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ABSTRACT 

Jan Kiss 

The role of endothelial enzymes in acute lung injury 
MediCity Research Laboratory, University of Turku and the Department of Surgery, 
Turku University Central Hospital, Turku, Finland 
 
Acute lung injury (ALI) is a syndrome of acute hypoxemic respiratory failure with 
bilateral pulmonary infiltrates that is not caused by left atrial hypertension. Since there 
is no effective treatment available, this frequent clinical syndrome significantly 
contributes to mortality of both medical and surgical patients. Great majority of the 
patients with the syndrome suffers from indirect ALI caused by systemic inflammatory 
response syndrome (SIRS). Sepsis, trauma, major surgery and severe burns, which 
represent the most common triggers of SIRS, often induce an overwhelming 
inflammatory reaction leading to dysfunction of several vital organs. Studies of indirect 
ALI due to SIRS revealed that respiratory dysfunction results from increased 
permeability of endothelium. Disruption of endothelial barrier allows extravasation of 
protein-rich liquid and neutrophils to pulmonary parenchyma. 

Both under normal conditions and in inflammation, endothelial barrier function is 
regulated by numerous mechanisms. Endothelial enzymes represent one of the critical 
control points of vascular permeability and leukocyte trafficking. Some endothelial 
enzymes prevent disruption of endothelial barrier by production of anti-inflammatory 
substances. For instance, nitric oxide synthase (NOS) down-regulates leukocyte 
extravasation in inflammation by generation of nitric oxide. CD73 decreases vascular 
leakage and neutrophil emigration to inflamed tissues by generation of adenosine. On 
the other hand, vascular adhesion protein-1 (VAP-1) mediates leukocyte trafficking to 
the sites of inflammation both by generation of pro-inflammatory substances and by 
physically acting as an adhesion molecule.  

The aims of this study were to define the role of endothelial enzymes NOS, CD73 
and VAP-1 in acute lung injury. Our data suggest that increasing substrate availability 
for NOS reduces both lung edema and neutrophil infiltration and this effect is not 
enhanced by concomitant administration of antioxidants. CD73 protects from vascular 
leakage in ALI and its up-regulation by interferon-β represents a novel therapeutic 
strategy for treatment of this syndrome. Enzymatic activity of VAP-1 mediates 
neutrophil infiltration in ALI and its inhibition represents an attractive approach to treat 
ALI.  
 
Keywords: acute lung injury, nitric oxide synthase, vascular adhesion protein-1, 
CD73. 
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1. INTRODUCTION 

ALI is a frequent clinical syndrome of acute respiratory dysfunction with bilateral 
pulmonary infiltrates accompanied by hypoxemia. This syndrome is triggered by both 
pulmonary and nonpulmonary risk factors but is not a consequence of left atrial 
hypertension (Ware and Matthay, 2000). Despite vast improvements in critical care 
medicine, mortality rate of the patients suffering from ALI remains as high as 40%. 
Numerous clinical trials tested with disappointing results treatments, which were 
reported to be successful in pre-clinical setting. None of the pharmacological 
interventions improved survival of the patients with ALI. In fact, the only reduction of 
mortality in this patient group was caused by refined ventilation strategies (Wheeler 
and Bernard, 2007). The main problem of designing new treatments for acute lung 
injury seems to be incomplete understanding of the pathophysiology of the disease. 

Direct ALI represents pulmonary damage caused by conditions affecting primarily 
lungs. A pathological process, such as pneumonia or aspiration of gastric content, 
directly damages lung parenchyma causing respiratory insufficiency. On the other 
hand, indirect ALI is caused by systemic inflammatory response to a non-pulmonary 
trigger (Pepe et al., 1982; Fowler et al., 1983; Sloane et al., 1992; Doyle et al., 1995; 
Hudson et al., 1995; Ware and Matthay, 2000). A primary site of injury, such as non-
pulmonary infectious focus, ischemia-reperfusion injury or trauma, triggers a 
disproportionate inflammation. The response of the immune system is in this case 
uncontrolled both in terms of intensity and location. Systemic inflammation activates 
circulating leukocytes, which subsequently extravasate in various organs causing tissue 
damage (Carden and Granger, 2000; Brown et al., 2006). Lung damage in indirect ALI 
is caused entirely by inadequate inflammatory response. This overwhelming 
inflammation results from loss of balance between pro- and anti-inflammatory 
mechanisms. In order to treat ALI efficiently, we first need to understand the 
regulation of this balance. 

Endothelium forms the innermost layer of the vessels. Under normal conditions, 
endothelium strictly controls extravasation of macromolecules, liquid and leukocytes. 
In inflammation, endothelial cells mediate emigration of leukocytes and become leaky 
to liquid and macromolecules (Stevens et al., 2000). The loss of endothelial barrier 
function has a central role in the development of ALI (Ware and Matthay, 2000; 
Wheeler and Bernard, 2007). We decided to study the role of three endothelial 
enzymes - NOS, CD73 and VAP-1 - in indirect ALI. Besides better understanding of 
the complicated process of ALI development, we wanted to offer feasible treatment 
options for the patients suffering from this often fatal disease. 
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2. REVIEW OF THE LITERATURE 

2.1. ACUTE LUNG INJURY 
ALI is a common clinical syndrome diagnosed in both surgical and medical patients. 
The term ALI also includes its more severe form, the acute respiratory distress 
syndrome (ARDS). Therefore, ALI is used when referring to both conditions. This 
syndrome is characterized by sudden onset of clinically significant hypoxemia 
accompanied by diffuse pulmonary infiltrates on chest radiograph. The infiltrates 
correspond to pulmonary edema resulting from increased pulmonary vascular 
permeability. This syndrome has been intensely studied for decades because of its high 
prevalence, unacceptably high mortality rate and no efficient drug therapy (Ware and 
Matthay, 2000; Wheeler and Bernard, 2007). ALI is a relatively new syndrome, as it 
was not until 1967 when Ashbaugh and colleagues first described 12 patients with 
acute respiratory distress, cyanosis refractory to oxygen therapy, decreased lung 
compliance, and diffuse infiltrates evident on the chest radiograph (Ashbaugh et al., 
1967). Ever since, both the name and the diagnostic criteria have been refined 
(Bernard, 2005).  

