pages based on specified conditions.

• We implement a prototype system for querying web databases and
describe its architecture and components design.

1.6 Scope and Organization of this thesis

This thesis focuses on the deep Web, and we study deep Web at several
different levels. Main topics addressed are characterizing the deep Web,
automatic finding and classifying search interfaces, and issuing queries to
web databases in an automatic way. We aim at designing and developing:
an efficient system to retrieve data from the deep Web and an intelligent
tool to automatically find and classify web databases. Additionally, our
characterization efforts give an insight into the structure of the deep Web.

Figure 1.7 depicts the relation of studied topics to the area of web infor-
mation retrieval in general.

The following is an outline of the contents of this thesis:

• This chapter introduced the concept of deep Web, presented our moti-
vation and challenges, and summarized the contributions of this thesis.
Some of the work in this chapter is reported in [99].
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• Chapter 2 reviews selected publications related to the topics covered
in this thesis.

• Chapter 3 discusses current state of deep web characterization studies.
We propose two new methods for estimating the main parameters of
deep Web. We describe two consecutive surveys of one national seg-
ment of the Web performed based on the proposed techniques in 2005
and in 2006 and report our findings. Some of the work in Chapter 3
is reported in [101, 102, 103].

• Chapter 4 describes the architecture of the system for finding and clas-
sifying search interfaces. We discuss how it can be used in deep Web
characterization studies and for constructing deep web directories. We
also report results of our preliminary experiments.

• Chapter 5 describes our approach to query the deep Web. In par-
ticular, we propose a data model for representing and storing HTML
forms, and a web form query language for retrieving data from the
deep Web and storing them in the format convenient for additional
processing. We present a novel approach in modeling of consecutive
forms and introduce the concept of the super form. We implement a
prototype system based on the discussed methodologies. Some of the
work in Chapter 5 is reported in [98, 100].

• Chapter 6 summarizes our contributions and provides some guidelines
for future work in this area.

Finally, bibliography includes over 115 references to publications in this
area. The next chapter is a survey of the most important works in the
context of this thesis.
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Chapter 2

Related Work

Today the World Wide Web (WWW) is a huge repository of web resources
hosted by a large number of autonomous web sites. It is an extremely im-
portant source of information and the role of WWW as the main informa-
tion source becomes more significant day by day. The impetuous growth of
web data and the variety of web technologies require researchers to develop
usable web tools for classifying, searching, querying, retrieving, extracting,
and characterizing web information. In this literature review we try to cover
some works devoted to the indicated problems. We classify the description
of related research into five parts:

• Deep Web: The formidable part of the Web known as the deep Web
is not “crawlable” by traditional search engines [25]. Web pages in
the deep Web are dynamically generated in response to queries sub-
mitted via search interfaces to web databases. The deep Web provides
more relevant and high-quality information in comparison with the
“crawlable” part of the Web.

• Querying search interfaces: A brief review of web query languages
providing some mechanisms to navigate web search forms in the queries
is given in this part. We also consider several architectures of form
query systems and designate the limitations of these systems.

• Extraction from data-intensive websites: Pages in data-inten-
sive sites are automatically generated: data are stored in a back-end
DBMS, and HTML pages are produced using server-side web scripts
from the content of the database. The RoadRunner system [38], which
has been specifically designed to automate the data extraction process,
is described.

• Deep Web characterization: Two key works devoted to the char-
acterization of the deep Web are described in this section. Special
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attention is paid to the methods for estimating the principal parame-
ters of the deep Web.

• Finding deep web resources: Finding of search interfaces to web
databases is a challenging problem. We discuss existing approaches
and their role in efficient location of the entry points to deep web
resources [22].

2.1 Deep Web

The concept “deep Web” appearing in several works in recent years requires
special attention because of its significance to the problem described in this
thesis. This section is devoted to the brief description of the most popular
form of web query systems, search engines, their shortcomings, the increase
of the dynamic content in the Web, and, at last, classification of searchable
web databases.

2.1.1 Search Engines

Current day search engines [27, 59] (such as Yahoo! or Google) provide a
simple interface to a database of Web pages. A user submits keywords of
interest and gets back search results; web pages with links to documents con-
taining the keywords. Note that search engines may search Internet sources
other than Web pages: most commonly the archives of Usenet newsgroups.
Many also have e-mail address directories and a directory of Internet re-
sources arranged by topic. Some search engines allow users to search just
the document title or the URL.

Unfortunately crawlers have limited capabilities for retrieving the in-
formation of interest and the significant irrelevance of search results. The
following shortcomings of the existing search engines should be noted:

• Lack of support of metadata queries: The routine information
about web document: author, date of last modification, length of text
and subject matter (known as metadata) is very hard to be reliably
extracted by current-day programs. As a result, little progress has
been done by search engines in exploiting the metadata of web doc-
uments. For example, a web crawler might find not only the desired
articles authored by Tim Berners-Lee but also find thousands of other
articles in which this name is mentioned in the text or in a reference.

• Lack of support of querying interlinked documents: The hy-
pertext nature of the Web is not so far exploited enough by search
engines. Most web crawlers fail to support queries utilizing link in-
formation and to return such information as part of a query’s result.
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Searches related to the hypertext structure of sites are believed to be
very important but such searches are difficult to pose by the query
mechanism offered by search engines.

• Lack of support of structural queries: Search engines do not
exploit the internal structure of Web documents. One cannot formu-
late query based on hierarchical nature of the tag elements in a query.
For example, if we are looking for documents that enlist the list of
features of a notebook in a table in the web page, then a search engine
may return thousands of documents containing wide variety of infor-
mation related to notebooks most of which are not structured in the
form of a table.

• Lack of support of numeric comparisons: The search is limited
to string matching. Numeric comparisons cannot be done. Thus,
for instance, the following query cannot be expressed: Find hotels in
Helsinki with rate per night less than $80.

• Ignoring the geographical scope of web resources: Current
web crawlers have restricted capabilities in identifying the geograph-
ical scope of pages when computing query results. Therefore, query
results include resources that are no geographically relevant to the
user who issued the query. For instance, finding hotels, car rentals,
and restaurants in or near specific region is not a simple task with
current web search engines.

• Limitation of querying dynamic Web pages: Dynamic web pages
are created based on a user’s query by assembling information from
one ore more databases. These pages are not analyzed and indexed
by web crawlers. Thus, search results ignore dynamic web documents.
At first blush it may appear inessential but ignoring of dynamic pages
by search engines means that the part of the Web as large as about
400 sizes of the static Web is disregarded. We describe the deep or
hidden Web (consisting of dynamic web pages) in the next subsection.

2.1.2 Deep Web

Recent studies [25, 71, 72] have designated that a huge amount of content
on the Web is dynamic. The classification of dynamic web content is given
in [90]. Lawrence and Giles [71] estimated that about 80% of the content on
the Web is dynamically generated. Technologies widely-used for dynamic
content generation [1, 7, 60, 113] continue to increase the ratio between
dynamic and static content in favor of the former.

The amount of dynamic web content is very considerable but only a
little part of it is being crawled and indexed. Current day crawlers cover
a portion of the Web called the publicly indexable Web(PIW) [71] but do
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not crawl pages dynamically generated in response to queries submitted via
the search HTML-forms, and pages that require authorization or prior reg-
istration. While this portion of the Web is not accessible through current
search engines its dynamic content greatly outnumbers the PIW content
in size and in relevancy of data contained. Most commonly, data in the
non-indexed part of the Web is stored in large searchable databases and is
accessible by issuing queries guided by web forms [114]. This large portion
of the Web (called the hidden Web [46] or deep Web [25]) is “hidden” be-
hind search forms in databases. The hidden Web is particularly important,
as organizations with large amounts of information are gradually making
their databases available online. It is often the case that a user can obtain
the content of these databases only through dynamically generated pages,
delivered in response to web queries.

It was estimated in [25] that:

• Public information on the deep Web is 400 to 550 times larger than
the commonly defined Web.

• The deep Web contains 7,500 terabytes of information compared to
nineteen terabytes of information in the surface Web (publicly index-
able Web).

• The deep Web contains nearly 550 billions individual documents com-
pared to the one billion of the PIW.

• The deep Web sites tend to return 10% more documents than the
surface Web sites and nearly triple the number of quality documents.

• Sixty of the largest deep Web sites collectively contain about 750 ter-
abytes of information (about forty times the size of the PIW).

• More than 200,000 deep web sites exists.

The deep Web is based on a generous amount of databases that can be
accessed only through web search interfaces. Apparently, a web user needs
to know which searchable databases are most likely to contain the relevant
information that he/she is looking for. The next subsection describes the
current state in web databases’ classification.

2.1.3 Classification of Web Databases

The accurate classification of searchable databases into topic hierarchies
makes it easier for end-users to find the relevant information they are seeking
on the Web. Yahoo!-like [10] directories available on many web portals may
be used to find databases of interest hidden behind web forms. Also, several
commercial web sites have recently started to manually classify searchable
web databases into Yahoo!-like hierarchical classification schemes, so that
web users can browse these categories to find the databases of interest. For
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example, InvisibleWeb [97] contains a directory of over 10,000 databases,
archives and search engines. The InvisibleWeb directory helps a web user
to find locations of databases covering the user search subject. For instance,
the user may search for any used Ford Escort cars not older than 5 years, the
locations of web forms that allow to query databases containing information
about used cars can be found by entering “used cars” in the search form of
InvisibleWeb. Lu et al [75] described a method to to cluster e-commerce
search engines on the Web. Their approach utilizes the features available on
the interface pages of such engines, including the label terms and value terms
appearing in the search form, the number of images, normalized price terms
as well as other terms. The experimental results based on more than 400
e-commerce search engines have demonstrated a good clustering accuracy
of the approach.

The automation of the above search process is by using metasearch-
ers [53]. A metasearcher receives a query from a user, selects the best
databases to which to send the query, translates the query in a proper form
for each search interface, and merges the results from the different sources.
Works in [83, 115, 51] have been devoted to the interaction with searchable
databases, mainly in the form of metasearchers. When the meta-searcher
receives a user query, it consults its collected metadata and suggests to the
user sources to try. This solution may not be as accurate as submitting
the query to all sources, since the suggestions are only based on collection
metadata. However, the query overhead is much less since queries are not
executed everywhere. The problem of identifying document sources based
on exported metadata is called the text-source discovery problem.

In [51], some solutions to the text-source discovery problem have been
studied. The family of solutions was called GLOSS (Glossary-of-Servers
Server). In particular GLOSS meta-searchers use statistical metadata, i.e.,
how many times each term occurs at each source. As it was shown, these
“summaries” are small relative to the collection, and because they only con-
tain statistics, are much easier to export by a source. Statistical summaries
can be obtained mechanically, and hence are superior to manually produced
summaries that are often out of date. Similarly, since they summarize the
entire collection, they are better than summaries based on a single field (such
as titles). GLOSS works best with a large collection of heterogeneous data
sources. That is, the subject areas covered by the different data sources are
very distinct from each other. In this case, the statistical summaries used
by GLOSS strongly discriminate each source from the others. It should be
noted that Gravano et al. do not compare the single and multiple engine
scenarios. Firstly, in many cases one is not given a choice. For example,
the documents may be owned by competing organizations that do not wish
to export their full collections. On the Web, for instance, growing numbers
of documents are only available through search interfaces, and hence un-
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available to the crawlers that feed search engines. Secondly, if a choice is
available, the factors to consider are very diverse: copyright issues regarding
the indexing or warehousing of documents, the cost and scalability (storage,
operations) of maintaining a single index, the frequency at which new doc-
uments are indexed, and the accuracy of the results obtained. Instead, the
authors only consider a multiple-engine scenario, and study GLOSS solu-
tions to the text-discovery problem. The “accuracy” of these solutions to
what could be obtained by sending a query to all underlying search engines
are compared.

The work in [115] evaluates the retrieval effectiveness of distributed in-
formation retrieval systems in realistic environments. The most important
issue in searching a set of distributed collections is how to find the right col-
lection to search for a query. The sheer number of collections in a realistic
environment makes exhaustive processing of every collection infeasible. Fur-
thermore, many collections are proprietary and may charge users for search-
ing them. The only method for timely and economic retrieval is to constrain
the scope of searching to those collections which are likely to contain rel-
evant documents for a query. For this purpose, the proposed distributed
information retrieval system adopted a widely used technique: it creates a
collection selection index. Thus index consists of a set of virtual documents,
each of which is a light-weight representation of a collection. Specifically, the
virtual document for a collection is simply a complete list of words in that
collection and their frequencies (numbers of containing documents). When
a query is posted, the system first compares it with the virtual documents
to decide which collections are most likely to contain relevant documents
for the query. The document retrieval takes place only at such collections.
According to the authors’ view, the virtual documents are a very concise
representation, requiring less than 1.0% of space taken by the underlying
document collections.

In [83], Meng et al. attacked the following problems, namely, the database
selection problem and the collection fusion problem:

• Select databases that need to be searched and estimate the number of
globally most similar documents in each database.

• Decide which documents from each selected database to retrieve.

In [83], the usefulness of a database to a query is defined to be the
number of documents in the database that have potentials to be useful to
the query, that is, the similarities between the query and the documents as
measured by a certain global function are higher than a specified threshold.
The authors have also studied the problem of guaranteeing all globally most
similar documents from each local database be retrieved. The proposed
solutions aim at minimizing the number of documents that are not globally
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most similar to be retrieved while guaranteeing that all globally most similar
documents are retrieved.

The research in [62] is devoted to automatically populating the given
classification scheme with searchable databases where each database is as-
signed to the “best” category or categories in the scheme. This study builds
on the preliminary work in [61] on database classification. Authors define
a hierarchical classification scheme like the one used by InvisibleWeb as
follows: A hierarchical classification scheme is a rooted directed tree whose
nodes correspond to (topic) categories and whose edges denote specializa-
tion. An edge from category v to another category v′ indicates that v′ is a
subdirectory of v.

The proposed algorithm does not retrieve or inspect any documents or
pages from the database, but rather just exploits the number of matches
that each query probe generates at the database in question. The confusion
matrix [85] is built on the basis of query probing. Further, according to the
document category distribution and the Classify algorithm each database is
classified in a hierarchical classification scheme.

2.2 Querying Search Interfaces

Retrieving and querying web information have received considerable atten-
tion in the database research communities [46]. In this section, we review the
research literature on querying and automatically filling out HTML forms.

2.2.1 W3QL and W3QS

W3QS (WWW Query System) [68, 69] is a project to develop a flexible,
declarative, and SQL-like Web query language, W3QL. This language inte-
grates both content and structure-based queries on web pages. It provides
a novel mechanism to navigate forms in the queries. The underlying data
model of W3QL includes nodes and links. Nodes refer to static web pages
and those created dynamically by CGI scripts upon form submissions. Links
represent the hyperlinks within web pages. It is noted that forms and their
returned pages are connected by links in the data model. The example be-
low illustrates the form query capability of W3QL:

Example 2.1: Suppose we want to use the form embedded in http://

lycospro.lycos.com (see Figure 2.1) to find postscript files dealing with
the subject of multimedia information kiosk. The corresponding W3QL
query can be expressed as follows:

1 Select n3:

2 From n1, l1, (n2, l2), l3, n3
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Figure 2.1: The Form Interface at http://lycospro.lycos.com.

3 where n1 in {http://lycospro.lycos.com};
4 Run learnform n1 cs76:0 if n1 unknown in Report;
5 Fill n1 as in Report with query =

’’multimedia information kiosk’’;

6 l1: PERLCOND ’l1.content = ~/^FORM/i’;
7 n3: PERLCOND ’(n3.format =~/postscript/i)&&

8 (n3.content = ~/multimedia information kiosk/i)’
9 Using ISEARCHd

In this query, n1, n2 and n3 represent nodes, and l1, l2 and l3 represent
links. The node n3 represents the desired result. In line 2, the node n1

in the From clause contains the form to be queried. The pair (n2, l2)

represents an unbounded length path to reach the desired node n3, and the
web page returned by the form is the first node of the path. The Report

file in lines 4 and 5 is a Database Of Forms (DOF) supported by W3QS.
Learnform in line 4 is an external program that deals with unknown forms
encountered during a search. It takes two parameters: the node containing
the form that needs to be learned, and the user’s X-terminal name. In this
case, the two parameters are n1 and cs76:0 respectively. Line 5 in the
query specifies that the form is supplied with the input string “multimedia
information kiosk”. In W3QS, a form can also be completed based on past
form-filling knowledge maintained by the DOF file. Line 6 constrains the
link l1 to be a form link instead of an ordinary hypertext link. Lines 7 and 8
specify the format and content condition that n3 should satisfy respectively.
The ISEARCHd stated in line 9 is a remote search program that implements
different search algorithms for loading web pages from WWW and evaluating
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their relevance.
W3QS offers mechanisms to learn, store, and query forms. However, it

supports only two approaches to complete a form: either using past form-
fill knowledge or some specific values. No other form-filling methods, such
as filling out a form using multiple sets of input values or values obtained
from queries to relational tables are provided. Furthermore, W3QS is not
flexible enough to get a chain of multiple web pages returned by a form. For
instance, if we would like to obtain a chain of first three result web pages
generated by the Lycos server, we can construct a W3QL query as follows:

1 Select n2, n3, n4:
2 From n1, l1, n2, l2, n3, l3, n4

3 where n1 in {http://lycospro.lycos.com};
4 ...

We omit the other part of the query for simplicity. In the above query,
n2, n3, and n4 represent the chain of first three web pages returned by Lycos

respectively. However, if Lycos generates only two web pages as the result
of the query, W3QS will fail to obtain them since they do not satisfy the
query. In this case, another query that returns a chain of one or two web
pages has to be designed. These shortcomings have been addressed by our
proposed web form query language.

2.2.2 ARANEUS

ARANEUS is a research project that introduced a set of tools and languages
for managing and restructuring data coming form the World Wide Web [18,
81]. The data model of the project, called ARANEUS Data Model (ADM),
models the internal structure of web pages as well as the structure of the
web sites. Based on ADM, two languages, ULIXES and PENELOPE, are
designed to support querying and restructuring process. ULIXES is used to
build relational views over the web. The views can then be analyzed and
integrated using standard database techniques. ULIXES queries are able to
extract relational tuples from web pages that are defined with page schemes.
PENELOPE on the other hand can be used to produce hypertext views from
relational views.

In ADM, a set of homogeneous web pages can be modelled by a page
scheme. A page scheme consists of one or more components corresponding
to different parts of the web pages. HTML forms can be components in the
page scheme. A form component is considered as a virtual list of tuples;
each tuple has as many attributes as the fill-in fields of the form, plus a
link to the resulting page. A web site can be seen as a collection of page
schemes connected by links. Based on the page schemes, ULIXES can derive
relational view over the web. We will illustrate queries on page schemes by
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Figure 2.2: Search interface on the Greenwich University’s website.

the following example:

Example 2.2: Figure 2.2 shows an HTML form for querying staff in-
formation at the University of Greenwich (http://www.gre.ac.uk/staff_
directory). Figure 2.3 depicts the result web page returned by the form
for staff with “Green” as their surname. Two page schemes, namely Staff

SearchPage and Staff ResultPage, have been derived for the web pages
in Figure 2.2 and Figure 2.3 respectively.

1.1 PAGE SCHEME Staff_SearchPage

1.2 Email: TEXT;

1.3 NameForm: Form (SEARCH: TEXT;

1.4 Submit: LINK TO

Staff_ResultPage;);

1.5 RelevantLinks:LIST OF(Label: TEXT;

1.6 RLinks: LINK TO

RelevantPage;);

1.1 PAGE SCHEME Staff_ResultPage

1.2 StaffList: LIST OF(Name: TEXT;

1.3 Department: TEXT;

1.4 ToPersonalPage: LINK TO

Staff_Page;);

In the page scheme Staff SearchPage, the form defined by NameForm con-
sists of two attributes: a text field, and a link to the result web page
defined by the page scheme Staff ResultPage. The Staff SearchPage

also includes a list of hyperlinks leading to other web pages defined by the
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Figure 2.3: Search results for staff members with surname “Green”.

RelevantPage scheme. The page scheme, Staff ResultPage, defines the
returned staff information as a list of tuples consisting of names, depart-
ments and links to personal web pages. For simplicity, we have omitted
description on the RelevantPage and Staff Page page schemes.

Based on the above page schemes, a ULIXES query to find all the staff
members with “Green” as surname and their departments can be formulated
as follows:

1 DEFINE TABLE Staff_Dpt(Staff_Name, Dpt_Name)

2 AS Staff_SearchPage.NameForm.Submit→
Staff_ResultPage.NameForm.Stafflist

3 IN GreenwichScheme

4 USING Staff_ResultPage.StaffList.Name,
5 Staff_ResultPage.StaffList.Department

6 WHERE Staff_SearchPage.NameForm.SEARCH = ’Green’

The dot operator (.) in this query denotes navigation within a page, and the
link operator (→) denotes an inter-pages link. Line 1 defines the schema
of the resultant relation. Line 2 describes the navigational expression to
the web page returned by the form. GreenwichScheme in line 3 represents
the set of page schemes for the web site of the University of Greenwich.
Lines 4 and 5 define the mapping from the attributes of the page scheme
Staff ResultPage to relational attributes. Line 6 describes how the input
value is given to the form.
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Figure 2.4: First form for finding flight information on the Amadeus web
site.

It is noted that ADM’s form representation is rather simple as it has
omitted many important field types, such as checkbox, select, and oth-
ers. As a result, the ADM’s form type may not be able to represent
most existing forms. Furthermore, without a database of forms, ADM
queries have to involve web pages embedding the forms to be queried, e.g.,
Staff SearchPage.NameForm.SEARCH. The overheads to download a web
page and to extract its forms may slow down the query evaluation. Also,
the query expressions may also look more complicated. In our proposed web
form model, we allow forms to be pre-stored in a form database. A form
can be queried directly without retrieving its HTML source.

