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Abstract

Biomedical research is currently facing a new type of challenge: an excess
of information, both in terms of raw data from experiments and in the
number of scientific publications describing their results. Mirroring the focus
on data mining techniques to address the issues of structured data, there
has recently been great interest in the development and application of text
mining techniques to make more effective use of the knowledge contained
in biomedical scientific publications, accessible only in the form of natural
human language.

This thesis describes research done in the broader scope of projects aim-
ing to develop methods, tools and techniques for text mining tasks in general
and for the biomedical domain in particular. The work described here in-
volves more specifically the goal of extracting information from statements
concerning relations of biomedical entities, such as protein-protein interac-
tions. The approach taken is one using full parsing—syntactic analysis of
the entire structure of sentences—and machine learning, aiming to develop
reliable methods that can further be generalized to apply also to other do-
mains.

The five papers at the core of this thesis describe research on a number
of distinct but related topics in text mining. In the first of these studies, we
assessed the applicability of two popular general English parsers to biomed-
ical text mining and, finding their performance limited, identified several
specific challenges to accurate parsing of domain text. In a follow-up study
focusing on parsing issues related to specialized domain terminology, we
evaluated three lexical adaptation methods. We found that the accurate
resolution of unknown words can considerably improve parsing performance
and introduced a domain-adapted parser that reduced the error rate of the
original by 10% while also roughly halving parsing time.

To establish the relative merits of parsers that differ in the applied for-
malisms and the representation given to their syntactic analyses, we have
also developed evaluation methodology, considering different approaches to
establishing comparable dependency-based evaluation results. We intro-
duced a methodology for creating highly accurate conversions between dif-
ferent parse representations, demonstrating the feasibility of unification of



diverse syntactic schemes under a shared, application-oriented representa-
tion. In addition to allowing formalism-neutral evaluation, we argue that
such unification can also increase the value of parsers for domain text mining.
As a further step in this direction, we analysed the characteristics of publicly
available biomedical corpora annotated for protein-protein interactions and
created tools for converting them into a shared form, thus contributing also
to the unification of text mining resources. The introduced unified corpora
allowed us to perform a task-oriented comparative evaluation of biomedical
text mining corpora. This evaluation established clear limits on the compa-
rability of results for text mining methods evaluated on different resources,
prompting further efforts toward standardization.

To support this and other research, we have also designed and anno-
tated Biolnfer, the first domain corpus of its size combining annotation of
syntax and biomedical entities with a detailed annotation of their relation-
ships. The corpus represents a major design and development effort of the
research group, with manual annotation that identifies over 6000 entities,
2500 relationships and 28,000 syntactic dependencies in 1100 sentences. In
addition to combining these key annotations for a single set of sentences,
Biolnfer was also the first domain resource to introduce a representation of
entity relations that is supported by ontologies and able to capture complex,
structured relationships.

Part I of this thesis presents a summary of this research in the broader
context of a text mining system, and Part II contains reprints of the five
included publications.
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Research summary






Chapter 1

Introduction

1.1 Background

The shift from the pre-genomic to the post-genomic era, marked chiefly by
the sequencing of the human genome (Venter et al., 2001), has been ac-
companied by a shift in the techniques, aims and challenges of biomedical
research. Developments in experimental technology have allowed the large-
scale study of not only genomes but also proteins and their interactions,
giving rise to the fields of proteomics and interactomics and opening for the
first time the possibility of reaching a wide, systemic understanding of or-
ganisms. New analysis techniques have also caused a deluge of experimental
data, and in response led to broadening collaboration between biologists and
computer scientists and increasing research in biomedical data mining and
bioinformatics.

Today, it is increasingly recognized that this excess of information ex-
tends beyond experimental data also to the biomedical scientific literature in
a way that calls for new approaches to dealing with scientific knowledge. The
amount of information available in literature collections is already well past
the ability of researchers to compose into a coherent whole, and growing at
an unprecedented rate. Thus the bottleneck to understanding biological sys-
tems is shifting from their analysis to the ability to make use of the results.
Despite efforts to gather facts in specialized databases, most information
can only be found in scientific publications, fragmented and accessible only
to those capable of processing human language.

In response to this information overload there has been an explosion of
research in the vibrant young field of biomedical text mining, where methods
from machine learning, computational linguistics and computer science are
applied to unlock access to the wealth of knowledge generated in the study
of genetics, biochemistry, and cellular and molecular biology — knowledge
to which human language is both the primary interface and the greatest bar-
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rier. It is at this busy intersection of fast-moving sciences that the research
described in the present thesis has been done.

The key promise that text mining holds for the biomedical domain is
to address the information overload problem by automating the process of
“understanding” the relevant parts of the scientific literature. Such au-
tomation could, for example, greatly increase the efficiency of searching for
information, facilitate the creation of large-scale models of the relationships
of biomedical entities, and allow for automated inference of new information
as well as hypothesis generation to guide biomedical research.

The following sections describe the challenges, promises and tools of
biomedical text mining in more detail and then briefly present one view of a
biomedical text mining system before proceeding to describe the publications
that form the backbone of this thesis.
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Figure 1.1: A fragment of the High Confidence interaction network of Stelzl et al.
(2005), showing 354 interactions between 90 proteins.

1.1.1 The need for text mining

Organisms are the most complex systems known, and a full understanding
of their function is one of the major goals of present-day biology. This task
requires not only an understanding of genes and the proteins they code for,
but also of the ways in which they interact. The numbers involved are large
and to some extent unknown: for one of the simpler, better-known model
organisms, the yeast Saccharomyces cerevisiae, the number of genes was
famously estimated to be around 6000 upon completion of sequencing (Gof-
feau et al., 1996)! and a recent estimate places the number of protein-protein
interactions at 16,000 (Grigoriev, 2003). The numbers for human are more
approximate, but one estimate gives the figures 25,000 genes and 375,000
interactions (Ramani et al., 2005). The complexity is vividly illustrated by
interaction networks such as the fragment of the human protein-protein in-
teraction network shown in Figure 1.1, illustrating approximately 0.1% of
the full human network?.

YThe Saccharomyces Genome Database currently places the number at 5749; see
http://www.yeastgenome.org/SGD-FAQ.html

2Efforts to map protein-protein interactions are largely focused on determining whether
an interaction exists or not, but for a detailed understanding, differences in reactions in
response to variation in factors such as cell type and subcellular location must additionally
be taken into account, adding another level of complexity to the task.
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Figure 1.2: PubMed growth 1945-2008, showing the total number of entries in the
database up to the end of each year. Data for 2008 is incomplete.

The inherent complexity of the objects of study is reflected in the size
of the domain literature. The premier literature collection in the biomedi-
cal domain is PubMed, which currently contains approximately 17 million
citations from five thousand scientific journals, including 9 million article
abstracts and, through PubMed Central, 1.5 million full-text articles. For
finding relevant information from this formidable collection, PubMed in-
cludes an advanced (though ultimately keyword-based) search engine. As an
example of both the amount of available information and the insufficiency of
naive keyword search, the name of the protein p53 occurs in 45,000 PubMed
articles, and while a researcher interested specifically in its role in cancer
and its interacting partners might try the search p53 cancer interaction to
narrow down the results, this query still yields 1500 publications, enough
for months of full-time reading.

The information overload problem is getting worse, as the biomedical
research literature is growing at a daunting rate: almost 700,000 references
were added to PubMed during 2007, for an average of 1900 per day. The
growth of PubMed, illustrated in Figure 1.2, is double-exponential: even
the growth rate is increasing exponentially, at an estimated 3% compounded
annual rate (Hunter and Cohen, 2006). The ongoing Open Access revolution
in scientific publishing (see e.g. Suber, 2002) is further extending routine free
access from article abstracts to full text articles, considerably increasing the
growth rate of available textual information.
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Reactome

Figure 1.3: Overlap between existing human protein interaction sets in the Reac-
tome (Joshi-Tope et al., 2005), Human Protein Reference Database (HPRD; Peri
et al., 2004) and Biomolecular Interaction Network Database (BIND, Bader et al.,
2001) datasets. The small overlap (< 0.1% in common in all three datasets) im-
plies that the number of protein interactions described in the literature is actually
quite large and that the individual datasets carry specific biases. (Figure and cap-
tion adapted from Ramani et al., 2005, reproduced under the Creative Commons
Attribution License)

In response to this complexity, a number of projects have been initi-
ated to collect information from the diverse publications into special-purpose
databases for researchers. These efforts have supplemented well-established
resources focusing on information regarding individual biomedical entities
(e.g. SWISS-PROT; Boeckmann et al., 2003) by creating resources fo-
cused on their relationships, such as the Kyoto Encyclopedia of Genes and
Genomes (KEGG, Kanehisa and Goto, 2000), the Database of Interacting
Proteins (DIP, Xenarios et al., 2000), the Biomolecular Interaction Network
Database (BIND, Bader et al., 2001), the Molecular INTeraction database
(MINT, Zanzoni et al., 2002), and EcoCyc (Karp et al., 2002). These man-
ually curated databases today contain references to tens of thousands of
protein-protein interactions described in the literature and have become im-
portant resources for investigating biological systems.

However, manually curated databases still only cover a small fraction of
published interactions. Recent studies by Ramani et al. (2005) and Math-
ivanan et al. (2006) observed this through the small overlap between the
interaction annotations in different databases (see Figure 1.3). Further, it
is not clear whether the gap between the interactions reported in the liter-
ature and found in databases is narrowing or growing. In a recent study on
genomic knowledge base construction, Baumgartner et al. (2007) argue that
the present rate of manual curation is insufficient to functionally annotate
even currently available proteomes.
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1.1.2 The promise of text mining

Text mining promises to relieve the information overload problems by al-
lowing facts to be automatically extracted from text. The use of automated
methods to assist in uncovering facts that are stated in a body of biomedical
literature too large to be practically analysed by humans predates the cur-
rent wave of domain studies: the pioneering Arrowsmith system of Swanson
(1986), based on the co-occurrence of medical domain terms in article ti-
tles, predicted an association between fish oil and Raynaud’s disease as well
as a link between magnesium deficiency and migraine headaches (Swanson,
1988); both of these hypotheses were later verified experimentally.

Despite its successes, the approach of Arrowsmith is based on simple
word statistics, which have limited value in analyzing the meaning of text.
In the intervening two decades, considerable advances have been made in the
field of Natural Language Processing (NLP), allowing much more sophisti-
cated approaches to be brought to bear on text mining today. In particular,
techniques developed for a form of natural language understanding offer the
possibility of automating many of the tasks involved in creating large-scale
biomedical databases of facts from the domain literature. Natural language
understanding is a long-standing, long-term goal of much of NLP research.
The aim is to create systems that take unrestricted natural language in-
put and analyse its entire meaning, capturing it in a representation that
can further support inference of facts entailed but not directly stated by
the input. This ambitious goal is widely considered Al-complete?® and not
likely to be solved in the near future. For practical applications, meeting
the more modest and realistic goal of restricted understanding of particu-
lar types of statements in a given domain is already valuable. This type
of limited natural language understanding, producing a structured but not
necessarily computation-supporting representation of facts, is referred to as
Information Extraction (IE).

Much of the recent work in biomedical NLP pursues goals that can be
viewed either as full IE problems or subtasks of an IE problem. Domain
extraction targets include, among others, relations between genes and drugs
(Rindflesch et al., 2000b), genes and mutations (Rebholz-Schuhmann et al.,
2004), treatments and diseases (Rosario and Hearst, 2004), genes and dis-
eases (Chun et al., 2006), and, for example, statements regarding protein lo-
calization (Craven and Kumlien, 1999) and protein active sites (Gaizauskas
et al., 2003). While binary relations are by far the most common target,
some methods targeting n-ary relations describing e.g. gene variation (Mc-

3The informal term Artificial Intelligence-complete refers to the class of problems that
would require human-level intelligence to truly solve — and “if we could solve any one
artificial intelligence problem, we could solve all the others” (Mueller, 1987, page 302); the
analogy is with the computational complexity class of NP-complete problems.
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Donald et al., 2005) and subcellular localizations (Melli et al., 2007) have
also been presented. The most common goal for domain IE research is the
recognition of protein-protein interactions (PPIs), and the most commonly
addressed subtask is the recognition of protein names*. PPIs are also the
primary extraction goal of the studies described in this thesis.

Efficient, scalable, high-reliability PPI extraction would clearly be a boon
for efforts to build protein-protein interaction networks and annotate protein
databases with information regarding protein functions. Such systems could
also be used to augment literature searches, assist in the analysis of the re-
sults of experiments, and serve as building blocks for hypothesis generation
systems. While the state of the art has yet to reach a point where these
promises could be fully realized, many systems have already been deployed
and several have been shown to provide practical benefits for database cu-
rators (see e.g. Donaldson et al., 2003; Miiller et al., 2004; Couto et al.,
2006; Ohta et al., 2006; Alex et al., 2008; Karamanis et al., 2008; Kim et al.,
2008b). The following section examines some of the challenges in biomedical
text mining.

1.1.3 Challenges in text mining

The PPI extraction task is typically cast as a problem of finding pairs of
proteins that are stated to interact in a given text. At first sight, this may
appear deceptively easy: the minimum requirements are recognizing protein
names and making a decision for each pair whether or not they interact.
Several resources containing protein names are available (e.g. Bairoch et al.,
2005; Liu et al., 2006), and interactions are often stated through verbs such
as bind and phosphorylate, which can further be recognized with statistical
methods (Andrade and Valencia, 1998). The problem would thus appear to
reduce to dictionary lookup combined with some form of pattern matching.®
A number of early PPI extraction methods followed this approach, em-
ploying fixed lists of protein names and making use of sentence structure
only to the extent of looking at the order of words and the distance between
them to match simple patterns such as “proteinl — action — protein2” (see
e.g. Blaschke et al., 1999). While some early results using this approach on
narrow subdomains and restricted classes of interaction types were very en-
couraging, results from larger, more realistic settings have confirmed that
simple pattern-based approaches do not achieve sufficient performance.

4The recognition of names can be viewed an IE task in its own right. As is common in
domain studies, the term will here be used to refer to what McNaught and Black (2006)
(page 149) term “higher” IE tasks, i.e. those involving relations between entities.

5The approach pursued in most PPI extraction work, including that in this thesis,
relies in some way on sentence structure. Purely statistical approaches such as that of
Arrowsmith have also been applied in the biomedical domain (see e.g. Stapley and Benoit,
2000; Jenssen et al., 2001) but will not be considered in more detail here.
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Two of the main obstacles in the way of fully automatic extraction of
facts from free-form natural language text are ambiguity and variability.
Ambiguity refers to a single expression having multiple interpretations and
variability to a single “interpretation” (semantic representation of facts)
being denoted by multiple expressions. The two are thus, in one sense,
opposites, yet equal in that both greatly complicate the extraction of facts
from text.

In everyday communication, language users rarely realize that essentially
every nontrivial sentence is ambiguous, that is, has two or more possible
interpretations. Indeed, unexpected ambiguity is a frequent source of humor:

One morning I shot an elephant in my pajamas. How he got
into my pajamas I'll never know. (Groucho Marz in the movie
Animal Crackers)

The joke arises from the two interpretations of shot an elephant in my paja-
mas, which exhibits prepositional phrase attachment ambiguity. Ambiguity
occurs at multiple levels in language, from the meaning of individual words
to syntax to interpretation of syntactic structures: among other issues, com-
plex sentence structure and words that are unknown to text analysis tools,
both common features in biomedical text, are rich sources of ambiguity.
Compounding the problem, ambiguity is typically combinatorial: two in-
stances of two independent alternatives make for a sentence with four read-
ings, four for 16, etc. The number of alternative analyses thus typically
grows exponentially with the number of tokens in the sentence, leading in
some cases to enormous numbers of ambiguous alternative interpretations.

Like ambiguity, variability is an essential property of human language.
While authors strive for variability and readers abhor repetitive or formulaic
text, the creative potential of language and the use of that potential by
authors considerably complicates the automatic extraction of facts stated
in text. Even a simple relationship such as one protein binding another
can be expressed in a surprising number of ways: simplified variants found
from a small sample of sentences in the Biolnfer corpus (see Paper IV and
Chapter 5) are shown in Table 1.1. Each of these statements entails, in
context, an actual or possible binding relationship between two biomedical
entities. Due to the variability and productivity of natural language, it is
not possible to enumerate the complete set of full word sequences that can
express interesting facts: most of the original forms from which the examples
in Table 1.1 are taken occur only once in the corpus, and the flexibility of
natural language guarantees that novel variants will occur, escaping any
collection of known forms: the distribution of patterns, like many other
features in natural language, exhibits characteristics that can be described
in terms of Zipf’s law (see e.g. Rebholz-Schuhmann et al., 2005).
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e1 binds es e1 cross-links eg

binding of e; to es e1 binding to es

binding to e; by e e is able to bind to ey

e1 1s shown to bind eq e1 is an antigen known to bind es

e1 (an eg-binding protein) partners that associate with e1: es and eg
e1 is involved in binding to es e; has been implicated in e binding

e1 binding region of eo e1 is secreted as a protein that binds e
affinity of e; for e e1 regulates es by binding to e
association of e; with eg ey is directly associated with eo

e1, which binds to eo, e1 is a receptor for ey

e1 binding sites of es e1 is expressed as a receptor for e

Table 1.1: Twenty-two ways to say e binds es.