The vague original definition caused controversies over the natural history of the 
syndrome, its incidence and the mortality associated with it (Luce, 2005). Therefore, 
the definition was expanded in 1988 to include quantification of lung function through 
the use of a scoring system. The system included four points to score the lung injury, 
namely the level of positive end-expiratory pressure (PEEP), the ratio of the partial 
pressure of arterial oxygen to the fraction of inspired oxygen (PaO2/FiO2), the static 
lung compliance, and the degree of infiltration evident on chest radiographs (Murray et 
al., 1988). In addition, the triggering clinical event and the presence or absence of non-
pulmonary organ dysfunction was included in the assessment. Interestingly, a recent 
study showed no difference in mortality between the patients with and without non-
pulmonary organ dysfunction (Agarwal et al., 2007). The scoring system proved to be 
useful in quantification of severity of ALI, but failed to have predictive value for the 
outcome during the first three days (Doyle et al., 1995). Although higher scores four 
and seven days after the onset were predictive of a complicated course (Heffner et al., 
1995), the clinical usefulness of the scoring system was limited. 

A new definition suggested by American–European Consensus Conference 
Committee in 1994 allows, besides an easy application in the clinical setting, also 
stratification of the patients according to the severity of lung injury (Bernard et al., 
1994). The severity of lung injury is assessed by PaO2/FiO2. When PaO2/FiO2<300, the 
disorder is called ALI and when PaO2/FiO2<200, ARDS is diagnosed. Although the 
simplified definition enables earlier enrolment of patients into clinical trials, it also has 
several disadvantages. First, oxygenation indices can be readily improved by the use of 
PEEP. Therefore, the patients who meet the criteria for ARDS prior to ventilation 
might convert to ALI patients. Similarly, ALI patients might not meet the diagnostic 
criteria as soon as PEEP is initiated. The second drawback of the definition is that the 
clinical condition that triggered lung injury is not assessed. Third, the dysfunction of 
other organs is not taken into account. Finally, clinicians do not recognize accordantly 
the presence of bilateral infiltrates on chest radiography consistent with the presence of 



Review of the Literature 

11 

pulmonary edema (Rubenfeld et al., 1999). Therefore, improvement of the 
standardization of clinical trials has been achieved by the use of both lung injury 
scoring system from 1988 and consensus definition from 1994 (Abraham et al., 2000). 
However, regardless of the improvements, the limitations of randomized controlled 
trials in ALI have to be acknowledged (Marini, 2006). Many biologic markers and 
clinical factors, such as the original trigger of acute lung injury or severity of disease, 
can be used to stratify the patients in different groups. The choice of inclusion criteria 
and grouping of the patients has a major impact on the outcome of clinical trials (Ware, 
2005). 
 
2.1.1. Diagnostic features 

The patients suffering from ALI can be identified according to the diagnostic criteria 
already during the early stages of the disease. Due to the progressive nature of the 
syndrome, the patients usually experience different stages of the disease with their 
characteristic features. Sudden respiratory dysfunction refractory to oxygen 
administration present in the patients with a risk factor is typical for the acute, or 
exudative, phase of the syndrome. Diffuse bilateral alveolar infiltrates seen on chest 
radiographs indicate the presence of pulmonary edema (Aberle et al., 1988). Diffuse 
alveolar damage with infiltrating leukocytes and erythrocytes, hyaline membranes and 
edema fluid belong to the typical pathological findings (Pratt et al., 1979). Lately, 
some experts suggested that open-lung biopsy in ALI patients might reveal an 
unsuspected diagnosis and cause a change in treatment. However, this approach is 
accompanied by high incidence of complications related to the surgery. These 
complication possibly outweigh the benefits caused by more appropriate therapy, as 
there was no survival benefit observed in the biopsied patients (Patel et al., 2004). 

The acute phase of ALI might be followed in some cases by a complete resolution. 
However, in some patients the syndrome progresses to fibroproliferative phase. This 
phase is characteristic by fibrosing alveolitis with persistent hypoxemia, increased 
alveolar dead space, and an additional decrease in pulmonary compliance. The 
proliferating fibroblasts and chronic inflammatory cell infiltrates reduce the pulmonary 
capillary bed, which results in an increased pulmonary capillary pressure (Pratt et al., 
1979). During fibroproliferative phase, linear opacities typical for the presence of 
evolving fibrosis are found radiographically. Improvements in radiology allow 
nowadays prediction of prognosis at this stage of the disease (Ichikado et al., 2006). 
Diffuse interstitial opacities and bullae are the typical findings in computed 
tomography imaging (Gattinoni et al., 1994). The patients who recover experience 
improvement in blood gas exchange and lung compliance.  In most of the cases, 
radiographic as well as functional findings return to normal.  
 