2.2.3 Database System for Querying Forms

In [39], Davulcu et al. proposed a three-layered architecture for designing
and implementing a database system for querying forms. Similar to the
schema architecture of traditional relational databases, the proposed archi-
tecture consists of virtual physical layer, logical layer, and external schema
layer. The lowest layer, virtual physical layer, aims to provide navigation
independence, making the steps of retrieving data from raw web sources
transparent to the users. Data collected from different web sites may have
semantic or representational discrepancies. These differences are resolved
at the logical layer that supports site independence. The external schema
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Figure 2.5: Second form for finding flight information on the Amadeus web
site.

layer, extending the Universal Relation (UR) concept [77], provides a query
interface that can be used by naive web users.

Unlike the other projects, the work by Davulcu et al. addresses the
problem of navigating multiple consecutive forms. Consecutive forms refer
to cases where the web page returned by a form request contains another
form. To describe how forms can be navigated, a subset of serial-Horn Trans-
action F-logic [67] has been used to represent web pages, HTML forms, and
other web objects. The same logical language is used to define navigation
expression that describes how to access desired information residing in a site
(or several sites). We illustrate it with the following example:

Example 2.3: Suppose we want to find flight information from the Amadeus1

travel site. At this web site, flight information can be obtained in two steps.
Firstly, we specify the source and destination cities, the departure and re-
turn dates in the form interface shown in Figure 2.4. Upon submitting the
form request, a second form is returned as shown in Figure 2.5. We now
specify the airports and the returned web page is shown in Figure 2.6. These
two steps can be represented by a navigation expression as shown below:

1http://www.amadeus.net/home/en/home_en.htm.
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Figure 2.6: Search results for flight information on the Amadeus web site.

1 Flight(FlightDesc, Departing, Arriving, Duration) ←
2 AmadeusQuery1Pg.action:submit_form[object→ form(f1);
3 doit@(DepartingFrom, GoingTo, DepartDate, ReturnDate)→

AmadeusQuery2Pg]
4 ⊗ AmadeusQuery2Pg.action:submit_form[object→ form(f2);
5 doit@(From, To) → AmadeusResultPg]
6 ⊗ AmadeusResultPg:data_page[extract

7 tuple(FlightDesc, Departing, Arriving, Duration)]

In the above expression, the three web pages shown in Figures 2.4, 2.5 and
2.6 are represented by AmadeusQuery1Pg, AmadeusQuery2Pg and Amadeus-

ResultPg respectively. Line 1 defines the relation schema to be extracted
from the result page. Lines 2 and 3 describe how the first form in Fig-
ure 2.4 denoted by f1 can be navigated to reach the second web page,
AmadeusQuery2Pg. Lines 4 and 5 in turn describe how the form in Amadeus-

Query2Pg can be navigated to obtain the web page AmadeusResultPg, where
the flight instances reside. Line 6 and 7 specify the data extraction action
to be performed on the page AmadeusResultPg. The authors mentioned
that the complex navigation expression can be generated semi-automatically
when a user navigates the web site using a web database system.

Our work differs from the work by Davilku et al. in two aspects. Firstly,
we propose more advanced web form representation and user-friendly lan-
guage for defining form queries. Secondly, we do not treat the form query
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results as relations. For most web pages it is extremely difficult to transform
the web page content into some relation table, so we limit our extraction
process to extraction the useful data. We represent result pages (returned
web pages that contain query results) as containers of result matches, each
of which containing informative text strings and hyperlinks.

2.2.4 Crawling the Hidden Web

Another closely related work to querying HTML forms is the Hidden Web
Exposer (HiWE) project at Stanford [90, 91]. Raghavan and Garcia-Molina
propose a way to extend crawlers beyond the publicly indexable Web by
giving them the capability to fill out Web forms automatically. Since devel-
oping a fully automatic process is quite challenging, HiWE assumes crawlers
will be domain specific and human assisted. Starting with a user-provided
description of the search task, HiWE learns from successfully extracted in-
formation and updates the task description database as it crawls. Besides, it
also provides a label matching approach used to identify elements in a form,
based on layout position, not proximity within the underlying HTML code.
The authors also present the details of several ranking heuristics together
with metrics and experimental results that help evaluate the quality of the
proposed process.

Figure 2.7 illustrates the complete architecture of the HiWE crawler. It
includes six basic functional modules and two internal crawler data struc-
tures. The basic crawler data structure is the URL List. It contains all the
URLs that the crawler has discovered so far. When starting up the crawler,
the URL List is initialized to a seed set of URLs. The Crawl Manager
controls the entire crawling process. It decides which link to visit next, and
makes the network connection to retrieve the page from the Web. The Crawl
Manager passes the downloaded page over to the Parser module. In turn,
the Parser extracts hypertext links from the page and adds them to the URL
List structure. To process forms and extract hidden content, HiWE employs
four additional modules and the LVS Table. The LVS Manager is respon-
sible for managing additions and accesses to the LVS table. It provides an
interface for various application-specific data sources to supply new entries
to the table.

HiWE uses LITE (Layout-based Information Extraction) to extract in-
formation from both form and response pages. LITE is a new technique
where in addition to the text the physical layout of a page is also used to
aid in extraction. LITE is based on the observation that the physical layout
of different elements of a Web page contains significant semantic informa-
tion. For example, a piece of text that is physically adjacent to a table or a
form widget (such as a text box) is very likely a description of the contents
of that table or the purpose of that form widget.
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Figure 2.7: HiWE architecture.

The work in [65] has also presented a variety of text-based techniques
for matching form elements to descriptive form text labels. The techniques
in [65] are based on a detailed study of the most common ways in which
forms are laid out on web pages.

There are some limitations of the HiWE design that if rectified, can sig-
nificantly improve performance. The first limitation is inability to recognize
and respond to simple dependencies between form elements (e.g., given two
form elements corresponding to states and cities, the values assigned to the
“city” element must be cities that are located in the state assigned to the
“state” element). This problem is closely connected with the querying of
consecutive forms. If the submission of one form generates another form then
dependencies between the fields of these forms often exist. For instance, the
select values in the “model” field of the second AutoTrader form shown in
Figure 5.1(b) depends on the choice of “make” in the first AutoTrader form
(see Figure 5.1(a)). Secondly, although the HiWE provides a very effective
approach to crawl the deep Web, it does not extract data from the resulting
pages.

The DeLa (Data Extraction and Label Assignment) system [109] sends
queries via search forms, automatically extracts data objects from the re-
sulting pages, fits the extracted data into a table and assigns labels to the
attributes of data objects, i.e., columns of the table. The DeLa adopts the
HiWE to detect the field labels of search interfaces and to fill out search
interfaces. The data extraction and label assignment approaches are based
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on two main observations. First, data objects embedded in the resulting
pages share a common tag structure and they are listed continuously in the
web pages. Thus, regular expression wrappers can be automatically gen-
erated to extract such data objects and fit them into a table. Second, a
search interface, through which web users issue their queries, gives a sketch
of (part of) the underlying database. Based on this, extracted field labels
are matched to the columns of the table, thereby annotating the attributes
of the extracted data.

The HiWE system (and hence the DeLa system) works with relatively
simple search interfaces. Besides, it does not consider the navigational com-
plexity of many deep web sites. Particularly, resulting pages may contain
links to other web pages with relevant information and consequently it is
necessary to navigate these links for evaluation of their relevancies. Addi-
tionally, obtaining pages with results sometimes requires two or even more
successful form submissions (as a rule, the second form is returned to re-
fine/modify search conditions provided in the previous form). We addressed
these challenges and proposed a web form query language called DEQUEL
that allows a user to assign more values at a time to the search interface’s
fields than it is possible when the interface is manually filled out. For in-
stance, data from relational tables or data obtained from querying other
web databases can be used as input values.

2.2.5 Modeling and Querying the World Wide Web

The work in [74] introduces a set of mechanisms for manipulating and query-
ing web forms. This research mainly focuses on the query issues related to
forms, the extraction of useful data from web pages returned by forms has
been excluded from the research scope. The proposed solution requires web
pages returned by forms to be stored in a web warehouse. It is considered
as more appropriate and flexible to perform extraction on the stored web
pages instead of incorporating extraction features into the proposed form
query language. The study proposes:

• Methodology for querying forms: To derive useful information
from forms, the methodology is proposed to describe the essential steps
in querying forms.

• Modeling and storage of form objects: Before a form can be
queried, it has to be appropriately modeled. A form object model
represents the important form attributes that can be used in form
queries. Based on the form object model, a form database can be
implemented to store form objects for future queries.

• Representation of dynamic web pages returned by forms: To
allow web pages returned by forms to be involved in form queries and
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to be stored for future data extraction, some schema is defined to
describe these web pages.

• Design of a Form Query Language: A form query language is
proposed. The language supports flexible form queries. Special con-
sideration has been given to form queries that involve multiple sets
of input values. The form query language also supports navigation of
web pages returned by forms. A form query processor is developed to
support the proposed form query language.

• Development of a Form Access and Storage System (FAST):
Based on the proposed form query methodology, A prototype system
is developed to store form objects embedded in web pages and evaluate
queries on them.

The design and implementation of [74] is based on the research project
on web warehousing known as WHOWEDA [29, 86, 87]. The query schema
of the form query language proposed in [74] is very similar to the web schema
in the WHOWEDA’s web model except additional assignments clauses used
for specifying form input values or relations involved.

The system architecture of FAST is shown in Figure 2.8. The FAST
consists of the following components: Form Extraction UI, Form Query UI,
Communication Manager, Web Page Loader, Form Retrieval Module, Form
Extractor, and Form Query Processor. The form extraction UI module al-
lows users to specify URLs of the web pages each containing one or more
forms. It calls the web page loader through communication manager to
fetch a web page of some specified URL from the web. The forms embedded
in the downloaded web page are formatted so that the user can select one
or more forms to be stored in the form database for future queries. Each
selected form is also assigned a unique name for identification purpose. The
form query UI allows one to specify a form to be queried by its name. It
calls the form retrieval module through communication manager to obtain
the named form. If the form is not founded in the form database, an error
message would be provided by the UI. Otherwise, the form object retrieved
from the Form database is presented to the user. The user can then provide
input values to the form, and submit the form query. The form query UI
module analyzes the input values, constructs a form query file, and passes
the query file to the form query processor through the communication man-
ager. Once the form query processor completes the query evaluation, the
list of hyperlinks to the original and locally cached result web pages will
be displayed in the form query UI. The form query processor returns query
results in the form of either a web table, or a web table and a relational
table with mapping between their tuples. Once the form query processor
completes a form query issued by the form query UI, the communication
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Figure 2.8: FAST architecture.
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Table 2.1: Comparison of form query systems discussed in Section 2.2.
Form query
system

Form
model

Form
stor-
age

Query
language
& expres-
siveness

Multiple
sets of
input
values

Consecutive
forms

Navigation
of result
pages

Query re-
sults

W3QS - Yes SQL-like No No No Web pages
ARANEUS Simple No Complex No No No Relations
Transaction

F-logic (sec-
tion 2.2.3)

Simple Yes Complex No Yes Yes Relations

HiWE Expressive Yes - Yes No Yes Web pages
FAST Expressive Yes Complex Yes No Yes Web pages
DEQUE

(Chapter 5)
Expressive Yes SQL-like Yes Yes Yes Result

matches

manager will contact the WHOWEDA storage manager to obtain the list of
hyperlinks to the original and locally cached result web pages and pass the
hyperlinks to the form query UI.

In our study, we continue to develop the web form model. The concepts
of form label, form domain, submission data set and super form described
in Chapter 5 are added to improve the form representation. Our approach
differs in the form query results’ extraction. While work [74] only stores
all result pages, we introduce a result page representation and build a form
query language such a way that its syntax allows one to extract useful data
from returned web pages. Hence, the storage of results also differs from
approach described in [74]. In addition, we simplify the form query language.
Lastly, we address the problem of querying consecutive forms and study the
dependency between forms.

2.2.6 Summary: Querying Search Interfaces

In Sections 2.2.1-2.2.5 we briefly described previous studies devoted to query-
ing and automatically filling out web forms. Table 2.1 shows the differences
between our query system for the deep Web (called DEQUE) described in
Chapter 5 of this thesis and the systems reviewed in previous sections.

The comparison is based on the following system features: storage web
forms in a database, the complexity of query language, assignment of mul-
tiple sets of input values, querying consecutive forms, result navigation,
representation of query results, and support of form data modeling. Web
forms are modeled by all systems except W3QS. An expressive form model
allows a system to simulate most forms available on the Web while a simple
model properly describes only primitive search interfaces. All systems ex-
cept ARANEUS store forms in a database. The fourth column of Table 2.1
describes the complexity of the language used by a system. The “SQL-
like” languages are considered to be more simple and usable ones. The fifth
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column specifies the system capability in assigning multiple values to form
controls. The FAST and our prototype system are able to fill out a form
using values from results of queries to relational databases. The comparison
table also shows if a query system is able to query consecutive forms and to
retrieve all query results (i.e., navigate through multiple pages with results).
The last column of Table 2.1 points out how query results are represented
by each system.

To summarize, in this thesis we aim at presenting an advanced data
model for representing search interfaces, proposing a user-friendly and ex-
pressive query language, and efficient extracting useful data from result
pages.

2.3 Extraction from Data-intensive Web Sites

Not surprisingly, the explosive growth of the Web has made information
search and extraction a harder problem than ever. Data extraction from
HTML is usually performed by software modules called wrappers. Early
approaches to wrapping Web sites were based on manual techniques [56, 93,
80]. We give a brief overview of these works in the next subsection.

2.3.1 Extracting Semi-structured Information from the Web

In [56], Hammer et al. have described a configurable extraction program for
converting a set of hyperlinked HTML pages (either static or the results of
queries) into database objects. Their program takes as input a specification
that declaratively states where the data of interest is located on the HTML
pages, and how the data should be “packaged” into objects. The descriptor is
based on text patterns that identify the beginning and end of relevant data;
it does not use “artificial intelligence” to understand the contents. This
means that the proposed extractor is efficient and can be used to analyze
large volumes of information. However, it also means that if a source changes
the format of its exported HTML pages, the specification for the site must
be updated. Since the specification is a simple text file, it can be modified
directly using any editor. The authors described their approach to extracting
semi-structured data from the Web using several examples. Specifically,
they illustrated in detail how the extractor can be configured and how a
TSIMMIS [36] wrapper is used to support queries against the extracted
information.

In research [80], the authors addressed the manipulation of textual data,
and proposed a language, called EDITOR, for searching and extracting re-
gions in a document. EDITOR programs are based on two simple ideas,
borrowed from text editors. In fact, editors provide a natural way of in-
teracting with a document: when the user needs to restructure a docu-
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ment, search primitives can be used to localize regions of interest inside
text, and cut&paste operations to move regions around. Likewise, in EDI-
TOR, “search” instructions are used to select regions in a document, and
“cut & paste” to restructure them.

The work in [94] presents the World-Wide Web Wrapper Factory (W4F),
a Java toolkit to generate wrappers for Web data sources. Some key features
of W4F are an expressive language to extract information from HTML pages
in a structured way, a mapping to export it as XML documents and some
visual tools to assist the user during wrapper creation. Moreover, the entire
description of wrappers is fully declarative. Sahuguet and Azavant [93]
also demonstrated how to use W4F to create XML gateways, that serve
transparently and on-the-fly HTML pages as XML documents with their
DTDs.

The key problem with manually coded wrappers is that their creation
and further maintenance are usually difficult and labor-intensive tasks.

2.3.2 Automatic Data Extraction from Large Web Sites

The work in [38] describes a novel approach to the data extraction problem:
the goal is that of fully automating the wrapper generation process, in such
a way that it does not rely on any a priori knowledge about the target pages
and their contents.

Pages in data-intensive sites are usually automatically generated: data
are stored in a back-end DBMS, and HTML pages are produced using scripts
(i.e., programs) from the content of the database. To give a simple but fairly
faithful abstraction of the semantics of such scripts, the page-generation
process is considered as the result of two separated activities: (i) first, the
execution of a number of queries on the underlying database to generate
a source dataset, i.e. a set of tuples of a possibly nested type that will
be published in the site pages; (ii) second, the serialization of the source
dataset into HTML code to produce the actual pages, possibly introducing
URLs links, and other material like banners or images. A collection of pages
that are generated by the same script called a class of pages.

Therefore, the problem studied in the work may be formulated as follows:
Given a set of sample HTML pages belonging to the same class, find the
nested type of the source dataset and extract the source dataset from which
the pages have been generated. These ideas are clarified in Figures 2.9 and
2.10, which refer to a fictional bookstore site. In this example, pages listing
all books by one author are generated by a script; the script first queries
the database to produce a nested dataset in which each tuple contains data
about one author, her/his list of books, and for each book the list of editions;
then, the script serializes the resulting tuples into HTML pages (Figure 2.9).
When run on these pages, the system (called RoadRunner) will compare the
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Figure 2.9: Input HTML pages.
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Figure 2.10: Data extraction output.

HTML codes of the two pages, infer a common structure and a wrapper,
and use that to extract the source dataset. Figure 2.10 shows the actual
output of the system after it is run on the two HTML pages in the example.
The dataset extracted is produced in HTML format. As an alternative, it
could be stored in a database.

As it can be seen from the Figure, the system infers a nested schema
from the pages. Since the original database field names are generally not
encoded in the pages and this schema is based purely on the content of the
HTML code, it has anonymous fields (labelled by A, B, C, D, etc.), which
must be named manually after the dataset has been extracted.

We are interested in the RoadRunner project [38] because of two reasons.
First of all, we propose the concept super form similar to RoadRunner’s

class of pages. According to our web form modeling described in Chapter 5,
a super form is a form that combines forms generated by the same web
script. The second reason is that we consider the RoadRunner’s approach
for extracting the content from a response page as very efficient and usable.
However, we limit our extraction to defining HTML code corresponding to
the resulting tuples on the web page.

Among other research efforts solely devoted to information extraction
from resulting pages, Caverlee et al. [31, 30] presented the Thor framework
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for sampling, locating, and partitioning the query-related content regions
(called Query-Answer Pagelets or QA-Pagelets) from the deep Web. The
Thor is designed as a suite of algorithms to support the entire scope of the
deep Web information platform. The Thor data extraction and preparation
subsystem supports a robust approach to the sampling, locating, and par-
titioning of the QA-Pagelets in four phases: 1) the first phase probes web
databases to sample a set of resulting pages that covers all possible struc-
turally diverse resulting pages, such as pages with multiple records, single
record, and no record; 2) the second phase uses a page clustering algorithm
to segment resulting pages according to their control-flow dependent similar-
ities, aiming at separating pages that contain query matches from pages that
contain no matches; 3) in the third phase, pages from top-ranked clusters
are examined at a subtree level to locate and rank the query-related regions
of the pages; and 4) the final phase uses a set of partitioning algorithms to
separate and locate itemized objects in each QA-Pagelet.

2.4 Deep Web Characterization

To best of our knowledge, there are two works devoted solely to the charac-
terization of the entire deep Web. The first one is a highly cited study [25]
where overlap analysis approach was used. The technique called random
sampling of IP addresses was used in the survey conducted in 2004 [34].
Below we discuss both these methods as well as key findings obtained in the
surveys.

2.4.1 Overlap analysis

The characterization of deep Web was firstly performed in March 2000 by
Michael Bergman. Several well-known estimates of the deep Web for March
2000 have been reported in his work [25]. Particularly, Bergman estimated
that there were 43,000-96,000 deep web sites in the deep Web at that time
(ultimate but disputable estimate in his study is even 200,000 deep sites for
the year 2001) and that public information on the deep Web is 400 to 550
times larger than the commonly defined World Wide Web.

Estimates for the total number of deep web sites were obtained using the
“overlap” analysis technique, which was originally applied to the character-
ization of the indexable Web [26, 71]. Overlap analysis involves pairwise
comparisons of the number of listings individually within two sources, na

and nb, and overlap, n0, between them. Assuming random listings for both
na and nb, the total size of the population, N , can be estimated (see Fig-
ure 2.11). The estimate of the fraction of the total population covered by
na is n0

nb
; when applied to the total size of na an estimate for the total pop-

ulation size can be derived by dividing this fraction into the total size of

41



N nb

n0na

N = 
nanb

n0

Figure 2.11: Total size estimation with overlap analysis.

na. These pairwise estimates are repeated for all of the individual sources
used in the analysis. To illustrate, let us assume that, for example, the total
population is 100. Then if two sources, A and B, each contain 50 items,
we could expect on average that 25 of those items would be shared by the
two sources and 25 items would not be listed by either. According to the
formula above, the total population can be reconstructed as: 50/(25/50) =
100.

Clearly, estimates obtained by overlap analysis are trustworthy only if
certain conditions are met. First, it is important to have a relatively accurate
estimate for total listing size for at least one of the two sources in the pairwise
comparison. Second, both sources should obtain their listings randomly
and independently from one another. However, as Bergman mentioned, the
second condition was in fact violated since three listings of deep web sites
(see [25] for their descriptions) used in the analysis were in no case random
and independent.

2.4.2 Random Sampling of IP Addresses

The second survey [34] is based on the experiments performed in April 2004.
In this work, the scale of the deep Web has been measured using the ran-
dom sampling of IP addresses (rsIP for short) method, which was originally
applied to the characterization of the entire Web [89]. The rsIP method
estimates the size of the deep Web (specifically, number of deep web sites)
by analyzing a sample of unique IP (Internet Protocol) addresses randomly
generated from the entire space of valid IPs and extrapolating the find-
ings to the Web at large. Since the entire IP space is of finite size and
every web site is hosted on one or several web servers, each with an IP
address2, analyzing an IP sample of adequate size can provide reliable es-
timates for the characteristics of the Web in question. In [34], one million
unique randomly-selected IP addresses were scanned for active web servers

2An IP address is not a unique identifier for a web server as a single server may use
multiple IPs and, conversely, several servers can answer for the same IP.
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Figure 2.12: Random sampling of IP addresses method: sample of IPs
(IP1, . . . , IPn) are tested for active web servers; detected web servers (with
IP2 and IPk) are analyzed for the presence of interfaces to web databases;
due to inability to find out all web sites hosted on a particular IP only three
sites in total are analyzed while the rest is missed.

by making an HTTP connection to each IP. Detected web servers were ex-
haustively crawled and those hosting deep web sites (i.e., each of which has
at least one search interface to a database) were identified. The technique
is depicted in Figure 2.12, where one deep web site is found to be hosted on
a web server with IPk.