Thus, a collection of exact word sequence patterns for PPI extraction
will suffer from insufficient coverage and hence poor recall. One response
is to allow flexibility: for example, extract an interaction whenever a word
commonly used to express interactions occurs within a given distance from
two protein names (Blaschke et al., 1999). However, such approaches fail in
many cases: consider for example the sentence

By site-directed mutagenesis of e; from Dictyostelium discoideum
the point mutations K114E and W3N were generated by PCR,
thus changing es and e3-binding activity, respectively.

Here, the pairs (e1, e2) and (e1,e3) are stated to bind, but (e2,es3) is not. A
keyword position-based approach flexible enough to find the first two would
also match the third, thus having limited precision.

A more sophisticated approach is needed to make high-precision, high-
recall text mining possible. The approach taken in most text mining systems
is to divide the task into a sequence of steps, each performed by a dedicated
module devoted to a well-defined subtask. From the perspective of the over-
all goal of IE, such organization can be viewed as sequential disambiguation
and normalization of the input to resolve the ambiguity and variability of
the natural language text, thus making the relevant information more read-
ily extractable in a final step. The following sections sketch such a system
and relate the research described in this thesis to the relevant stages of
processing.
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Figure 1.4: Text mining system architecture.

1.2 Text mining tasks

This section describes the processing steps of a text mining system as con-
ceived in the projects in which the present work has been carried out. The
system described here is conceptual—that is, it has not been realized as a
coherent, whole software system, and although several working components
exist, the interest in their development is mainly as research prototypes
rather than as software development projects. Nevertheless, the design of
the system provides a framework into which the discussed modules fit, and
the processing stages as well as their associated challenges and current so-
lutions will next be briefly presented to set the stage. Where applicable,
the performance® of methods on biomedical domain text will be related to
performance on “general English” (roughly, newspaper-type text) to high-
light specific challenges. Additionally, references to co-authored and other
relevant publications produced in the projects in which the present research
was carried out are provided to relate these to the papers included in this
thesis.

The architecture of the considered text mining system is presented in
Figure 1.4. In brief, documents from a literature database such as PubMed
are filtered to a set of likely relevant sentences which are then marked for
named entities and parsed prior to the extraction of relevant information;
the process is supported by an annotated domain corpus. The steps shown
in the figure are not exhaustive nor all necessary: commonly applied pro-
cessing stages not shown include part-of-speech tagging and coreference res-
olution, and only named entity detection and relation extraction are strictly
mandatory. Further, there is no requirement that the steps discussed here
be performed in the particular order shown in Figure 1.4. For example, the

6Unless noted otherwise, performance is given throughout this thesis using the stan-
dard metrics of precision, recall, and balanced F-measure (“effectiveness”; van Rijsbergen,
1979), all of which range from zero to one, the larger the better. Error is one minus the
contextually relevant metric.
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Alvis system (Deriviere et al., 2006) places named entity recognition before
sentence segmentation to e.g. avoid splitting sentences on name-internal pe-
riods, and Finkel et al. (2004) report that full parsing is beneficial for named
entity disambiguation. The order presented below (mainly following Fig-
ure 1.4), progressing first from documents to sentences and then from the
word level to syntax to (shallow) semantics, is commonly applied.

1.2.1 Information retrieval

Information Retrieval (IR) refers to the task of selecting a subset of rele-
vant items from a large body of data (here text), typically in response to
an ad hoc query given by a user. This means in effect that the system
cannot anticipate the relevance criterion. IR is an extremely well-studied
task in which significant practical advantages have been achieved with ad-
vances both in the computer science and natural language processing facets
of the task—Google probably representing the most widely known example
of breakthrough IR technology and PubMed search being the example most
relevant to the day-to-day work of biomedical domain researchers.

From the perspective of a PPI extraction system, IR acts in the role of
a filter reducing the amount of input and increasing the fraction of relevant
information (Hersh et al., 2004). The IR task can then be approached either
as a traditional ad hoc retrieval problem or as a classification problem with
a fixed definition of relevance: for example, all documents describing PPIs
are relevant, while others are not. The latter approach allows the problem
to be addressed using supervised classification methods, which can achieve
considerably better results through the use of labeled training data.

The IR community has a long-standing series of competitive evaluations,
the Text REtrieval Conferences (TREC), which have hosted shared IR tasks
annually since 1992. A large number of different problem domains, termed
tracks, are hosted each year. TREC included a Genomics track which ran
from 2003 to 2007. In addition to ad hoc retrieval tasks (2003—2005), the Ge-
nomics track included tasks on document classification (2004-2005), ques-
tion answering (2006-2007), and, in 2003, an IE-type task, extraction of
GeneRIF (Reference Into Function) text. It should be noted that while this
last task included the extraction of text describing interactions, it did not
require extraction of structured information but instead of text snippets.
Thus, this task should be viewed as a highly focused IR problem rather
than as IE in the sense considered here.

During the course of the projects in which this work was carried out,
a number of studies addressing IR-type problems were published: a super-
vised learning approach to distinguish between sentences describing PPIs
and those that do not (Pyysalo, 2003), and two studies on the use of on-
tologies as the basis of document similarity measures that introduced a pair
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of novel methods for tuning the measures in a task-dependent way (Ginter
et al., 2004b, 2005; Ginter, 2007). Nevertheless, like most studies focus-
ing on PPI extraction, the work described in this thesis mostly assumes
that the input to the system consists mainly of relevant documents, that
is, that moderately high-precision filtering of the input documents has been
performed as a preprocessing step. The significance of this assumption for
measured PPI extraction system performance is discussed in Section 6.3 of
this thesis.

1.2.2 Sentence segmentation

Sentences are both the most natural and most common choice for the unit
of text from which to extract information, reflecting in part the fact that
parsers operate on the sentence level. Using sentences as the unit for ex-
traction finds support in the evaluation of Ding et al. (2002), although their
estimate of sentence-level recall suggests that when extraction is done only
within sentences, approximately 15% of relationships are overlooked un-
less references between sentences are recovered with a coreference resolution
method.

Running text must be segmented (split) into sentences prior to pars-
ing and other sentence-level processing. Although both under- and over-
segmentation will affect performance adversely, the segmentation task is
not widely studied, perhaps due to its relative simplicity. For example, the
widely applied MXTERMINATOR, segmenter of Reynar and Ratnaparkhi
(1997), trained on general English, is used also in a number of biomedical
text processing pipelines (e.g. Rinaldi et al., 2006), although in biomedical
English periods and capital letters are less reliable indicators of sentence
boundaries than in general language: consider e.g. decimal points, abbre-
viated genera in species’ names (S. cerevisiae) and abbreviated names of
authors and journals in citations.

Two recent studies by Tomanek et al. (2007) and Xuan et al. (2007)
focus on the challenges of sentence segmentation in the biomedical domain.
Tomanek et al. take a machine-learning based approach, while Xuan et al.
develop a rule-based system that makes intensive use of specially collected
dictionaries. Both studies report error rates below 0.3% for their proposed
methods, outperforming the best reported result for MXTERMINATOR on
general English (Reynar and Ratnaparkhi, 1997) by a fair margin. These
results appear to restore the status of segmentation as a “solved” problem
also for biomedical text. Segmentation has not been specifically considered
in any of the studies in this thesis, and perfect segmentation of the input is
assumed for the conceptual system in all of the studies.
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pobj>
r<nsubj \r—dobj>ﬁ(prep>\ <nn

it stimulated release of inositol 1,4,5-trisphosphate

num>
num>
r<nsubjT~7dobj>~—\rprep>Tpobj> num>\w—‘w

it stimulated release of inositol 1, 4, 5-trisphosphate

Figure 1.5: Illustration of the effect of tokenization on parsing. Above: correct
tokenization with correct parse. Below: over-split tokens leading to incorrect recog-
nition of head and treatment of token fragments as numerical postmodifiers.

1.2.3 Tokenization

Tokenization, or word segmentation, refers to the splitting of continuous text
into tokens, atomic units of text: words, numbers, punctuation etc. Tok-
enization is another under-appreciated task, often relegated to the generic
algorithms included in taggers or parsers. In one of the rare studies focus-
ing on the issue, Tomanek et al. (2007) perceptively describe the prevailing
attitude toward segmentation as considering the tasks “unsophisticated cler-
ical work.” There are, however, specific domain tokenization requirements.
Biomedical text includes many syntactically atomic units that contain char-
acters commonly appearing, and assigned to, separate tokens in general
text: token-internal periods (H2A.2), commas (4,5-bisphosphate), parenthe-
ses (poly-(L)-proline) and slashes (Arp2/3), for example, frequently occur
as parts of names. By contrast, many units that are commonly preserved as
single tokens contain relevant internal structure for semantic interpretation,
the most common example being adjectives such as CREB-binding.
Tokenization errors are an effective way to confuse parsers, and e.g. the
influential Penn tokenization algorithm splits tokens in many of the examples
above (see also Figure 1.5). Tomanek et al. study domain tokenization
in the light of the annotations of the GENIA Treebank (GTB) (Tateisi
et al., 2005) and PennBiolE (Kulick et al., 2004) corpora, and compare their
value as training material for a machine learning method for tokenization
targeting a semantically motivated tokenization. They find disastrously poor
performance, 72% accuracy, when training on the GTB corpus, but achieve
almost 97% accuracy when performing cross-validation on the target corpus.
However, the fact that the GTB tokenization recognizes syntactically,
not semantically, motivated tokens is not necessarily cause for criticism—
GTB is, after all, a treebank. Tokenization for parsing purposes is not a
particularly difficult task: even the Penn tokenization script”, not in any
way optimized for biomedical text, creates 98.5% of the same tokens on the
Biolnfer corpus as in our manually corrected, syntax-oriented tokenization;
minor tweaks suffice to bring this figure past 99%. There is no need to

7 Available from http://www.cis.upenn.edu/~treebank/tokenization.html
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treat, for example, Arp2/3-binding region as more than two tokens in order
to parse it. Identifying the units that are necessary for correctly determining
the meaning (minimally, Arp 2 / 3 -binding region to resolve Arp2, Arp3,
binding and region) is evidently a harder problem, but creating these tokens
early in the processing pipeline could unnecessarily complicate parsing. One
alternative is to split the “atoms” of syntax further for semantic process-
ing: other than possible technical restrictions, there is no requirement that
the syntactic token match the semantic “token,” similarly as morphemes,
the elements forming words, are distinct from the elements of syntax (see
e.g. Mel’¢uk, 1988, chap. 3). Grover et al. (2005) discuss multiple levels
of tokenization specifically in the context of parsing biomedical text. We
have followed this approach in our recent work, splitting e.g. actin-binding
into the tokens actin - binding and introducing additional “dependencies”
between them after parsing (Airola et al., 2008).

While tokenization for parsing is adequately addressed by simple rules,
the indication that machine learning for semantically motivated tokenization
has an over 3% error rate suggests that this specific problem may deserve
more consideration. As the issue is essentially word-internal, the standard
tools of computational morphology—one of the solved problems in natural
language processing (Karttunen, 2007)—should provide a satisfactory solu-
tion with some investment of manual work. Tokenization and the multiple
levels of tokens in the Biolnfer corpus are discussed further in Section 5.1.

1.2.4 Word-level processing

To normalize words, it is common in many applications to apply a mor-
phological analyser to retrieve the lemmas (base forms) of words with tags
denoting their parts-of-speech (POS) and inflectional and other features.
However, due perhaps to the extreme poverty of syntactically-driven mor-
phology in English (compared to e.g. Finnish), many domain studies either
do entirely without lemmatisation or use simple general English stemmers
such as that of Porter (1980). The subtask of POS tagging, however, has
been studied in the domain. POS tagging involves assigning to each word
the most likely tag (or tags) from a predefined set denoting parts of speech
(determiner, noun, adjective etc.). Numerous well-developed machine learn-
ing techniques for tagging exist, and POS annotation is not as demanding
to create manually as e.g. full syntactic analysis or semantic annotation.
Following the introduction of POS-annotated domain corpora, several high-
quality biomedical domain POS taggers have been introduced: The MedPost
tagger of Smith et al. (2004) and the GENIA tagger of Tsuruoka et al. (2005)
both achieve over 97% accuracy on biomedical text, essentially matching the
performance of machine learning-based POS taggers on general domain En-
glish. (see e.g. Shen et al., 2007).
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Some caveats apply to this simplified view of POS tagging performance.
First, tagging performance in excess of 99% has been reported for the hand-
written rule-based EngCG system (Voutilainen et al., 1992; Voutilainen,
1995) in a relatively early study by Samuelsson and Voutilainen (1997).
While differences in tagset restrict the ability to make a direct compari-
son and the degree to which this level of performance generalizes to other
domains has been questioned (Entwisle and Powers, 1998), accuracy of
nearly 98% on the GENIA corpus has been reported for a rule-based sys-
tem (Castano and Pustejovsky, 2005), suggesting that the level of domain
tagging performance could be further improved with a custom hand-written
system. Nevertheless, as the performance of automatically derived taggers
is relatively high and there is considerable effort involved in the creation of
a system such as EngCGQG, this may not represent a good investment of de-
velopment effort. Second, as the common word-sequence approach to POS
tagging gives a lower-level view of sentence structure than that available
to parsers, many state-of-the-art parsers do not perform POS tagging prior
to parsing but rather incorporate tagging into the parsing process. The
“standalone task” view of tagging performance above does not consider full
parsing, as is appropriate for e.g. tasks that benefit from POS tagging but
for which full parsing may be computationally too expensive.

POS tagging does not appear to present a bottleneck for text mining
performance and has not been considered as a primary goal in the research
presented in this thesis. However, domain taggers are considered as a foun-
dation to build on, and the value of tagging in parser domain adaptation is
studied in Paper II and discussed in more detail in Chapter 3 of this thesis.

1.2.5 Named entity recognition

Recognizing the names of entities in text is a fundamental prerequisite for
the extraction of information regarding their relationships. The task can be
divided into three subtasks: named entity detection, where the occurrences
of names are marked, named entity classification (or disambiguation), where
the type of the named entity (e.g. gene or protein) is determined, and named
entity normalization, where spelling variants are normalized to determine
the canonical name of the named entity and, typically, relate it to an entry in
a database such as UniProt (Bairoch et al., 2005). These steps fall broadly
under the heading of Named Entity Recognition (NER), although not all
NER methods attempt all these subtasks. In the following, the common
practice of using NER as a catch-all term for tasks where at least detection
is performed will be followed, with specific subtasks identified when relevant.

Biomedical domain NER is particularly challenging for a number of
widely recognized reasons. Ambiguity is pervasive: in addition to gene
names and synonyms that are common English words (notoriously common
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Ambiguity with general closed-class English words:

an by can for not
Ambiguity with other domain words:

head blood cell double arm
spliced eyeless limited

Ambiguity with out-of-domain English:

kayak canoe midget rutabaga 18-wheeler
vamp ogre disco boss shaggy

Spelling variation:
RAR alpha RAR-alpha RARA RARa RA receptor alpha
NF-kappaB NK(kappa)B kappaB NF-KB  NFKB factor

Table 1.2: Examples of problematic gene and protein names and abbrevi-
ations. (Examples from Proux et al., 1998; Hirschman et al., 2002a; Leser
and Hakenberg, 2005; Yeh et al., 2005; Ananiadou and Nenadic, 2006)

in particular in the Drosophila nomenclature) there is systematic ambigu-
ity between gene and protein names that arises from the close relatedness
of genes with the proteins they codes for; often the same name is used for
both. Other issues include spelling variation, inconsistent use of abbrevi-
ations, nested names, synonyms (arising from e.g. independent discovery),
descriptive names, and the constant discovery and naming of new genes. Ta-
ble 1.2 illustrates a number of cases; Park and Kim (2006) and Ananiadou
and Nenadic (2006) discuss these issues in detail.

Due to its importance to all further processing, NER is one of the most
widely studied tasks in biomedical text processing. While some initial results
for rule-based systems were very promising (Fukuda et al., 1998; Proux et al.,
1998) and a comparative evaluation by Nobata et al. (2000) suggested the
problem would not be notably more difficult for supervised learning methods
than general English NER, broader studies have revealed the task to be
very challenging. As NER has been a target in a number of shared task
evaluations, state-of-the-art performance will here be approached through
the results in the JNLPBA (Kim et al., 2004), BioCreative (Hirschman et al.,
2005b) and BioCreative II (Wilbur et al., 2007) evaluations.