2.1.2. Epidemiology 

2.1.2.1. Incidence 

Due to the use of different definition criteria, numerous triggering conditions and 
variable clinical manifestation, there has been en extensive dispute regarding the 
incidence of ALI. National Institute of Health (NIH) Acute Respiratory Distress 
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Syndrome Network confirmed the original estimate of NIH that the incidence of the 
syndrome in the US is 75 per 100,000 per year (1977). The incidence of 17.9 per 
100,000 for ALI and 13.5 per 100,000 for ARDS were the results of the first 
epidemiologic study, which used the 1994 consensus definition (Luhr et al., 1999). A 
more recent study estimates that each year in the United States there are 190,600 cases 
of ALI, which are associated with 74,500 deaths and 3.6 million hospital days 
(Rubenfeld et al., 2005).  
 
2.1.2.2. Clinical disorders associated with ALI development 

There are several clinical disorders capable of triggering ALI. These disorders are 
divided according to the mechanism, through which they cause lung damage. The first 
group of the disorders causes direct injury to the lung and the second group consists of 
disorders causing lung damage indirectly via systemic inflammation (Figure 1.). 
Pneumonia and aspiration of gastric contents belong to the most common causes of 
direct ALI. Pulmonary contusion, fat emboli, near-drowning, inhalational injury and 
reperfusion pulmonary edema after lung transplantation or pulmonary embolectomy 
are some of the less common causes. Sepsis and severe trauma with shock and multiple 
transfusions represent the most common causes of indirect ALI, while 
cardiopulmonary bypass, drug overdose, acute pancreatitis and transfusions of blood 
products belong to the less common ones (Pepe et al., 1982; Fowler et al., 1983; Sloane 
et al., 1992; Doyle et al., 1995; Hudson et al., 1995). Sepsis was shown to be the 
condition most likely progressing into ALI. As many as 40% of the severe sepsis 
patients will suffer from indirect lung damage (Pepe et al., 1982; Hudson et al., 1995).  
 
2.1.2.3. Intestinal ischemia-reperfusion as a trigger of ALI 

Ischemia occurs when blood supply to an organ becomes compromised. Inadequate 
perfusion results in deficient oxygen delivery to metabolically active cells and leads to 
depletion of energy-rich phosphates. Lack of energy slows down active transmembrane 
ion transport, which causes intracellular ion accumulation with influx of water. 
Swelling of the cells continues during sufficiently long ischemia to the point of rupture 
and the cells die of necrosis. Shorter periods of ischemia are characteristic by 
endothelial cell swelling, stiffening of leukocytes and hemoconcentration, which 
interfere with microcirculation during the reperfusion causing no-reflow phenomenon 
(Jerome et al., 1994). 

Reperfusion takes place when blood supply to the ischemic organ is restored. 
Although essential for organ survival, reperfusion significantly enhances the damage 
caused by ischemia. Reperfusion injury is also called reflow paradox. While capillaries 
are the site of no-reflow phenomenon, reflow paradox occurs mainly in the post-
capillary venules. Leukocyte adhesion to the post-capillary venules results from 
increased expression of adhesion molecules on both leukocytes and endothelium 
(Ichikawa et al., 1997). Activated leukocytes damage endothelium by the release of 
proteases. Due to the disruption of endothelial barrier function, leakage of 
macromolecules and extravasation of leukocytes extend the reperfusion injury from 
intravascular space to the interstitium (Kurose et al., 1994). Pro-inflammatory 
cytokines released by activated immune cells and some resident cells promote 
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leukocyte accumulation at the site of reperfusion injury and accentuate the damage. 
Radicals liberated by leukocytes and generated by xanthine oxidase cause direct 
damage to the cells and close the vicious circle by further increasing expression of 
adhesion molecules (Granger, 1988; Suzuki et al., 1991). 

The inflammatory reaction in the reperfused tissue often reaches sufficient intensity 
to cause damage in remote organs. The overwhelming reaction of the immune system 
might lead to dysfunction of several vital organs. This condition is known as multiple 
organ dysfunction syndrome (MODS) and it represents the main cause of morbidity 
and mortality in ICU patients (Baue, 2006). Therefore a better understanding of 
systemic inflammatory response, which is responsible for multiple organ failure, is 
crucial for targeted treatment. Respiratory dysfunction is present in almost all the 
patients suffering from multiple organ failure (Guidet et al., 2005).  

SIRS is often accompanied by alterations of macro- and microcirculation. 
Especially splanchnic perfusion was found to be significantly reduced in critical illness 
due to shunting of blood to the vital organs (Sapirstein et al., 1960; Vatner, 1974; 
Bulkley et al., 1983; Bailey et al., 2000; Toung et al., 2000). Reduced splanchnic 
perfusion leads to ischemic damage of intestine and loss of its barrier function 
(Bounous, 1982). Bacteria and endotoxin translocated through intestinal mucosa to the 
circulation activate both local and systemic response of the immune system. Therefore, 
gut was named “motor of MODS” (Swank and Deitch, 1996).  