To reduce uncertainty when identifying deep web resources Chang et
al. distinguished three related notions for accessing the deep Web - a deep
web site, a web database, and a web interface. Among the findings obtained
are the total number of deep web sites, web databases, and web interfaces,
which were estimated as 307,000, 450,000 and 1,258,000 correspondingly.

Unfortunately the rsIP approach has several limitations. In next section
we briefly discuss the two most important ones.

2.4.3 Virtual Hosting and DNS load balancing

The most serious disadvantage of the rsIP is ignoring virtual hosting, i.e.,
the fact that multiple web sites can share the same IP address. The problem
here is that for a given IP address there is no reliable procedure to obtain a
full list of web sites hosted on a web server with this IP. As a result, the rsIP
method ignores a certain number of sites, some of which may apparently be
deep web sites. To illustrate, Figure 2.12 shows that servers with IP2 and
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Table 2.2: Virtual hosting: the average number of hosts per IP address
reported in several web surveys.

Short description of ana-
lyzed hostnames and ref-
erence

When
con-
ducted

Num.of
hosts

Num.of
IPs

Aver.num.
of hosts
per IP

Russian Web: all hosts
with second-level domain
names in .RU and .SU
zones [107, 108]

03/2007 639,174 68,188 9.37

03/2006 387,470 51,591 7.51

Entire Web: all hosts
known to Netcraft [14] 04/2004 49,750,568 ≈4,400,000 ≈11.3

Portuguese Web: 85%
of hosts in .PT domain,
12% in .COM, etc. [49]

04/2003 46,457 6,856 6.78

IPk host twenty and two web sites correspondingly, but only three out of
22 web sites are actually crawled to discover interfaces to web databases .
The numbers of analyzed and missed sites per IP in this example are not
atypical: reverse IP procedure (described in Appendix C.2) usually returns
from one to three web sites that are hosted on a particular IP address while
hosting a lot of sites on the same IP is a common practice. Table 2.2
presents the average numbers of virtual hosts per IP address obtained in
four web studies conducted in 2003-2007. The data clearly suggests that:
(1) in average, one IP address is shared by 7-11 hosts; and (2) the number
of hosts per IP increases over time [14, 49, 108]. Hence, the virtual hosting
cannot be ignored in any IP-based sampling survey.

The next important factor overlooked by the rsIP method is DNS load
balancing, i.e., the assignment of multiple IP addresses to a single web
site [66]. For instance, Russian news site newsru.com, that is mapped to
three IPs, is three times more likely to appear in a sample of random IPs
than a site with one assigned IP. Since the DNS load balancing is the most
beneficial for popular and highly trafficked web sites one can expect that
the rsIP method bias caused by the load balancing is less than the bias due
to the virtual hosting. Indeed, according to the SecuritySpace’s survey as
of April 2004, only 4.7% of hosts had their names resolved to multiple IP
addresses [15] while more than 90% of hosts shared the same IP with others
(see the third row of Table 2.2). Nevertheless, the DNS load balancing is a
substantial factor and needs to be taken into account.
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2.4.4 National Web Domains

Several studies on the characterization of the indexable Web space of var-
ious national domains have been published (e.g., [20, 49, 95, 106]). The
review work [19] surveys several reports on national Web domains, discusses
a methodology to present these kinds of reports, and presents a side-by-side
comparison of their results. At the same time, national domains of the deep
Web have not been studied so far and, hence, their characteristics can be
only hypothesized.

There are solid grounds for supposing that the estimates obtained in
two aforementioned surveys of the entire deep Web [25, 34] are actually
lower-bound because web databases in, at least, several national segments
of the Web were for the most part ignored. For instance, the semi-automatic
process of identifying a web interface to a web database in [34] consists of
automatic extraction of web forms from all considered web pages, automatic
removal of forms, which are definitely non-searchable, and finally manual in-
spection of the rest, potentially searchable forms, by human experts. Due
to the limited number of experts (presumably just the authors of [34] were
those experts) and, hence, the limited number of languages they were able
to work with one can expect that a certain number of web interfaces in
unknown (to experts) languages has not been taken into account. Notwith-
standing that the approach used in [25] did not require multilingual skills
from people involved in the study, we still argue that some number of non-
English deep web sites has not been counted in this report as well. Indeed,
the results produced by the overlap analysis technique depend significantly
on “quality” of sources used in pairwise comparisons. The deep-Web di-
rectories considered by Bergman are mainly for English-speaking web users
and, thus, omitted a number of national deep web sites. This makes the
overlap analysis imperfect under the circumstances and suggests that the
Bergman’s estimate for the total number of deep web sites is a lower bound.
In this way, we consider our survey as an attempt to supplement and re-
fine the results presented in [25, 34] by studying online databases in one
particular national segment of the Web.

In this thesis, we adopted the rsIP method to our needs. Unlike [34] we
noted several essential drawbacks (two of them were discussed in Section
2.4.3) of the rsIP method leading to underestimating of parameters of in-
terest and suggested a way to correct the estimates produced by the rsIP.
Additionally, we proposed two new techniques for the deep Web characteri-
zation, the stratified random sampling of hosts (called srsh further on) and
stratified cluster sampling of IP addresses (scsIP) methods.

45



2.5 Finding deep web resources

Sections 2.2 and 2.3 discussed how to query web databases assuming that
search interfaces to web databases of interest were already discovered. Sur-
prisingly, finding of search interfaces to web databases is a challenging prob-
lem in itself. Indeed, since several hundred thousands of databases are avail-
able on the Web [34] one cannot be aware that he/she knows the most rel-
evant databases even in a very specific domain. Realizing that, people have
started to manually create web database collections such as the DBcat [41],
a catalog of biological databases, or the Molecular Biology Database Col-
lection [47]. However, manual approaches are not practical as there are
hundreds of thousands databases. Besides, since new databases are con-
stantly being added, the freshness of a manually maintained collection is
highly compromised.

There are two classes of approaches to identify search interfaces to on-
line databases: pre-query and post-query approaches. Pre-query approaches
identify searchable forms on web sites by analyzing the features of web forms.
Post-query approaches identify searchable forms by submitting the probing
queries to the forms and analyzing the resulting pages.

Bergholz and Chidlovskii [24] gave an example of the post-query ap-
proach for the automated discovery of search interfaces. They implemented
a domain-specific crawler that starts on indexable pages and detects forms
relevant to a given domain. Next, the Query Prober submits some domain-
specific phrases (called “positive” queries) and some nonsense words (“nega-
tive” queries) to detected forms and then assesses whether a form is search-
able or not by comparing the resulting pages for the positive and negative
queries.

Cope et al. [37] proposed a pre-query approach that uses automatically
generated features to describe candidate forms and uses the decision tree
learning algorithm to classify them based on the generated set of features.
Barbosa and Freire [21, 23] proposed a new crawling strategy to automat-
ically locate web databases. They built a form-focused crawler that uses
three classifiers: page classifier (classifies pages as belonging to topics in
taxonomy), link classifier (identifies links that are likely to lead to the pages
with search interfaces in one or more steps), and form classifier. The form
classifier is a domain-independent binary classifier that uses a decision tree
to determine whether a web form is searchable or non-searchable (e.g., forms
for login, registration, leaving comments, discussion group interfaces, mail-
ing list subscriptions, purchase forms, etc.).
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Chapter 3

Deep Web Characterization

This chapter surveys databases on one specific national segment of the Web.
The survey is based on our experiments for the scale of the national deep
Web conducted in summer 2005 and in September 2006.

To our knowledge, this survey is the first attempt to consider the specific
national segment of the deep Web. The known deep Web characterization
efforts (see Section 2.4) have predominantly concentrated on study of English
deep web sites and, therefore, the estimates of the deep Web obtained in
these works may be biased, especially owing to a steady increase in non-
English web content. The national deep Web was studied on the example
of the Russian segment of the Web (called Runet hereafter in this paper).
There were several reasons to choose exactly the Russian part of the deep
Web. Firstly, since Russian is written using the Cyrillic alphabet, which is
non-Latin, one can expect that Runet is considerably more separated from
the entire Web than, say, the German segment (where Latin alphabet is
used). Secondly, we had an access to the data set provided by Yandex, a
Russian web search engine (see Section 3.2 and Appendix C.3). And last
but not least, having Russian as a mother tongue language was essential due
to many web sites in Runet need to be manually inspected.

In June 2005 and in August 2005 and then in September 2006 we per-
formed a series of experiments to estimate the number of deep web sites
in Runet. We used three techniques: the adopted rsIP, the srsh and scsIP
methods (see Section 2.4.4). The experiments themselves and the results for
each method are described in the following sections.

3.1 Random Sampling of IP Addresses

We extracted all ranges of IP addresses used by Russian networks from the
IP-Country database [6]. There were totally around 10.5 millions of IPs at
the time of June 2005, N = 10.5 × 106. Then, n = 10.5 × 104 unique IP
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addresses (1% of the total number) were randomly selected and scanned for
active web servers (tools we used for that are mentioned in Appendix C.1).
We detected 1,379 machines with web servers running on port 80. For
each of these machines we resolved their corresponding hostnames: the first
hostname was always an IP address itself in a string format; other hostnames
were non-empty values returned by gethostbyaddr function. Next step was
crawling each host to depth three1. To not violate the sampling procedure
we had to crawl only pages obtained from either the same IP or IPs that
do not belong to Russian networks (Runet IPs, as having equal probability
of selection in the sample, had to be ignored). The automatic analysis of
retrieved pages performed by our script in Perl was started after that. All
pages which do not contain web forms and pages which do contain forms,
but those forms that are not interfaces to databases (i.e., forms for site
search, navigation, login, registration, subscription, polling, posting, etc.)
were excluded. In order to consider just unique search forms pages with
duplicated forms were removed as well. Finally, we manually inspected the
rest of pages and identified totally x = 33 deep web sites. It should be
noted that unlike [34] we counted only the number of deep web sites. The
number of web databases accessible via found deep web sites as well as the
number of interfaces to each particular database were not counted since we
did not have a consistent and reliable procedure to detect how many web
databases are accessible via particular site. The typical case here (not faced
in this sample though) is to define how many databases are accessed via
a site with two searchable forms – one form for searching new cars while
another for searching used ones. Both variants, namely two databases for
used and new cars exist in this case or it is just one combined database, are
admissible. Nevertheless, according to our non-formal database detection, 5
of 33 deep web sites found had interfaces to two databases, which gives us
38 web databases in the sample in total.

The estimate for the total number of deep web sites is:

D̂rsIP =
33× 10.5 × 106

10.5 × 104
= 3300. (3.1)

An approximate 95% confidence interval2 for D̂rsIP is given by the fol-
lowing formula:

D̂rsIP ± 1.96

√
N(N − n)(1− p)p

n− 1
, (3.2)

where p = x
n

(see Chapter 5 in [105]). Thus, the total number of deep web
sites estimated by the rsIP method is 3300±1120.

1See [34] for discussion on crawling depth value. Figure 1.2 illustratively shows depth
values for one of the depicted websites.

2This interval contains the true value of the estimated parameter with 95 percent
certainty.
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To our knowledge, there are four factors which were not taken into ac-
count in the rsIP experiment and, thus, we can expect that the obtained
estimate D̂rsIP is biased from the true value. Among four sources of bias the
most significant one is the virtual hosting. The analysis of all second-level
domains in the .RU zone conducted in March 2006 [107] has shown that
there are, in average, 7.5 web sites on one IP address (similar numbers were
reported in other web surveys, see Table 2.2). Unfortunately, even with the
help of advanced tools for reverse IP lookup (see Appendix C.2) there is not
much guarantee that all hostnames related to a particular IP address would
be resolved correctly. This means that during the experiment we certainly
overlooked a number of sites, some of which are apparently deep web sites.

Next essential factor is DNS load balancing, i.e., the assignment of mul-
tiple IP addresses to a single web site [66]. A web site mapped to several
IPs is more likely to be selected for the sample than a site with one IP ad-
dress. Therefore, our rsIP estimate should be expected to be greater than
the true value. Similar to the virtual hosting factor, there is no guarantee in
detecting all web sites with multiple IPs. We checked all 33 identified deep
web sites for multiple IPs by resolving their IP addresses to corresponding
hostnames and then resolving those hostnames back to their corresponding
IPs (the same technique as in [89]). Though no multiple IP addresses for any
of these sites were detected by this procedure, we are not confident whether
every deep web site in the sample is accessible only via one IP address. In
any case, sites on multiple IPs are less common than sites sharing the same
IP address and, hence, we believe that the virtual hosting’s impact on the
estimate should exceed one-site-on-multiple-IPs factor influence.

Third unconsidered factor is the exclusion of web servers running on
ports other than 80 (default port for web servers). In our experiment we
did not detect web servers that are not on port 80 and, obviously, missed
a number of servers that may host deep web sites. However, the number
of deep resources on non-default port numbers seems to be negligible since
using non-default port numbers for web servers is not a widespread practice.

While previous three factors are about how well we are able to detect
deep web sites in the sample the IP geodistribution factor concerns how
well the whole IP pool covers the object of study, Runet in our case. Recall
that our pool of IP addresses is all IPs assigned to the Russian Federation.
Since web hosting is not restricted to geographical borders one can expect
that a number of Runet web sites are hosted outside Russia. Analysis of
all second-level domains in the .RU zone [107] revealed that, indeed, this is
the case and approximately 10.5% of all studied domains are hosted on IPs
outside the Russian Federation. Although only second-level RU-domains
were investigated in [107] we suppose that the found distribution (89.5% of
web servers are in Russia and the rest is outside) is applicable to all domains
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related to Runet3. This allows us to make a correction to our rsIP estimate.
Under the fact that our sample was selected from the population which
covers just around 90% of Runet, we updated the estimate and, finally, got
that there are approximately 3650±1250 (rounded to the nearest 50) deep
web sites in Runet.

3.2 Stratified Random Sampling of Hosts

In this experiment we used the data set “Hostgraph” (its description is given
in Appendix C.3) provided by Yandex, a Russian search engine. All hosts
indexed by Yandex were extracted from the Hostgraph. Besides, “host cita-
tion index”, i.e. the number of incoming links for each host, was calculated.
To improve method’s accuracy, the shortening procedure was applied to the
list of extracted hosts:

• Web sites which are certainly not deep web sites were removed from
the list. In particular, we removed all sites on free web hostings known
to us.

• We grouped all host by their second and third-level domain names
(for example, all hosts of the form *.something.ru are in the same
group). The largest groups of hosts were checked and groups with
sites leading to the same web databases were removed. As an example,
we eliminated all hosts of the form *.mp3gate.ru (except the host
www.mp3gate.ru) since the same web database is available via any of
these hosts.

We stopped the procedure at the total list of N = 299, 241 hosts. At
the beginning, we decided to check our assumption that the proportion of
deep web sites among highly cited sites is higher than among less cited sites.
If so, applying stratified random sampling technique to our data would be
more preferable than using simple random sampling.

To examine the assumption we divided the list of hosts into three strata
according to the number of incoming links for each host. The first stratum
contained the most cited N1 = 49, 900 hosts, less cited N2 = 52, 100 hosts
were in the second stratum, and the rest, N3 = 197, 240 hosts, was assigned
to the third stratum (the strata sizes are rounded to the nearest ten). Then,
n∗

1 = 50, n∗
2 = 50, and n∗

3 = 100 unique hosts were randomly selected
from each stratum correspondingly. Similar to the rsIP method, each of the
selected hosts were crawled to a depth three. While crawling we checked if

3The geodistribution of third and higher-level domains in the .RU zone should be
almost the same. The distribution of second and higher-level domains in other than .RU
zone (i.e., those ending with .com, .net, and so on) may differ but their fraction in all
Runet domains is not so significant, around 25% according to Appendix C.3.
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Table 3.1: Results of the preliminary stratified random sampling

Stratum(k) Nk n∗
k d∗k

1 49,900 50 7

2 52,100 50 2

3 197,240 100 1

Table 3.2: Results of the srsh experiment

Stratum(k) Nk nk dk D̂k Dk,cor Duplication

1 49,900 294 35 5940 5600 10 of 35 resources
have one or more
duplicates: 4 dupli-
cates in stratum1,
1 in stratum2, and
7 in stratum3

2 52,100 174 8 2395 2090 2 of 8 resources
have one duplicate:
1 duplicate in stra-
tum2 and 1 in
stratum3

3 197,240 400 3 1480 100 0 of 3 resources
have duplicates

Total 299,240 868 46 9815 7790 12 of 46 resources
have duplicates

links point to pages located on the same host or on other hosts not mentioned
in the total list of hosts. To meet the conditions of the sampling procedure all
pages on hosts, which are in the list, were ignored. After that, the procedure
becomes identical to the rsIP one (see Section 3.1). The results, number of
deep web sites d∗k detected in each stratum, are shown in Table 3.1.

It is easy to see from Table 3.1 that our assumption is correct and,
indeed, the probability of having a web interface to a web database is higher
for highly cited hosts than for less cited ones. Thus, for reliable estimation of
the total number of deep web sites in Runet we decided to use the stratified
random sampling approach with the same division into strata.

We selected n1 = 294 (including n∗
1 hosts already studied in the prelim-

inary sampling), n2 = 174 (including n∗
2 hosts), and n3 = 400 (including

n∗
3 hosts) unique hosts for each of the three strata correspondingly. The
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process of analyzing totally 6684 sampled hosts and identifying deep web
sites was the same as in the preliminary sampling of hosts. Our findings are
summarized in Table 3.2, where dk and D̂k = Nk

dk

nk
are the number of deep

web sites in the sample from stratum k and the estimated total number of
deep web sites in stratum k correspondingly.

The estimate for the total number of deep web sites is:

D̂srsh =
3∑

k=1

D̂k = 9815. (3.3)

An approximate 95% confidence interval for D̂srsh is given by the fol-
lowing formula:

D̂srsh ± 1.96

√√√√
3∑

k=1

Nk(Nk − nk)(1 − pk)pk

nk − 1
, (3.4)

where pk = dk

nk
(see Chapter 11 in [105]). In this way, the total number of

deep web sites estimated by the srsh method is 9815±2970. This estimate is
not a final one, however. There are two factors which have to be considered
in order to correct D̂srsh.

The most significant source of bias in the srsh experiment is the host
duplication problem. It is rather common that a web site can be accessed
using more than one hostname. Naturally, several hostnames per one deep
web site are typical as well. By using tools described in Appendix C.2
(resolving a hostname of interest to an IP address and then reverse resolving
IP to a set of hostnames) and inspecting our list of hosts manually we
were able to identify that 12 of 46 deep web sites are accessible via more
than one hostname. The distribution of duplicates among different strata is
given in Table 3.2 in the “Duplication” column. The correction to be done
is pretty straightforward: the existence of one duplicate for a particular
host means that this host is twice more likely to be in the sample than
a host without any duplicate. Thus, the corrected estimate for the first
stratum is D1,cor = N1

n1
× (31 + 4

2 ) = 5600. D1,cor ×
1
35 and D1,cor ×

7
35

deep resources should be excluded from the estimates for second and third
stratum correspondingly since they were already counted in the estimate
for the first stratum. Similarly, we obtained the corrected estimates for the
second and third stratum: D2,cor = N2

n2
× (7 + 1

2 )−D1,cor ×
1
35 = 2090 and

D3,cor = D̂3 −D1,cor ×
7
35 −D2,cor ×

1
8 = 100 deep web sites respectively.

The second factor, similar to the geodistribution factor in the rsrIP ex-
periment, is how well the list of hosts we studied covers Runet. The list we

4200 of 868 hosts were already studied.
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worked with contained all hosts indexed by Yandex, a Runet search engine,
at the time of February 2005. Recent study [96] has shown that Yandex
has one of the best coverage of Runet among the largest web crawlers in-
dexing Russian part of the Web. In this way, one can expect that our list
represented Runet with sufficient accuracy. More importantly, we believe
that the only way for a web database content to be available for web users
is having at least one web interface located on a page indexed by a search
engine. Otherwise, not only data in this database is hidden but also its
whole existence is completely unknown to anyone. Therefore, according to
our point of view, the population of hosts used in the srsh experiment is
essentially complete for purposes of detecting deep web sites. It should be
noted however that since the “Hostgraph” data was created in February
2005 and our experiments were performed in June and August 2005 those
deep web sites which appeared mainly in spring 2005 were not counted.

To sum up, due to the fact that at least one of four deep web sites is
accessible via more than one hostname we corrected D̂srsh and obtained that
the total number of deep web sites in Runet is around 7800±2350
(rounded to the nearest 50).

3.2.1 Subject Distribution of Web Databases

We manually categorized 79 deep web sites sampled in the rsIP and srsh
experiments into ten subject categories: Libraries (lib), Online Stores (shop),
Auto (auto), Business (biz ), Address Search (addr), Law&Goverment (law),
People Search (pe), Travel (tra), Health (he), and Science (sci). Note that
more than one category may be assigned to a deep web site - for instance,
nearly half of deep web sites assigned to the “Auto” category were also
placed into “Online Stores” since these sites were auto parts&accessories
online stores. Figure 3.1 shows the distribution of deep web databases over
the categories. The particular observation we made is that almost 90%
of deep resources in the category “Online Stores” (13 of 15 sites) have a
navigational access to their data, i.e. these sites have not only one or several
web search forms but also have a browse interface which allows a user to
reach the necessary data from a web database via a series of links. In this
way, such resources cannot be considered as entirely “hidden” from search
engines since their content may be accessed by following hyperlinks only.