The JNLPBA shared task used a version of the GENIA corpus (Ohta
et al., 2002), simplified to remove nested types and restricted to five of the
36 annotated classes: protein, DNA, RNA, cell line and cell type. The task
thus required detection and disambiguation. The BioCreative evaluation
task 1A (gene mention finding) was a single-class named entity detection
problem (Yeh et al., 2005) using the GENETAG corpus, tagged for gene and
protein names including related domains, complexes, subunits and promot-
ers (Tanabe et al., 2005). The BioCreative II GM corpus was an extension of
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Best result
Evaluation precision recall F-measure
BioCreative, 1A (closed) | 82.0% 83.2% 82.6% (Zhou et al., 2005)

BioCreative, 1A (open) | 82.8% 83.5% 83.2% (Finkel et al., 2005)
JNLPBA 69.4% 76.0% 72.6% (Zhou and Su, 2004)
BioCreative II, GM 88.5% 86.0% 87.2% (Ando, 2007)

Table 1.3: Best named entity detection shared task results. BioCreative
submissions were categorized as either closed or open depending on whether
they applied only the given training data or also other resources such as lists
of gene names; no restrictions were placed on BioCreative II submissions.
The JNLPBA task required also disambiguation between five entity types.

the BioCreative corpus, with 50% more training data. Table 1.3 shows the
best results from the shared task evaluations. One interesting observation
from these results is that the use of external resources such as gazetteers
(dictionaries of names—critical resources in general English NER) brings
relatively little extra value to the biomedical task. The surprising finding of
lower performance for the JNLPBA evaluation, which followed BioCreative,
is explained in part by the requirement for disambiguation, the inclusion of
partial matching in BioCreative 1A (Tanabe et al., 2005) and possibly also
in part by annotation consistency (Dingare et al., 2005). Tsai et al. (2006)
discuss these issues in detail.

The improvement between the two BioCreative evaluations is encour-
aging (though a number of confounds such as training set size exist), and
the organizers of the latter challenge were further able to demonstrate that
a combination of all system outputs, while not a practically workable ap-
proach, could in theory achieve 90.7% F. Nevertheless, error rates remain
considerably larger than the best achieved for general English: in the sixth
Message Understanding Conference, the first to introduce NER as a distinct
subtask, the highest-performing system achieved 96% recall and 97% pre-
cision, matching human performance (i.e. interannotator agreement rate)
(Sundheim, 1995). Tests where the same method is applied to general and
biomedical domain data (e.g. Finkel et al., 2005) confirm that the biomed-
ical problem is indeed more difficult, and interannotator agreement results
(e.g. Gaizauskas et al., 2003) suggest that this holds also for human anno-
tators (part of this difference may be related to the longer average length of
biomedical names; see Yeh et al., 2005).

The task of disambiguating between different classes of biomedical names
can either be performed as part of named entity detection (e.g. as multiclass
B-1-O tagging; Kim et al., 2004) or as a separate step. The latter approach
was studied early on by Hatzivassiloglou et al. (2001), who reported an F-
measure of 85% for disambiguating between gene and protein names. We
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have considered gene/protein disambiguation as a model task in a number
of studies exploring context representation models for machine learning for
disambiguation-type tasks. The original intuition in these studies was that
the common strategy of extracting features for learning from a limited win-
dow of context words represents an unrealistic model of context relevance,
where the closest words (those within the window) are all equally relevant
and others completely irrelevant. This model has been used in a great num-
ber of NER studies, including specifically in biomedical NE disambiguation
experiments by Hatzivassiloglou et al. (2001) and Torii et al. (2003, 2004).
This hard-boundary model of relevance was replaced with a distance-based
decay function that was initially shown to outperform other methods at
this task when applied together with a custom classifier by Ginter et al.
(2004a). In follow-up studies, context weighting approaches were shown
to be beneficial also for gene/protein disambiguation with Support Vector
Machines (SVM) (Pahikkala et al., 2005a), and general word sense disam-
biguation tasks with both SVM and Naive Bayes classifiers (Pahikkala et al.,
2005b). We have further generalized context weighting and the incorpora-
tion of positional information of context words in two studies that develop
the idea toward a framework of kernels for disambiguation tasks (Pahikkala
et al., 2005¢, 2008). These general methods are potentially applicable also
to numerous other tasks, including named entity detection using the B-I-O
model.

The final NER subtask, normalization, is also referred to as grounding or
mapping when understood to involve the identification of a unique identifier
corresponding to the named entity in a biomedical domain database. The
normalization problem is somewhat specific to biology, as general English
names feature only a fraction of the variability seen in e.g. protein names.
Grishman (2003) does not consider the subtask in his treatment of NER for
IE, and normalization was not included in the influential Message Under-
standing Conference (MUC) series formulation of NER, although alias recog-
nition in MUC-6 template element filling (see e.g. Grishman and Sundheim,
1996) can be seen as a related problem and the “off the page” (Doddington
et al., 2004) aims of the later ACE Entity Detection and Tracking tasks pose
somewhat similar challenges. The BioCreative evaluation task 1 included a
normalization subtask (Hirschman et al., 2005a), where the best achieved re-
sults were 92% F-measure for normalizing yeast genes, 82% for fly, and 79%
for mouse. BioCreative II only tested human genes, with the best system
achieving 81% and the organizers 84% by pooling system outputs (Morgan
and Hirschman, 2007). These results demonstrate strong subdomain de-
pendence for the task, and this variation further complicates comparison
to performance in other domains. While the BioCreative II normalization
task organizers judged the results to indicate “a significant advance in the
state of the art” (comparing with previous mouse results and taking the
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higher ambiguity of human gene names into account), the normalization
task, which requires named entity detection, holds considerable challenges.
Normalization is not studied as a specific goal in this thesis, and named
entity identity is intentionally excluded from consideration in particular in
relation extraction tasks.

1.2.6 Term recognition

In the biomedical domain, the task of term recognition is in many ways
closely related to NER; indeed, term recognition can be viewed as encom-
passing named entity recognition (see e.g. Krauthammer and Nenadic, 2004;
Ananiadou and Nenadic, 2006) and how the borders are drawn may depend
largely on methodology, with IE and machine learning providing one view
and automatic term recognition and a linguistic approach another. The
boundaries of names and, consequently, of the named entity recognition task
are relatively crisp in general English (Sundheim and Chinchor, 1995). The
core of NER is the task of tagging proper names, that is, unique (in context)
labels of either specific individuals or groups such as families, as opposed
to classes of entities. Proper names do not, as a rule, describe their refer-
ents (for example, Philip Kindred Dick does not imply fondness of horses,
relatedness, or fatness) and they are not compositional: the meaning of a
name is not related to the meanings of its parts. Biomedical names do not
share these properties: protein names almost never identify an individual
protein, but rather a class of entities, names often derive from descriptions
(e.g. CREB-binding protein) and frequently follow compositionality: for ex-
ample, the protein MAP is phosphorylated by MAP kinase (kinase meaning
a phosphorylating enzyme), which is in turn phosphorylated by MAP kinase
kinase.

The view we have taken especially in Paper IV (see also Ginter et al.,
2007) is a pragmatic one: protein and gene names are established labels of
(mutually interchangeable classes of) biomedical entities as used by biolo-
gists and represented in domain resources such as UniProt. In this view
the possible internal structure of names is a coincidental, not fundamental
property, and the main goal of normalization is to establish identity. By con-
trast, the internal structure of terms and the way in which it represents their
relations (e.g. of actin filaments and filaments) is central to terminological
processing, and the aim of term mapping is to relate terms to an ontology
of concepts that defines relationships such as meronymy (part-whole) and
hyponymy (class-subclass).

While term recognition, distinguished from NER in this way, is not
specifically considered as a target by any of the methods introduced in the
studies discussed in this thesis, terms are relevant to the annotation of the
Biolnfer corpus (Paper V), discussed in Chapter 5.
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They | are | flying | planes They | are | flying planes
(a) (b)

They are flying planes They are flying planes
(c) (d)

Figure 1.6: An early view of a pair of constituency (a,b) and dependency (c,d)
analyses for an ambiguous sentence. (Figure adapted from Hays, 196)

1.2.7 Parsing

Syntactic analysis, or parsing, refers to the task of analyzing sentence struc-
ture to produce a representation of its syntax. Parsing can be divided into
two broad traditions: constituency (or phrase structure) and dependency.
The first holds that words combine into phrases which repeatedly combine
to form the sentence. The motivation for constituency analysis arises from
the observation that there are combinations of words, phrases, that can be
substituted for single words: for example, the noun proteins can be substi-
tuted with the noun phrase 50-kDa proteins derived from Acanthamoeba. By
contrast, the dependency view rejects intermediate levels of description and
instead analyses syntax as binary relations, dependencies, that hold between
words. The motivating observation is that words depend on other words,
such as a determiner on a noun, for their presence in the sentence.

Modern constituency-based syntactic theories can be traced back at least
to the formulation of Bloomfield (1933) and for computational, generative
approaches to the enormously influential work of Chomsky (1957). A depen-
dency view of sentence structure can be traced back centuries, and much of
modern dependency theory to the seminal work of Tesniére (1959) and the
mathematical formulations provided by Hays (1964) and Gaifman (1965); an
excellent recent advocacy of dependency syntax is given by Mel’¢uk (1988).
An early view of constituency and dependency analyses is illustrated in
Figure 1.6. In present-day computational linguistics, the most influential
constituency scheme is that of the Penn Treebank (PTB) (Marcus et al.,
1993), which has been almost universally adopted in particular in statis-
tical parsing studies. While no equivalent standard exists for dependency,
the Stanford dependency scheme (de Marneffe et al., 2006) has many typ-
ical characteristics. A PTB tree and a Stanford dependency analysis of a
sentence are shown in Figure 1.7.
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Figure 1.7: Ezample Penn Treebank (a,b) and Stanford dependency (c,d) analyses.

Constituency has long been dominant in mainstream theoretical and
computational linguistics, but there has recently been a resurgence of ap-
proaches based on dependency, driven in part by increasing interest in lan-
guages other than English and focus on semantics. The focus of the work
presented in this thesis is on dependency. The parsers considered here pro-
duce full (as opposed to partial) dependency representations of sentence
structure, with varying emphasis on surface syntactic versus deep structure.

In dependency theory, certain properties are commonly understood to
constrain valid syntactic structures. Most fundamental among these are
that no word depends on more than one other word, called its head (single-
headedness), and that each word except one, the root, depends on another
word. The relation is represented by a directed edge from the head to the
dependent, and the structure is a rooted tree. Each head is said to govern its
dependent. Some formalizations add constraints such as projectivity (Hays,
1964; Gaifman, 1965): informally, that the dependencies must not cross
when drawn connecting the words of the sentence. However, projective de-
pendency grammars are less powerful than those without this constraint, and
projectivity has been argued to restrict the ability of the formalism to de-
scribe natural language (see e.g. Covington, 1990; Tapanainen and Jarvinen,
1997).

Common usage, in particular in computational linguistics, understands
the concept of dependency broadly. In this thesis, an inclusive view is
adopted: dependencies are, roughly, understood to be binary relations that
hold between words. Dependencies are typically typed and are either ex-
plicitly directed or provide some other means (e.g. type and word order) for
determining the roles of the words connected by the dependency. This broad
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view allows for multiple heads to model e.g. control phenomena without ex-
plicitly separated dependency layers (strata) and includes Link Grammar,
among others, in the class of “dependency-type” formalisms.

There are connections between the dependency and constituency worlds
on multiple levels, and reasons to think dependency as the more funda-
mental of the two ways of viewing syntax. First, the basic theories of the
subclass of projective dependency grammars and phrase structure gram-
mars both describe a set of grammars that define the class of context-free
languages (Gaifman, 1965); Hays (1964) terms the theories weakly equipo-
tent. By contrast, general, non-projective dependency graphs are strictly
more expressive than constituency trees (Covington, 1990). Further, many
syntactic theories combine aspects of both constituency and dependency.
For example, Lexical-Functional Grammar (LFG) (Bresnan and Kaplan,
1982) and Head-Driven Phrase Structure Grammar (HPSG) (Pollard and
Sag, 1994) augment phrase structure with grammatical functions (e.g. sub-
ject and object) and predicate-argument structures which, when viewed as
connecting phrase heads, form pairwise dependencies between words. Ad-
ditionally, even statistical constituency parsers make use of phrase heads
internally, as heads have been found to provide a valuable addition to their
probabilistic models: already ten years ago Carroll et al. (1998) wrote “we
are not aware of any contemporary parsing work which eschews the notion
of head and moreover is unable to recover them.”

Finally, the immediate representation that dependency gives to gram-
matical functions is an obvious benefit for extracting relationships: for ex-
ample, to resolve the roles of entities in an expression like e; binds eo it is
more straightforward to follow dependencies typed subject and object than
to analyse the corresponding phrase structure tree. Dependency analysis
thus benefits IE regardless of the underlying theoretical framework. Ulti-
mately, in practically oriented work it is not necessary to take a stand on
whether grammatical functions are merely a derivative concept, essentially a
name given to a specific configuration of the constituency tree (The Chom-
skyan view; see e.g. Radford, 2004, chap. 3), as their use can be motivated
by the fact that they are useful. Conversely, one can make productive use of
constituency-based parsers without explicitly agreeing or disagreeing with
Mel’¢uk (1988) that constituents only exist as a manifestation of the more
fundamental dependency structure.

Dependency parsing for biomedical domain information extraction is a
major topic of Papers I, II and III; the state of the art in particular is dis-
cussed in Section 4.4 of this thesis. Additionally, the specific task of parse
ranking, ordering the multiple ambiguous alternative analyses returned by
parsers, has been studied in our group: we introduced a parse ranking
method applying the Regularized Least Squares (RLS) (see e.g. Poggio and
Smale, 2003; Rifkin et al., 2003) machine learning method in (Tsivtsivadze
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et al., 2005), and the topic has been considered also in a number of other
studies (Pahikkala et al., 2006; Tsivtsivadze et al., 2007; Pahikkala et al.,
2007; Tsivtsivadze et al., 2008). Parse ranking is discussed also in Sec-
tion 3.4.

1.2.8 Relation extraction

Relation extraction® is the final step of the IE pipeline considered here. The
task involves using the representation of the structure of the input pro-
duced in the preceding steps to identify relations of the marked entities and
recognize the types of these relations. In the biomedical domain, relation
extraction methods most frequently target pairwise relations, often without
attempting to assign a specific relation type. The task of PPI extraction
can in this case be modeled as one of deciding for each pair of proteins co-
occurring in text whether or not they are stated to interact. An impressive
variety of different approaches to this task have been proposed in the do-
main literature, but much of the variation in fundamental approach can be
(somewhat informally) described by two binary choices: pattern-based vs.
rule-based and hand-written vs. learned. Pattern-based approaches make
use of explicit representations of expressions that state relations, while rule-
based approaches only aim to decide whether or not a statement expresses a
relation (cf. generative vs. discriminative models). The distinction between
hand-written and learned systems is simply in whether the strategy for mak-
ing a decision regarding the existence of a relation is encoded by the authors
of the system or derived automatically from data.

Thus, we can differentiate between systems based on hand-written rules
(e.g. Blaschke et al., 1999) and patterns (e.g. Thomas et al., 2000), systems
using learned patterns (e.g. Huang et al., 2004) and, finally, those that learn
decision rules (e.g. Bunescu et al., 2005). These decisions are further orthog-
onal to those regarding system components such as syntactic analysis: while
none of the studies cited above use full parsing, it is in turn is employed,
for example, by the systems proposed by Ding et al. (2003) (hand-written
rule), Rinaldi et al. (2006) (hand-written patterns) Yakushiji et al. (2005)
(learned patterns) and Saetre et al. (2007) (learned discriminative rule).

There are a number of reasons to favor machine learning approaches to
IE. Perhaps most importantly, hand-written systems tend not to general-

8There is remarkable variation on the naming of this task. In a survey focusing on
ACE (Doddington et al., 2004) relation extraction, Melli (2007) finds the terms relation
extraction, relation mention detection, semantic relation identification, semantic relation
classification, relation detection, relation discovery and relation recognition used by re-
searchers studying the problem. The targets of most biomedical IE efforts can be seen as
events (changes of entity state) in ACE terminology, but the term event extraction (and
similar) are less frequently used in domain literature. Here the term relation extraction is
understood broadly to include both “static” and “dynamic” extraction targets.
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ize beyond the specific tasks they were designed for, and adapting a large,
carefully tuned system to new tasks is a challenging and time consuming ex-
ercise requiring not only domain expertise but also detailed knowledge of the
specific system (Grishman and Sundheim, 1996). Yakushiji (2006, chap. 3)
argues for a learning-based approach to biomedical IE, noting as an example
the “1500 hours of highly skilled labor” reported by Lehnert et al. (1992) as
being spent on dictionary development for the MUC-3 adaptation of their
CIRCUS system. While the efforts of experts are necessary also in corpus
annotation for learning-based approaches, these can arguably allow a more
efficient division of labor where domain experts focus only on defining the
goal of extraction instead of being also intimately involved in system con-
struction. Additionally, in a learning-based approach, IE systems in various
domains can, ideally, gain the benefits of developments in machine learning
through the adoption of new generic methods trained on pre-existing domain
corpora.

There is a long-term trend toward learning-based approaches in IE: in
the MUC conference series, which largely defined IE in the 1987-1998 period
during which they were held, very few systems were learning-based (see e.g.
Turmo et al., 2006), with the first fully trained system, that of Miller et al.
(1998) only appearing at the last MUC event. Since then, a strong trend
toward more learning-based models has emerged: Hasegawa et al. (2004)
note that in the first Automatic Content Extraction (ACE) meeting (in a
sense a follow-up to MUC, see Doddington et al., 2004) that introduced
a relation detection task in 2002, most approaches involved learning. The
same trend can be seen also in biomedical relation extraction.