Intestinal ischemia occurs in clinical practice also as a consequence of vascular 
occlusion. Acute mesenteric ischemia (AMI) represents one of the most dramatic 
vascular emergencies. This condition is characterized by a sudden occlusion of 
mesenteric arteries followed by impairment of intestinal blood flow. Although AMI is 
a relatively infrequent disease, its incidence has been increasing significantly due to 
longer mean life expectancy. Despite the progress in surgical and intensive care, the in-
hospital mortality has remained as high as 70% during the last decades. Besides 
incomplete understanding of the events triggered by AMI, the major reason of the 
extremely high mortality rate associated with AMI is the difficulty to recognize this 
condition. A non-specific clinical presentation and laboratory findings often delay 
diagnosis to the point when the intestinal necrosis has developed. Bacteria and 
endotoxin translocated from the damaged intestine trigger systemic inflammatory 
response syndrome, which often culminates in MODS and death (Yasuhara, 2005). In 
experimental studies, intestinal ischemia induced by vascular occlusion with a clamp 
has become an established model of systemic inflammation causing ALI and MODS. 
 
2.1.2.4. ALI in cardiovascular surgery 

Cardiac and major vascular surgery is frequently associated with a certain degree of 
systemic inflammation. Surgical trauma, ischemia-reperfusion injury, release of 
endotoxin from under-perfused intestine, contact of the patient’s blood with the 
artificial surface of cardiopulmonary bypass (CPB) circuit and transfusion are some of 
the most important triggers of the inflammatory response (Tonz et al., 1995; 
Raijmakers et al., 1997; Czerny et al., 2000; Silliman et al., 2005). SIRS significantly 
contributes to the post-operative complications in cardiovascular surgery, such as 
dysfunction of the heart, lungs, liver, kidneys, brain, or in the worst case MODS.  
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ALI belongs to the most common post-operative complication in cardiovascular 
surgery. The lungs suffer in addition to the systemic inflammatory reaction also from 
ischemic injury (Schlensak et al., 2000). During CPB, there is no blood flow in the 
pulmonary artery and the flow in the bronchial arteries is reduced. The importance of 
this finding is underlined by the fact that lung ischemia and subsequent inflammation 
can be partially prevented by perfusion of the pulmonary artery with cold blood during 
CPB (Schlensak et al., 2001; Schlensak et al., 2002).  

Results of some studies suggest that the incidence of ALI in the patients undergoing 
cardiac surgery is as high as 60% (Verheij et al., 2006). Respiratory dysfunction in 
most of the cases is only temporary and corrects rapidly with the support of artificial 
ventilation. However, about 20% of the patients undergoing cardiac surgery with the 
use of CPB require ventilation for more than 48 hours after the operation 
(Hammermeister et al., 1990). Prolonged ICU stay with artificial ventilation is 
associated besides increased complication rate also with higher mortality. In fact, 
mortality of the patients with severe post-operatory respiratory dysfunction in cardiac 
surgery has been reported to be over 50% (Milot et al., 2001). 
 
2.1.2.5. Outcomes 

Mortality rate associated with ALI is about 40% (Fowler et al., 1983; Bell et al., 1983; 
Montgomery et al., 1985; Sloane et al., 1992; Suchyta et al., 1992; Doyle et al., 1995; 
Milberg et al., 1995; Zilberberg and Epstein, 1998). The deaths are caused in the most 
cases by MODS. The reduction of mortality rates caused by the recent improvements 
in the ventilation strategies shows that a part of the deaths is a direct consequence of 
lung dysfunction. Although the mortality of patients suffering from ALI has according 
to some reports a tendency to decrease, it is compensated by the increasing incidence 
of the syndrome. Chronic liver disease, nonpulmonary organ dysfunction, sepsis, and 
advanced age are some of the recognized risk factors of death in ALI patients. The 
severity of hypoxemia, however, has not been shown to be associated with increased 
mortality (Doyle et al., 1995; Zilberg and Epstein, 1998; Luhr et al., 1999). Critical 
patients suffering from severe sepsis, the most common cause of ALI and MODS, 
occupy according to a recent study 40% of beds in ICU and their mortality remains as 
high as 70% (Guidet et al., 2005). One of the most important components of MODS is 
ALI. ALI is present in about 90% of MODS patients and represents one of the 
independent risk factors for death (Stapleton et al., 2005). 

Regardless of the severity of the initial lung injury, lung function returns to normal 
within six to twelve months after the diagnosis in most of the survivors (McHugh et al., 
1994). Lung function abnormalities, which persist after the resolution of the syndrome, 
include gas-exchange deficit with exercise and residual impairment of pulmonary 
mechanics.  These anomalies were believed not cause any symptoms (Elliott et al., 
1987; Ghio et al., 1989). The earlier findings were confronted by the results of recent 
studies, which show that the survivors of ALI tend to have certain degree of functional 
impairment, diminished health-related quality of life and represent an additional cost to 
healthcare (Hopkins et al., 2005; Cheung et al., 2006).   
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Figure 1. Indirect ALI. 
The scheme summarizes the development of indirect ALI in clinical practice. Non-pulmonary 
disorders trigger SIRS, which results in disruption of alveolo-capillary barrier and subsequent 
development of indirect ALI. 
 
Especially the patients who experience severe disease and are ventilated during 
extended periods are at higher risk of having residual impairment (Suchyta et al., 1991; 
McHugh et al., 1994).  
 