3.3 Discussion: results of the 2005 survey

The experiments provided us with two estimates for the total number of
deep web sites in Runet: 3650±1250 as estimated by the rsIP method, and
7800±2350 as estimated by the srsh method.
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Figure 3.1: Distribution of deep web sites over subject category

In fact, there is no contradiction between the estimates since the rsIP
method should give us a lower-bound estimate due to the virtual hosting
factor (see Section 3.1) while the srsh method should result in an upper-
bound estimate because of the host duplication problem (see Section 3.2).
In any case, it is unquestionable that a 95% confidence interval for the total
number of deep web sites in Runet is (2400,10150), that is, the scale of
the Russian deep Web is on the order of 103 resources. We also
believe that the estimate obtained by the srsh method is closer to the true
number than the estimate by the rsIP method because the host duplication
factor was at least partially addressed in the srsh experiment (duplicates
were identified and then the corresponding correction was done) while the
influence of virtual hosting on the rsIP estimate was just mentioned as very
important but not measured quantitatively.

The quick and indirect attempt to correct the rsIP estimate is to recon-
struct the process of detecting deep web sites for specifically designed list
of IPs. In order to build such a list, we took 46 deep web sites detected by
the srsh method and resolved their hostnames to the list of IP addresses.
“Ideal” rsIP method should detect 46 deep web resources in this list, non-
ideal rsIP method detects less due to shortcomings of IP-to-host resolving
procedure. Our rsIP method was able to detect 25 (54%) deep resources,
and the rest, 21 (46%) of deep web sites, were not detected5. Thus, we can
expect that around 46% deep resources were missed in our rsIP experiment
and, hence, the corrected rsIP estimate is 6800±2300. The intervals for
the rsIP and srsh estimates, (4500,9100) and (5450,10150) correspondingly,
are well overlapping, and their intersection, namely (5450,9100) or approx-
imately (rounded to the nearest 100) 7300±1800, is our final estimate for
the total number of deep web sites in Runet in summer 2005.

5In more than half cases no hostnames were resolved from an IP address and then the
only URL to use http://IP address returned just an error page or a web server default
page.
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It is interesting to compare the number of deep resources in Runet and
in the entire Web. The number of deep web sites resources in the entire
Web estimated by Chang et al. [34] is 307,0006 for April 2004 while our
estimate for Runet obtained by the same method as in [34] is 3650±1250
for summer 2005. The comparison suggests that in terms of the number of
deep web sites the Russian deep Web is approximately the hundredth part
of the entire deep Web. This roughly coincides with the portion of Russian
web sites in the Web – survey [88] indicated that one percent of public sites
in the Web in 1999 as well as in 2002 were in Russian.

3.4 Stratified cluster sampling of IP addresses

Real-world web sites may be hosted on several web servers, typically share
their web servers with other sites, and are often accessible via multiple host-
names. All this makes an IP-based or hostname-based sampling approaches
somewhat restricted and prone to produce biased estimates.

The process of solving domain aliasing problem in the srsh method offers
a clue to a better sampling strategy. Hostname aliases for a given web site are
frequently mapped to the same IP address. This is not really surprising since
it is practical for a web administrator, who controls via which hostnames
a particular web site should be accessible, to define hostname aliases by
configuring only one web server (it means such hostnames are resolved to
server’s IP). Thus, given a hostname resolved to some IP address, one can
identify other hostnames pointing to the same web content by checking those
hostnames that are also mapped to this IP. It is interesting to see here a
strong resemblance to the virtual hosting problem when there is a need to
find all hosts sharing a given IP address. At the same time, discovering hosts
mapped to a particular IP in the srsh method is easier than the same task
in the rsIP method since more information is available, namely, the overall
list of hostnames can be utilized. Indeed, resolving all hostnames from the
total list to their corresponding IP addresses provides us with the knowledge
about “neighbors-by-IP” for any hostname to be sampled. Technically, by
doing such massive resolving we cluster all known hosts into groups, each
including hosts sharing the same IP address.

Once the overall hostname list is clustered by IPs we can apply the
cluster sampling strategy, where an IP address is a primary sampling unit
consisting of a cluster of secondary units, hostnames. The grouping hosts
based on their IPs is, in fact, quite natural because this is exactly what

6No confidence intervals were mentioned in [34] but it is easy to calculate them from
their data: particularly, a 95% confidence interval for the number of deep web sites is
307,000±54,000. A 99% confidence intervals have also been specified in more recent work
of the same authors [57].
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happens on the Web, where every web server serves requests only to certain
hosts (that are mapped to server’s IP).

To summarize, the suggested technique (called the scsIP method) for
characterization of national deep web includes the following steps: (1) re-
solving a large list of hostnames relating to a studied national web domain
to their IP addresses and grouping hosts based on their IPs; (2) generating
a sample of IP addresses randomly selected from a list of all IPs resolved at
step 1; (3) retrieving a set of hosts for each sampled IP and analyzing such
hosts for the presence of search interfaces in a way similar to the rsIP and
srsh methods. Among the advantages of the scsIP is taking into account all
three sources of bias described in the previous section. There are not only
pluses however: the most important limitations of the approach are high
requirements to the original list of hostnames, which has to cover a studied
segment of the Web with a good accuracy, and more complex dataset prepa-
ration. The latter, the preparation of the dataset used in our experiments,
is described in the next section.

3.4.1 Dataset preparation and stratification

For our experiments conducted in September 2006 we extracted two lists of
hostnames from datasets “Hostgraph” and “RU-hosts” (see Appendix C.4)
and combined them into one list of unique hostnames. It is expected that
the list well covers the Russian part of the Web. Each hostname in the
list was resolved to a corresponding IP address (or, in case of DNS load
balancing discussed above, to multiple IPs) using the dig [4] tool giving us a
host-IP pair (or several such pairs). Depending on the presence of a “www.”
prefix at the beginning each unresolved7 hostname was modified by either
adding or removing the “www.” and resolved in this form again. For still
unresolved hosts we repeated the resolve procedure in one week. Since some
hosts may be resolved to invalid IPs we checked the validity of all found IP
addresses. Technically, all IPs (e.g., 10.0.0.1 or 224.0.0.1) from unassigned
IP address ranges (known as bogon lists [43]) are invalid and, hence, should
be ignored. After removing all host-IP pairs with invalid IPs we resulted in
717,240 host-IP pairs formed by 672,058 unique hosts and 79,679 unique IP
addresses.

The numbers specifically shows that DNS load balancing has a modest
influence: most hosts (94.6%) are resolved to single IP address and only 5.4%
(36,349) of hosts are mapped to two or more IPs. At the same time, our
compiled dataset gives us yet another support for the magnitude of virtual
hosting (see also Table 2.2): there are nine virtual hosts in average per one
IP address8. The degree of IP address sharing is depicted in Figure 3.2.

7A host is unresolved if the dig does not return an IP address.
8A host resolved to two or more IPs is counted twice or more for each corresponding
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A fraction of hosts that:  

Figure 3.2: IP address sharing for our dataset.

Particularly, 55,6% (398,608) of all hosts in the dataset share their IPs with
at least 200 other hosts.

Since the sampling procedure is simplified if each host is mapped to a
single IP we restricted a host to have only one mapping to IP address and
excluded all “redundant” host-IP pairs from the overall list. This left us
with 672,058 hosts on 78,736 IP addresses.

We then clustered the overall list of hosts by their IPs and divided the
list into three strata according to the number of hosts mapped to each IP.
The idea behind such separation lies in the fact that IP addresses referred
to a large number of hosts are good indicators of server hosting spam web
sites [44] and, hence, deep web sites are unlikely to be found when analyzing
such IPs. Another reason to stratify was to actually identify if deep web sites
are tend to run on servers hosting only a few sites. Table 3.3 presents the
specific criteria used for stratification as well as number of IP addresses and
hosts in each stratum. For example, Stratum 1 includes such IP addresses,
that are each associated with seven or less hostnames, while Stratum 3
combines IPs with no less than 41 hosts mapped to each.

3.4.2 Results of the 2006 survey

In our survey of Russian deep Web in September 2006 we used the dataset
prepared as described above. For each stratum we randomly selected a set
of IPs and analyzed hosts that are mapped to this IPs. While crawling
we checked if links point to pages that belong to hosts on the same IP or
hosts on IPs that are non-present in our dataset. To meet the conditions
of the sampling procedure all pages on hosts with IPs that are present in
the dataset and other than the analyzed one were ignored. Otherwise, the
procedure of analyzing web content accessible via studied hosts is identical to

IP.
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Table 3.3: Dataset stratification.

Stratum 1 Stratum 2 Stratum 3 Total

Criteria (number of

hosts per IP): x

x ≤ 7 7 < x ≤ 40 x > 40

Number of IPs:
Si, i = {1, 2, 3}

71,486 5,390 1,860 78,736

Number of hosts:
Hi, i = {1, 2, 3}

112,755 86,829 472,474 672,058

Table 3.4: Results of the scsIP experiment.

Stratum 1 Stratum 2 Stratum 3 Total

Number of sampled

IPs: si

964 100 11 1,075

Number of analyzed

hosts: hi

1,490 1,584 3,163 6,237

Number of deep web

sites: di

62 38 46 146

Estimate for num.of

deep web sites (rounded

to the nearest hundred)

4,700 2,100 6,900 13,700

Number of databases:

dbi

79 46 49 174

Estimate for num.of

deep web sites (rounded

to the nearest hundred)

6,000 2,500 7,300 15,800
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the one we used in the rsIP and srsh methods. Table 3.4 shows the numbers
of sampled IPs and analyzed hosts as well as the numbers of deep web
sites and databases (they were counted unlike the rsIP and srsh methods)
detected in each stratum.

The estimates for the total numbers of deep web sites and databases
are: D =

∑3
k=1

dkHk

hk
and DB =

∑3
k=1

dbkHk

hk
correspondingly (shown in

Table 3.4). The formula for 95% confidence intervals for D and DB can be
found in Chapter 12 of [105]. To summarize, the total numbers of deep
web sites and databases in Runet as of September 2006 estimated by
the scsIP method are 13,700±3,900 and 15,800±4,200 correspondingly.

Though the scsIP method takes into account such significant sources of
bias for the rsIP and srsh methods as virtual hosting and DNS load balancing
the hostname duplication factor is still not fully considered. The problem
is that some hostnames leading to the same web content may resolve to
several IPs and, thus, such hosts and corresponding sites are more likely
to be in a sample and be analyzed respectively. In this way, the obtained
estimates for the the total number of deep web sites and databases are, in
fact, upper-bound.
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Chapter 4

Finding Deep Web Resources

The deep Web has been growing at a very fast pace. It is estimated that
there are hundred thousands of deep web sites [34]. The deep web content
residing in databases is available on demand, as web users issue their queries
via search interfaces. Due to the huge volume of information in the deep
Web, there has been a significant interest to approaches that allow users and
computer applications to leverage this information. For example, in Chap-
ter 5 we discuss how to query web databases and, particularly, we assume
that search interfaces to web databases of interest are already discovered
and known to our system. However, such assumption does not hold true
mostly because of the large scale of the deep Web – indeed, for any given
domain of interest there are too many web databases with relevant content.
Thus, the ability to locate search interfaces to web databases becomes a key
requirement for any application accessing the deep Web.

4.1 Introduction

Due to the dynamic nature of the Web, when new sources being added all
the time and old sources modified or removed completely, it is important to
automatically discover search interfaces that serve as the entry points to the
deep Web. One of the challenges in such discovery is that search interfaces
are very sparsely distributed over the Web, even within specific domains.
For example, a topic-focused best-first crawler [33] was able to retrieve only
94 movie search forms while crawling 100,000 pages related to movies.

Finding of search interfaces to web databases is a challenging problem.
Indeed, since several hundred thousands of databases are available on the
Web [34] one cannot be aware that he/she knows most relevant databases
even in a very specific domain. Even national (as it was shown in Chapter 3
of this thesis) or specific community-oriented (e.g., bioinformatics commu-
nity) parts of the deep Web are too large to be fully discovered. Realizing the

61



need in better mechanisms for locating web databases, people have started
to manually create collections of web databases such as the Molecular Bi-
ology Database Collection [47]. However, because of the scale of the deep
Web, manual approaches are not practical. Besides, since new databases are
constantly being added, the freshness of a manually maintained collection
is highly compromised.

Surprisingly, existing directories of deep web resources (i.e., directories
that classify web databases in some taxonomies) has extremely low cov-
erage for online databases. In fact, completeplanet.com [3], the largest of
such directories, with around 70,000 databases1 covered only 15.6% of the
total 450,000 web databases [34]. Clearly, currently existing lists of online
databases do not correspond to the scale of the deep Web. Therefore, tech-
nique for automatic finding search interfaces is of great interest to the people
involved in directories’ building and maintaining.

To summarize, while relatively good approaches (not ideal though) for
querying web databases have been recently proposed one cannot fully uti-
lize them as most search interfaces are undiscovered. Thus, the ability to
automatically locate search interfaces to web databases is crucial for any
application accessing the deep Web.

4.2 Motivation and Challenges

The problem of automatic identifying search interfaces arose during our
characterization studies (see Chapter 3). Basically, we analyzed all pages
on a particular web site to detect pages containing search forms. For in-
stance, as depicted in Figure 4.1, two forms on Amazon has to be identified
as non-searchable (form for registration on the left) and searchable (form
for advanced book search on the right). When analyzing a particular web
page we (as well as Chang et el. in their characterization study [34]) used
semi-automatic approach – we automatically filtered out all pages without
web forms and pages with those forms that are not search interfaces to web
databases (i.e., forms for site search, navigation, login, registration, subscrip-
tion, purchasing, polling, posting, etc.). At the filtering stage, we used a
set of heuristic rules2 that distinguish searchable forms from non-searchable
ones. For instance, forms with a password field or with a file upload field
are non-searchable. The goal of the filtering performed automatically was to
filter out as many non-searchable forms as possible and, more importantly,
to not filter out any searchable interfaces since, otherwise, we could not
consider our estimates for the total number of deep web sites as reliable.

1According to [57], the coverage of completeplanet.com could be overestimated.
2Obtained by manual reviewing of around 120 searchable and non-searchable forms.

Similar but more simplified heuristics was used in [70].
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Non-searchable Interface Searchable Interface

Figure 4.1: Non-searchable and searchable interfaces at Amazon.com.

In other words, we preferred to use a simple set of rules which filter out
only part of non-searchable forms but none of searchable forms than more
advanced heuristics that filter out most non-searchable forms together with
a few searchable ones. After the filtering, we manually inspected the rest of
pages and identified searchable interfaces. In average, only each sixth form
were identified as searchable at this step. Manual inspection was, in fact,
a bottleneck of our characterization studies: we were not able to enlarge
the sample size and, hence, increase the accuracy of our estimates since we
had a restriction defined by the number of pages to be inspected during a
given amount of time. Therefore, the automatic approach to identify search
interfaces can significantly improve the accuracy of the estimates obtained
in deep Web characterization studies.

Constructing directories of deep web resources like the one described
in [47] is another application, where there is a vital need in automatic iden-
tifying of search interfaces. Such directories then can be utilized by conven-
tional search engines. Particularly, many transactional queries (i.e., find a
site where further interaction will happen [28]) can be answered better if re-
sults of such queries contain links to pages with search interfaces via which a
user can eventually find the necessary information. To make this a reality, a
search engine should have a directory of web databases (more exactly, direc-
tory of links to pages with search interfaces to databases), where databases
are classified into subject hierarchies, and some kind of mapping that asso-
ciates user’s query with most related web databases. For instance, a user
who issued a car-related query might be suggested to extend his/her search
using web forms for car search. In this way, directories of web databases
may have an important role in improving support of transactional queries
by search engines.
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We can divide the problem of constructing directory of deep web re-
sources into three parts:

1. Finding web pages with search interfaces. One of the problems here
is that search interfaces are very sparsely distributed over the Web,
even within specific domains. For example, a topic-focused best-first
crawler [33] was able to retrieve only 94 movie search forms while
crawling 100,000 pages related to movies. Therefore, it is useful to
develop a strategy for visiting such web pages that are more likely
than the average page to have a search interface.

2. Recognizing searchable forms in automatic way. The task can be for-
mulated in the following way: for a given page with a form, identify
automatically whether a form is searchable (search interface to web
database) or non-searchable. It is a challenging task since there is a
great variety in the structure and vocabulary of forms and even within
a well-known domain (e.g., car classifieds) there is no common schema
that accurately describes most search interfaces of this domain.

3. Classifying searchable forms into subject hierarchy. Given a search
interface (identified at the previous step) to a web database and a hi-
erarchical classification scheme (e.g., Yahoo!-like directory [10]), which
is a set of categories, define categories related to a database. There
are several issues that complicate multi-class classification of search-
able forms. First, existing data sets of searchable interfaces to be used
as training sets are not large enough for multi-classification tasks. Sec-
ond, many search interfaces belong to more than one different domains
(see example in the next section). Third, certain search interfaces
(with a few visible fields) are hard to classify reliably as textual con-
tent of such interfaces provide us with little or no information related
to the subject of underlying databases.

4.3 Our approach: Interface Crawler

Our main goal is to develop a system, which is able to detect efficiently and
automatically whether a particular web form is searchable or non-searchable
and to identify a main subject of a database accessible via a searchable
form. The first step described in the previous section, building an effective
crawler that trained to follow links that are likely to lead to pages with
search interfaces, is just partially considered. One particular application
where we want to use our system is the deep Web characterization studies
and, thus, our main concern is how to avoid identifying searchable form as
non-searchable rather than how to increase the ratio of pages with search
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interfaces to pages visited by a crawler. Anyhow, we performed several
experiments (see Section 4.5) on possible crawling strategies.

Since we want to detect all search interfaces located on a set of pages it
is crucially important to recognize both HTML [114] and non-HTML search
interfaces (such as interface implemented as Java applets [5] or in Flash [2]).
Though nowadays most search interfaces are HTML forms more and more
non-HTML forms appear on the Web. In addition, client-side scripts (mainly
in JavaScript [45]) embedded within an HTML page technically complicate
processing of a web page: in order to proceed to extracting structural and
textual content of such interface an application has to not only retrieve a
page but also process a page content by a layout engine3. Without rendering
by a layout engine JavaScript-rich forms are typically not detected at all.
It is worth to mention here that almost all known to us approaches to the
deep Web do not consider client-side scripts and, hence, ignore forms with
embedded client-side code.

After a form is detected on a web page, our task is to identify it as
searchable (search interface to web database) or non-searchable (forms for
site search, navigation, login, registration, subscription, purchasing, polling,
posting, etc.). This can be done by building a binary (domain-independent)
classifier. It was observed in several works (e.g., in [34]) that there are
structural differences between searchable and non-searchable forms. For ex-
ample, the average number of text fields in non-searchable forms is higher
than those in searchable forms. Thus, we can use these differences for train-
ing a binary classifier. However, we may expect a problem with forms that
have one or two visible fields as such forms give us very little information
about their structure. For instance, forms for site search4 that typically have
only one visible text field are non-searchable while the form with two (select
and text) visible fields shown in Figure 1.6 is searchable. To overcome this
issue, we decided to divide all forms into two groups: those with one or
two visible fields of select or text types (we call them u-forms for short as
searchable u-forms are often interfaces to unstructured web databases), and
those with more than two visible fields (called s-forms as searchable s-forms
often lead to structured databases). Apparently, two binary classifiers for
u- and s-forms should exist and be trained on slightly different sets of form
features.

Next task is to find which subject categories cover web database content
(that accessible via identified search interface) in the best way. Currently,
we consider classification of web databases into ten domains: airfare, auto,

3Software that takes web content and displays the formatted content on the screen. A
layout engine (e.g., Gecko [92]) is typically used for web browsers or other applications
that require displaying of web contents.

4They are not counted as search interfaces since they allow to search through indexable
site’s web pages.
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form's textual content

Figure 4.2: Search interface on the front page of Amazon.com.

book, travel, job, movie, music, real estate, rental, science. Classification
of u- and s-forms into subject categories is performed separately. In both
cases result of classifying a page containing a searchable form into subject
hierarchies is considered to be only supplemental because a page in travel
category can often contain an airfare search form. U-forms are sometimes
quite problematic as they typically have little or no meaningful textual con-
tent5 and, moreover, often have to be classified into several domains. For
example, consider search form on the front page of Amazon.com shown in
Figure 4.2. Ideally, this form has one text and one select fields and has to
be classified into three categories: book, movie, and music. However, all
form’s textual content that can be extracted is pretty domain-independent:
text string “Search” and option values of select field such as “Books”, “Ap-
parel”, “Automotive”, etc. (see Figure 4.2). Our solution to this problem is
to classify u-forms using post-query approach initially proposed by Gravano
et al. [52]. The idea of post-query classification is issuing probing queries
via searchable form and retrieving counts of matches which are returned
for each probing query. If each probing query corresponds to some cate-
gory than the number of returned matches points out the coverage of the
database for this category (for example, if no matches are returned in the
result of car-related query then database is not in auto domain). Unlike u-
forms s-forms are easier to classify since, evidently, much more information
about underlying database can be extracted from searchable s-form. In this
way, we extract meaningful textual content of s-forms and pass it to the

5In case of HTML forms, textual content of the form is the text enclosed by the start
and end FORM tags after the HTML markup is removed.
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text classifier. Additionally, we can extract field labels and use them in the
classification process as well. Particularly, He et al. [58] used field labels to
cluster searchable forms. Though we do not use clustering approach in the
current implementation of a system one can expect that clustering based on
field labels might be a good supplement to the text classifier based on form’s
textual content.

Next section describes the architecture of the system called I-Crawler
(Interface Crawler) for automatic finding and classifying search interfaces.

4.4 Architecture of I-Crawler

Based on our approach described in the previous section we designed the
architecture of the I-Crawler, which is shown in Figure 4.3. The I-Crawler
consists of four main components: Site/Page Analyzer, Interface Identifica-
tion, Interface Classification, and Form Database. The goal of the I-Crawler
is to crawl suggested pages or web sites (as a typical web crawler does), ex-
tract all web forms from the visited pages, mark extracted forms as search-
able or non-searchable, and store them in the Form Database. Additionally,
searchable forms should be classified into the subject hierarchies.