While machine learning per se is not a major topic of Papers I-V, ma-
chine learning methods have also been studied in out group (e.g. Pahikkala
et al., 2007; Pahikkala, 2008) and the design of the IE system assumes a
supervised machine learning approach—learning from examples with cor-
responding correct outputs—to assure generalizability beyond specific do-
mains. The viewpoint of machine learning is one of the motivations for the
creation of annotated corpora and the design of the annotations as well as
many other design choices in text mining systems. One of the most impor-
tant issues in applied machine learning is the creation of a representation of
the key features of the problem at hand for the learning machine. Such a rep-
resentation should aim to explicitly include sufficient information to decide
between different answers and to avoid making distinctions that make no
difference to the answer (normalization). This goal motivates in part many
of the design choices in a machine-learning based IE system, for example
the use of dependency schemes that give immediate and systematic repre-
sentation to relevant syntactic relations (see Chapter 4). Our recent efforts
in constructing a kernel for learning from dependency graphs are described
in (Airola et al., 2008).
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The creation of general, reliable approaches to relation extraction, whether
based on learning or not, is still a major challenge both outside and in the
biomedical domain (Krallinger et al., 2007). The state of the art in biomed-
ical relation extraction is discussed in detail in Chapter 6.

1.2.9 Corpora

Annotated corpora, that is, texts that have been marked up to identify, for
example, named entities or syntax, are not a task in text mining in the
sense discussed in the previous sections, but a central resource. Corpora
are necessary for the evaluation of methods as a reference standard against
which to measure their performance, as training data for machine learn-
ing methods, and for analyzing the characteristics of domain texts. Many
annotated corpora have been produced in biomedical text mining studies,
often created and applied in a single study and never released for wider use.
However, access to the specific texts and annotations used in experiments
is necessary to assure repeatability and comparability of results. Shared,
publicly available corpus resources are thus a requirement for domain text
mining research. Paper IV (Chapter 5) describes the Biolnfer corpus and
our efforts in creating this resource, and relates it to other domain resources.

1.2.10 Summary

The preceding sections have presented a brief survey of key tasks in biomed-
ical text mining in the context of an information extraction system architec-
ture. It was noted that for many tasks, methods with performance rivaling
or matching results in general English natural language processing have been
introduced. However, in the important tasks of named entity recognition,
parsing and relation extraction, performance is still either unsatisfactory or
(as argued further in the following chapters) to some extent unknown. The
discussion of the ways in which these challenges could be addressed aimed
also to motivate some of the choices guiding the research discussed in this
thesis, such as the application of dependency parsing as one of the key tools
and the perspective of machine learning. The above-discussed view on the
state of the art in biomedical text mining and the most promising meth-
ods for addressing the main challenges has motivated the focus of work of
our group, including that presented in Papers I-V. The specific aims of this
research are discussed in the next section.

The above discussion of the IE tasks and the associated techniques
touched on a broad range of topics, yet several related tasks, including ab-
breviation recognition, coreference resolution and semantic role labeling, fall
out of the scope of this treatment. Additionally, this brief introduction could
not cover the discussed tasks in the full detail they deserve. A more complete



28 Introduction

-7 (Paper 1V)

(Papér"l’)”%'(Pap(;jrxi’ll) (Paper V) | Evaluation

\
‘ Parsing \4 (Paper 1)/ Resources

Figure 1.8: Illustration of the relationship of the papers included in the thesis and
the main topics. Arrows indicate that a study builds directly on prior work, dotted
lines signal a connection through data.

treatment can be found in the standard general NLP texts of Manning and
Schiitze (1999) and Jurafsky and Martin (2000), and many of the specific
topics are given a chapter in the computational linguistics handbook edited
by Mitkov (2003). Biomedical text mining is the topic of a recent book
edited by Ananiadou and McNaught (2006) that covers the tasks discussed
here and more. Surveys of different areas of the field are given by Cohen and
Hersh (2005) and Spasic et al. (2005), and applications of text mining are
reviewed by Ananiadou et al. (2006); references to numerous other domain
surveys can be found in the recent overview of Zweigenbaum et al. (2007).

1.3 Research objectives

The overarching goals of the research of our group have largely matched
those of the general biomedical text mining research program guiding nu-
merous groups around the world: the development of techniques, meth-
ods and resources advancing the state of the art in biomedical text mining
with the ultimate aims of providing useful tools for researchers working in
biomedicine and developing general strategies for applying NLP methods to
specific domains. Within this broad problem domain, any productive indi-
vidual research must necessarily be focused on a subset of the issues. The
work presented in Papers [-V and, by extension, the core of this thesis, aims
to address in particular the following issues (reference to papers addressing
each topic in parentheses; see also Figure 1.8):

Parsing biomedical text. One of the central aims of our study of parsers
is determining the performance of available parsers on biomedical text (Pa-
pers I and IIT) and the identification of the challenges that general English
parsers face in domain texts (Paper I). The natural follow-up to the latter
question is the study of the ways in which current tools can be adapted to
the domain (Paper II) as well as how their value for text mining can be
otherwise improved (Paper III).
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Evaluation methodology and comparability. The variety of approaches,
representations, and evaluation methods used in text mining is an obstacle
to determining the relative merits of different alternatives. The research
presented here aimed to develop methods and techniques for meaningful
evaluation (Papers I, IIT and V) as well as to establish the limits of compa-
rability in the absence of standards (Paper V).

Resources for text mining. Few aspects of text mining are possible
without resources such as annotated corpora. A major effort in the research
presented here has been the design and annotation of such a resource for
the major stages of biomedical text mining (Paper IV). The development
and further refinement of resources was a key goal in our study of PPI
annotations (Paper V) and a major motivating factor as well as a necessity
in much of the work concerning domain parsing (Papers I, IT and III).

While much of the research has been closely focused on the challenges of the
biomedical domain, the approach taken has sought to avoid the trap of de-
veloping complex hand-written solutions limited to specific tasks and aimed
instead for approaches that can either be applied to other tasks by training
on new resources or require only little manual tuning. This approach is a
recurrent minor theme of the research. Another such theme is unification,
the bridging together of tools and resources that are divided on the sur-
face but have underlying commonalities; this goal is relevant to Paper I and
particularly strongly in focus in Papers III and V.

The following five chapters briefly present Papers I-V. The aim in writing
these chapters has not been to summarize the entirety of the publications,
but rather to introduce some of the main ideas and key results, extending the
background and motivation of the research as well as relating it to relevant
studies published concurrently with or after the original papers. For details,
references to the publication reprints included in Part II of this thesis are
included throughout.
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Chapter 2

Parser evaluation

Methods for syntactic analysis, including full parsers, have been a natural
part of the toolbox for biomedical text mining since early domain studies
(e.g. Sekimizu et al. (1998); Craven and Kumlien (1999); Yakushiji et al.
(2001)). Remarkably, while a number of domain studies had included infor-
mal or partial evaluations of the applied tools, to the best of our knowledge
our evaluation (Pyysalo et al., 2004) of the Link Grammar (LG) parser was
the first formal parser evaluation using a fully annotated domain corpus.
Likewise, the follow-up study (Paper I) comparing the LG and Connexor
Machinese Syntax (Connexor) parsers was among the first comparative do-
main parser evaluations, performed concurrently with, for example, the com-
parative study of Clegg and Shepherd (2005).

The motivation for this study is simple: parser performance is domain-
dependent (Sekine, 1997), so one cannot assume that good results on general-
domain text will apply to specialized domains. Without information on the
performance of parsers on the domain of interest, one cannot make an in-
formed decision on whether to apply a parser at all, nor which one to choose.
A detailed evaluation can further aid in identifying specific problem areas to
target in parser adaptation. We were interested in the application of depen-
dency parsing to biomedical text mining and found a lack of information on
domain parser performance, which motivated the work reported in (Pyysalo
et al., 2004) and Paper 1.

2.1 Parsers

In Paper I, we evaluated and compared the LG parser of Sleator and Tem-
perley (1991) and the commercial Connexor parser based on the Constraint
Grammar framework (Karlsson, 1990). LG and Connexor represent two fun-
damentally different approaches to parsing (Paper I, Section 2), but share
the important property of producing dependency-type parses.
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The specific choice of LG and Connexor as the targets of the evaluation
reflects both the desired practical advantages of dependency representations
for text mining as well as the relative popularity of these methods in biomed-
ical domain studies. LG had received considerable attention in the biomedi-
cal text mining literature: among the earlier studies, Ding et al. (2003) used
the parser for PPI extraction with a simple decision rule based on parse con-
nectedness, Phuong et al. (2003) introduced a method for learning patterns
expressing interactions using LG parses, Aubin (2003) presented a parser
comparison including LG, Szolovits (2003) introduced an automated exten-
sion of the parser lexicon with terms from the UMLS Specialist lexicon (see
Chapter 3 of this thesis), and the Caderige project (Alphonse et al., 2004)
applied LG for domain ontology population as well as PPI extraction.

Likewise, methods based on the Constraint Grammar framework have
been frequently applied to biomedical domain tasks. EngCG (Voutilainen,
1997) was applied by Sekimizu et al. (1998) in a rule-based PPI extraction
system and later by the same group for reducing lexical ambiguity prior to
full parsing (Yakushiji et al., 2001). Connexor was similarly applied in the
Yapex named entity recognition system of Franzén et al. (2002), for initial
predicate-argument structure annotation by Wattarujeekrit et al. (2004),
and in the PPI extraction systems of Koike et al. (2003, 2005).

2.2 Evaluation methodology

A large number of methods and approaches to parser evaluation have been
proposed (see e.g. Carroll et al., 1998; Kakkonen, 2007, chap. 8), of which
methods employing annotated corpora are a widely used and reliable way
for establishing performance. Within the dominant constituency framework,
standard measures proposed by Black et al. (1991), known as the PARSE-
VAL (or GEIG) measures, compare parse trees in terms of representations
where phrase boundaries are marked by brackets. The quality of a parse with
respect to the correct parse is evaluated in terms of the number of crossing
brackets and precision and recall of the correct phrases. While the PARSE-
VAL measures are standard and still widely used, they have faced much crit-
icism: one simple, specific objection is that a perfect score can be achieved
on the crossing-brackets measure by assigning the sentence no structure at
all. Magerman judged the crossing-brackets measure “misguided” and the
measures in general “crude”, arguing instead for exact matching of all prop-
erties of the entire tree (Magerman, 1994, chap. 7). Lin (1995) argued
similarly that the measures count some errors multiple times and do not
accurately reflect how much a parse deviates from being correct, suggesting
instead dependency-based evaluation using an error-count.
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Figure 2.1: Examples of differences between the LG (above) and Connezor (below)
dependency schemes. [Figures from Paper I

Dependency-based parser evaluation has recently found general sup-
port (e.g. Carroll et al., 1998; Preiss, 2003; Kaplan et al., 2004; Clark and
Curran, 2007; Nivre et al., 2007), as discussed in more detail in Chapter 4
of this thesis. Clegg (2008) (Chapter 2) considers a number of constituency
and dependency-based evaluation methods and presents a recent, detailed
argument in favor of dependency for parser evaluation. Clegg’s endorsement
of dependency-based evaluation is particularly relevant here as it is informed
by his two recent biomedical domain studies on parser evaluation, the first
based on constituency and the latter on dependency (Clegg and Shepherd,
2005, 2007). The dependency-based evaluation in Paper I is thus not only a
natural choice for dependency parsers, but also in line with current practice
in parser evaluation.

Evaluation of parser performance in terms of dependency relations is
not sufficient alone to guarantee meaningful comparability of results for
different parsers. The dependency schemes applied by parsers differ with
respect to the recognition of heads and dependents, the types assigned to
different dependencies, and the number of dependencies and dependency
types employed: Figure 2.1 illustrates some differences between the LG
and Connexor schemes. Because of these differences, it is not possible to
evaluate the parsers on a single set of annotations. One alternative would
be to create two separate dependency annotations, each following in detail
the scheme of one of the parsers. However, there is no guarantee that the
results of such separate formalism-specific evaluations can be meaningfully
compared (see e.g. Miyao et al., 2007). One way to ensure comparability
is to create conversions from parser-specific representations into a common
scheme. As discussed in detail in Paper IIT (Chapter 4 of this thesis), there
are several challenges in making this approach work, relating in particular
to large margins of error from the conversion.

In Paper I, to create a meaningful comparative evaluation we evaluated
each parser on an annotated corpus (the gold standard) that is essentially
specific to its dependency scheme, yet abstracted from the largest differenti-
ating factors between the two schemes. We further aimed to guarantee that
the number of constraints on their output that the two parsers must meet
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are as close to equal as possible. Specifically, to ensure comparability, we
evaluated each parser against a separately annotated gold standard that fol-
lows its dependency scheme structurally, but we did not require dependency
types to match: LG uses approximately 10 times as many specific depen-
dency types as Connexor, so requiring types to match would have placed
unequal demands on the parsers. Additionally, as LG dependencies are not
explicitly directed, we only required that the correct words be connected.
Finally, we modified the LG gold standard scheme to exclude a number of
dependencies that form cycles in the original LG scheme, so that the depen-
dency graphs for each parser would form trees. The resulting gold standards
contain a total of 7541 dependencies in the modified LG scheme and 7540
in the Connexor scheme, thus meeting the aim of having close to the same
number of constraints for each. The selection of the gold standard sentences
and their annotation is discussed in Section 4 of Paper I.

2.3 Evaluation criteria

Dependency evaluation is typically performed in terms of precision and recall
of (specific types of ) dependencies, summarized using the F-measure. Due to
the exclusion of some of the dependencies in the gold standard annotation,
we could not measure precision: there was no way to automatically deter-
mine whether an additional dependency is correct. Generally, measurement
of recall without precision is close to meaningless: a fully connected graph
would trivially maximize the metric. However, in comparisons of connected,
acyclic dependency trees, precision equals recall (and hence F-measure):
there will be exactly one extra dependency for each missing dependency.
While neither the gold standard nor the parser outputs are always acyclic
and connected, exceptions are rare. The assumption that recall can in this
case be used as a meaningful proxy for F-measure performance was partly
empirically validated by the LG-specific evaluation in Paper III (Table 2,
LG scheme), where both precision and recall were measured and differed
only by one percentage unit.

The fraction of gold standard dependencies that each parser recovers
provides an intrinsic view of parser performance. To gain insight into the
applicability of the parsers specifically to PPI extraction, we introduced
the interaction subgraph concept for parser evaluation, measuring the re-
covery of complete subgraphs connecting two entities in a way that states
an interaction. The basic idea of giving preferential status to the minimal
substructure of a syntactic representation that contains two entities whose
possible relation is being studied is a natural one, and has been frequently
applied, reinvented and explored in IE studies (e.g. Zelenko et al., 2003; Cu-
lotta and Sorensen, 2004; Bunescu and Mooney, 2005; Zhang et al., 2006;
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Figure 2.2: Example where the shortest path between ey and es excludes the word
stating the interaction. LG representation on the left, Connexor on the right.

Fundel et al., 2007; Erkan et al., 2007; Kim et al., 2008c). The core in-
tuition is formalized by Bunescu and Mooney (2005) as the Shortest Path
Hypothesis:

“[for two entities e; and es] the contribution of the sentence de-
pendency graph to establishing the relationship R(ey,es) is al-
most exclusively concentrated in the shortest path between e; and
es in the undirected version of the dependency graph.”

(see also Bunescu, 2007, sec. 4.4.1). This hypothesis holds to varying degrees
for different dependency schemes. Counterexamples are easy to find for
LG and Connexor, among others (Figure 2.2). To capture the relevant
information in such and in more complex cases, we defined the interaction
subgraph as follows:

The interaction subgraph for an interaction between two proteins
A and B in a dependency parse P is the minimal connected
subgraph of P that contains A, B, and the word or phrase that
states their interaction. [Paper I]

Interaction subgraphs capture the relevant information regarding PPIs more
accurately than shortest paths in a number of cases. Nevertheless, as cor-
rectly pointed out by Clegg and Shepherd (2007), the interaction subgraph
may exclude words such as negations and is thus also only an approximation
of the information that needs to be considered to extract PPIs'.

Finally, in addition to measuring the recovered dependencies and inter-
action subgraphs, we determined the fraction of fully correct parses, that is,
parses for which all dependencies were correctly recovered. This measure is
analogous to the exact match measure of (Magerman, 1994, chap. 7) and
allows the results to be related to evaluations where the fraction of fully
correctly parsed sentences is employed as a metric.
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Criterion | LG (first) | LG (best) | Connexor
Dependency 72.9% 81.3% 80.0%
Fully correct 7.0% 27.0% 7.0%
Interaction 26.9% 58.1% 36.2%

Table 2.1: Parser performance. [From Paper I, Tables 1 and 2]

2.4 Results

The main results of the evaluation are summarized in Table 2.1. While
the Connexor parser only returns one analysis for each sentence, the LG
parser returns all ambiguous alternative analyses allowed by the grammar,
and performance for LG is given separately for the first parse, that is, the
parse ranked highest by the parser heuristics, and the best parse out of
the given alternatives (“oracle” ranking). For the most directly comparable
result, the dependency-level performance for the first parse of LG against
Connexor, the latter performs statistically significantly better (see Paper I
for details), with an error rate 30% lower than that of LG. To relate these
numbers to performance on general English, we noted that an evaluation
of the Functional Dependency Grammar parser on which Connexor builds
has been reported to achieve over 88% performance on a variety of genres
(Tapanainen and Jarvinen, 1997). While several caveats regarding compa-
rability apply, this suggests that the error rate of the parser may increase
by over 60% when moving to biomedical text. The results for fully correct
parses and to a lesser extent interaction subgraphs are very low, suggest-
ing that both parsers face serious problems on biomedical domain text and
indicating a need for domain adaptation. Further, the considerably better
result for the best parses of LG compared to those ordered first by parser
heuristics indicates an opportunity to improve performance by reranking the
parses.