2.1.3. Pathogenesis 

2.1.3.1. Endothelial and epithelial injury 

Disruption of the alveolar-capillary barrier is a well-established mechanism responsible 
for the influx of protein-rich edema fluid into the air spaces during the initial phase of 
ALI (Pugin et al., 1999). The alveolar-capillary barrier consists of microvascular 
endothelium and alveolar epithelium. Injury of each of the two components of the 
barrier is responsible for the development of pulmonary edema.  
Endothelium covers the luminal surface of the vasculature and is therefore exposed to 
the substances found in the circulation. During ALI, endothelial cells are being injured 
by pro-inflammatory cytokines, activated immune cells and reactive species. 
Endothelial damage contributes to leukocyte recruitment, coagulation disorders and 
vascular leakage (Figure 2.). 
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Two cell types comprise the alveolar epithelium under normal circumstances. Up to 
90 percent of the alveolar surface is covered by flat type I cells. The remaining area is 
covered by cuboidal type II cells. The former are very prone to injury, while the latter 
are fairly resistant, which allows them to differentiate to type I cells after injury. The 
loss of epithelial integrity contributes importantly to edema formation for several 
reasons. Epithelial barrier represents the less permeable component of the alveolar-
capillary barrier (Wiener-Kronish et al., 1991). Injury to type II cells impairs removal 
of fluid from alveolar space and surfactant production, which interferes with the 
normal function of the lungs (Modelska et al., 1999; Sznajder, 1999; Greene et al., 
1999). Severe epithelial injury also predisposes to fibrosis during the later phases of 
ALI (Bitterman, 1992). Moreover, the lack of epithelial barrier allows bacteria present 
in the patients with pneumonia to enter the circulation and cause sepsis (Kurahashi et 
al., 1999).  
 
2.1.3.2. Neutrophil-dependent injury 

ALI is accompanied by neutrophil sequestration in the lungs (Figure 2.). Most of the 
animal models show clear neutrophil-dependency of the lung damage (Prescott et al., 
1999). In clinical practice, neutrophils were found in the lung biopsies, pulmonary 
edema fluid and bronchoalveolar lavage fluid of the patients suffering from ALI 
(Bachofen and Weibel, 1974; Bachofen and Weibel, 1977; Pittet et al., 1997). Upon 
activation, neutrophils can release oxidants, proteases and proinflammatory molecules. 
However, it remains unclear whether neutrophil sequestration is a result or a cause of 
the lung damage. Both animal and clinical studies with neutropenic subjects showed 
that lung injury can develop also in the absence of polymorphonuclear cells (Laufe et 
al., 1986). 
 
2.1.3.3. Other pro-inflammatory mechanisms 

Pro-inflammatory cytokines have a crucial role in the initiation and evolution of ALI. 
In the case of direct ALI, the cytokines are mainly produced locally by the infiltrating 
immune cells, lung epithelial cells and fibroblasts. Extrapulmonary sources of 
proinflammatory cytokines contribute to lung damage in indirect ALI. However, the 
extent of inflammatory response depends on the balance between pro- and anti-
inflammatory mediators. 

Although in many cases life-saving, artificial ventilation represents another 
mechanism enhancing inflammatory reaction and causing lung damage. Ventilation-
induced lung injury has two major components. The first part is the inhalation of high-
fraction oxygen, which is toxic for the lung parenchyma (Pratt et al., 1979). Second, 
high pressures and volumes cause increased vascular permeability inducing edema 
formation (Webb and Tierney, 1974; Pratt et al., 1979; Parker et al., 1984; Dreyfuss et 
al., 1988; Corbridge et al., 1990). Moreover, alveolar overdistention accompanied by 
the repeated collapse and reopening of alveoli causes production of pro-inflammatory 
mediators in the lungs (Slutsky and Tremblay, 1998). Therefore, development of 
optimal ventilation strategies is absolutely necessary to reduce additional lung damage. 
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Figure 2. Pathogenesis of ALI. 
The figure illustrates the hallmarks of acute lung injury. Compromised endothelial barrier 
function allows leakage of protein-rich liquid, which is followed by leukocyte extravasation to 
the interstitium and alveolar spaces. 
 
2.1.4. Treatment 

A reduction in mortality rate associated with ALI is mostly a consequence of 
improvement in supportive care (Milberg et al., 1995; Abel et al., 1998). Clinical trials 
of drug treatment for ALI, such as corticosteroids and vasodilators,  did not improve 
mortality rates and in some cases they even increased risk of death (Sprung et al., 
1984; Matthay et al., 1998; Steinberg et al., 2006; Marini, 2006). Early and more 
effective treatment of infections represents one of the major advances in supportive 
care, since uncontrolled infections in critical illness are often fatal (Montgomery et al., 
1985). Fluid restriction belongs to the standard therapeutical interventions in the 
patients with lung edema. However, this approach carries a risk of compromising non-
pulmonary organ perfusion. Experimental studies showed that decrease of left atrial 
pressure was accompanied with decrease of lung edema (Bachofen and Weibel, 1977; 
Prewitt et al., 1981). A recent clinical study showed that fluid restriction in the patients 
with ALI improved lung function and shortened the duration of mechanical ventilation 
and intensive care without increasing nonpulmonary organ failures (Wiedemann et al., 
2006). 

Improved ventilation strategies are especially important for the patients suffering 
from respiratory dysfunction. Low tidal volume has been shown to significantly 
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decrease mortality due to reduced ventilator-induced lung injury (2000). Positive end-
expiratory pressure improves oxygenation and allows use of lower fractions of oxygen 
(Petty and Ashbaugh, 1971; Falke et al., 1972). However, the ventilation strategy in 
ALI patients still needs to be optimized. 

All the abovementioned refinements in supportive care have had significant impact 
on the mortality rate in the patients with ALI or ARDS, especially in the setting of 
multiple organ failure. However, the mortality still remains unacceptably high and the 
incidence of multiple organ failure has increased, which compensates for the 
improvements in critical care. What more, no effective pharmacological treatment for 
ALI is available. 
 