The Site/Page Analyzer is responsible for form crawling efficiency. For
a particular web page it analyzes a page’s site, links located on a page, etc.
and suggests which links should be processed first (for instance, those that
are most likely to lead to search interfaces) and which should be ignored.
Currently we do not pay much attention to the Site/Page Analyzer since we
concentrate on finding as many search interfaces as possible and, thus, prefer
to perform mostly unrestricted crawling of pages/sites of interest. However,
if a task is to find search interfaces to web databases in one particular domain
then the Site/Page Analyzer is crucially important.

The second component, the Interface Identification is the most important
in the current implementation. It includes three parts: Interface Detector,
Structure Extractor, and Binary Classifier. The Interface Detector is re-
sponsible for detecting a form within a web page. Since both HTML and
non-HTML forms6 (such as forms implemented as Java applets or in Flash)
has to further extracted from a web page the Interface Detector processes
a web page like a web browser does. If no form is detected then nothing
is passed to the underlying modules; otherwise the code describing the de-
tected form on a web page is passed to the Structure Extractor and the code
of web page with the form’s code removed is passed to the Interface Classifi-
cation component (namely, to the Page Classifier). The Structure Extractor
extracts the structure of a form such as form’s URL, total number of fields,

6In the current implementation, only Flash forms are handled. Technically, SWF-files
are parsed using Perl library Perl::Flash [111].
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number of text fields, etc. Information about form structure is explicitly
defined in the the form code and, hence, the extraction of form structure
process does not require any specific techniques. The Structure Extractor
communicates with the Form Database to detect any duplicates that are
already stored in the Form Database. It also has simple rules (e.g., a form
with an upload file field is non-searchable) and stores non-searchable forms
in the Form Database. If non-searchable or duplicate form is identified then
the I-Crawler stops processing at this stage; otherwise, structural features
of a form are passed to the Binary Classifier. In the current implementa-
tion, we have two binary classifiers – the first is for forms with one or two
visible fields of select or text types (we call them u-forms for short) and the
second is for the forms with more than two visible fields (s-forms for short).
Both classifiers determines whether a form is searchable or non-searchable.
If non-searchable form is identified then the I-Crawler stops processing at
this stage; otherwise, searchable form is passed to the Interface Classifica-
tion component for classification. Note that searchable forms of each type
(u-forms and s-forms) are processed differently (see Figure 4.3).

The third component, Interface Classification is responsible for classifi-
cation of searchable forms. U-forms are classified based on the results of
form probing and results of page classification. S-forms are classified based
on the extracted form content and field labels as well as results of page
classification. The Page Classifier module analyzes the web page and as-
signs to it a score which defines the probability that a page belongs to a
particular domain (in our experiments we built it using Rainbow [79]). The
Query Prober module is an adopted version of the QProber system [52] that
makes classification decisions by sending query probes through the u-form
and analyzing number of matches reported for each query. The U-Classifier
aggregates the classification information from the Page Classifier and the
Query Prober and stores the u-form and its topic (or a set of topics) in
the Form Database. Unlike u-forms s-forms are processed by the module
which recognizes field labels of the s-form and extract the textual content of
the form (e.g., predefined values of select fields). This information is then
passed to the S-Classifier, which used it (together with supplementary data
from the Page Classifier) to classify s-form into subject hierarchies. Finally,
the s-form and its classification information is stored in the Form Database.

Last but not least, the Form Database component stores full informa-
tion about all forms (searchable and non-searchable) encountered by the
I-Crawler. This means that for each form all its features recognized and ex-
tracted during form identification and classification can be easily accessed at
any time by any other component of the I-Crawler. Storing non-searchable
forms is essential as allows to detect duplicate forms.

In the next section we describe our experiments and preliminary results
obtained.
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4.5 Experimental Results

We considered the following machine learning techniques: Support Vector
Machine, Decision tree, and MultiLayer Perceptron. All classifiers were
constructed with help of the WEKA package [112]. We used the following
four datasets:

1. 216 searchable web forms from the UIUC repository [13] plus 90 search-
able web forms7 collected by us and 300 non-searchable forms also
collected by us.

2. Only searchable and non-searchable s-forms from the previous dataset.

3. 264 searchable forms from our collection of Russian search interfaces
(described in Chapter 3) and 264 non-searchable forms in Russian
collected by us.

4. 90 searchable u-forms collected by us and 120 non-searchable u-forms
collected by us.

For each form in the datasets we retrieved the following 20 structural
features: whether a form is HTML or non-HTML; presence of the string
“search”, “find” or similar one within the FORM tags8; submission method;
number of fields of each type (there are twelve types: text, select, etc.);
number of items in selects; length of action attribute; sum of text sizes;
presence of Javascript-related attributes; and number of tags within the
FORM tags. The learning was performed using two thirds of each dataset
and the testing using the remaining third. The error rates on test sets
for each learning algorithms are shown in Table 4.1. We achieved slightly
better results than the classifier described in [21] (last row of Table 4.1). It
used 14 form features (that are mostly overlapping with the ones used by
our learning algorithms) and its learning was performed using two thirds
of dataset 1 (except they did not have additional 90 searchable forms, did
not deal with JavaScript-rich and non-HTML forms and used distinct set of
non-searchable forms) and the testing using the remaining third of dataset
1. More importantly, one can notice that classifier’s accuracy increases if
dataset contains only s-forms and, thus, separation of forms into u- and
s-forms is worth-while.

We selected decision tree algorithm (built on dataset 1) and applied it
to finding search interfaces on real web sites. Three groups of web sites
were studied: (1) 150 deep web sites randomly selected from our collection
(see Chapter 3); (2) 150 sites randomly selected from “Recreation” category

730 of which are JavaScript-rich and non-HTML forms.
8If it is an HTML form.
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Table 4.1: Error rates for learning algorithms.

Dataset

Learning Algorithm 1 2 3 4

SVM 14.8% 12.9% 15.3% 18.6%

Decision tree 7.4% 6.2% 9.1% 15.7%

MultiLayer Perceptron 10.9% 10.7% 11.9% 14.3%

Decision tree in [21] 8.0% - - -

Table 4.2: Number of web databases found.

Group of sites Number of web dbs

(1) 39

(2) 31

(3) 3

of http://www.dmoz.org; and (3) 150 sites randomly selected based on IP
addresses. Each site of each group was crawled by the I-Crawler to depth 5
(note that pages on sites of group (1) were ignored as we already know that
there are search interfaces on these sites). All identified search interfaces
were then checked and the number of found web databases were counted.
The results, the number of found web databases for each group, is presented
in Table 4.2.

The results clearly demonstrate that finding search interfaces (and even-
tually web databases) is more efficient if a crawler uses a certain strategy
for visiting pages. Particularly, root pages of “already discovered” deep web
sites are good start points for discovering new web databases.

4.6 Conclusion and Future Work

Due to the large scale of the deep Web the ability to automatically locate
search interfaces to web databases becomes a key requirement for any appli-
cation accessing the deep Web. In this chapter, we described the architecture
of I-Crawler, a system for finding and classifying search interfaces. Specifi-
cally, the I-Crawler is intentionally designed to be used in deep Web char-
acterization studies and for constructing directories of deep web resources.
Unlike almost all other approaches existing so far, we recognize and analyze
JavaScript-rich and non-HTML searchable forms. Though dealing with non-
HTML forms is technically challenging it is an urgent issue as such forms are
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going to reach a sizeable proportion of searchable forms on the Web. Our
preliminary experiments showed that on similar datasets we were able to
discover search interfaces more accurately than classifiers described in ear-
lier works. Reliable classification of web databases into subject hierarchies
will be the focus of our future work. One of the main challenges here is a
lack of datasets that are large enough for multi-classification purposes.
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Chapter 5

Querying the Deep Web

In this chapter, we present and discuss a query system for the deep Web
called DEQUE1 (Deep WEb QUery SystEm) and address some of these above
challenges. There are three steps to be performed for querying a web form
within the framework of DEQUE. Firstly, a web form to be queried or several
forms (if multiple form submission is required to obtain result pages) should
be parsed and stored in a form database in accordance with the data model
outlined in Sections 5.2 and 5.3. Storing is advisable as it quickens the query
process. Nevertheless, non-stored forms can also be queried. In second step,
a form query specified by the user is passed to DEQUE for validation and
submission. A query is formulated in a web form query language called
DEQUEL that allows the user to assign more values to form fields than it
is possible when a form is manually filled out. Additionally, data from
relational tables or data obtained from querying other web forms can be
used as input values. The final step is retrieval of all result pages with
query results and extraction of useful data from these pages according to
the extraction conditions (if they are specified in a form query).

5.1 Introduction

The task of harvesting information from the deep Web can be roughly di-
vided into three parts: (1) Formulate a query or search task description,
(2) find sources that pertain to the task, and (3) for each potentially useful
source, fill in the source’s search form and extract and analyze the results.
We will assume further that the task is formulated clearly. Step 2, source
discovery, usually begins with a keyword search on one of the search engines
or a query to one of the web directory services. The work in [33, 40, 78, 82]
addresses the resource discovery problem and describes the design of topic-
specific PIW crawlers. In our study, we assume that a potential source has

1Pronounced as “deck”.

73



(a) First search interface. (b) Second search interface.

Figure 5.1: Search interfaces of AutoTrader.com.

already been discovered. So we limit our discussion to Step 3.

Retrieving and analyzing relevant information from the deep Web auto-
nomously is a challenging problem. At present, the user is required to man-
ually provide input values to web forms, and extract data from the returned
web pages. The manual filling out forms is not feasible and cumbersome in
cases of complex queries but these queries are essential for many web-based
applications. We illustrate this with an example given below.

Example 5.1: The AutoTrader is the largest car Web site with over 1.5
million used vehicles listed for sale by private owners, dealers, and manufac-
turers. The search page2 is shown in Figure 5.1(a). The web page contains
a form for searching new or used cars. The form consists of a text box, a
“Next” button, a “Make” selection menu and two radio boxes with options
“Used Cars” and “New Cars”. The form returns a web page containing
another form (called child form) shown in Figure 5.1(b) with fields for ad-
ditional car search options. The submission of the form on the second page
generates a web page containing the results of the query (see Figure 5.2).

Suppose the user wishes to find information about “used” Japanese cars
made in 1997 within US$ 10,000 and available in “Chicago”. Especially,
he/she is interested in “black” colored cars. To formulate such a query
manually, the user has to fill up the form shown in Figure 5.1(a) by speci-

2Available at http://www.autotrader.com/findacar/index.jtmpl?ac_afflt=none.

74



Figure 5.2: AutoTrader result page.

fying the make of the Japanese cars (eg. Honda, Toyota etc.) and the zip
codes of Chicago in the fields labeled “The make I want” and “Near ZIP
code” respectively. More importantly, the user has to formulate this query
repeatedly for all different makes of Japanese car and at least one zip code
of Chicago (that is, the user should fill in one of 88 zip codes corresponding
to Chicago). To make matters worse, the user has to browse the results
returned by each of this query to select all “black” colored Japanese cars.
This is because the AutoTrader web site does not allow the user to specify
the color of a car in the input forms (Figure 5.1). Indeed, even for one city
and a list with a small number of car models, the process of filling out the
AutoTrader forms, their submissions and looking through returned results
is a very tedious and time-consuming affair.

The above task can be efficiently accomplished by using an automatic
form querying system supported by a robust data extraction technique.
However, there are several challenges in designing such an automated query
mechanism as discussed below.

Automatic filling of forms: The task of automatic filling of forms is
a challenging problem in the first place because of the variety of interfaces
provided by web forms. Additionally, the user may not be aware of the
values of all fields necessary to fill up the form. For example, the AutoTrader
interface requires zip code as input. However, it is natural to assume that
zip code(s) of a city is unknown to the user. Then, the query performing
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the specified task should retrieve city zip codes from some zip database and
substitute necessary input values for the corresponding form field.
Extraction of results: Another complex problem is to automatically
extract query results from result pages since useful data is embedded into the
HTML code. The search and the extraction of the required data from these
pages are highly complicated tasks as each web form interface is designed
for human consumption and, hence, has its own method of formatting and
layout of elements on the page. For instance, Figure 5.2 depicts the original
AutoTrader result page with formatting and non-informative elements (such
as banners, advertisements, etc.). Accordingly, extraction tools must be able
to filter out the relevant contents from the pages.
Navigational complexity: Dynamically generated web pages may con-
tain links to other web pages containing relevant information and conse-
quently it is necessary to navigate these links for evaluation of their rel-
evances. Also, navigating such web sites requires repeated filling out of
forms many of which themselves are dynamically generated by server-side
programs as a result of previous user inputs. For example, the AutoTrader

site produces a web page containing results after at least two successful form
submissions (Figures 5.1(a) and 5.1(b)). These forms are collectively called
consecutive forms.
Client-side programs: Lastly, client-side programs may interact with
forms in arbitrary ways to modify and constrain form behavior. For in-
stance, a text box control containing the total sales price in an order form
might be automatically derived from the values in other text boxes by exe-
cuting client-side script whenever the form is changed or submitted to the
server. Programs written in JavaScript are often used to alter the behavior
of forms. Unfortunately, it is computationally hard to automatically analyze
and understand such arbitrary programs.

5.2 Modeling of A Single HTML Form

In this section, we discuss the data model for representing a single HTML
form. Since for different HTML forms the nature and type of the layout
markup are different, the web application should represent web forms in a
uniform manner.

5.2.1 HTML Forms

An HTML form is a section of a document containing normal content,
markup, special elements called controls (checkboxes, radio buttons, menus,
etc.), and labels on those controls. Users generally “complete” a form by
modifying its controls (entering text, selecting menu items, etc.), before sub-
mitting the form to an agent for processing (e.g., to a Web server, to a mail
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server, etc.). Form controls are also known as form fields. An HTML form
is embedded in its web page by a pair of “begin” and “end” <FORM> tags.
Each HTML form contains a set of form fields and the URL of a server-side
program (e.g., a CGI program) that processes the form fields’ input values
and returns a set of result pages.

There are three essential attributes of the FORM element that specify how
the values submitted with the form are processed: the value of the action

attribute corresponds to the URL of a form processing agent (also, called
server-side program), the HTTP method used to submit the form is defined
by the method attribute, and the enctype attribute specifies the content
type used for the form submission. For a web form F , we define submis-
sion information of a form F , subinfo(F), as a list of three string elements
specifying form action, HTTP method and content type, that is, subinfo(F)
= {action,method, enctype}. For instance, the submission information of
the form shown in Figure 5.1(a) is given by: subinfo(FindCarForm) =
{http://autotrader.com/findcar/findcar form2.jtmpl?ac afflt=none, “get”,
“application/x-www-form-urlencoded”}. Two forms F1 and F2 have the same
submission information if: subinfo(F1) = subinfo(F2).

5.2.2 Form Fields

The user fills out a form by associating a value or piece of text with each
field of the form. A form field can be any one of the standard input objects:
selection lists, text boxes, text areas, checkboxes, or radio buttons. Such
tags as BUTTON, INPUT, SELECT, and TEXTAREA define form fields. The name

attribute of the above tags defines the name of a form control (denoted by
fieldname). In our study, we do not consider file select, object and reset
button controls as they have no use in queries to most searchable databases
deep behind web forms. The detailed description of each type is documented
in HTML 4.01 specification [114]. A form field can be represented by the
following attributes:

• Field domain: Field domain is a set of values (each value is a charac-
ter string which can be associated with the corresponding form field.
Some form fields have predefined domains, where the set of values are
embedded in the web page with a form. Other fields have undefined
domains (e.g., set of all text strings with specified length) from which
their values can be chosen.

• Field label: Form fields are usually associated with some descriptive
text3 to help the user understand the semantics of a field. Field label is

3Besides description of a form field such texts often indicate if a field is optional or
required.
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a string containing the descriptive information about the correspond-
ing form field.

• Initial field set: Each field has initial value(s) (defined or undefined)
which can be submitted with a form if the user does not modify a field
through “completing” a form. Initial field set is a set of the field’s
initial values. It is clear that for each form field an initial field set is a
subset of the field domain.

Formally, given a field f of a web form F , label(fF ) denotes a field
label of a field f . Similarly, a field domain and an initial field set of a
field f is denoted by domain(fF ) and iset(fF ) respectively. Note that
iset(fF ) ⊂ domain(fF ). We say that two form fields f and f ′ are the same,
if: formname(f) = formname(f ′), type(f) = type(f ′), and domain(f) =
domain(f ′).

A field domain, field label and initial field set are defined for each field in a
web form. For example, the field label of the “address” field is equal to “Near
ZIP code”(see Figure 5.1(a)). Also, domain(address) = { s, length(s) ≤
5 }, where s is a character string, and iset(address) = { ∅ }. The field
label, domain and initial set of the “make” field in Figure 5.1(a) is given
by the following: label(make) = { “The make I want is” }, domain(make)
= { “Acura”, “Alfa Romeo”, “AMC”, “Audi”, . . . }, and iset(make) =
{ “Acura” }. Note that values of menu choices visible in a browser are not
generally equal to values actually submitted with a form. Since the visible
values are more informative, we consider a field domain as a set of visible
menu choices. In the same manner, an initial field set is a set of pre-selected
choices visible in a browser.

5.3 Modeling of Consecutive Forms

In the preceding section, we discussed how to model a single form. We now
elaborate on the modeling of consecutive forms. Consider an HTML page
containing one or more HTML forms. Every time we are interested in only
one of these forms (called the root form). A response page is a page received
in response to a form submission. In some cases, after submitting a root
form, the returned page (or response page) contains another form (called
the child form) which needs to be filled out. Similarly, after submitting a
child form, the returned page may contain another child form to be filled
out and so on. All the child forms are collectively called descendant forms
for the given root form. The root and its descendant forms are collectively
called consecutive forms. The submitted form is also the parent form for
the following child form. Each descendant form is completely defined by its
parent form, the values filled-in and the time of the parent form submission.
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Figure 5.3: Form field dependency.

It also means that we always know the root form for each descendant form. A
typical example of consecutive forms is the AutoTrader car search interface.
After submission of the form (root form) shown in Figure 5.1(a), the returned
page contains another form (child form) depicted in Figure 5.1(b). The
form in Figure 5.1(a) is also the parent form for the form in Figure 5.1(b).
Similarly, the latter is the descendant form for its parent form.

5.3.1 Form Type and Location

There are several differences between root and its descendant forms. One of
them is the URL of a web page that contains a form. As a matter of fact,
the main reason to have the URL of a page with a form is that an HTML
code related to a form often specifies only the relative URL of a server-side
program. Thereby, the page URL must be known to compose the absolute
URL of a server-side program. The page URL of a child form can always be
defined on the basis of the URL of a web page with a parent form, parent
form’s submission information, values submitted with a parent form and
the submission time4. Thus, we do not consider the URL of a page with

4The URL of a response page equals to the URI of a server-side program if the POST
HTTP method is used to send a submission data set to a program and to the URI of a
server-side program with appropriately appended submitted values in case of the GET
method using.
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any descendant form as it is easily constructed using the URL of a page
with a root form, and the processing information (submission information,
submission data set, and submission time) of all forms beginning with a
parent form and ending with a root form. In our study, we presume that
the page URL of a root form is given by the user.

Formally, given a web form F , formtype(F ) specifies whether a form
is root or descendant. pageurl(F) is the absolute URL of a page that
contains a form F, if F is a root form, and “null” otherwise. For ex-
ample, the AutoTrader form shown in Figure 5.1(a) is the root form and
pageurl(AutoTrader)=“http://autotrader.com/findacar/index.jtmpl?ac afflt
=none”. Figure 5.1(b) depicts the AutoTrader child form for which:
formtype(AutoTrader2) = “descendant” and pageurl(AutoTrader2) =
“null”.

5.3.2 Issues in Modeling of Consecutive Forms

There are some non-trivial issues concerning the modeling of consecutive
forms. First, most consecutive forms have dependencies (called form depen-
dencies) between root and descendant forms. For example, the AutoTrader
search interface (see Figure 5.1) requires two consecutive forms to be fill-out,
if the user searches for “Used Cars”, and three forms, if the “New Cars”
option is chosen in the root form. Also, a dependency (called form field
dependency) between form fields may exist. For instance, if the user selects
“Toyota” make in the “make” menu, only “Toyota” models are available
for the “model” select field of the AutoTrader child form shown in Fig-
ure 5.1(b). The dependency between “make” and “model” fields is shown
in Figure 5.3. Choice of different car brands in the root form generates the
child forms with different option values (corresponding to model names of
the chosen car brand) for the “model” select field.

Second, each root form can generate a large number of different web
pages containing the child forms. How these forms look like often depend not
only on the values filled out in the root form but also on the submission time.
In particular, it is irrational to store all possible child forms. For example,
at least 48 different child forms5 are generated by a server-side program
related to theAutoTrader root form (see Figure 5.1) only for searches for
“Used Cars”. All these forms (one of such forms is depicted in Figure 5.1(b))
are highly similar to each other: the key difference is in the “model” select
field. One can see that forms have different option values for the “model”
field (Figure 5.4). Evidently, such similarity of descendant forms should be
taken into consideration. We shall address this in Section 5.3.4 but first

548 is the number of options in the “make” menu. In fact, the submission of data
sets containing different values for the text “address” field does not return different child
forms.
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Figure 5.4: AutoTrader child forms.

introduce the notion of submission data set .