The fully correct, best parse result for LG (27%) is comparable to the
best estimated result (31%) achieved for a similar metric in the adaptive
evaluation of Grover and Lascarides (2001) of the Alvey Natural Language
Tools (ANLT) parser (Grover et al., 1993) on the unannotated medical-
domain OHSUMED corpus (Hersh et al., 1994). While the dramatically
poorer initial result for ANLT (2%) suggests that the robust parsing al-
gorithm of LG (Grinberg et al., 1995) allows it to overcome some of the
issues causing ANLT to fail, both results call into question the applicabil-
ity of parsers employing full hand-crafted general English grammars to the

"While simple negations as in A does not bind B can be resolved with special-case rules
such as those applied by Bunescu and Mooney (2005), the general case is harder; consider,
for example, Our experiments failed to find any support for the hypothesis that A binds B.
(see e.g. Sanchez-Graillet and Poesio, 2007)
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biomedical domain. Rebholz-Schuhmann et al. (2005) ask if text mining is
ready to deliver and, referring to these results, conclude that “computational
linguists have not yet developed tools that can analyse more than 30% of En-
glish sentences correctly.” We would not generalize these results quite as
broadly, as they do not represent, for example, the performance of statistical
parsers (see Chapter 4 in this thesis). Further, as Rebholz-Schuhmann et
al. accurately note, for the extraction of a particular fact one need only cor-
rectly analyse part of the sentence, specifically that stating the fact. Of the
results in Table 2.1, we would thus emphasize the somewhat more promising
numbers for interaction subgraphs.

As part of this study, we further performed a detailed failure analysis
of LG, with suggestions on how the failures could be addressed (Paper I,
Section 7) and an evaluation of the effect of two approaches to adaptation
(Paper I, Section 8). As these topics relate closely to domain adaptation,
discussion will be deferred to Chapter 3 of this thesis, which is focused on the
task. However, a criticism of one aspect of the work in Paper I (as originally
presented by Pyysalo et al., 2004), should be addressed here. McNaught and
Black (2006) (pages 154-156) provide a detailed and largely very positive
discussion of the study, but criticize our estimate that 8% of failures are due
to ungrammatical sentences and suggest that we may be observing natural
sublanguage behavior that only appears ungrammatical. First, there are
cases in the corpus that are genuinely ungrammatical, such as agreement
errors

e Reduced expressions of cell adhesion molecules (E-cadherin, alpha-
catenin, and beta-catenin) has been reported |[...]

o The high recombination levels seen in radd and radl8 mutants is de-
pendent on |[...]

as well as some borderline cases such as missing coordinating conjunctions

e The contents of myosin heavy chain, myosin light chain 2, actin,
troponin-I in 125-week-old rats decreased [...].

However, the core of their observation is accurate, as the most frequent cause
of failure categorized as ungrammatical, dropping otherwise mandatory de-
terminers (Paper I, Section 7.1), can be seen as accepted sublanguage usage,
in particular in publication titles. Thus, while these sentences are ungram-
matical from the point of view of the LG general English grammar—which
is why the term “ungrammatical” was selected—this term was perhaps in-
cautiously generally applied to describe the whole of this category of reasons
for parser failure.
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2.5 Conclusions

The work presented in Paper I was an early effort toward answering currently
more thoroughly studied questions (see Chapter 4 of this thesis) regarding
the performance of full parsers on biomedical text with reference to fully
annotated domain corpora. The evaluation indicated that both the LG
and Connexor parsers have problems on domain text, further characterizing
these problems in detail for LG. The following chapter extends on these
topics, focusing on the important related issue of domain adaptation.



Chapter 3

Domain adaptation

It has long been recognized that language use varies substantially by domain,
with sublanguages such as that of biomedical research being characterized
by specialized vocabulary, syntax, and semantics (Harris, 1968; Grishman,
2001; Friedman et al., 2002). Differences in lexicon and syntax, in partic-
ular, contribute to the domain dependence of parsing (Sekine, 1997). The
relatively low performance of parsers in the domain (Paper I) serves as a mo-
tivation for specific efforts to adapt parsers to biomedical texts. In Paper I1,
in collaboration with Sophie Aubin and Adeline Nazarenko of Université
Paris-Nord, we applied the evaluation methodology and an extended ver-
sion of the corpus of Paper I to study domain adaptation methods. The
interest in the Link Grammar (LG) parser in domain studies and the fact
that the parser is an open system that can be freely modified according to
need served to motivate the choice of LG for studying adaptation methods.

The findings of Paper I as well as those reported by Aubin et al. (2005)
indicated that issues relating to ambiguity and the lexicon are prominent
among the problems that LG faces in parsing biomedical English. In the
work described in Paper II, we chose to concentrate in particular on lexi-
cal adaptation, that is, adaptation addressing domain vocabulary, including
unknown words, a major source of ambiguity. In addition to the indica-
tion that lexical issues are a particular problem area for LG, our choice of
focus addresses also the general aim that adaptation methods should not re-
quire intensive manual efforts. While changes to the extensive hand-written
grammar of the LG parser were also known to be necessary to improve per-
formance, such changes would, for the most part, only benefit the specific
subdomain that the adaptation targets. By contrast, by studying lexical
adaptation approaches that require little or no manual work, we aimed not
only to extend the applicability of the parser but also to establish the ben-
efits and limits of such adaptation in a way that would generalize also to
other domains.
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3.1 Adaptation methods

We chose to consider three lexical adaptation methods, two of which were
proposed in the recent literature on domain parsing: the automatic mapping
of terminology between lexicons proposed by Szolovits (2003) and the sur-
face feature-based lexical disambiguation approach proposed by Aubin et al.
(2005). We additionally chose to evaluate the effect of using part-of-speech
taggers to disambiguate unknown words prior to parsing. These methods
are briefly presented next; more details are included in Paper II.

The method of Szolovits (2003) maps information between lexicons as
follows: to determine the lexical description that should be given to a word
w that is found in the source lexicon S but not in the target lexicon T', the
method determines first the set of words S,, C S that share the same lexical
description as w and then the subset of those words that also occur in T,
SwNT. One of the descriptions of the words in Sy, N7 is then assigned to
w based on the overlap between these sets. Szolovits applied this method
to augment the LG lexicon with words from the Unified Medical Language
System (UMLS) Specialist lexicon (McCray et al., 1993; Bodenreider, 2004),
adding over 100,000 words. This addition more than tripled the number of
words defined for LG and was shown to considerably extend coverage of
words in a clinical domain corpus. This large extension based on a major
lexicon covering a closely related domain presented a good candidate for
lexical adaptation. However, the focus of UMLS Specialist is on medical, not
biological terminology, suggesting that the increase in coverage might not
extend to text discussing, for example, protein-protein interactions. Further,
as no study on the effect on parse quality was presented by Szolovits, it was
necessary to evaluate the extension prior to adopting it.

Aubin et al. (2005) studied the requirements of adapting the LG parser
to the biomedical sublanguage and suggested a number of modifications,
including normalizing preprocessing steps, lexicon extension, incorporation
of term recognition, and the modification of grammar rules. They addi-
tionally identified a number of largely domain-specific suffix morphological
rules (see e.g. Mikheev, 1997) that could be used to disambiguate unknown
words by extending the “morpho-guessing” system used in standard LG lex-
ical processing. The identification of domain-specific surface features that
imply specific lexical categories can be performed by analyzing unannotated
texts, and does not presuppose the existence of large-scale lexical resources
such as UMLS or the availability of POS-annotated corpus resources. This
rule-based disambiguation method thus represents a relatively lightweight,
general approach to domain adaptation.

In the study originally proposing the use of morphological features for
biomedical domain adaptation Aubin et al. (2005) proposed 19 disambigua-
tion rules; this number was extended to 23 based on further analysis for the
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Suffix | Part of speech examples

-ase noun synthetase, kinase

-1ty noun chronicity, hypochromicity

-on noun replicon, intron

-o0se noun isomaltotetraose, isomaltotriose
-yl noun hydroxyethyl, hydroxymethyl
-ide noun iodide, oligodeoxynucleotide
-ic adjective glycolytic, ribonucleic, uronic
-1ve adjective nonpermissive, thermosensitive
-ble adjective inducible, metastable

-ae adjective (latin) | influenzae, tarentolae

-um adjective (latin) | japonicum, tabacum, xylinum
-fold | adjective/adverb | 10-fold, 4.5-fold, five-fold

Table 3.1: Examples of morphological features used for disambiguation.
[From Paper II, Table 1]

evaluation presented in Paper II. A number of these rules, the general classes
of words the features imply, and some examples to which the rules apply are
shown in Table 3.1. It should be noted that the rules are intended to apply
to unknown words and rely on the existence of a broad-coverage general
language lexicon: for example, the word increase would only be recognized
as a noun by these rules if it were not found in the lexicon.

High-reliability biomedical domain part-of-speech taggers (e.g. Smith
et al., 2004; Tsuruoka et al., 2005) had recently become available at the
time of the study. The training of accurate machine learning-based POS
taggers requires a considerable amount of training data: the version of the
GENIA corpus used by Tsuruoka et al. (2005) contains almost 500,000 man-
ually tagged words. This approach is thus not as readily applicable to lexi-
cal adaptation to new domains where resources are scarce as the other two
adaptation methods. Nevertheless, POS annotation is less demanding to
create than the full syntactic annotation required for the retraining of sta-
tistical parsers. Additionally, domain POS taggers are important tools and
their effect on parsing performance is both interesting as a separate piece of
information and a relevant point of comparison.

The incorporation of POS information required two modifications of the
parser: a way to pass POS-tagged words as input and a way to map these
tags into the lexical descriptions used by the parser. These changes were
implemented for the study; examples of the introduced mappings from POS
tags to LG lexicon entries are shown in Table 3.2.
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Tag | Description of tag LG rule Description of LG rule class
NN | common noun, sing. | words.n.4 sing. nouns, mass or count
NNS | common noun, pl. words.n.2.s | plural nouns

JJR | adjective, comparat. | words.adj.2 | comparative adjectives

JJS | adjective, superlat. | words.adj.3 | superlative adjectives

VB verb, base words.v.6.1 | optionally transitive verbs
CD | number NUMBERS general rule for numbers
RB | adverb, base words.adv.1l | ordinary manner adverbs

Table 3.2: Examples of POS tag mapping to LG rules. [From Paper II,
Table 2]

3.2 Evaluation methodology

Evaluation focused on three aspects of the effect of the adaptation meth-
ods: vocabulary coverage, ambiguity, and parsing performance. Vocabulary
coverage was evaluated on two corpora, in Paper II called interaction and
transcript. The first is an extension of the annotated corpus used in Paper I
and represents a subset of the syntactic annotation contained in the Biolnfer
corpus (Paper IV), and the latter is a 17,000 sentence unannotated corpus
on the Bacillus subtitlis transcription subdomain. Ambiguity and parsing
performance were evaluated on the annotated corpus.

Vocabulary coverage was measured by the fraction of corpus words that
are found in the lexicon, match a surface feature disambiguation rule, are
disambiguated based on POS, or are unknown. The modified LG applies
these alternatives in this order as a cascade—the first that matches de-
termines how a word is processed. Ambiguity was measured by average
sentence parsing time and the average number of analyses returned per sen-
tence. Finally, the evaluation of parsing performance followed the approach
described in Paper I (Section 2.2 of this thesis).

3.3 Results

Figure 3.1 illustrates the frequency with which different methods apply to
assign lexical descriptions to tokens in the unmodified parser (Orig) and the
adaptations with the UMLS Specialist lexicon extension, the morphological
feature extension (xMG) and the POS extension. One interesting observa-
tion is that the fraction of remaining unknown words is not considerably
larger for the xMG extension that adds just 23 simple rules than for the
100,000 word lexicon extension. The generality of these rules is supported
by the fact that they match equally on the interaction corpus, which repre-
sents a subdomain that was not considered in rule development.
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Transcript — tokens Interaction — tokens
100% 100% Il Unknown
80% 80% E POS
60% 60% O G.ue.ssed
Dictionary
40% 40%
20% 20%
0% - 0%
Orig UMLS xMG POS Orig UMLS xMG POS

Figure 3.1: Fraction of running tokens covered by each of the four methods on the
two corpora. [From Paper II, Figure 2]

The effect on ambiguity is shown in Table 3.3. While the number of
different analyses is decreased by about a third for all adaptations, the effect
on parsing time diverges somewhat, possibly reflecting in part the specificity
of the assigned lexical descriptions.

Metric | Orig UMLS xMG POS
Time 15.4s 9.9s 10.8s 8.6s
Lkg. ratio 1 067 0.68 0.66

Table 3.3: Ambiguity with different adaptations. Time is average parsing
time per sentence, linkage ratio is average of per-sentence linkage number
ratios. POS results using GENIA tagger. [From Paper II, Table 3]

Finally, the effect on performance is shown in Table 3.4. The reduction
in error rate for the xMG and POS approaches is encouraging, but does
not bring the results to the level expected of accurate parsers on general
English. The best observed relative decrease in error of 10% provides an
indication of the improvement that can be achieved through this type of
lexical adaptation.

Orig | UMLS A | xMG A | POS A
recall | 74.2 75.4 4.7 76.0 7.0 | 76.8 10.1
P N/A p =~ 0.06 p < 0.01 p < 0.01

Table 3.4: Parser performance with different adaptations. Recall is given
for the parse ordered first by the parser heuristics, A columns give relative
decrease in error with respect to the original LG, and p values are estimates
of the significance of this difference (signed-ranks test; Wilcoxon, 1945).
[From Paper II, Table 4]

These results agree with the findings of the failure analysis performed in
Paper I and confirm that modification of the hand-written grammar of the
parser is also necessary in domain adaptation.
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Regarding the implications of these results on the relative merits of the
adaptation methods, the result that performance is best with an accurate
domain tagger was expected, but the finding that the simple rule-based
model gives better performance than the large lexicon extension is somewhat
surprising. In Paper II we analyse this in detail, showing that the lexicon
extension can in some cases lead to reduced parse quality due to mapping
errors. The competitive performance of the rule-based method encouraged
us to apply a similar method to unknown word resolution in our recent work
on parsing Finnish (Laippala et al., 2008).

As part of the study we performed also experiments with the popular
Brill POS tagger (Brill, 1992) trained on general English texts (used in
biomedical text mining at least by Ono et al., 2001; Huang et al., 2004;
Hao et al., 2005), finding a high error rate and a mixed effect on perfor-
mance. We further evaluated a number of additional aspects of the effect of
the adaptations on performance and tested all possible combinations of the
adaptations, but found no notable further benefit. These experiments are
discussed in detail in Paper II.

3.4 Discussion and Conclusions

The experiments in Paper II supported the value of an accurate domain
POS tagger for the lexical domain adaptation of a general parser, finding
among other benefits a 10.1% reduction in error. As there is no theoretical
reason to expect this result to generalize to parsers based on fundamentally
different approaches from that of LG, it is interesting to note the similarity
to results reported by Lease and Charniak (2005) for the domain adaptation
of a statistical treebank parser (Charniak, 2000): Lease and Charniak found
an 11.5% reduction in error from POS-based adaptation, remarkably close
to that observed here. In addition to the three adaptation approaches con-
sidered in Paper II, as part of the study reported in Paper I we considered
also the effect of employing “oracle” knowledge of named entities in support
of parsing, which can be seen as a form of lexical adaptation. In this ex-
periment we found a 16.8% relative decrease in error; Lease and Charniak
considered the same strategy, reporting a comparable 12.0% decrease. The
similarity of these results across parser formalism and evaluation strategy
suggests that they may be tentatively considered as indicative of the general
effect of such adaptations.

In Paper I we observed that there is a considerable difference in qual-
ity between the parse ranked first by the LG heuristics and the best parse
among the ambiguous alternatives allowed by the grammar, suggesting that
reranking the parses could improve performance. We investigated this possi-
bility in a separate study (Tsivtsivadze et al., 2005), finding that training on
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as few as 500 annotated in-domain sentences could provide a 9.5% relative
reduction in error. While integrating such a reranking method would thus
further improve parser performance, this is not solely an effect of domain
adaptation as the original LG parser contains no statistical ranking com-
ponent. Related results from training on fully annotated domain corpora
are considered further in the discussion of the current state of the art in
domain parsing in Section 4.4 of this thesis; domain adaptation has also
been recently studied from a different perspective in a shared task in the
Computational Natural Language Learning (CoNLL’07) conference (Nivre
et al., 2007).