2.2. NOVEL THERAPEUTIC STRATEGIES IN THE TREATMENT OF 

ALI 

2.2.1. Nitric oxide 

Nitric oxide (NO) is a gas without color and odor. It is relatively water insoluble and 
does not react with the majority of biologic molecules. However, NO has an unpaired 
electron. This property allows it to react with other free radicals, some amino acids, 
and transition metal ions (McCleverty, 2004). Thiols, nitrite, and proteins containing 
transition metals stabilize nitric oxide in biologic solutions by forming complexes 
(Stamler et al., 1992). 

NO was not given much importance until it was shown to be identical with 
endothelium-derived relaxing factor, which is an important molecule in the regulation 
of vascular tone (Palmer et al., 1987). Endogenously, NO generation is governed by 
nitric oxicle synthase (NOS). This enzyme exists in three isoforms - neural, inducible, 
and endothelial. Each of these isoforms generates nitric oxide from the semiessential 
amino acid L-arginine. 
 
2.2.1.1. Positive effects of NO 

NO has several protective effects in inflamed lungs, which made it one of the 
candidates in treatment of ALI. The effect of NO in pulmonary circulation has been 
profoundly studied. Its inhalation causes a decrease of pulmonary artery pressure and 
pulmonary vascular resistance by vasodilatation of vasculature in the lungs (Pepke-
Zaba et al., 1991; Frostell et al., 1991; Frostell et al., 1993). Since hemoglobin 
immediately inactivates NO, its effect is local and does not cause systemic hypotension 
(Rimar and Gillis, 1993). What more, increase of pulmonary blood flow induced by 
NO is selective for the ventilated areas. Thus, NO improves ventilation-perfusion 
mismatch and improves oxygenation, which is in contrast with other vasodilators 
(Rossaint et al., 1993). 

Besides its effects on the regulation of vascular tone, NO improves function of the 
lungs suffering from ALI in many other ways. One of its crucial effects is reduction of 
neutrophil-mediated damage in acute inflammation. Both the respiratory burst and 
neutrophil-derived oxidative stress are diminished by NO (Gessler et al., 1996). In 
vitro studies showed that NO reduces leukocyte adhesion to endothelium (Kubes et al., 
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1991). Similar effect was also observed in animal models of ALI, in which NO 
decreased the sequestration of neutrophils both in the pulmonary vessels and in the 
alveoli (Sato et al., 1999). NO also modulates platelet function. It was shown to inhibit 
adhesion of platelets to endothelium and their subsequent aggregation (Moncada et al., 
1991). Another finding relevant for direct ALI caused by infection is that 
endogenously produced NO is capable of killing pathogens (Liew et al., 1990). In 
addition, production of surfactant was shown to be increased by NO, which adds to its 
protective properties (Stuart et al., 2003). 
 
2.2.1.2. Negative effects of NO 

Toxic effects of NO stem mainly from its reactivity with free radicals. It has been 
shown in different models that nitrogen reactive species derived from NO cause certain 
degree of endothelial damage (Heiss et al., 1994; Kristof et al., 1998). However, NO 
alone is not sufficient to significantly increase generation of nitrogen reactive species. 
The process requires also high concentration of oxygen radicals (Weinberger et al., 
2001). This condition might be met in the patients ventilated with high fraction of 
oxygen. 
 
2.2.1.3. Use of NO for treatment of ALI in clinical trials 

Vasodilatatory and anti-inflammatory effects of NO make it an attractive treatment 
option for the patients with ALI. 63% of European intensive care specialists surveyed 
in 1997 and 39% of Canadian intensive care specialists surveyed in 2004 have used 
NO to treat ALI (Beloucif and Payen, 1998; Meade et al., 2004). Interestingly, none of 
the 12 randomised trials of inhaled NO in patients with ALI showed mortality benefit 
(Adhikari et al., 2007). Although administration of NO was associated with limited 
improvement in oxygenation, the patients had an increased risk of developing renal 
dysfunction. 
 
2.2.2. Antioxidants 

Reactive oxygen species are being continuously generated under physiologic 
conditions as a result of oxygen metabolism (Frei, 1994). Small quantities of oxidants 
produced during cellular respiration and localized inflammatory reaction are 
effectively inactivated by scavenger systems. Endogenous antioxidants can be divided 
into two groups. Superoxide dismutase, catalase, and glutathione peroxidase belong to 
enzymatic antioxidants. Glutathione, vitamin E, vitamin C, β-carotene, and heme-
binding proteins including ceruloplasmin, transferrin, haptoglobin, and albumin 
represent non-enzymatic scavengers. Under circumstances which induce a massive 
increase in oxidants production, antioxidant defence might be insufficient and the 
tissues suffer from oxidative stress. The effects of oxidative stress range from 
induction of expression of adhesion molecules through damage of proteins, lipids and 
DNA to cell death (Halliwell, 1994; Marnett et al., 2003; de Nigris et al., 2003; Szabo, 
2003; Virag et al., 2003). 
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2.2.2.1. Oxidative stress in critical illness 

Critical illness is accompanied by substantial increase in generation of oxidants 
(Gutteridge and Mitchell, 1999). One major source of reactive oxygen species are the 
activated phagocytes. Respiratory burst of neutrophils, monocytes, macrophages and 
eosinophils consisting of rapid release of oxygen species significantly increases 
oxidative stress (Lamb et al., 1999). Xantine dehydrogenase represents additional 
source of reactive oxygen species (Takeyama et al., 1996). Finally, inducible NOS 
generates in critical illness increased amounts of NO, which together with reactive 
oxygen species forms reactive nitrogen species and causes an additional oxidative 
stress (Rudkowski et al., 2004; Peng et al., 2005). 
 