5.3.3 Submission Data Set of Consecutive Forms

When the user submits an HTML form, a user agent (web browser, etc.) pro-
cesses it as follows: first, a form data set (a sequence of control name/value
pairs) based on the values filled-in by the user is created. Then, the form
data set is encoded to the content type specified by the enctype attribute
of the FORM element. Finally, the encoded data is sent to a processing agent
(server-side program) designated by the action attribute using the HTTP
protocol (GET or POST) specified by the method attribute. The server-
side program processes a form data set and returns a generated web page
as the result of form submission. Formally, let F be a web form with form
fields f1, f2, . . ., fn. Let domain(fi) denotes the domain of the field fi.
Then, S = {s1, s2, . . ., sn} is the submission data set of F , if ∀ i = 1, n:
si ∈ domain(fi). We say that two submission data sets S = {s1, . . .,
sn} and S′ = {s′1, . . ., s′n} of a web form F are equal to each other, if
∀ i = 1, n : si = s′i. The following expression denotes that a web page with
a form F (S,t) was returned by a server-side program as a result of submis-

sion of a form Fp at time t: Fp(fp,1, . . . , fp,n)
S,t
−→ F

(S,t)
c (f

(S,t)
c,1 , . . . , f

(S,t)
c,k ),

where Fp, F
(S,t)
c and S are a parent form with form fields fp,1, . . ., fp,n,

a child form with fields f
(S,t)
c,1 , . . ., f

(S,t)
c,k , and a submission data set of a

form Fp respectively. We also define a set of child form’s fields as follows:

fieldset(S, t) = {fieldname(f
(S,t)
c,1 ), . . ., fieldname(f

(S,t)
c,k )}. Similarly, we

can describe several submissions of consecutive forms in the following way:

Fp
S1,t
−→ Fc1

S2,t
−→ Fc2

S3,t
−→ . . .

Sm−1,t
−→ Fcm−1

Sm,t
−→ R. This expression shows that
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m forms: Fp, Fc1, . . ., Fcm−1 were submitted to obtain a result web page
R where t is the submission time of the last child form submission (that is,
Fcm−1). We omit superscripts (S, t) as well as consecutive forms’ fields to
make the expression more compact.
Example 5.2: As an example, we describe the submission of the Auto-

Trader root form shown in Figure 5.1. We name this form AutoTrader.
Suppose we search for “Used Cars”, then: AutoTrader(make, address,

search type, field 1, ac afflt, borschtid)
S,t
−→ AutoTrader2, where S =

{“Ford”, “10520”, “Used Cars”, “submit”, “none”, “21532053581465403997”}
and t = “17 June 2002/6:34pm”. The result of submission is the page
containing the AutoTrader child form (named AutoTrader2) shown in Fig-
ure 5.1(b). This form contains eight visible and five hidden (invisible) form
fields. The set of fields of the AutoTrader2 form is given by: fieldset(S, t)
= {model, certified, start year, end year, min price, max price, distance,
field 1, advanced∗, advcd on∗, make∗, address∗, search type∗}6. Note that
hidden fields are often used to transmit the information about submitted
values from one consecutive form to another. Thus, initial values of hid-
den fields make, address, search type of the AutoTrader2 form are equal
respectively to values assigned to fields make, address, search type of the
AutoTrader form (that is, “Ford”, “10520”, “Used Cars”).

5.3.4 Form Unions

We are now ready to discuss how to represent child forms. The idea of storing
and querying consecutive forms is an attempt to combine forms. According
to HTML specification, each form must have the action attribute in the
FORM tag. This attribute specifies the URL of a server-side program to
which the form contents will be submitted (if this attribute is absent, then
the current document URL is used). Since web pages generated by the same
server-side program are expected to be very similar, we will combine forms
with the same submission information. A form union allows us to represent
multiple forms sharing the same server-side program as one form. At the
same time, each form included in a form union is easily accessible.

Definition 1 (Form Union) Consider a form F (root or descendant) and

its two child forms: F (S1,t1) and F (S2,t2): F
S1,t1
−→ F (S1,t1)(f

(S1,t1)
1 , . . .,

f
(S1,t1)
k ) and F

S2,t2
−→ F (S2,t2)(f

(S2,t2)
1 , . . ., f

(S2,t2)
m ). Suppose forms F (S1,t1)

and F (S2,t2) have the same p (p ≤ min(k,m)) form fields, that is, fields of

F (S1,t1): f
(S1,t1)
1 , . . ., f

(S1,t1)
p are the same as fields of F (S2,t2): f

(S2,t2)
1 ,

. . ., f
(S2,t2)
p . Then, a union of forms F (S1,t1) and F (S2,t2) denoted

by W = F (S1,t1) ∪ F (S2,t2) is defined, if and only if: subinfo(F (S1,t1))

6Hidden fields are marked by asterisk.
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= subinfo(F (S2,t2)). Forms F (S1,t1) and F (S2,t2) are called component
forms of a form union W . A form union W is considered as a child form
of a form F and given by:

• Form fields of W are f
(S1,t1)
1 , . . ., f

(S1,t1)
p , f

(S1,t1)
p+1 , . . ., f

(S1,t1)
k ,

f
(S2,t2)
p+1 , . . ., f

(S2,t2)
m ;

• subinfo(W) = subinfo(F (S1,t1)).

Note that F (S,t) = F (S,t) ∪ F (S,t).

Example 5.3: Let us consider two child forms of the AutoTrader root form
shown in Figure 5.4. They are results of submission of the root form de-
picted in Figure 5.1(a) with submissions data sets S1 = {“Ford”, “10520”,
“Used Cars”, “submit”, “none”, “21532053581465403997”}, t1 = “17 June
2002/6:34pm” and S2 = {“Toyota”, “10520”, “Used Cars”, “submit”,
“none”, “21532053581465403997”}, t2 = t1:

AutoTrader
S1,t1
−→ AutoTrader

(S1,t1)
2 and AutoTrader

S2,t2
−→ AutoTrader

(S2,t2)
2 .

These forms (see Figure 5.4) are the same except one select field with name
“model” and one hidden field with name “make” for which:
domain(model(S1,t1)) = {“All models”, “Aerostar”, . . ., “Escort”, . . .} (i.e.,
all “Ford” models), domain(make(S1,t1)) = {“Ford”} and
domain(model(S2,t2)) = {“All models”, “4Runner”, . . ., “Corolla”, . . .}
(“Toyota” models), domain(make(S2,t2)) ={“Toyota”}.

The union form AutoTraderunion
2 = AutoTrader

(S1,t1)
2 ∪ AutoTrader

(S2,t2)
2

is simply a copy of AutoTrader
(S1,t1)
2 (or AutoTrader

(S2,t2)
2 ) form plus two

additional form fields: visible model(S2,t2) and invisible make(S2,t2) (or
model(S1,t1) and make(S1,t1) respectively). Figure 5.5 depicts the represen-
tation of the AutoTraderunion

2 form given by our web form model.

The form union described in Example 5.3 contains nine visible and six in-
visible form fields. Note that each child form contains eight visible and five
invisible fields. Thus, form unions allows us to store similar (sharing the
same submission information) forms more effectively (fifteen fields instead
twenty six in this example). On the other side, if necessary, we can easily
obtain any component of a form union as we also store submission data set
generating a child form and a set of child form’s fields.

5.3.5 Super Form

To query consecutive forms, our web form model must know the structure
of all forms to be filled-out. As we noted above, most descendant web
forms have very similar structure. This similarity motivates us to combine
certain descendant forms into one form called super form. In the previous

83



Figure 5.5: Union of two AutoTrader child forms.

section, we described how to construct a union of two forms. Note that a
form union is also a form, and it shares the same submission information
as its two component forms. Thus, lots of forms with the same submission
information can be combined into one form. All child forms sharing the
same action attribute (component forms) are combined into one form that
contains all component forms’ fields. At the same time, identical fields of
child forms are presented in a super form only once. The formal treatment
of a super form is given in the following way:

Definition 2 (Super Form) Consider a web form F with all possible sub-
mission data sets S ={ (Si, t) }, where t is an arbitrary date/time. We
suppose that a submission of the same sets but on the different time results
in the same child form on the response page. Let a form F (Sk ,t) be a child
form of a form F with submission data set (Sk, t), where (Sk, t) ∈ S. A

super form Fsuper (or F
(Sk ,t)
super ) is given by:

Fsuper = F (Sk ,t) ∪
⋃

∀ Sj : (Sj ,t)∈S: subinfo(F (Sj,t))=subinfo(F (Sk,t))

F (Sj ,t)

The form F (Sk,t) is called a base form of the super form F
(Sk ,t)
super . Note that

F
(Sk,t)
super = F

(Sm,t)
super , if subinfo(F (Sk ,t)) = subinfo(F (Sm,t)).

This definition introduces a new form called super form. We illustrate
the notion of super form with an example below:
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Example 5.4: Consider the AutoTrader root form shown in Figure 5.1(a).
The submission of the AutoTrader form with the following submission data

sets: {(S
(used)
i , t)}, where S

(used)
i ∈ { 〈 v1, v2, “Used Cars”, v4, v5, v6 〉 |

v1 ∈ domain(make), v2 ∈ domain(address), v4 ∈ domain(field 1), v5 ∈
domain(ac affl), v6 ∈ domain(borschtid) } returns web pages containing
child forms (see forms in Figure 5.4) with identical submission information.
The generated child forms differ from each other in the visible “model” field,
domain values of which correspond to the chosen “make” in the root form
, and invisible “make” field that simply contains the chosen “make”. The

super form F
(used cars)
super is equal to its base form (see Figure 5.4) plus 47

additional “model” select fields7 and 47 “make” hidden fields.

The submission of the AutoTrader form with the following submission data

sets: {(S
(new)
i , t)}, where S

(new)
i ∈ { 〈v1, v2,“New Cars”,v4, v5, v6〉 } returns

second series of child forms sharing the same submission information8. Thus,

we can build the second super form F
(new cars)
super .

Among other things, dependencies between consecutive forms may be
studied on the ground of a super form. Indeed, the analysis of submission
data sets and generated child forms allows us to find existing dependencies.

For instance, the constructed super form F
(used cars)
super allows us to determine

the dependence between the “make” field of the root form and the “model”
field of any child form. This helps us to validate values in form queries. For
instance, the query “Find all Ford Corolla cars” results in the web page
with zero results as “Corolla” model doesn’t belong to the “Ford” makes.

On the other side, the super form F
(used cars)
super contains names of all possible

used car models. Similarly, the super form F
(new cars)
super may be used to find

domain of all new car models. This domain does not necessarily identical
to the domain of used car models as some car models are not manufactured
in recent years (for example, “Ford Bronco” or “Toyota Matrix”).

A super form significantly simplifies the querying and storing consecutive
forms. Indeed, to perform complex query (that requires much more than
two submissions of a root form) on two consecutive forms we need to specify
only two forms (root and super) instead of the number of combinations of
a root and its child forms. For example, the simple search for “Used Ford
and Toyota cars within 10520 ZIP area” requires four form submissions
(two times of the root form in Figure 5.1(a) and one time each of child
forms shown in Figure 5.4). Hence, three forms should be stored and then
specified in the query. The super form based on any of these child forms
reduces the number of forms to be specified to only two.

747 is the number of options in the “make” menu of the AutoTrader root form exclusive
of one option that corresponds to the base form.

8Note that the submission information of child forms generated by {(S
(new)
i , t)} is

different from the submission information of child forms generated by {(S
(used)
i , t)}.
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Figure 5.6: Form Storing user interface.

Efficient storage is another advantage of our super form-based approach.
The differences among descendant forms are often minor since the same
server-side program generates them. A super form allows us to store only
one base form and the differences between base form and all other forms with
the same submission information. For instance, the form union presented in
Example 5.3 requires storing only fifteen fields instead of twenty six. Thus,
combining even two forms significantly reduce the number of fields stored.

5.3.6 Form Extraction

DEQUE presumes that all forms to be queried are stored in the form database
according to the web form data model described earlier. This section de-
scribes the extraction of a web form from an HTML page.

An HTML page with a form to be extracted may be specified by the
user through form storing GUI depicted in Figure 5.6. Since DEQUE allows to
perform queries on consecutive forms, each response page must be examined
for presence of web forms. Thus, for each web page (specified through GUI
or retrieved from the Web) DEQUE constructs a logical tree representation
of the structure of an HTML page, based on the Document Object Model
(DOM) [12]. Next, the tree is forwarded to the following three extraction
submodules of DEQUE that are responsible for the form extraction: Form
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Figure 5.7: Tag distance between field label and form field.

Element Extractor, Label Extractor, and JS Function Extractor.

Form Element Extractor: The form element extractor analyzes a
tree to find the nodes corresponding to the FORM elements. If one or more
elements (that is, HTML forms) exist, the pruned tree is constructed for each
FORM element. For such tree construction we use only the subtree below the
FORM element and the nodes on the path from the FORM to the root.

Further, the extractor retrieves data related to a form and its fields
from the pruned tree in accordance with the web form model presented ear-
lier. It should be noted that visible values as well as invisible values are
retrieved. For example, consider the element <option value="ALFA">Alfa

Romeo</option>, “Alfa Romeo” and “ALFA” are stored as visible and in-
visible option value respectively. The situation is worse with radio and
checkbox fields. Visible values related to these types of form fields are not
embedded in the INPUT elements that define such form fields. In most cases,
we can find one of the visible values of a radio/checkbox field directly after
the INPUT tag. For instance, “New Cars” as one of the visible values of the
“search type” field can be easily extracted from the following HTML code:
<input type="radio" name="search type" value="new" onClick=

"changeList(1)">New Cars. Unfortunately, there are web forms with more
complex HTML markup in which the distance (in terms of the number of
HTML tags) between a text element corresponding to a visible value and
the INPUT element may be more than one tag.

Label Extractor: In DEQUE, the label extractor submodule is responsi-
ble for extraction of field labels. The label extractor (by default) begins with
ignoring font sizes, typefaces and any styling information, so the correspond-
ing pruned tree is simplified. We use a visual adjacency approach introduced
in [90]. The key of this approach is that when the HTML code is rendered
by the browser, the relationships between fields and their labels or fields and
their visible values must be obvious to the user. In other words, irrespective
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of how the page with the form is formatted, the phrase “The make I want
is” (form label) or “Used Cars” (visual value) in Figure 5.1(a) must be
visually adjacent to the select menu or one of the radio field choices respec-
tively. Similarly, the text “Near ZIP code” must be visually adjacent to the
corresponding textbox widget.

We use the following heuristic for identifying the label of a given form
field (an analogous heuristic is used for domain values of radio/checkbox
fields):

• Identify the pieces of text, if any, that are visually adjacent to the form
field. We consider each piece of text as possible candidate to be a label
of a form field, if a text piece contains less than eight words9, and the
distance (in terms of HTML tags) between a text and a widget is
less than eight. For example, consider Figure 5.7: the depicted piece
of HTML code is a part of representation of the Amadeus form at
http://www.amadeus.net/home/en/home_en.htm. As we can see the
tag distance between the text “Departing from :” and related text box
is seven tags.

For each candidate we compute actual pixel distances between the
form widget and the candidate text pieces. For such computation, we
use two JavaScript functions that returns the element’s real X and Y
coordinates. On the base of the coordinates of a text element and a
form field, the distance between them can be easily computed.

• If there are candidates to the left and/or above the form field, then we
drop the candidates to the right and below. Note that visible values of
radio/checkbox fields are usually to the right of the form field. Thus,
we prefer the candidates to the right when extract domain values of
the radio/checkboxes fields.

• If there are still two candidates remaining, the text piece rendered
in bold or using a larger font size is chosen. Apparently, this step is
omitted if the label extractor ignores styling information.

• If two candidates are not still resolved, then one of them is picked at
random.

JS Function Extractor: Another extraction submodule of DEQUE is the
JS10 function extractor. It is responsible for extracting JavaScript functions
from the web pages. The main reason to extract such kind of functions is
that values before submission to a server-side program would be checked in
the same manner as in case of the manual form filling-out. Additionally,

9Most labels are either short words or short phrases.
10In our implementation we consider only JavaScript as a client-server script language.
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nowadays web pages often contain scripts that define domain of values for
some form field in dependence of the chosen value of another field.

In our work, we consider only extraction of client-side scripts. The con-
tent of the nodes related to the SCRIPT tags is considered for the function
codes that are triggered if some form or field events occur. For instance,
after extraction of the form event information by the form element extrac-
tor formevent(AutoTrader) = { “onsubmit”, “return validateData();” }, the
JS function extractor searches the content of SCRIPT tags (or it searches
the content of the file that may be linked to the web page as a container
of client-side scripts for this page) for function named “validateData” and
retrieves it.

5.4 Representation of Result Pages

In this section, we first discuss how the results returned by a deep Web query
are represented in DEQUE and then describe an approach used to extract data
from the result web pages.

5.4.1 Result Navigation

Perhaps the most common case is that a web server returns results a bit
at a time, showing ten or twenty result matches per page. Usually there is
a hyperlink or a button to get to the next page with results until the last
page is reached. We treat all such pages as part of one single document
by concatenating all result pages into one single page. Specifically, we will
consider all the result web pages as one web page containing the search
status string and N result matches, where, N may be specified in the
web form query by one of the following special keywords: (1) ALL (default
keyword) - all result matches from each page; (2) FIRST(x) - first x matches
starting with the first result page; (3) FIRSTP(y) - all matches from first y

result pages. The specified keywords should be specified in the extraction
part of the SELECT operator that will be discussed later.

5.4.2 Result Matches

The next step to complete our result page representation is to examine
result matches. An HTML code related to a match is often organized as
tables using different web styles, fonts, colors, images and so on. As a
matter of fact, only text elements and hypertext links of a result match are
informative. Thereby, we ignore an HTML layout of a result match and
focus on text strings and hyperlinks embedded in its HTML code. Thus,
each result match is represented as a set of text strings and links. Links
have their own internal structure similar to the structure of the HTML
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Figure 5.8: Result match representation.

hyperlink, that is, the link label and the URL of the link. Note that if
an HTML hyperlink label is an image, the corresponding link label is a
text string defined by the alt attribute of the IMAGE tag or simply the word
“Image”. Figure 5.8 shows the first result match from the AutoTrader result
page (see Figure 5.2), and the text strings and links corresponding to this
match (such strings and links may be stored in HTML or XML format11).
In this way, each result match is considered as a single row in a table with
attributes of two types: text and link. Any value corresponding to the link
type attribute consist of a hyperlink label and the URL of the hyperlink.
The default attribute names are texti, where i corresponds to the number of
occurrence of the text element in the HTML code related to result match,
and linkj , where j is the number of occurrence of the hyperlink in the code.

Since result matches even from the same result page may have differ-
ent structure (in particular, different number of text strings or links), the
representation of several matches in one table is ambiguous. For example,
the second result match from the AutoTrader result page (see Figure 5.2)
has five text elements and five hyperlinks, and hence, has ten attributes in
the table representation. At the same time, the first match, which is shown
in Figure 5.8, includes fifteen attributes (six text and nine link attributes).
Actually, the finding of common attributes for all result matches extracted
from result pages is a complicated problem. We give a brief description of
our approach to this problem in Section 5.4.4.

11Currently, we implement the result database capable to store an HTML code related
to a result match. Thus, text strings and links can be easily extracted from the code.
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Figure 5.9: Result table for AutoTrader result pages.

For the time being, we assume that it is possible to build a Result
Table (RT) for several result matches (or in other words, for result pages).
Figure 5.9 depicts a partial view of the result table corresponding to the re-
sult matches from all AutoTrader result pages (the first result page is shown
in Figure 5.2).

Initially, a result table is built with default attribute names: texti and
linkj, where i and j are some indexes and 1 ≤ i ≤ k, 1 ≤ j ≤ m, where k

and m are numbers of text and link attributes of a result table respectively.
For the Autotrader example shown in Figure 5.9 – k = 6, m = 9 and the
number of rows is 236. The operator DEFINE described in the next section
allows the user to give result table’s attributes more descriptive names.

5.4.3 DEFINE Operator

The operator DEFINE with keyword ATTRIBUTE is used to define more suit-
able attribute names for the result table. Two types of syntax are available.
If the result table has already been created (with default attribute names),
then the syntax (also see Appendix B.1.1) is as follows:

DEFINE ATTRIBUTE <default attrib. label> <new attrib. name>
FOR <form label>

The statement defines a new attribute name for the specified default at-
tribute name of the result table. Since the result table is created for the
representation of the result pages generated by some server-side program (a
processing agent of some web form) we specify the form name in the FOR
clause. Thus, a result table corresponds to a form. Note that in case of
query on consecutive forms a result table is defined for last submitted form.
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Figure 5.10: Modified result table.

For example, the submission of the form depicted in Figure 5.1(b) pro-
duces the result pages (in particular, the page shown in Figure 5.2). If this
form is denoted as “AutoTrader2” then column names in the result table
can be defined using the DEFINE operator as follows:

DEFINE ATTRIBUTE link2 carpage FOR AutoTrader2;

DEFINE ATTRIBUTE link5 dealerpage FOR AutoTrader2;

DEFINE ATTRIBUTE text2 color FOR AutoTrader2.

These statements rename specified attributes of the result table for the
AutoTrader result pages. The modified result table is shown in Figure 5.10.

The second type of syntax of the DEFINE operator is used to specify
attribute name(s) if the result table was not generated before. In this form
the DEFINE operator may be used to define extraction conditions for result
pages generated by a particular server-side program. Recall that a web form
specified in the DEFINE operator refers to a server-side program. The syntax
(see Appendix B.1.2) of the operator is as follows:

DEFINE ATTRIBUTE <type> <set of attribute names>
CONDITION <condition on text> | <condition on label>

FOR <form label>

First, the operator specifies the type of attribute(s) (TEXT and LINK

correspond to the text and link types respectively). Since more than one
link or text may satisfy the extraction conditions, several attribute names
may be specified. However, the operator requires at least one attribute
name to be specified. Then, if necessary, the attribute names will be given
by subindexing of the specified attribute name. The CONDITION clause
specifies conditions on text strings or hyperlinks respectively of each result
match. The satisfied text string or hyperlink will be presented in the result
table as the value of the column specified by the attribute name.

The syntax assumes that each web form has its own set of the result
table’s attributes. As mentioned earlier, the result database stores an HTML
code of each result match. This allows us to define data for extraction from
stored results anytime using of the DEFINE operator.
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Figure 5.11: Result table based on extraction conditions.