As part of the work described in Paper II we created an adapted version
of the LG parser that offers a 45% decrease in parsing time and a 10% relative
decrease in error over the unmodified LG when used together with a domain
tagger. This parser was made freely available as the first release of BioLG. It
has since been further developed to include a number of modifications to its
grammar, as proposed in Paper I and (Aubin et al., 2005). The parser has
also been incorporated into the Alvis NLP platform (Deriviere et al., 2006)
and applied in a number of studies, including that described in Paper III.
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Chapter 4

Unifying syntactic
representations

Parsing technologies have long been fragmented by the different formalisms
employed. The largest divide is between dependency and constituency, but
even parsers based on more closely related formalisms employ substantially
different syntactic representations. This has a number of unfortunate con-
sequences: corpora tend to be formalism-specific, reducing the amount of
data practically available, parser evaluations yield results that cannot be
directly compared, and methods that apply parsers tend to become bound
to the formalism, making it difficult to select between different tools.

There has recently been considerable interest in unification using stan-
dard syntactic representations. Three prominent proposals are dependency-
based: the Grammatical Relations (GR) scheme proposed by Carroll et al.
(1998), the scheme used in the 2006-2007 CoNLL dependency parsing tasks
(Nivre et al., 2007) and the Stanford dependency scheme (SD) of de Marn-
effe et al. (2006). The GR and CoNLL schemes are intended for parser
evaluation!, while the SD scheme, although originally inspired by GR, aims
in particular to be useful for further applications. The Stanford parser
package also includes a conversion from the standard Penn Treebank (PTB)
constituency representation to the SD scheme. The trend toward unification
and the advantages of shared, application-oriented syntactic representations
provided the motivation for work described in Paper III.

!Carroll et al. (1998) explicitly wrote that they are not advocating GR for use in
application tasks, although more recent work appears to partially reverse this stance
(Briscoe and Carroll, 2002).
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Figure 4.1: [llustration of LG and SD representations. The syntactic struc-
tures assigned in the LG (above) and SD (below) representations to cases
exhibiting selected grammatical phenomena.

4.1 Dependency representations

One of the key benefits of performing syntactic analysis as part of an infor-
mation extraction pipeline is normalization, abstracting away unnecessary
or coincidental differences between different forms of expression carrying the
same (or similar) meaning. From the perspective of normalization, the out-
put representations that parsers use can make a great difference to their
value for further processing. Unlike the SD scheme, the dependency scheme
employed by the LG parser was not designed with IE applications in mind,
and for this purpose its dependency types in part make unnecessary dis-
tinctions and in part lack relevant distinctions. Moreover, LG dependency
structures are oriented toward surface syntax rather than semantics. Fig-
ure 4.1 shows the syntactic structures for a number of expressions in the LG
and SD schemes, illustrating that the SD representation more directly rep-
resents the semantically relevant connections and offers a more consistent
representation of the underlying structure in the face of surface variation
(see also Paper III, Section 3).

Our recent study comparing different dependency representations against
a representation of biomedical relations as semantic dependencies indicates
that the “collapsed” SD representation in particular closely captures the
relevant semantics (Bjorne et al., 2008). Related issues are also discussed
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by de Marneffe et al. (2006) and by Yakushiji (2006) (pages 7-10) in the
context of the deep parser Enju (Miyao and Tsujii, 2005). Miyao et al.
(2008) recently performed a PPI task-oriented parser evaluation that lends
further empirical support to the value of dependency-based representations
in general and SD in particular: excepting Enju, the evaluated parsers con-
sistently performed best when their output was converted to SD or the
CoNLL (Nivre et al., 2007) dependency representation, even though their
native PTB output is constituency-based.

The introduction of the SD scheme and the accompanying conversion
from the PTB scheme made many constituency parsers and corpora easily
applicable in application-oriented systems that use dependency representa-
tions, combining the benefits of a large treebank and a semantically oriented
output representation. While this conversion is far from the first to identify
head-dependent relations in constituency trees (see e.g. Magerman, 1994,
Section 5.2.2. and Appendix C) nor the first to specifically extract typed
semantically-oriented dependencies from PTB trees (Levy and Manning,
2004), it has, in addition to these properties, the benefits of being available
in a standard software package and easily applied. A further point in its
favor here is its recent use in the detailed evaluation of several statistical
parsers on the biomedical GENIA treebank corpus (GTB) by Clegg and
Shepherd (2007).

Recognizing both the value of unification under shared representations
and the potential benefits of the SD representation for further applications,
we created a conversion from the LG to the SD scheme as part of the work
presented in Paper III. A reliable conversion provides a number of benefits,
increasing the value for IE applications of both the LG and BioLG parsers
as well as that of the syntactic annotation of the Biolnfer corpus, originally
created using the LG scheme (Paper IV, Chapter 5 of this thesis). Together
with the PTB—SD conversion, a LG—SD conversion also makes it possible
to use the syntactic annotations of the PTB-annotated GTB and Biolnfer
corpora together, and further allows the performance of statistical treebank
parsers, LG and BioLL.G to be evaluated on a shared scheme.

4.2 Conversion methodology

To create the LG—SD conversion, we used a combination of preprocessing
and hand-written rules. First, preprocessing was applied to resolve coor-
dination, which is analysed in fundamentally different ways in the LG and
SD schemes. Conversion rules were written using the 1p2lp formalism devel-
oped by Alphonse et al. (2004)—Ip2lp had previously been applied by Aubin
(2005) to convert parses initially generated by LG into a more application-
oriented scheme for the LLL challenge (Nédellec, 2005).
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Figure 4.2: Illustration of conversion rule. LG structures above, SD below.
LG dependencies matching the regular expression Mp|MVp|OF and their
corresponding SD prep dependencies highlighted.
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Figure 4.3: Illustration of conversion rule. LG structure above, SD below.

LG MVp and RS dependencies highlighted.

The conversion rules consist of constraints on the source LG parse, and
most typically specify that a dependency must be found for the rule to apply.
In addition to the dependencies, constraints can refer to the lexical level,
requiring certain words to be found in the sentence. When the constraints of
a rule are satisfied, one dependency is generated to the target parse, with the
head, dependent and dependency type specified by the rule. As an example

of the simplest possible form or rule specifying only one dependency type
auxpass

constraint, [X By Y] =Y = X specifies that whenever a dependency
of type Pv is found in the source connecting any two words X and Y, an
auzpass dependency where Y is the head and X the dependent is generated.
Further, constraints can be negated, requiring that a dependency is not
present, and dependency types can be specified with regular expressions, as
in the following example (simplified from Paper III):

Mp|MVp|OF
PRVPIOT v B8 7) o x PPy

X
Figure 4.2 illustrates three cases where the constraints of this rule are sat-
isfied and a prep dependency generated; Figure 4.3 illustrates a case where
the negated constraint matches and no dependency is generated by this rule.
Discussion of the preprocessing as well as a more detailed description of the
rules is found in Paper III, Section 4.1.
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It should be noted that the decision to create the conversion rules by
hand goes somewhat against the general aim of avoiding manual work whose
results do not generalize. However, to reach the general goal of unifying syn-
tactic representations under a single shared representation, it would suffice
to generate as many conversions as there are different syntactic schemes.
Compared to the development of the parsers for the various schemes, the
development of conversion rules—in this study estimated as taking approx-
imately 100 hours—is far from an excessive effort?. Further, the conver-
sion rules do not contain any domain-specific aspects and thus require no
adaptation when applying parsers to novel tasks. As there are no estab-
lished methods for creating high-quality conversions between dependency
schemes, we opted to create the rules by hand as the most reliable alterna-
tive. If large numbers of conversions need to be created, the development
of learning methods for automating the process would become a valuable
alternative approach.

4.3 Results

Rule development was performed with repeated testing against a partial
reference standard until a point of clearly diminished returns for effort was
reached. The created ruleset consisted of 114 rules, each rule specifying on
average 4.4 constraints (for more detailed statistics, see Paper III, Section 5).
The rules were then applied to tentatively convert the Biolnfer corpus gold
standard LG annotation into the SD scheme, and the resulting annotation
was then manually corrected so that each sentence was separately corrected
by two independent annotators. Inter-annotator agreement was measured
as 97.4% F-measure, a high result supporting the stability of the SD scheme;
all remaining disagreements were resolved jointly by the annotators.

To evaluate the rules, they were used to convert the LG scheme gold stan-
dard annotation of the corpus and the result compared against the created
gold standard SD scheme annotation. Figure 4.4 illustrates the cumulative
precision and recall of the conversion when rules are added in highest-recall-
first order. The full ruleset reaches a very high precision of 98.0% and recall
of 96.2%, indicating that the creation of a high-reliability conversion is pos-
sible. The quality of the conversion was further ascertained by evaluating
the BioLLG parser on the LG and SD versions of the Biolnfer corpus syn-
tactic annotation, finding no loss in performance from the conversion. This
result is discussed further in Paper III, Section 5.3.

Finally, we applied the newly created SD Biolnfer and an SD-converted
version of the GTB corpus to evaluate the BioLG parser and the version

2A considerably larger effort was expended to create a system supporting rule writing
and quality measurement, but this exercise need not be repeated for other rulesets.
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Figure 4.4: Cumulative precision and recall of the LG—SD conversion rules. [Fig-
ure from Paper I1I]

of the Charniak statistical treebank parser (Charniak, 2000) adapted to the
biomedical domain by Lease and Charniak (2005) (below Charniak-Lease,
or C-L), which performed best overall out of the nine variants of five parsers
evaluated by Clegg and Shepherd (2007). The results of this evaluation are
shown in Table 4.13

Charniak-Lease BioLG
corpus }Prec. Rec. F | Prec. Rec. F
GENIA | 81.2 81.3 81.3 | 76.9 724 74.6
Biolnfer | 784 79.9 79.1 | 79.6 76.1 77.8

Table 4.1: Parser performance. Precision, recall and F-measure for the two
parsers on the two corpora. [From Paper III]

Despite an approximately 5% divergence on the measured F-measure
performance difference between the parsers on the two corpora due to con-
version biases (discussed in Paper III, Sections 5), the C-L parser achieves
statistically significantly better performance on both corpora, demonstrat-
ing the feasibility of using the SD scheme as a unifying representation for
parser comparison.

4.4 Discussion and conclusions

The study presented in Paper III is the most recent of our parsing-related
work included in this thesis, and this chapter thus the last dedicated to

3The table presented here corrects a slip of the finger in data entry for the table in
Paper II1, where the figure 79.4 appears as the F-measure of the C-L parser on Biolnfer
instead of the correct 79.1. This difference does not alter the conclusions of the study.
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related topics here. The following brief discussion covers related work pub-
lished concurrently with or after Papers I to III to further set these studies
in their broader context.

study source target | precision recall F-measure
Clark and Curran (2007) CCG GR 86.9%  82.8% 84.8%
Paper I11 LG SD 98.0% 96.2% 97.1%
Sagae et al. (2008a) HPSG GR 87.5%  86.8% 87.1%
Sagae et al. (2008a) SD GR 80.8%  69.2% 74.5%
Sagae et al. (2008a) HPSG PTB 98.1%  98.1% 98.1%
Haverinen et al. (2008)  Pro3Gres SD 96.9%  95.4% 96.1%

Table 4.2: Reported conversions with conversion quality estimates.

First, there is currently considerable interest in formalism-independent
parser evaluation both in general and biomedical domain NLP, and the re-
lated issue of conversion between syntactic representations has lately been
the focus of a number of studies. The GR representation of Carroll et al.
(1998) can be seen as emerging as a standard for formalism-independent
evaluation of parser performance, while SD (de Marneffe et al., 2006) is
gaining popularity in IE applications and used in a number of biomedical
application-oriented parser evaluations. Evaluation of non-native GR/SD
parsers on resources annotated using these representations requires conver-
sion, and although not all such evaluations have included estimates of the
quality of conversion (e.g. Preiss, 2003; Kaplan et al., 2004), a number of
studies assessing the difficulty of various conversions have recently been pub-
lished. Their results are summarized in Table 4.2. While a number of factors
relating to e.g. conversion methodology prevent strong conclusions from be-
ing drawn, these results are consistent with the hypothesis that the GR
scheme represents a difficult conversion target (for discussion, see Clark and
Curran, 2007; Sagae et al., 2008a), while the creation of accurate conversions
into SD is feasible. This result may be explained in part by the different
emphasis of the representations on deep vs. surface-oriented structure. If
similar results hold also in future evaluations, they present an argument in
favor of SD for formalism-independent evaluation.

Second, recent studies evaluating parsers on biomedical text using SD
and either the GTB corpus (Clegg and Shepherd, 2007; Sagae et al., 2008a)
or Biolnfer (Haverinen et al., 2008) allow the picture of parser performance
and adaptation methods painted in Papers I-1II to be filled in further. As
discussed above, Clegg and Shepherd evaluated nine variants of five statisti-
cal treebank parsers, and Sagae et al. evaluated the HPSG parser Enju, the
Charniak-Johnson reranking parser (Charniak and Johnson, 2005) and the
Charniak parser (Charniak, 2000). In our recent study using the methodol-
ogy presented in Paper III to create a Pro3Gres—SD conversion (Haverinen
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et al., 2008), we evaluated the Pro3Gres parser (Schneider, 2007), which
has been developed with particular attention to the challenges of parsing
biomedical domain text, comparing its performance to that of the Charniak-
Lease parser. Sagae et al. performed also the important experiment of re-
training the statistical parsers (with the exception of the Charniak-Johnson
reranker) on GTB. Although not a lightweight adaptation approach in the
sense studied in Paper II in requiring an annotated domain treebank, this
experiment provides important complementary information regarding do-
main adaptation. The largely comparable results of these studies suggest
that while there is not much difference among the best-performing parsers,
the Charniak-Lease parser performs the best among those evaluated “out
of the box,”—without retraining the parser—as parsers are most commonly
applied in domain studies. Of those evaluated after training on a domain
treebank, the Enju and Charniak-Johnson parsers jointly achieve the best
results. A recent task-oriented evaluation of eight parsers (not including
Charniak-Lease) by Miyao et al. (2008) suggests roughly similar conclu-
sions regarding the merits of the parsers for PPI extraction, with Charniak-
Johnson performing best without retraining. When trained on GENTA, the
best-performing parsers were Enju with the adaptations of Hara et al. (2007)
and the native dependency parser of Sagae and Tsujii (2007).

Third, these results allow a note on the effect of training on a domain
treebank: both studies report performance for the Charniak parser using
largely the same setup, SD conversion (“collapsed” output) and the GTB
corpus, although using different subsets of GTB. Clegg and Shepherd (2007)
report 77.0% F-measure without retraining and Sagae et al. (2008a) 81.2%
when the parser is trained on GTB. These results suggest an 18% relative
reduction in error from training on a domain treebank. In view of the ef-
forts required for treebank annotation, this improvement appears somewhat
modest, bringing into question whether treebank annotation is an effective
focus of efforts for adaptation to new domains (see also Sagae et al., 2008b).
However, this estimate should be taken cautiously, as subtle differences in
evaluation strategy can cause substantial differences in results (see e.g. the
discussion of collapsing in Paper III, Section 5.3).

Fourth, as Sagae et al. (2008a) evaluate the same parsers both trained
and tested on PTB and trained and tested on GTB, the results provide
an estimate of the difficulty of parsing biomedical domain text. The best
reported SD result for PTB is 88.4% and for GTB 82.0% F-measure, for
an estimated 55% increase in error from general English to biomedical text,
even including training on a domain treebank. While the differing sizes of
the two treebanks are a confounding factor, this result is in line with the
rough estimate provided in Paper I and suggests further that additional
efforts are still required for biomedical domain parsers to reach the level of
accuracy achieved in parsing news domain English.
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In conclusion, while Papers I-1IT and other recent studies have shed light
into the issues of parser performance on biomedical text, domain adaptation
methods, and the feasibility of unification under shared syntactic represen-
tations, several open issues remain. Compared to the relatively steady state
in parser evaluation methodology in the decade following the introduction
of the PARSEVAL measures, parser evaluation is currently in something of
a state of flux, with movement toward formalism-independent dependency
evaluation but more variance in results. The results of Paper III support
the value of the SD scheme as a unifying representation, in particular for
application-oriented studies, and the conversion and annotation work in the
study has created the first native SD gold standard; this data is distributed
as part of the Biolnfer corpus. This resource may provide a valuable refer-
ence point for standardizing domain evaluation and development efforts.
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Chapter 5

Biolnfer corpus

The work described in Paper IV, the design and annotation of the Biolnfer
(Bio INFormation Extraction Resource) corpus, was the largest single sub-
project of those described in this thesis. When the first efforts to produce an
annotated corpus started in our group in 2001, the motivation for manual
annotation was simple: there were only few publicly available biomedical
corpora, and none that could fully support the development and evaluation
of a text mining system using full dependency parsing: for this purpose,
a corpus must minimally contain annotation for named entities and their
relationships, and syntactic annotation is necessary for evaluating and de-
veloping parsers for the task. Combining these annotations for a single set
of sentences further allows the interplay of parsing, named entity recogni-
tion and relation extraction to be studied in detail. These three classes of
annotation, entities, relationships, and syntax, form the core of the Biolnfer
corpus annotation.