2.2.2.2. Oxidative stress in ALI 

Disruption of oxidant-antioxidant balance has been proposed as one of the mechanisms 
behind the development of ALI. It has been shown that the patients suffering from ALI 
have increased levels of reactive species and decreased levels of antioxidants (Zhang et 
al., 2000; Lang et al., 2002). Increased concentrations of hydrogen peroxide 
accompanied by peroxidation of membrane phospholipids have been shown in several 
clinical studies (Baldwin et al., 1986; Sznajder et al., 1989). Concurrently, 
measurement of antioxidant concentration in the lungs of ALI patients showed 
diminished quantities of urate, glutathione, ascorbate, α-tocopherol, β-carotene and 
selenium (Richard et al., 1990; Quinlan et al., 1996; Metnitz et al., 1999). 

Disturbed balance between oxidants and antioxidants seems to play an important 
role especially in the patients with ALI due to SIRS. When these patients suffer from 
more prominent oxidative stress, they will more likely progress to multiple organ 
failure and eventually die (Cowley et al., 1996; Motoyama et al., 2003). Although there 
has been much debate whether this observation is a cause or a consequence of critical 
illness, antioxidant supplementation might be an alternative therapeutic approach. 
 
2.2.2.3. Use of antioxidants for treatment of ALI in clinical trials 

Given that ALI patients suffer from increased production of oxidants and depletion of 
antioxidants, treatment with antioxidants might restore the lost balance. N-
acetylcysteine and procysteine were shown to replete intracellular antioxidant 
glutathione. After encouraging results from animal experiments (Bernard et al., 1984), 
these antioxidants were tested in several clinical trials. Although some of the studies 
showed improved systemic oxygenation and reduced need for ventilatory support, none 
of the trials showed mortality benefit (Cepkova and Matthay, 2006).  
 
2.2.3. CD73 

Purines are powerful signalling molecules both in normal conditions and in 
inflammation.  CD73 (ecto-5’-nucleotidase, 5’NT) is an endothelial-surface expressed 
glycosyl phosphatidylinositol-linked, membrane-bound ectoenzyme (Zimmermann, 
1992). It has been shown that CD73 exists as an endothelium-bound and as a soluble 
enzyme detectable in circulation. The soluble enzyme is released from endothelial 
surface upon shear stress (Yegutkin et al., 2000). CD73 controls the balance between 
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pro- and anti-inflammatory purines (Hunsucker et al., 2005). Adenosine 5’-
triphosphate (ATP) is continuously released into extracellular space and this release 
increases significantly during inflammation. ATP is converted into adenosine 5’-
diphosphate (ADP) and further to adenosine 5’-monophosphate (AMP) by CD39 (ecto-
apyrase, NTPDase). CD73 catalyzes dephosphorylation of AMP to adenosine (Figure 
3.). While ATP and ADP have pro-inflammatory and pro-thrombotic effects, adenosine 
is a potent anti-inflammatory molecule (Di Virgilio et al., 2001). Adenosine generated 
by endothelial CD73 binds to G-protein coupled adenosine receptors. There are four 
different types of adenosine receptors: A1, A2A, A2B and A3 (Linden, 2001). These 
receptors are expressed on different cells and function via distinct intracellular 
signaling. Taken together, CD73 regulates many physiological responses by 
extracellular generation of adenosine and subsequent activation of adenosine receptors.  
 

2.2.3.1. The role of CD73 in normal conditions 

The knowledge from the earlier studies suggesting that platelet function is regulated by 
purinergic signaling was expanded using CD73 deficient animals (Koszalka et al., 
2004). Although intrinsic platelet function of CD73 knock-out mice studied ex vivo 
seems to be identical with that of wild-type animals, in vivo studies revealed several 
differences. Platelet cyclic adenosine monophosphate (cAMP) levels are lower in 
CD73 deficient mice due to lower levels of plasma adenosine and subsequent 
decreased activation of adenosine receptors on platelets. This platelet abnormality 
observed in CD73 knock-out mice is associated with reduction of bleeding time after 
tail tip resection and vessel occlusion induced by free radical injury (Koszalka et al., 
2004). 

Adenosine represents one of the crucial regulators of glomerular filtration by 
mediating message between macula densa and underlying smooth muscle cells. A 
study in CD73 deficient animals showed that under normal conditions, there is no 
difference in renal function between these animals and their wild-type controls. 
However, CD73 knock-out mice challenged with increased tubular perfusion flow had 
significantly lower superficial nephron glomerular filtration rates. Moreover, CD73 
deficient animals had almost no residual feedback response during prolonged perfusion 
of the loop of Henle (Castrop et al., 2004). 

Epithelial cells in the lungs and intestine actively transport water and ions in order 
to maintain the epithelial surface hydrated. Adenosine was shown to activate 
electrogenic chloride transport and fluid secretion (Gamba, 2005). Measurements in the 
abovementioned mucosal organs revealed high CD73 activity (Thompson et al., 2004). 
However, a direct proof of the importance of CD73 activity in ion transport and 
hydration of mucosal surfaces of the lungs and intestine is still missing. 
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Figure 3. Adenosine generation on endothelial surface 
The figure shows extracellular adenosine production. Extracellular ATP and ADP are 
hydrolyzed by CD39 to AMP. CD73 hydrolyzes AMP generating adenosine, which binds to G-
protein coupled adenosine receptors.  
 