The following example is also based on the results generated after sub-
mission of the AutoTrader form (see Figure 5.1(b)). Suppose that there
were no any queries on the AutoTrader forms issued by the user. The user
may assume what links and text elements may be on the result pages. In
particular, it is clear that some links or text elements would contain text
string “Ford Focus” if the user searches for “Ford Focus” cars using the
AutoTrader web interface. Then, the DEFINE operator may be specified as
follows:

DEFINE ATTRIBUTE LINK carpage
CONDITION (label contain “Ford Focus”, url contain http://autotrader.com)

FOR Autotrader2

If the result table is not created for the AutoTrader2 form, the execution
of this statement defines a table with one column called carpage. Then, the
query (find used “Ford Focus” cars made in 2000 ) returns the results (the
first result page is shown in Figure 5.2) that are represented as it is shown
in Figure 5.11.

5.4.4 Result Extraction

At present, DEQUE extracts the pieces of HTML code that correspond to
result matches. The main idea of such extraction is the regularity of HTML
patterns related to result matches or, in other words, that a result page
contains the number of HTML patterns possessing nearly identical structure.
We can find them by searching an HTML tree for the number of sibling sub-
trees. Figure 5.12 shows an example of the HTML tree. In this example,
the HTML code contains twelve siblings sub-trees, tables (defined by TABLE

tags) with the identical structure. These tables correspond to twelve result
matches laid out on the result page. We additionally require that sub-trees to
be extracted must contain several hyperlinks and text strings to distinguish
them from subtrees related to different navigation menus available on the
page.
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Figure 5.12: Example of HTML tree.

The result table for a set of result pages is built by DEQUE using the
DEFINE-statements or conditions specified in a form query (see Section 5.5).
In case no information on the result table is provided, a modified version
of the approach in [38] is used. Pattern discovery in RoadRunner [38] is
based on the study of similarities and dissimilarities between two HTML
pages at a time; mismatches are used to identify relevant inner structures of
result matches. In our approach, we compare first two result pages to deter-
mine a common inner structure of result matches and then extract common
matches’ attributes from all result pages using the discovered pattern. How-
ever, this can be done effectively if there are at least two result pages both
containing sufficient number (more than ten according to our experiments)
of result matches. Otherwise, when only one result page is returned (or sec-
ond result page contains a few result matches), DEQUE analyzes two HTML
pages that are artificially constructed on the base of available result matches
by separating them into two pages. The reader may refer to [38] for fur-
ther details about identification of relevant inner structures within pages
generated by web forms.

5.5 Deep Web Query Language (DEQUEL)

In this section, we discuss the base part of the DEQUEL devoted to the for-
mulating form queries. The DEQUEL is aimed at providing such applications

94



as automated web agents searching for specific domain information, hidden
Web crawlers, etc. with expressive query interface to data in deep Web.
The proposed language, designed specifically to query web forms, is an ex-
pressive web query language that permits queries on topology (filling single
or consecutive forms) and document structure (within result pages). Never-
theless, in the context of data extraction, the DEQUEL is less expressive than
up-to-date wrapping languages [50].

Further, we describe the value assignment process, DEQUEL’s SELECT op-
erator, and give examples of form queries formulated in the DEQUEL. The
complete syntax of the DEQUEL is given in Appendix B.

5.5.1 Value Assignment

The result pages are generated by a server-side program on the basis of the
values submitted via web forms. In the DEQUEL, a value or a set of values are
assigned to a some form field in the following way: form name.field name
= value or form name.field name = {set of values}. For instance,
AutoTrader.make = {“Ford”, “Toyota”} assigns values ”Ford” and ”Toy-
ota” to the “make” field of the AutoTrader interface. Corresponding initial
field sets are assigned if values for some fields of a form are not specified in
a query12. As a rule, the value assignment for button and hidden type fields
are not necessary. Thus, these types of fields are omitted in the SELECT

statement.
The following type of the value assignment is especially useful for text

type fields: form name.field name = {LABEL,n}, where n is a number.
The keyword LABEL specifies that domain values of some field with sim-
ilar descriptive information (label) will be assigned to the specified form
field. n specifies how many domain values are assigned. For instance, if our
form database stores some form with the field “zip” for which: label(zip)
= “ZIP code” and domain(zip) = {“60601”, “60602”, . . . , “60612”} then
the assignment AutoTrader.address = {LABEL, 3} specifies that values
“60601”, “60602”, and “60603” will be assigned to the “address” field. This
is based on the assumption that the label of the “zip” field is semantically
the closest one to the label of the “address” field which is: label(address)
= “Near ZIP Code”.

The DEQUEL also allows us to assign values from relational tables and
results of previous form queries (these results must be presented as re-
sult tables). The syntax is the following: form name.field name = {rela-
tional table name.attribute name, k} or form name.field name = {query na-
me.attribute name, m}, where k and m specify how many values will be
assigned to a form field; relational table name.attribute name defines the
column of the specified relational table; and query name.attribute name

12Null string is assigned to an unspecified text field without predefined value.
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specifies the column of the result table that stores results of specified form
query. For example, suppose we need to send links to web pages containing
information about used “Ford Focus” cars made in 2000 to some friends
via SMS service. Suppose we use the text field named “mes” in the form
called SendMessage for sending the SMS. Also, assume that our search us-
ing the AutoTrader web interface was stored in the result table (we call
the table “Focus2000”) with one column called “carpage” (as it is shown
in Figure 5.11). Then, we can assign two links from this stored result ta-
ble to the “mes” field (that contains the text of SMS message) as follows:
SendMessage.mes = {Focus2000.carpage, 2}.

Web forms impose some restrictions on values. Although the number
of assigned values is not limited, only values pertaining to form field do-
mains are processed. The rest of values are ignored. Thus, the assignment
AutoTrader.make = {“Ford”, “Microsoft”, “DELL”} will be transformed
into AutoTrader.make = {“Ford”} as “Microsoft” and “DELL” are not in
domain(make).

5.5.2 DEQUEL Syntax

The DEQUEL and especially its SQL-like retrieval operator, SELECT, are in-
tended to provide more convenient and efficient way to fill out web forms.
The syntax of the DEQUEL is as follows:

<query>::= SELECT [<number of results>]
<set of result table attributes>
[<set of assigned values>]
[AS <query label>]

[ FROM <source set> ]
[ WHERE <assignment set> ]
[ CONDITION <condition set> ]

The SELECT, retrieval operator of the DEQUEL, consists of four parts: ex-
traction, source specification, assignment, and condition part. The first part
of the SELECT statement concerns query results returned by the DEQUEL

query processor. The number of results defines how many result matches
should be extracted from the result pages for each submission data set de-
fined in the assignment part. The set of the result table attributes can be
specified if such table has been created before. However, the default at-
tribute names linki, textj may be used in case the result table has not
been created. The AS clause specifies that the results of this query will be
stored and defines the reference to these results.

Form(s) to be queried, relational table(s) used as a source of input data,
the form URL(s) if form(s) is not pre-stored in the form database, and
names of stored query results must be specified after the FROM clause in
the “source set”.
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(a) Chicagozips query results. (b) Japancars97 query Results.

Figure 5.13: DEQUEL query results.

The next section of the SELECT statement, the WHERE clause defines
values to be assigned to the form fields (the fields must pertain to forms
specified in the FROM clause). Lastly, conditions on the data extracted
from the result pages are specified in the CONDITION clause. In the
current implementation, parentheses are not allowed and the priority of
AND/OR in the condition set is based on the occurrence of operators from
left to right.

We illustrate the syntax of the DEQUEL with some examples.

5.5.3 Examples of DEQUEL Queries

Example 5.5: Suppose that we wish to find the ZIP codes of Chicago,
USA. The web form at http://zipfind.net (called ZIPFind) is used to find
ZIP codes. Assume that this form has been stored in our form database.
Then the query is formulated as follows:

SELECT ALL AS Chicagozips
FROM zipfind
WHERE zipfind.104 = “Chicago”

The result database stores the query results and creates the Chicagozips

reference to them. Since we do not specify the result table attributes the
default attribute names are used. The results of the query are shown in
Figure 5.13(a).

Example 5.6: Suppose we wish to find “best”13 flights from Singapore
to London on dates: October 28, 2002; November 14, 2002; and January
24, 2003 with available seats in business or economy classes. The Amadeus

search interface is used for flight searching. To retrieve the relevant results
we formulate the query as follows:

13The flight duration is minimal.
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Figure 5.14: Seatsaval query results.

SELECT FIRST(3) flight, depart, arrive, stops aircraft, duration, busi-
ness seat, economy seat, amadeus.D Month, amadeus.D Day

AS Seatsaval
FROM amadeus
WHERE amadeus.D City = “Singapore” AND

amadeus.A City = “London” AND

(amadeus.D Month, amadeus.D Day) = (“October”, “28”,
“November”, “14”, “January 2003”, “24”)

CONDITION business seat = (text contains “Yes”) OR

economy seat = (text equal “Yes”)

It should be noted that the assignment (form.field1, form.field2) = (v1,
v2, v3, v4) differs from the assignment form.field1 = {v1, v3} AND

form.field2 = {v2, v4}. The first means that a value v1 is assigned to a
field field1 only if v2 is assigned to field2. While the last presumes that all
possible combination of {v1, v3} and {v2, v4} may be assigned to the fields
field1 and field2. Thus, in our example, the Amadeus form is not queried
for such dates as October 14, 2002 or November 28, 2002 or November 24,
2002.

In the above query we specify using keyword FIRST(3) that first three
result matches are extracted from the result page for each set submitted to
the server-side program related to the Amadeus form. Further, we specify the
result table’s attribute names (suppose that the result table has been created
and the table attributes have been given names such as flight, depart and so
on) and assigned values. Note that the assigned values are not part of the
result table. We specify them to make results clearer to understand (in this
example, to distinguish flights on different dates). The CONDITION part
of the query defines conditions on the values of the result table related to
business seat and economy seat attributes. We require that the result match
must have a value corresponding to its economy seat attribute that equals
“Yes” or a value for business seat attribute that contains “Yes”. The non-
satisfied result matches are not presented in the query results. Figure 5.14
depicts the Seatsaval query results.
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Figure 5.15: Relational tables used in Examples 5.7 and 5.8: researcher

and japancars.

Example 5.7: Given a list of researchers from some Graduate School
related to natural sciences14, suppose that we wish to find all works pub-
lished by these researchers in 2002. Assume that all researchers’ names are
stored in the relational table researcher(id,name) shown in Figure 5.15.
The PubMed [8] form is used to search for published works. The query is
formulated as follows:

SELECT authors, work, published, pubmed.TEXT
FROM pubmed, researcher
WHERE pubmed.db = “PubMed” AND

pubmed.TEXT = {reseacher.name,all}
CONDITION published = (text contains “2002”)

According to the query, results are presented in the four-column table with
attributes authors, work, published, pubmed.TEXT. Similar to the previ-
ous query the values assigned to the pubmed.TEXT field defines values of
the fourth column. These values are taken from the specified relational ta-
ble researcher. We can also specify how many values are used as input
to the “TEXT” field of the PubMed interface. all defines that all corre-
sponding values of the relational table are assigned to the “TEXT” field.
In the case of the relational table above the specifying pubmed.TEXT=
{reseacher.name,2} is equivalent to the following assignment:
pubmed.TEXT={“Coffey ET”,“Kulomaa MS”}. Figure 5.16 shows the re-
sults of the query.

Example 5.8: Reconsider the query in Example 5.1. Let the forms in Fig-
ures 5.1(a) and 5.1(b) be named Autotrader and Autotrader2 respectively.
Assume that Japanese makes are stored in the relational table japancars
(price,make) shown in Figure 5.15. Suppose that the following attributes

14We use data available at http://www.abo.fi/isb/research_groups.html.
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Figure 5.16: PubMed query results.

of the result table: carpage, dealerpage, color have been defined (see Sec-
tion 5.4.3). Then the query is formulated as follows:

SELECT FIRSTP(2) carpage, dealerpage, color AS Japancars97
FROM autotrader, autotrader2, japancars, zipfind

WHERE zipfind.104={“Chicago”} AND

autotrader.make={japancars.make, all} AND

autotrader.search type=“Used Cars” AND

autotrader.zip={zipfind.rt.text2, 1} AND

autotrader2.max price=“10000” AND

autotrader2.from year=“1997” AND

autotrader2.end year=“1997”
CONDITION color = (text contains “Black”)

The FIRSTP(2) expression defines that result matches are extracted from
the first two result pages. The zipfind form is used to find ZIP codes on
the basis of city name. The submission of the zipfind returns 88 ZIP
codes corresponding to “Chicago” (see Figure 5.13(a)). The expression
{zipfind.rt.text2, 1} defines that only one “text2” value from the zipfind

result table (named zipfind.rt) is used for providing ZIP code to the related
AutoTrader form field. If the query presented in Example 5.5 was executed
we can formulate this query by removing zipfind mentions in the third and
fourth lines of the query and changing {zipfind.rt.text2, 1} in the sixth line
to {Chicagozips.text2, 1}. The query results are shown in Figure 5.13(b).

Example 5.9: Suppose we wish to find only used Toyota black cars made
in 1997 within US$ 10000 available in Chicago. We can formulate a query
similar to the previous but it is a good idea to reuse results of the query
described in Example 5.8:

SELECT carpage, dealerpage
FROM Japancars97
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WHERE Japancars97.carpage = (label contains “Toyota”)

Here we used the Japancars97 result table specified in Example 5.8. The
results of the query are a two-column result table result(carpage,dealer-
page).

5.5.4 DEQUEL Query Execution

This section describes the execution of the DEQUEL query formulated by the
user through the form query UI. In the preceding sections, we introduced two
operators: DEFINE and SELECT. The DEFINE operator specifies the extraction
conditions on the data of the result pages. The query processing is defined
exclusively by the SELECT operator.

Firstly, the Query Processor of DEQUE checks whether the same query
was processed before. If yes, it returns the results of the processed query
and indicates the date of processing. This definitely may lead to outdated
results. For example, in case of querying a car classified database, some
entries may describe cars which are not longer available. We did not deal
with the problem of duplicate record detection [42] since, though clearly
important, it is out of the scope of this thesis wherein we concentrate on
querying and extraction aspects. Secondly, the specified DEQUEL query is
parsed by the Query Parser. Currently, the query on two or more forms
can be composed only if forms to be queried are consecutive (that is, these
forms have the same root form). The SELECT statement envisages that a
query may contain the URL of forms. Such forms are extracted before
query evaluation.

All forms and specified relational tables (these tables must be also pre-
stored in the relational database) are retrieved from the form and relational
database by the Storage/Retrieval Manager. For each form field specified
in a query, the Query Evaluation Module of DEQUE considers the form field
domain, initial field set, label, and, at last, values indicated in the query.
For instance, consider querying two consecutive forms: autotrader(make,
address, search type, field 1, ac afflt, borschtid ) (see Figure 5.1(a)) and
autotrader2(model, certified, start year, end year, min price, max pri-
ce, distance, advanced, advcd on, make, address, search type) (see Fig-
ure 5.1(b)). Suppose 24 values as relational input are assigned to the field
make, five values are assigned to the field max price, and initial field sets of
all fields of both forms consist of one value. Then, 120 possible submission
data sets will be validated. The potential submission data sets with the
form field information such as field domains, labels, initial field sets for each
form specified in the query are passed for the values’ validation.

For each form involving in the query, DEQUE considers the domain con-
straints corresponding to the form. Any potential submission data set must
satisfy these domain constraints. Since we perform queries on consecutive
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forms, two or more groups of the domain constraints may be considered.
The steps given below validate the potential submission data set.

Consider a form F with fields f1, . . ., fk, its child form Fc with fields
fk+1, . . ., fn and a potential submission data set S = {s1, . . ., sk, sk+1,
. . ., sn}, where ∀ i = 1, n: si is assigned to a field fi. A data set S can be
submitted if the following is true:

1. The data set S′={s1, . . ., sk} satisfies the domain constraints of a
form F .

2. The data set {sk+1, . . ., sn} satisfies the domain constraints of the

form F
(S′)
c (F

(S′)
c is a result of submission of a form F with sub-

mission data set S′).

The HTTP Request Module of DEQUE transforms the validated submission
data sets into the HTTP GET or POST requests. If a query on consecutive
forms is executed, only the last child form is submitted to its server-side
program. Values assigned to the fields of all other consecutive forms are
assigned to the hidden fields of the last child form. Indeed, the majority of
descendant forms contains the hidden fields which initial values are equal
to values assigned to the fields of the parent form. For example, consider
the query on the AutoTrader consecutive forms: if the AutoTrader root
form is submitted with values “Ford”, “10520” and “Used Cars” assigned
to the “make”, “address” and “search type” fields respectively then the child
form will contain the following three hidden fields: “make”, “address” and
“search type”. The specified values of these fields are “FORD”15, “10520”
and “used”.

5.6 Implementation

We have created a prototype system that allows the user to formulate
DEQUEL-queries on the web forms that can be extracted from the Web, and
extract and store useful data from the result pages. The implementation
was conducted on a SUN workstation working under Solaris 2.7 operational
system using Perl version 5.005 2 and employing MySQL (version 3.23.49)
DBMS as the data storage. We also used ActiveState Perl 5.6.1 on a Pen-
tium III workstation under Windows 2000 OS for our experiments related
to HTML parsing. A web-based graphical user interface (GUI) was imple-
mented using CGI programs written on Perl under control of the Apache
Web Server (version 1.3.22). In this section, we present the architecture of
the prototype system and summarize the significant results from our exper-
iments.

15Note that invisible values are assigned to hidden fields.
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5.6.1 System Architecture

As shown in Figure 5.17, our prototype system consists of the following
components: User Interface, Web Document Loader, HTML Parser, Query
Processor, Extraction Module, and Storage/Retrieval Manager.

The user interface shown in Figure 5.6 allows the user to specify URLs
or local filenames of web pages containing one or more web forms (Form
Storing UI). It calls the Web Document Loader to fetch a web page of some
specified URL from the Web. The returned web page is parsed by the HTML
Parser that constructs a logical tree representation of the downloaded web
page, based on the Document Object Model (DOM) [12], and passes it to
the Extraction Module. We use the Perl collection of modules HTML-Parser
(version 3.26) and HTML-Tree (version 3.11) to parse HTML documents,
to create HTML syntax trees and extract information from them.

The Extraction Module consists of five submodules: Form Element
Extractor, Label Extractor, JS Function Extractor, Response Navigator,
and Result Match Extractor. The first three submodules discussed in Sec-
tion 5.3.6 are responsible for extracting HTML forms from a given web page.
The form element extractor retrieves form data on the basis of the HTML
syntax related to forms. The label extractor and JS (JavaScript) function
extractor extract additional form data (form labels and related client-side
scripts). The extracted data is stored in the Form Database. The last
two submodules of DEQUE’s Extraction Module: response navigator and re-
sult match extractor are responsible for result extraction. The response
navigator retrieves all web pages linked to the returned page. If a result
page contains an HTML form, the form is extracted by the form extraction
submodules. According to the DEQUEL syntax, all forms to be submitted
to obtain a result page should be specified in a query. Thus, we presume
that each data set submitted by the HTTP request module16 generates a
web page with results. However, web forms that may be contained in re-
sult pages are extracted by the extraction module and stored in the form
database.

The response navigator analyzes an HTML tree for the following hyper-
links:

• A label of the hyperlink contains words such as “1”, “2”, “next” and
so on.

• The URLs of these hyperlinks are very similar. For most cases, these
URLs overlap the URL of the request.

The resultant URLs are given to the web document loader. The latter
returns the result pages linked to the first returned page. Finally, all result

16Except when the request is constructed for the values’ validation.
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Figure 5.17: Architecture of DEQUE.
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pages are passed to the result match extractor that extracts result matches
from result pages and builds a result table using technique described in
Section 5.4.4.

The DEQUEL user interface (see Figure 5.18) allows the user to specify
queries on web forms using the DEQUEL. The formulated query is passed to
the Query Processor (described in Section 5.5.4) consisting of the following
components: Query Parser, Query Evaluation Module, Values Validator,
and HTTP Request Module. The query parser parses the query and de-
termines the steps of query execution to be given to the query evaluation
module. The latter is responsible for deriving different sets of input values
from the Relational Database, Result Database, and Form Database. The
result database stores results of form queries. The query evaluation method
also calls the web document loader if some form specified in the query is
not pre-stored. The goal of the query evaluation module is to prepare sub-
mission data sets and pass them to the values validator for checking. The
values validator checks the submission data set. The client-side script ana-
lyzer as a part of the validation component of the query processor allows the
values validator to more accurately restrict the submission data set on the
basis of the client-side scripts. The information about successful submission
data set is stored in the Query Processing Database and given to the HTTP
request module. This module simply submits the different form requests
to the remote server-side program. Returned web pages are parsed by the
HTML Parser and forwarded to the Extraction Module described above.

5.6.2 Form and Result Storage

The prototype form and result databases are implemented using the open
source relational database management system MySQL. The form database
consists of five tables: form, field, value, label, and event (shown in Ta-
ble 5.1, where table’s unique identifiers are in bold). The description of
most attributes is given in Table 5.2. Each record of the form table de-
scribes a form. A super form (for instance, those presented in Section 5.4)
is also described by one record in the form table. Each record of the field
describes a form field pertaining to a some form. If a form field belongs to
a descendant form, the information about the parent form submission (i.e.,
parent form identifier, submission data set, date and time of submission)
is linked to the corresponding record. Each record of the value describes a
value (visible and invisible) of a some form field. A record in the label table
describes a label and domain of values related to a label. A record in the
event stores a JavaScript function related to some form or form field event.

The Extraction Module stores query results. If a result table has been
built and the result table attributes have been specified in a query, then
the result of a form query is represented as the table. Otherwise, the query
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Figure 5.18: DEQUEL user interface.