The following sections briefly introduce Biolnfer and Paper IV. Due to
the complex nature of parts of the corpus annotation, the short descrip-
tion in this chapter is not an attempt to present a detailed definition of
Biolnfer annotation, but rather to motivate some of the central design deci-
sions and present an overview of the corpus. The main contribution of this
work, the Biolnfer corpus itself, is freely available at the corpus web page,
http://www.it.utu.fi/BioInfer.
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5.1 Named entities

Biolnfer entity annotation is built around named entities of the protein, gene
and RNA types. Only specific, established names such as actin are anno-
tated, not underspecified references such as a 50 kDa protein. We do not, by
design, annotate nesting (embedding) in names: for example, MAP kinase
is annotated as a simple name with no separate annotation for MAP. This
decision stems from the view that the names are, once established, typically
no longer either used or understood as descriptive. The alternative of anno-
tating names with full nesting together with the general aim of the corpus
annotation to capture all stated relationships would require, at one extreme,
each mention of e.g. mitogen-activated protein kinase kinase kinase (MAP-
KKK) to be annotated as stating four relationships, if not more (Rzhetsky
et al., 2004); this choice would not reflect how biologists understand sim-
ple name mentions. The decision not to annotate name internal structure
agrees with the strategy taken in PennBiolE annotation (Kulick et al., 2004)
but differs from the approach taken, for example, in the annotation of the
AIMed corpus (Bunescu et al., 2005).

The most commonly applied annotation scheme for named entities only
allows markup of continuous spans of text. For MUC annotation, for ex-
ample, the text North and South America would be annotated as contain-
ing the two locations South America and North (Sundheim and Chinchor,
1995). This strategy has been found inadequate for accurate annotation
of biomedical text by several groups working in the domain. The Biolnfer
annotation captures names precisely even in constructs involving, for ex-
ample, coordination with elision of a head word (alpha and beta catenin —
alpha catenin, beta catenin) or breaking syntactic token boundaries (Arp2/3
— Arp2, Arp3). Similarly detailed entity annotation has been produced
also for the GENIA (Ohta et al., 2002) and PennBiolE (Kulick et al., 2004)
corpora, although applying quite different annotation schemes.

5.2 Entity relationships

The prevailing approach to relationship annotation in corpora for biomedi-
cal text mining is simply to specify which pairs of annotated named entities
are connected by some form of relationship. This information may be aug-
mented by specifying, e.g. directed pairs or the type of the relationship, as
discussed further in Chapter 6. While pairwise annotation is a reflection
of mainstream practice in current biomedical IE, it fails in many cases to
accurately capture the information stated in text, even when typed, directed
pairs are annotated.
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Consider the following examples of possible typed pairwise annotation.
This annotation is sufficient to represent simple statements:

e1 interacts with es — INTERACT(eq,e3)
eo is phosphorylated by e; — PHOSPHORYLATE(eq,e3)

some approximation is necessary, but likely to be acceptable in some more
complex cases:

abundance of ey is affected by e; expression — AFFECT (e1,e2)
e1 inhibits e activity — INHIBIT (eq,e2)

meaningful approximation is more difficult for statements that include ad-
ditional properties or processes involving the named entities:

e1 promotes ez polymerization — ? (eq,e2)

e1 inhibits phosphorylation of e; — 7 (eq,e2)

here, while the creation of “complex types” for annotation relations, e.g.
INHIBIT-PHOSPHORYLATION, can serve as a stopgap solution preserv-
ing the details of the relationship (see Heimonen et al., 2008), this approach
gains simplicity in the pairwise scheme only at the cost of a potentially
open-ended inventory of relationship types. Finally, pairwise annotation
cannot capture complex relationships involving more than two entities. As
an example, in sentences such as activation of e1 by ea prevents the phospho-
rylation of e3 by e4 there is no single, obviously correct decision on whether
and how to annotate the pairs (e1,e3), (e1,e4), (e2,e3) and (ez,e4), and there
are apparent inconsistencies between corpora in how complex relationships
such as this are annotated.

An early unpublished version of the Biolnfer corpus relationship annota-
tion was produced using a basic annotation scheme allowing only pairwise,
untyped interactions between named entities. However, later attempts to
assign accurate types to the relationships and to make the initial annotation
more consistent proved problematic. Annotators with a background in biol-
ogy, in particular, refused to accept many of the considered approximations
as meaningful. Additionally, attempts to formulate consistent guidelines for
pairwise annotation of complex relationships were frustrated by repeated
occurrences of exceptional cases that fell outside the scope of what could
be naturally captured in the annotation scheme or anticipated in the guide-
lines. We ultimately reached the conclusion that the pairwise annotation
scheme was not sufficiently expressive to represent the statements found in
the corpus.

The current Biolnfer relationship annotation is based on a scheme that
allows complex, structured relationships to be explicitly annotated. The
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annotation scheme captures the above example sentence activation of e; by
eo prevents the phosphorylation of es by eq as

PREVENT(ACTIVATE(e,e1), PHOSPHORYLATE (e4,¢e3)).

Interestingly, we found that creating and following consistent rules for pro-
ducing this more complex annotation was more straightforward than for
the simple pairwise annotation scheme. The Biolnfer annotation manual
(Ginter et al., 2007) describes the annotation rules for named entities and
relationships in detail.

In addition to annotation for named entities, the Biolnfer scheme in-
cludes annotation for several other types of physical entities as well as ab-
stract process and property entity types. The entities participating in rela-
tionships are marked up for their full internal structure, with named entities
as their atomic innermost core. For example, e; prevents the initiation of
ez polymerization would be annotated as containing not only the named
entities e; and es but also the process entities es polymerization and initi-
ation of es polymerization, with the PREVENT relationship annotated as
holding between e; and the initiation process. All annotated entities and
relationships in the Biolnfer corpus are assigned the most specific applica-
ble types from ontologies, which are further designed to make it possible to
formulate systematic rules for decomposing such complex relationships for
applications that require entity pair annotation. These ontologies are briefly
described next.

5.3 Ontologies

Biolnfer defines two ontologies': an entity type ontology that incorporates
the established GENTA ontology of physical types (Ohta et al., 2002) and
extends it with abstract types (processes and properties), and a relationship
type ontology that has been created specifically for the Biolnfer annota-
tion needs. Both ontologies are hierarchically structured, with Entity and
Relationship as the most general types and, for example, Gene and DOWN-
REGULATE among instances of the most specific types. The backbone
of the Biolnfer relationship type ontology, showing classes of relationship
types, is shown in Figure 5.1, and a simplified fragment of the entity type
ontology in Figure 5.2.

!We understand “ontology” generally in the sense of Mitkov (2003, page 750): “An
inventory of the objects or processes in a domain, together with the specification of some
or all of the relations that hold among them, generally arranged as a hierarchy”. This
usage is common in the domain: Hersh et al. (2004) describe the Gene Ontology as “not
an ontology is the purists’ sense,” but a hierarchically organized controlled vocabulary.
This description applies also to the Biolnfer ontologies, although in terms of size and scope
they are far from GO.
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Figure 5.1: The backbone of the Biolnfer relationship type ontology.

The ontologies are organized in part around the concept of entity state,
understood as consisting of amount, location, dynamics and physical prop-
erties. In addition to serving as an organizing principle, entity state fur-
ther provides a connection between the ontologies: for example, the entity
e1 phosphorylation is annotated as a process of the type PHOSPHORYLA-
TION, which provides a connection to the PHOSPHORYLATE relationship
type assigned to statements such as e; phosphorylates eo. It should be noted
that the inclusion of processes in the entity type ontology can be seen as
somewhat nonstandard. Under the philosophical distinction between contin-
uants (things that endure through time, undergoing change) and occurrents
(which occur and unfold in time), processes fall perhaps more naturally to-
gether with occurrents (i.e. in the relationship type ontology for Biolnfer)
than with continuants such as Gene. This view has been recently advocated
in biomedical ontology construction by Smith et al. (2005) and adopted for
the GENIA event ontology (Kim et al., 2008a). We note that the classifica-
tion of processes together with continuants, for Biolnfer motivated by anno-
tation considerations and the observation that processes, like continuants,
are often stated to undergo change, is not entirely without proponents (Gal-
ton, 2006). Nevertheless, the connection between process entities and their
corresponding relationships in the Biolnfer ontologies allows these entities
to be interpreted as (underspecified) relationships if necessary, a possibility
we have pursued in recent work (Heimonen et al., 2008).



62 Biolnfer corpus

Peptide

Amino acid monomer

Amino acid

Nucleotide

Compound-Organic

Negative

Location process
Polynucleotide

Amount process

Physical-Substance

w § c
E <
g\ & 2

g 2
T E s
2 g
¢ \% g

: z
:/\8 g

Dynamics process,

Physical process

Physical property

Function property
Property

Location property

Amount property

Dynamics property

Figure 5.2: A simplified fragment of the Biolnfer entity type ontology. A part of
the GENIA ontology of physical types appears as the Physical-Substance branch.
The Process branch mirrors the Causal-Change branch of the Biolnfer relationship
type ontology.

5.4 Other contributions

The third major class of annotation in the Biolnfer corpus is the syntactic
annotation, originally created in the LG scheme (see Papers I and II) and,
after the publication of the first release of the corpus, extended to include
annotation also in the SD scheme (Paper I1T). Comparisons of these schemes
in found Chapter 4 of this thesis and in Paper III. A specific contribution to-
ward the syntactic annotation of the Biolnfer corpus that is only described
in Paper IV is the introduction of a reliable heuristic method for assign-
ing dependency types to a corpus annotated with untyped dependencies,
described in Paper IV, Section Dependency types.

In addition to entity, relationship, and syntactic annotation, the Biolnfer
corpus additionally contains partial coreference annotation, annotated using
the relationship formulas. The relationship annotation mechanism is also
employed to capture aliasing and abbreviations and other static, non-event
relationships such as protein family membership or part-whole relationships,
which are rarely annotated in biomedical domain corpora. Biolnfer includes
annotation also for explicitly negated statements of relationships between
entities: for example, e; does not bind e3 is annotated as NOT (BIND (e, e2)).
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Entities Relationships Dependencies
Total 6349 | Total 2662 | Total 28139
named entities 72% | causal 55% | coverage  94%

is_a 14%
part_of 22%
observation 5%
other 4%

Table 5.1: Selected Biolnfer corpus statistics [From Paper IV]. Dependency
annotation coverage is the ratio of dependencies to non-punctuation tokens.

More detailed descriptions and examples of these annotations are found
in Appendix I of Paper IV. Finally, relationships, as well as entities, are
annotated to mark the specific words expressing them in the text of the
corpus sentences. While the specific occurrences of named entities are almost
universally marked in corpora that annotate them, Biolnfer extends this
principle to include relationships, so that, for example, e; is a cofactor for
ey is annotated as BIND(eq,e2) with the word cofactor marked as expressing
the BIND relationship.

The complex, multifaceted nature of the Biolnfer annotation is reflected
to some extent in the format of the corpus data. To preserve the original
sentence structure as well as to allow for different divisions of the text for
different layers of the annotation, the corpus follows the standoff annotation
principle, where the original text is unmodified and different annotations
are marked with character offset references into the text. To allow the
processing of the corpus with standard tools, it is distributed in XML format,
a standard for structured data. Finally, to aid users of the corpus to access
different aspects of the corpus data and to view the annotations together,
we provide software tools for extracting annotations in simplified formats
and visualizing the corpus data, openly distributed with full source along
with the corpus.

5.5 Discussion and conclusions

The initial release of the Biolnfer corpus contained annotation for 1100 sen-
tences; some key statistics of this annotation are given in Table 5.1. While
larger corpora containing some of the Biolnfer annotation types, for exam-
ple named entity annotation, had been available for some time, Biolnfer was
the first corpus in the domain to combine entity, relationship and syntac-
tic annotation in a corpus of this size. Additionally, Biolnfer was the first
available domain corpus to provide annotation for complex, structured re-
lationships. In combining detailed relationship and entity annotation with
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relationship typing, the Biolnfer corpus took a small step toward annotation
that connects text to a knowledge representation in the sense of a computable
model that can support inference. As a partial validation of this capacity, we
have recently implemented inference rules that aim to deduce the underlying
physical and regulatory relationships between named entities on the basis
of the complex Biolnfer relationship annotation (Heimonen et al., 2008).

Several related corpora published prior to Biolnfer are discussed in Pa-
per V and Chapter 6, but this excludes a key piece of related work, the re-
cently published version of the GENIA corpus that includes event annotation
(Kim et al., 2008a). This annotation largely corresponds in its expressive-
ness to the Biolnfer relationship annotation, including also structures where
entities affect events involving other entities. A number of other aspects are
shared by the Biolnfer and GENIA efforts, such as the annotation of spans
of text stating relationships—termed text binding in Biolnfer and text-bound
annotation in GENIA—and the use of an annotation scheme that can be
applied by biologists without reference to particular linguistic theories. As
these two resources have been developed in parallel but independently of
each other, these convergences are encouraging and can be seen as validat-
ing many of the design choices made. The GENIA event annotation covers a
set of sentences roughly an order of magnitude larger than Biolnfer, though
it is somewhat less comprehensive in the scope of the annotated relation-
ships: GENIA focuses on “dynamic” relations, excluding static relationships
such as part_of and is_a. Its scope thus roughly corresponding to the types
in the Causal-Change branch of the Biolnfer relationship ontology, by which
it can be estimated to cover 55% of the relationships annotated in Biolnfer
(see Table 5.1).

The annotations of the Biolnfer and GENIA event corpora present an
opportunity to address a number of challenges in domain IE. While carefully
crafted hand-written systems capable of extracting complex relationships be-
tween biomedical entities have been presented (Friedman et al., 2001; Hunter
et al., 2008), learning to reliably extract such relationships remains an open
problem. In our recent work we have begun to pursue a semantic network-
based approach building on a dependency parse representation of syntactic
structure to address this challenge (Bjorne et al., 2008); we expect that the
Biolnfer and GENIA corpora will provide critically important resources to
the development and evaluation of this and other approaches to advanced
biomedical IE.



Chapter 6

Protein-protein interaction
extraction

The extraction of protein-protein interactions (PPIs) has been the most
widely studied IE task in biomedical text mining for almost a decade now,
and a great number of methods have been proposed and several corpora have
been made publicly available. However, the field still lacks accepted stan-
dards for annotation, evaluation methodology, or comparison of different
tools and techniques. As a result, each corpus is annotated using different,
often either unwritten or unpublished annotation guidelines and published
in a different format. The reported performance results for methods devel-
oped and evaluated on different resources are largely incomparable, and it
is difficult, if not impossible, to reliably judge the relative merits or effec-
tiveness of the various proposed PPI extraction methods. This situation
provided the impetus for the study presented in Paper V.
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Figure 6.1: Plot of reported protein-protein interaction extraction method perfor-
mance results.

6.1 Extraction method evaluation

The lack of widely shared standard resources and evaluation methodology
can be vividly seen in the results reported for PPI extraction system per-
formance over the last ten years. Figure 6.1 illustrates the reported results
found in a survey of studies published outside of shared task evaluations such
as LLL and BioCreative, showing the best result included in each study and
omitting those for which F-measure could not be calculated (data in Ta-
ble 6.2 in the Appendix).! It is immediately obvious that, contrary to what
one would hope, there is no clear trend toward better performance over the
years to be found in these results. One of the highest results included is re-
ported for the relatively early system of Ono et al. (2001), and in the recent
large-scale PPI extraction evaluation in BioCreative II (Krallinger et al.,
2007) the best-performing system (Hunter et al., 2008) achieved only a 29%
F-measure, performance worse than almost all of the results reported in the
studies in Table 6.2.

This broad dispersal of results represents a failure of consistent evalua-
tion, the magnitude of which is particularly apparent when the results are

1t should be noted that this is not proposed to constitute an exhaustive survey, and
that this compilation is not intended to imply that the authors of the studies claim that
these results are directly comparable—even though comparability is implied by frequently-
seen statements such as “state-of-the-art performance.”
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Figure 6.2: Plot of selected parsing performance results.

compared to those reported for a field that has shown consistent improve-
ment over a similar period, such as parsing efforts focused on the Penn Wall
Street Journal treebank, where a decade of study has roughly halved the
error rate at the task. A selection of results from these studies are shown in
Figure 6.2 (data in Table 6.3 in the Appendix). Pallett et al. (2000) provide
a striking illustration of similar progress in speech recognition.

The conflicting results reported for different PPI extraction systems were
noted relatively early: Park (2001) notes “We found curious performance
differences between our system and that of [Ono et al. (2001)]” regarding
the better reported recall and over 40 percentage unit advantage in precision
for the system that, contrary to that proposed in the study, attempted no
linguistic processing. In their well-heeded call for shared task evaluations,
Hirschman et al. (2002b) noted simply that “it is unclear how to compare the
different approaches”. While shared tasks such as LLL and BioCreative have
since provided a partial response to the problem of comparability, it would
be a considerable loss to retreat to the position that other results simply
cannot be compared; nearly 50 such studies are referenced in Table 6.2, and
many more are likely to follow each year. One alternative is to attempt to
identify the sources of the variation in estimated performance results and
quantify the magnitude of their effect on measurements, as a step toward
controlling the undesired variance. This is the approach taken in Paper V.
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6.2 Comparative corpus evaluation

Of the many possible explanations for the substantial divergence in reported
results for similar methods, the corpus on which the methods are evaluated
is perhaps the most obvious candidate. In the study reported in Paper V,
we performed the first comparative evaluation of PPI corpora. We gath-
ered publicly available, manually annotated PPI corpora that contained a
sufficient level of annotation to be used for the training and evaluation of
methods for extracting PPIs between specific named proteins (Paper V,
Section Corpora). We studied the annotations found in the corpora, con-
verted them into a shared common format, and performed quantitative and
qualitative analyses to characterize their differences.

To evaluate the effect of the choice of corpus on estimated performance,
we reversed the typical evaluation setting: instead of using a corpus as a
benchmark to evaluate a PPI extraction methods, we used PPI extraction
methods as benchmarks to evaluate corpora. To select an extraction method
from among the large number proposed, we considered a number of factors.
First, for the results to be relevant, a relatively recent method with state-
of-the-art performance? was required.

Second, an implementation of the method was needed to be either pub-
licly available or sufficiently straightforward so that a faithful reimplementa-
tion could be performed. Further, the method was required to cover a range
of interaction types in order to be applicable to several corpora. Finally,
methods involving hand-written rules were preferred to machine-learning
methods, as the performance of the former is not affected by corpus size—
for machine-learning methods, the effect of differing amounts of training
data would have to be controlled, and the stability of results on small cor-
pora might be limited. We settled on the RelEx method of Fundel et al.
(2007), which boasts these and a number of other positive attributes.

RelEx makes use of full parsing, and its extraction rules are based on
a list of interaction-expressing words and paths connecting proteins to such
words in an SD dependency representation of sentence structure. The three
core extraction rules are illustrated in Figure 6.3, detailed descriptions are
given in Paper V and the original study of Fundel et al. (2007). We re-
implemented the RelEx method with gracious help from Fundel, who pro-
vided both advice and data to help in the development.

2This involves a circular argument that is difficult to avoid. To increase the chance of
selecting a method with good “true” performance, we considered evaluation on more than
one corpus a merit.
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Our results provide support for functional interactions between three subunits , TIF34 PRT1 and p33

Figure 6.3: Illustration of RelEx interaction extraction rules. Protein names are
shown in bold, possible interaction words in italics, and interaction-expressing paths
with thick lines. [Figure from Paper V]

6.3 Results

We selected five corpora for the analysis: AIMed (Bunescu et al., 2005),
Biolnfer (Paper IV), HPRD50 (Fundel et al., 2007), IEPA (Ding et al.,
2002) and LLL (Nédellec, 2005). We first studied the corpora to identify
the “greatest common factor” level of information provided regarding PPIs
in these corpora: undirected, untyped interactions with no information re-
garding the words expressing the interaction, no complex structure, and no
annotation for negations or the certainty of PPI statements (Table 6.13).
All corpora were then converted by custom-written software into a shared
format capable of capturing this information. We then evaluated the perfor-
mance of the RelEEx method on each corpus, applying also a simple baseline
method that assigns an interaction to all proteins co-occurring in a sentence
(i.e. all-true). The results of this evaluation are illustrated in Figure 6.4.
While differences in measured performance between different corpora was
expected, their magnitude is striking. The performance of RelEx differs on
average by almost 20% between pairs of corpora, while the average difference
between the trivial co-occurrence baseline and the state-of-the-art RelEx
method is less than 15%. This, perhaps the single most important finding of
this study, implies that unless the effect of the choice of corpus on measured
performance is controlled, the direct comparison of performance results for
methods evaluated on different resources is essentially meaningless.

3There is an error in the table from which this data has been taken, Table I, in the
preprint of Paper V included in this thesis. The row PPI types in the table should read
no, 68 types (ontology), no, no, 3 types—Biolnfer, not HPRD50, uses an ontology of
PPI types. This error has apparently been introduced in the BMC Bioinformatics PDF
production process, as it does not occur in the HTML version of the paper.
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AIMed Biolnfer HPRD50 IEPA LLL
size 1955 1100 145 486 77
types no yes no no yes
binding no yes no yes no
directed | no yes no yes yes
PPI
compler | no yes no no no
negative | no yes no no no
certainty | no no yes no no

Table 6.1: Corpus size in sentences and characteristics of the PPI annota-
tions in the analysed corpora:

types: explicit indication of the type of the annotated interactions
binding: identification of the text spans that state the interactions
directed: specification of the directionality of the interaction

complex: annotation includes nested or n-ary (for n > 2) interactions
negative: annotation of negative interactions

certainty: annotation of levels of certainty of interactions

[From Paper V]
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Figure 6.4: RelEx and Co-occurrence extraction performance on different corpora.
[Figure from Paper V]

In Paper V, we proceeded to study the characteristics of the corpora in
detail to determine the major sources of this variance. We found that there
is considerable variance in the ratio of interactions to proteins pairs anno-
tated in the different corpora, a factor that we estimated to explain almost
half of the observed difference in performance between corpora. This ratio is
important because the F-measure metric that is almost exclusively applied
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to evaluate PPI extraction performance is sensitive to the distribution of
positive cases (interactions) to negative cases (pairs of proteins that do not
interact). The wide variance in the distribution of positive and negative
cases between corpora indicates that the F-measure is a poor choice of met-
ric for the purpose of comparing performance between corpora. The use of a
distribution-independent measure such as AUC (area under the receiver op-
erating characteristic curve; see e.g. Hanley and McNeil, 1982), considered
for biomedical domain evaluations by Hirschman et al. (2002b), could ad-
dress this issue and considerably improve comparability, as we demonstrate
in (Airola et al., 2008). The differences in the distribution of positive and
negative examples between the corpora may reflect different assumptions on
the part of the corpus annotators on how the PPI extraction task should be
approached, in particular regarding on how effectively irrelevant documents
can be filtered out and whether entire documents or only separately filtered
relevant sentences are to be processed by the PPI extraction component.

In the study reported in Paper V we further performed a qualitative
analysis of the corpora, considering characteristics of the PPI statements
such as the type of the interactions, whether they are direct or indirect, and
whether they are explicitly and definitely stated. This analysis tentatively
suggested that the explicitness of the PPI statements might affect PPI ex-
traction performance, but no simple connection of the other factors with
measured performance was observed, and no statistically significant effects
were found in this analysis.

6.4 Discussion and conclusions

The work reported in Paper V provided the first comparative evaluation of
available PPI corpora, establishing the magnitude of the effect of the choice
of corpus on the evaluated results of PPI extraction methods. A detailed
evaluation of possible sources for these differences indicated that the distri-
bution of positive and negative instances of annotated PPIs varies notably
between corpora and contributes almost half of the variance observed in mea-
sured performance. This further calls into question whether the ubiquitous
F-measure metric is appropriate for comparative PPI extraction method
evaluation.

One possible response to the findings of Paper V would be to focus on
results evaluated on each corpus separately, under the assumption that these
will be comparable. A possible candidate for a corpus that has found suf-
ficiently large use to serve as the basis of comparison is AIMed, which has
been applied in numerous domain studies (including Bunescu et al., 2005;
Bunescu and Mooney, 2005; Ramani et al., 2005; Yakushiji et al., 2005;
Bunescu and Mooney, 2006; Giuliano et al., 2006; Katrenko and Adriaans,
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2006; Mitsumori et al., 2006; Yakushiji et al., 2006; Erkan et al., 2007; Saetre
et al., 2007; Airola et al., 2008; Van Landeghem et al., 2008; Miyao et al.,
2008) and may be seen as an emerging de facto standard in particular for
the evaluation of machine learning methods for biomedical relation extrac-
tion. However, Seetre et al. (2007) recently demonstrated that differences in
evaluation protocol—specifically, in how cross-validation is performed—can
make a difference of almost 20 percentage units in results measured on the
AIMed corpus. Even if the choice of corpus and the evaluation protocol
are held constant, different preprocessing of the corpus can lead to an al-
most 30% difference in the number of negative cases generated from ATMed
(Seetre et al., 2007, Table 3). This will in turn be reflected in F-measure eval-
uation results, as we recently demonstrated in a study focusing on AIMed
results for establishing comparative performance of a PPI extraction method
(Airola et al., 2008). Finally, differences in the definition of correctness cri-
teria for extraction (see e.g. Giuliano et al., 2006) and, to a lesser extent, in
parameter selection for machine learning methods can introduce bias into
evaluation. These issues indicate that biomedical relation extraction is in
need of an evaluation standard of the type that the WSJ section of the Penn
Treebank and the PARSEVAL measures—whatever their other faults—have
provided for statistical parsing. Building on the work reported in Paper V,
we recently proposed such a standard (Pyysalo et al., 2008).

As part of the work to perform the evaluation in Paper V, we created
custom software for converting each of the AIMed, Biolnfer, HPRD50, IEPA
and LLL corpora into a common, shared representation, thus unifying the
various annotations and allowing these corpora to be used together or com-
bined into a large, multi-domain corpus. This unification considerably in-
creases the amount and variety of data easily available for training and
evaluating PPI extraction methods. It also provides an opportunity to test
new methods on multiple corpora with little additional effort. Such broader
testing could, to an extent, address the current difficulty of establishing the
comparative performance of PPI extraction methods and serve as a step
toward more meaningful comparisons. It is encouraging to note that the
unified corpora have already generated a measure of interest in the commu-
nity and that some studies making use of this recent contribution have been
carried out.
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Appendix

This appendix contains the results of a survey of protein-protein interac-
tion extraction methods and a selection of statistical parsing results. See
Section 6.1 for context.

precision recall
(Sekimizu et al., 1998) 73 -
(Rindflesch et al , 1999) 79 72
(Proux et al. 2000) 87 44
(Thomas et al , 2000) 70 29
(Rindflesch et al , 2000a) 73 51
(Friedman et al. 2001) 96 63
(Ono et al. 2001) 94 87
(Park et al., 2001) 80 48
(Stephens et al., 2001) 89 61
(Yakushiji et al., 2001) - 49
(Blaschke and Valenma 2002) 45 40
(Leroy and Chen, 2002) 70 47
(Pustejovsky et al., 2002) 90 57
(Palakal et al. 2002) 81 -
(Ding et al. 2003) 87 61
(Koike et al , 2003) 87 26
(Leroy et al., 2003) 90 -
(Temkin and Gilder, 2003) 70 64
(Corney et al., 2004) 55 20
(Daraselia et al , 2004) 91 21
(Huang et al. 2004) 81 80
(Karopka et al , 2004) 93 30
(McDonald et al., 2004) 89 35
(Rzhetsky et al., 2004) 95 65
(Ahmed et al. 2005) 66 27
(Bunescu et al., 2005) 45 45
(Hao et al., 2005) 81 61
(Plake et al , 2005) 60 46
(Xiao et al. 2005) 88 94
(Yakushiji et al., 2005) 37 45
(Bunescu and Mooney, 2006) 53 53
(Giuliano et al., 2006) 65 63
(Jang et al. 2006) 81 43
(Katrenko and Adriaans, 2006) 75 70

Continued on Next Page. ..
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Table 6.2 — Continued

precision recall
(Mitsumori et al., 2006) 56 54
(Rinaldi et al., 2006) 90 60
(Yakushiji et al., 2006) 64 84
(Zhou et al., 2006) 73 48
(Erkan et al., 2007) 86 85
(Fundel et al., 2007) 80 80
(Seetre et al., 2007) 78 63
(Sun et al., 2007) 82 74
(Yang et al., 2007) 55 42
(Alex et al., 2008) 51 53
(Airola et al., 2008) 73 87
(Clegg, 2008) 57 47
(Kim et al., 2008c) 73 83
(Van Landeghem et al., 2008) 79 84
(Miyao et al., 2008) 55 66

Table 6.2: Reported protein-protein interaction extraction method perfor-
mance results 1998-2008. Studies reporting neither precision nor recall not
included. For studies reporting results for multiple methods or datasets
the best result is given, for those reporting several samples or an estimated
performance range, the average result or midpoint is given, and for those
reporting precision-recall curves, an estimated break-even point is given.
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P R F
(Magerman, 1995) 84.0 84.3 84.1
(Collins, 1996) 85.3 85.7 85.5
(Charniak, 1997) 86.7 86.6 86.7
(Collins, 1997) 87.5 88.1 87.7
(Goodman, 1997) 84.8 85.3 85.0
(Ratnaparkhi, 1997) 86.3 87.5 86.9
(Collins, 1999) 881 88.3 88.2
(Charniak, 2000) 89.6 89.5 89.5
(Collins, 2000) 89.6 89.9 89.7
(Bod, 2001) 80.7 89.7 89.7
(Bod, 2003) 90.8 90.7 90.7
(Charniak and Johnson, 2005) | - - 91.0
(McClosky et al., 2006) - - 921
(Petrov and Kleln 2007) 89.9 90.2 90.0
(Huang, 2008) - - 917

Table 6.3: Selected parsing results on Penn Wall Street Journal treebank,
labeled (P)recision, (R)ecall and F measures. For each study, performance
shown for the largest of the < 40 words, < 100 words and complete subsets
of the test corpus for which results were reported.
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Chapter 7

Conclusions

The preceding chapters described five studies exploring aspects of biomedical
text mining with a particular focus on the use and value of full dependency
parsing to protein-protein interaction extraction.

Papers I and III addressed the issue of identifying the best tools and
methods for performing dependency parsing of biomedical text. While de-
pendency parsers had been widely used in the domain, there was little in-
formation regarding their performance when this research was started, and
our initial study on this task provided the first detailed evaluation of a
dependency parser on a fully annotated domain corpus. Several studies
on domain parser performance evaluation have been published since, in-
cluding many whose results can be directly compared due to the use of a
common representation of dependency structure. The work presented in
Paper III provided support for the feasibility and value of such unification,
demonstrating that highly accurate conversions between different depen-
dency schemes can be created. While there are still several open questions
regarding the challenges of parsing biomedical text, I believe that, in ad-
dition to establishing the performance of two widely-applied parsers, these
studies have contributed toward clarifying the broader issues and provided
support for a common, application-oriented evaluation strategy.

The analysis of parser failures in Paper I and the comparative analysis
of lexical adaptation methods in Paper II identified many of the challenges
that general English parsers face in biomedical text and established the rel-
ative merits of a number of approaches to resolving issues related to domain
vocabulary. This work was done specifically in the context of a parser with
a broad-coverage hand-written grammar of general English, and has been
complemented by a number of studies that have studied the lexical adapta-
tion of a statistical treebank parser, the effect of retraining statistical parsers
on a biomedical domain corpus, and the effectiveness of reranking methods
for identifying better parses among the ambiguous alternatives generated by



78 Conclusions

parsers. As part of the work reported in Paper 111, we further demonstrated
that a surface-oriented dependency representation can be accurately con-
verted into a more semantically oriented scheme, increasing the value of a
popular parser for further applications without loss of parse quality. In ad-
dition to identifying and addressing problems in parsing domain text, these
studies have contributed better tools for biomedical text mining researchers,
as all resulting tools have been made freely available.

Evaluation techniques were considered and the challenges of establish-
ing comparability addressed in particular in Papers I and III in the context
of parsing and in paper V for protein-protein interaction extraction. In
Paper I two parsers using very different representations were evaluated in-
trinsically, each using largely its own scheme, but with modifications and
simplifications that balanced the number of structural constraints that each
parser needs to meet to assure comparability. Paper I also proposed the
use of a task-oriented metric to provide a measure of expected performance
at a domain information extraction task. Papers III and V involved a dif-
ferent approach to evaluation: unification under a shared representation.
The methodology applied in Paper III was shown to make it possible to
create a conversion between different syntactic representations that has one
of the highest accuracies reported for similar conversions. This approach
may provide an important tool for formalism-independent evaluation. The
unification of widely differing protein-protein interaction annotations of five
corpora as part of Paper V made it possible to establish for the first time the
magnitude of the effect of corpus on the measured performance of extrac-
tion methods, indicating serious problems in the comparability of current
evaluations as well as providing one possible approach to addressing these
issues.

The Biolnfer corpus, introduced in Paper IV, has been critically im-
portant in supporting the research presented in this thesis. The corpus or
previous, partial versions of its annotation have been applied not only in
all of the studies described in Papers I, II, IIT and V, but also in numerous
others. Biolnfer was the first domain corpus to combine entity, relationship,
and syntactic annotation in a single annotated resource and to break with
the limited pairwise annotation strategy for protein-protein interactions (Pa-
per IV), and it remains in many ways a unique resource for biomedical text
mining. Its detailed annotation provides numerous unexplored opportuni-
ties for studying how protein-protein interactions are stated and how their
extraction should best be approached.

One of the simultaneously frustrating and rewarding aspects of research
is that it tends to open as many new questions as it answers. While the
studies included in this thesis have contributed toward an understanding
of domain parsing performance, challenges and adaptation techniques, the
level of accuracy of the considered parsers on biomedical text remains con-
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siderably lower than that expected on general English. Similarly, while the
introduced conversion methodology shows promise for advancing formalism-
independent parser evaluation and mapping between different representa-
tions, the generalizability of these results is yet to be established. Finally,
protein-protein interaction extraction and, in particular, the more general
task of extracting detailed, complex relationships between biomedical enti-
ties still hold many open questions, with the studies presented here providing
necessary resources and indications of where problems lie rather than defi-
nite answers. I hope to have the opportunity to address some of these issues
as future work.
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