Table 5.1: Form Database Schema.
Table Name Table Attributes

form fid, faction, fenctype, fmethod, rfid, pfid, rfurl, fname, fevent id, fdesc, fdt
field ffid, form id, ffname, fftype, session id, ffevent id, fflabel
value field id, visval, invisval, vselected, valtext, vlength
label lid, lstr, lvalues
event eid, estr, ecode

Table 5.2: Attributes of Form Database.
Attribute Name Description

faction URL of a server-side program handling a form
rfid, pfid identifiers of a root and a parent form correspondingly
rfurl URL of a page containing a form (null for descendant forms)
fevent id identifier of an event code for a form event
fdt date and time of the form extraction
form id identifier of a form that contains this field
fftype a type of a form field
session id identifier of a session (for form fields pertaining to descendant forms)
ffevent id identifier of an event code for a form field event
fflabel a text string containing descriptive information about a field
field id identifier of a form field
visval, invisval a visible and an invisible value correspondingly
lstr a text string containing descriptive information (that is, label itself)
ecode a code of a JavaScript function
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Figure 5.19: Example of query results.

result is a single page containing all result matches. Figure 5.19 shows an
example of the results returned by the system after performing the following
query on the AutoTrader forms: Find used Ford Escort cars newer than 4
years within 10520. Currently, extracted result matches are stored in the
result database that consists of two tables: resmatch (describing a result
match) and rtname (describing an attribute of some result table). Thus,
more powerful extraction tool can easily analyze the results of form queries
stored as pieces of HTML code (each related to one result match) to extract
data of interest.

5.6.3 Experimental Results

We have performed queries on about 29 single and 8 consecutive forms.
These forms are online interfaces to well-known large databases in different
domains such as auto, shopping, science, web search, etc. We selected them
for our experiments since the querying automation of such forms is highly
desirable for a web user. Totally, the prototype stored 66 different forms
(that is, the form table of the form database contains 66 records), including
36 root forms and 16 super forms. All forms having the same submission
information, location and form type are represented by one “form” record
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Table 5.3: Queried forms.
Form Name URL No of

visible
fields

No of
invisible
fields

Type No of
queries

AutoTrader http://autotrader.com/

findacar/index.jtmpl?ac_afflt=

none

4 2 consecutive 240

ZIPFind http://zipfind.net 3 - single 40
Amadeus http://www.amadeus.net/home

en/home en.htm
9 15 consecutive 100

PubMed http://www.ncbi.nlm.nih.gov/

pubmed/

4 4 single 200

Google http://google.com 3 3 single 170
ClassicCar http://classiccar.carfrenzy.

com/autos/index2.html

2 - consecutive 110

Amazon http://amazon.com 3 - single 30
CiteSeer http://citeseer.nj.nec.com/cs 3 1 single 60
Lycos Com-
panies Online

http://business.lycos.com/
companyresearch/crtop.asp

3 - single 40

Powell’s
Books

http://www.powells.com/search/
DTSearch/search.cgi

17 - single 20

AA Flight
Search

http://www.aa.com 13 20 consecutive 70

Phuket Hotel
Guide

http://www.phuket-hotels.com/
indexprices.htm

53 1 single 10

Froogle http://froogle.google.com/ 2 - single 50
Yahoo!Autos http://autos.yahoo.com/ 3 5 consecutive 100
Carsearch.com http://www.carsearch.com/ 3 1 consecutive 100
Mobile.de http://www.mobile.de/ 40 1 single 110
Yahoo!
RealEstate

http://realestate. yahoo.com/ 7 7 single 80

SmartBargains http://www. smartbargains.com/ 3 2 single 100

in the form database. Several forms are not interesting as they only sort the
results returned by the other forms. Table 5.3 shows some of the form URL,
the form type, the number of visible and invisible fields, and the number of
performed queries for several forms17 that were used to test our technique.

We have been successful with submission of 58 forms. That is, the system
was able to process issued query in such way that the pages containing query
results or pages containing child forms were generated. The automatically
submission of the remaining forms mainly failed due to the number of built-
in JavaScript functions or HTML frames.

The advantage of our query system depends on the type (single or consec-
utive) of a form to be queried. The system is faster than manual filling-out
if at least two data sets are submitted with the consecutive forms and more
than three data sets with a single form. This is based on the following
evaluation. Our system provides the web-based interface (in other words, it
is also a web form) to formulate form query. To submit one data set with
a single form the user needs to interact with approximately x fields. The

17These forms are search interfaces to Web data in various domains.
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Table 5.4: Label extraction results.
Form name No of

labels for
text fields

No of ex-
tracted
labels

No of
labels for
select fields

No of ex-
tracted
labels

No of labels
for radio and
checkbox fields

No of ex-
tracted
labels

AutoTrader 1 1 1 1 1 1
ZIPFind 1 1 - - - -
Amadeus 2 2 4 4 - -
PubMed 1 1 1 1 - -
ClassicCar - - 1 1 - -
Lycos Com-
panies Online

1 0 - - 2 0

Powell’s
Books

6 6 6 6 3 0

AA Flight
Search

2 0 6 4 2 1

Phuket Hotel
Guide

- - - - 53 44

Mobile.de 2 2 17 11 20 15
Yahoo!
RealEstate

1 1 4 4 1 1

Total 30 24 48 37 82 62

DEQUEL interface has the similar requirements. However, while submission
of n data sets using a single form requires about n ∗x interactions. With
our system the user specifies n sets at about x+ n ∗ 2 interactions, where
two is an empirical number that shows how many different values are in
submitted data sets. Note that x ≥ 2 as for any form the user must specify
at least one value and press a button. After the comparison of the number
of interactions we are able to obtain the above estimation for a single form.
Similarly, we believe that submission of more than two data sets with con-
secutive forms (say, a parent and a child form) is faster using the DEQUEL

interface.

Table 5.4 contains the results of the label extraction for different forms.
In total, for specified forms, we observed that the implemented label ex-
traction technique was able to achieve 80% and 77% accuracy in extracting
labels for text and select fields correspondingly, and about 75% in the label
extraction for radio and checkboxes fields.

The result pages connected by chain links were correctly retrieved with
89% accuracy. For the most part, chain links of the “unsuccessful” result
pages are images ignored by the extraction module.

At the same time, the result extraction technique requires the further de-
velopment. The main disadvantage is that each result page is analyzed apart
from other connected pages. Thus, the system is sometimes unsuccessful in
extracting results from pages containing a few result matches. For example,
if query returns 53 results laid out on three pages then the extraction from
the third page (containing three result matches) is sometimes unsuccessful.
However, the extraction module successfully extracts all matches from all
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Table 5.5: Result match extraction.
Form Name No of

queries
No of query
results

No of extracted
matches

Accuracy, % Precision, %

AutoTrader 240 12340 15570 95 75
ZIPFind 40 1020 980 96 96
Amadeus 100 1200 1440 100 83
PubMed 200 1640 1390 97 82
Google 170 1700 2240 100 76
ClassicCar 110 790 610 76 98
Amazon 30 470 730 99 64
CiteSeer 60 870 710 80 98
Froogle 50 1000 1280 100 78
Yahoo!Autos 100 6920 6310 85 93
Carsearch.com 100 4350 5010 94 82
Mobile.de 110 4860 4030 79 95
Yahoo! RealEstate 80 960 880 80 87
SmartBargains 100 1540 1960 91 71

connected result pages that contain more than 10-20 result matches. Addi-
tionally, for many analyzed result pages the result match extractor returns
more matches than really presented on the page as some irrelevant sub-trees
are considered as result matches’ sub-trees.

Table 5.5 shows the accuracy and precision of result matches’ extraction
for different web forms. The accuracy is defined as follows:

Accuracy =
Number of relevant matches

Number of query results
× 100%, (5.1)

where the number of query results is the total number of actual results
returned by the server-side program, and the number of relevant matches
is the number of extracted matches corresponding to actual results. The
precision is given by the following ratio:

Precision =
Number of relevant matches

Number of extracted matches
× 100%, (5.2)

where the number of extracted matches is the total number of matches
extracted by the extraction module from the returned pages. For example,
the accuracy 80% means that system extracts only 80% of all matches that
really presented on the returned pages. Additionally, the precision 70%
shows that 30% of result matches extracted by the system do not contain any
useful data. In the final analysis, our experiments show that automatic form
querying is feasible, and that relatively few forms are queried incorrectly.

5.7 Conclusion

This chapter describes our approach to query the deep Web. In particular,
we have proposed a data model for representing and storing HTML forms,
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and a web form query language for retrieving data from the deep Web and
storing them in the format convenient for additional processing. We pre-
sented a novel approach in modeling of consecutive forms and introduced
the concept of the super form. The proposed web form query language
DEQUEL is able to query forms (single and consecutive) with input values
from relations as well as from result pages (results of querying web forms).
Finally, we have implemented a prototype system based on the discussed
methodologies.

In the process of DEQUE’s design and implementation we have addressed
several challenges in building a query system for the deep Web. First, we
introduced the concept of super form to simplify the process of querying and
storing consecutive forms. Secondly, we introduced the DEQUEL to provide
more convenient and efficient way to fill out web forms. Furthermore, we
described our approach to extraction of query results from result web pages.

During our work on DEQUE, we noticed several interesting issues to be ad-
dressed in future work: (1) Support of client-side scripts: Currently, we only
store form or field events and related functions’ codes in our form database.
The next step is to perform queries on web forms considering the client-side
scripts. Then, we can validate values to be submitted with a form using
client-side functions. The support of built-in functions is also very desir-
able to identify the dependencies between form fields (in many current web
forms, the chosen value of some field triggers the function that specifies do-
main values of another field). (2) Dependencies between consecutive forms:
The modeling of dependencies between forms can significantly improve the
performance of queries on consecutive forms as it helps to remove more irrel-
evant submission data sets before submitting them to a server-side program.
We would like to investigate further on this issue. (3) Understanding seman-
tics of search interface: “Understanding” query interfaces (i.e., extracting
semantics of forms to be queried) can significantly improve automatic form
filling. Particularly, DEQUE does not combine form-related HTML elements
into groups according to their semantic role in a form. For instance, the field
label “Author” in a form in Figure 1.3 should be associated with four fields
(one text field and three radio buttons) while DEQUE assigns “Author” to the
text field only. Zhang et al. [116] addressed the problem of extracting form
semantics as well as proposed a promising technique to derive query condi-
tions for a given search interface. (4) Query translation: There is a huge
potential for DEQUE to develop a query translator as a system component.
The goal of query translator is to translate a query already issued on some
form to another form. For example, a specific query formulated in DEQUEL

on Amazon book search form can be reformulated in a such way that it can
be issued on the Barnes&Noble18 book search form. This is, in fact, a very

18http://bn.com
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challenging task and largely unexplored by existing works. An interesting
approach to this problem was presented in [117]. (5) Junction of forms and
results: At present, DEQUE strictly separates forms and results. For exam-
ple, there should be more than one query issued to collect data from a page
also containing a child form and a page with final results generated after
submission of a child form. The more flexible way of dealing with such cases
should be provided in future. (6) Data extraction: We intend to investigate
more robust algorithms to extract data from the result pages and storing
them.
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Chapter 6

Conclusions

During this thesis, we studied the deep Web, a large portion of the Web
accessible via search interfaces, at three different levels. Our main objectives
were to design and develop: an efficient system to retrieve data from the
deep Web and an intelligent tool to automatically find and classify web
databases. Additionally, our characterization efforts gave an insight into
the structure of the deep Web.

The next section summarizes our contributions. Section 6.2 describes
some guidelines for future work, and Sections 6.3 and 6.4 discusses future
trends and concludes this thesis.

6.1 Summary of Our Contributions

In this thesis, we considered three classes of problems for the deep Web.
This allowed us to better understand the topic and address its challenges.

We started by describing the deep Web in the context of availability
information on the Web and summarized relevant literature on the topic.
Literature review argued that problems of accessing web databases can be
solved by combined efforts of database and information retrieval communi-
ties.

Characterization of the deep Web was the next phase of our efforts.
We described the existing methodologies and clearly demonstrated their
drawbacks, particularly ignoring the virtual hosting factor. We proposed
two better methods and applied them to explore one national segment of
the deep Web. Two consecutively conducted surveys allowed us to not
only estimate the main parameters of national deep Web but also measure
quantitatively the growth of deep Web.

We then focused on automatic finding of search interfaces to web databa-
ses. We described a technique for building an efficient search form identifier
and proposed the architecture of I-Crawler, a system for finding and classi-
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fying search interfaces. Specifically, the I-Crawler is intentionally designed
to be used in deep Web characterization studies and for constructing direc-
tories of deep web resources. Unlike almost all other approaches existing
so far, the I-Crawler is able to recognize and analyze JavaScript-rich and
non-HTML searchable forms.

Lastly, we addressed the problem of querying web databases. We pro-
posed a data model for representing and storing search interfaces, and a web
form query language for retrieving data from deep web resources and stor-
ing them in the format convenient for additional processing. We presented a
novel approach in modeling of consecutive forms and introduced the concept
of the super form. The proposed web form query language DEQUEL is able
to query forms (single and consecutive) with input values from relational
tables as well as from the pages with results of querying other web forms.
We described and implemented a prototype system based on the discussed
methodologies.

6.2 Future Work

As most research works, this thesis opens more problem than it solves. We
consider the following avenues as the most promising for the future work:

• Support of client-side scripts: Almost all works devoted to the
deep Web have not being paying any attention to non-HTML code
contained in many today’s web pages. Such non-HTML code (mainly
JavaScript) provides “client-side” dynamism of a page and is able to
manipulate a page’s content in the same way as “server-side” scripts on
web servers do. The support of client-side scripts is urgent since most
pages on the Web nowadays are extensively using client-side code.

• Continuation of characterization efforts: The methods described
in Chapter 3 can be applied to the characterization of the entire deep
Web. We still know little about the structure of the deep Web, par-
ticularly what specific set of features can be used to distinguish deep
web sites from regular sites. Such knowledge is in high demand for
many applications.

• Building a relatively complete directory of deep web resour-
ces: This can be considered as a final objective of our efforts in au-
tomatic finding and classifying search interfaces. We are going to use
the approach described in Chapter 4 and build a form crawler that
trawls the entire Web or some domain-specific segment of the Web,
automatically detects search interfaces and classifies found interfaces
into a subject hierarchy. Reliable classification of web databases into
subject hierarchies will be the focus of our future work. One of the
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main challenges here is a lack of datasets that are large enough for
multi-classification purposes.

• Construction and dissemination of datasets: More datasets de-
scribing search interfaces to web databases should be available. The
datasets simplify significantly the process of testing new methods be-
ginning with constructing useful ontologies for querying web databases
and ending with classification of search interfaces into multiple do-
mains.

6.3 Future Trends

Typically, search interface and results of search are located on two different
web pages. However, due to advances of web technologies, a web server may
send back only results (in a specific format) rather than a whole generated
page with results [48]. In this case, a page with results is generated on the
client-side: specifically, a client-side script embedded within a page with
search form receives the data from a web server and modifies the page con-
tent by inserting the received data. Ever-growing use of client-side scripts
will pose a technical challenge [17] since such scripts can modify or con-
strain the behavior of a search interface and, moreover, can be responsible
for generation of result pages. Another technical challenge is dealing with
non-HTML search interfaces such as interfaces implemented as Java applets
or in Flash [2]. In almost all approaches to the deep Web existing so far,
non-HTML forms (as well as client-side scripts) are simply ignored. How-
ever, there is an urgent need in analyzing non-HTML forms since such forms
are going to reach a sizeable proportion of searchable forms on the Web.

One of the general challenges of the deep Web is a simple fact that web
search forms are designed for human beings or, in other words, they are
user-friendly interfaces to web databases rather than program-friendly. In
general, it is quite unrealistic to expect that a computer application over-
comes a web user in accessing a web database through user-friendly inter-
face. Fortunately, web databases have recently begin to provide APIs (i.e.,
program-friendly interfaces) to their content. However, one can anticipate
merely a gradual migration towards access web databases via APIs and,
thus, at least for recent years, many web databases will still be accessible
only through search forms. Anyhow, the prevalence of APIs will presumably
solve most of the problems related to the querying of web databases but, at
the same time, will make the problem of integrating data from various deep
web resources a very active area of research.
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6.4 Conclusion

The existence and continued growth of the deep Web creates a major chal-
lenge for web search engines, which are attempting to make all content on
the Web easily accessible by all users [76]. Though much research work has
emerged in recent years on querying web databases, there is still a great deal
work to be done. The deep Web will require more effective access techniques
since the traditional crawl-and-index techniques, which have been quite suc-
cessful for unstructured web pages in the publicly indexable Web, may not
be appropriate for mostly structured data in the deep Web. Thus, a new
field of research combining methods and research efforts of data management
and information retrieval communities may be created.
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Appendix A

Deep Web

A.1 User interaction with web database

A user interaction with a web database is depicted schematically in Fig-
ure A.1. A web user queries a database via a search interface located on a
web page. First, search conditions are specified in a form and then submit-
ted to a web server. Middleware (often called a server-side script) running
on a web server processes a user’s query by transforming it into a proper
format and passing to an underlying database. Second, a server-side script
generates a resulting web page by embedding results returned by a database
into page template and, finally, a web server sends the generated page with
results back to a user. Frequently, results do not fit on one page and, there-
fore, the page returned to a user contains some sort of navigation through
the other pages with results. The resulting pages are often termed data-rich
or data-intensive.

A.2 Key terms

Deep Web (also hidden Web): the part of the Web that consists of all
web pages accessible via search interfaces.

Deep web site: a web site that provides an access via search interface to
one or more back-end web databases.

Non-indexable Web (also invisible Web): the part of the Web that is
not indexed by the general-purpose web search engines.

Publicly indexable Web: the part of the Web that is indexed by the
major web search engines.

Search interface (also search form): a user-friendly interface located
on a web site that allows a user to issue queries to a database.

127



Figure A.1: User interaction with web database.

Web database: a database accessible online via at least one search inter-
face.

Web crawler: an automated program used by search engines to collect
web pages to be indexed.
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Appendix B

DEQUEL Grammar

B.1 DEFINE Operator

B.1.1 First Type of Syntax

<define>::= DEFINE ATTRIBUTE <default attribute label>

<new attribute name> FOR <form label>

<default attribute label>::= text<number> | link<number>

<new attribute name>::= <value>

B.1.2 Second Type of Syntax

<define>::= DEFINE ATTRIBUTE <type> <set of attribute names>

CONDITION <condition on text> | <condition on label>

FOR <form label>

<type>::= TEXT | LINK

<set of attribute names>::= <new attribute name> |

<set of attribute names>, <new attribute name>

<condition on text>::= ("text" <cond op> <value>)

<condition on label>::=

("label" <cond op> <value>, "url" <cond op> <value>) |

("label" <cond op> <value>) |

("url" <cond op> <value>)

<cond op>::= "equal" | "contain"

B.2 SELECT Operator

<query>::= SELECT [<number of results>] <set of RT attributes>

[<set of assigned values>] [AS <query label>]

[ FROM <source set> ]

[ WHERE <assignment set> ]

[ CONDITION <condition set> ]
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<number of results>::= ALL | FIRST(<number>) | FIRSTP(<number>)

<set of RT attributes>::= "*" | <RT attribute> |

<set of RT attributes>, <RT attribute>

<source set>::= <source> | <source set>, <source>

<source>::= <form source> | <alternate source>

<form source>::= <form label> | <url> AS <new form name> |

(<url>,<number>) AS <new form name>

<url>::= <value>

<new form name>::= <value>

<alternate source>::= <relational table label> | <query result

label>

<RT attribute>::= <attribute label> |

<alternate source>.<attribute label>

<assignment set>::= <assignment clause> |

<assignment set> AND <assignment clause>

<assignment clause>::=

<form label>.<field label> <eq> <predicate> |

(<set of fields>) <eq> <predicate>

<set of assigned values>::= <assigned value> |

<set of assigned values>, <assigned value>

<assigned value>::= <form label>.<field label>

<set of fields>::= <form label>.<field label> |

<set of fields>, <form label>.<field label>

<predicate>::= <value> | {<set of values>} |

{<alternate source>.<attribute label>,<card number>} |

{LABEL,<card number>}

<card number>::= <number> | <all>

<condition set>::= <condition on attribute> |

<condition set> AND <condition on attribute> |

<condition set> OR <condition on attribute>
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<condition on attribute>::=

<RT attribute> <eq> <condition on text> |

<RT attribute> <eq> <condition on label>

<all>::= "all"

<eq>::= "="

The intuitive meaning of the remaining nonterminals is the following:
<relational table label> a name of relational table

<query result label> a reference to stored query results
<attribute label> an attribute name

<query label> a new reference to results of this query
<form label> a form name

<number> a number
<value> a text string
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Appendix C

Deep Web Characterization

C.1 Detection of Active Web Servers

The task of scanning a list of IP addresses (or hosts) for active web servers
can be accomplished in several ways. In this work, the following two free
tools were effectually used and, thus, can be recommended by the author:

• WotWeb 1.08 (available at http://keir.net/wotweb.html) – a GUI
tool specifically designed for finding active web servers. One of Wot-
Web’s nice features is a provided list of ports typically used by http-
servers (besides default port 80 web servers can also be found on such
ports as 8080, 8000, 81 and so on).

• Nmap 3.70 and higher (available at http://insecure.org/nmap) –
a flexible and powerful network scanner with command-line interface.
Web servers can be found by running nmap with the following options:
nmap -v -v -sT -P0 -p 80,OtherPorts -iL IPorHostList.file -oG Results.log

C.2 Reverse IP/Host Lookup tools

The following three tools were used for resolving IP addresses to hostnames
and back:

• Reverse IP Lookup, Reverse NS Lookup, Whois Tools at
http://domainsdb.net

• Reverse IP at http://www.domaintools.com/reverse-ip

• Advanced WHOIS Lookup! (beta) at http://whois.webhosting.

info
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Table C.1: Relative frequency of domains in the Hostgraph

Domains *.ru *.com *.ua *.net others

Percentage(%) 75 7.2 6.8 4.1 6,9

C.3 Hostgraph fraction of zones

The “Hostgraph” is a graph of links among all hosts known to Yandex search
engine at the time of February 2005. All outgoing links from different pages
on one host to different pages on another host are considered as one link
between these hosts.

C.4 RU-hosts

The “RU-hosts” is a list of all second-level domain names in the .RU zone
registered at the time of April 26, 2006. It includes 510,655 domain names.
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