CD73 regulates different types of tissue barriers. For instance, intestinal barrier 
function is CD73-dependent. Specific inhibitor of CD73 administered orally increased 
intestinal permeability (Synnestvedt et al., 2002). However, the importance of CD73 in 
the regulation of endothelial barrier function seems to have far more physiological 
importance. The first mention of the role of CD73 in the regulation of endothelial 
permeability was suggested almost 10 years ago. Neutrophil-derived AMP was shown 
to be converted by CD73 to adenosine, which subsequently decreased paracellular 
permeability. Inhibition of CD73 by enzyme inhibitor or monoclonal antibody resulted 
in 85% increase of endothelial permeability (Lennon et al., 1998). This concept was 
later refined by identification of neutrophils as the source of ATP, which is converted 
to AMP by CD39 (Eltzschig et al., 2004). Thus, adenosine production on endothelial 
surface is a result of the coordinated phosphohydrolysis of purine nucleotides by CD39 
and CD73 (Eltzschig et al., 2003). The original in vitro findings have been confirmed 
by studies in CD73-deficient animals (Eltzschig et al., 2004; Thompson et al., 2004).  
 

2.2.3.2. The role of CD73 in disease 

Studies in human volunteers and in animals performed already two decades ago 
demonstrated that hypoxia induces increase of endogenous adenosine production 
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(Gnaiger, 2001; O'Farrell, 2001). One of the possible explanations of amplified need of 
adenosine is the vasodilatory property of adenosine. Activation of A1 adenosine 
receptors results in an increase of blood flow to hypoxic tissue (Bryan and Marshall, 
1999). Another reason for increased adenosine production in hypoxia is the need of 
limitation of inflammatory response.  

Augmented adenosine production in hypoxia is attributable to CD73 activity 
(Kobayashi et al., 2000; Synnestvedt et al., 2002; Eltzschig et al., 2003; Ledoux et al., 
2003; Thompson et al., 2004). There are two known mechanisms of CD73 up-
regulation. First, hypoxia causes transcriptional induction of CD73 via hypoxia-
inducible factor-1 (Synnestvedt et al., 2002). Increased adenosine production by CD73 
activates A2A or A2B receptors and thus increases intracellular cAMP. Since CD73 gene 
promoter contains cAMP responsive element, the product of CD73-catalyzed reaction 
probably adds to transcriptional up-regulation of CD73 (Hansen et al., 1995). 

Hypoxia causes increase in vascular permeability with subsequent extravasation of 
protein-rich liquid and neutrophils. Vascular leakage induced by hypoxia is 
emphasized upon inhibition of CD73 and in CD73 deficient animals. Although 
vascular leakage after hypoxia was present also in the heart, intestine and kidneys of 
CD73 deficient mice, the most significant changes were observed in the lungs 
(Thompson et al., 2004; Eltzschig et al., 2004). 

Adenosine has been long known to exert protective effect in ischemic myocardium 
via binding to adenosine receptors on several cell types, including cardiomyocytes, 
endothelium and immune cells (Eltzschig et al., 2003). Moreover, adenosine can 
induce tolerance to ischemia in myocardium by a mechanism known as 
preconditioning (de Jong et al., 2000; Headrick et al., 2003). CD73 is a major source of 
extracellular adenosine production in the heart and was shown to have an important 
role in ischemic preconditioning (Koszalka et al., 2004; Eckle et al., 2007b). 
Adenosine reduces ischemia-reperfusion injury via activation of A2A receptors on 
inflammatory cells (Linden, 2001). 

In inflammation, activated neutrophils extravasate from circulation to the tissues. 
These cells are believed to play a major role in the development of inflammation-
induced injury consisting of cell death and tissue edema. Adenosine reduces activation 
of neutrophils and thus prevents its potentially deleterious effects in the tissues 
(Cronstein et al., 1983). This effect is exerted via activation of adenosine receptors on 
neutrophils. Similar effects have been observed when the receptors were activated by 
agonists, which are being intensively studied for their therapeutic potential (Rosengren 
et al., 1991; Mubagwa and Flameng, 2001; McCallion et al., 2004). The importance of 
endogenous adenosine generation in inflammation was recognized only recently using 
gene-targeted animals (Koszalka et al., 2004; Eltzschig et al., 2004; Thompson et al., 
2004; Grenz et al., 2007; Eckle et al., 2007a; Eckle et al., 2007b; Hart et al., 2008). 

Inflammation is accompanied by extracellular release of adenine nucleotides. 
Endothelial cells, activated neutrophils, platelets and dead cells all contribute to the 
nucleotide release. ATP, ADP and AMP are readily metabolized by CD39 and CD73 
into adenosine. This mechanism abolishes excessive accumulation of neutrophils in the 
inflamed tissues and prevents excessive tissue injury (Thompson et al., 2004; Eltzschig 
et al., 2004; Guckelberger et al., 2004; Kohler et al., 2007; Grenz et al., 2007). Another 
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mechanism of CD73-mediated immunosuppression is adenosine generation on the 
surface of regulatory T cells (Deaglio et al., 2007). 

The potential role of CD73 in the response of host to microbial infection has only 
been recognized recently. Intestinal epithelial cells damaged by bacterial infection 
release ATP, which is metabolized by CD39 and CD73. Adenosine produced in this 
reaction increases fluid secretion by epithelium and produces diarrhea (Crane et al., 
2002). Viral infection of endothelial cells was shown to increase both expression and 
activity of CD73 (Kas-Deelen et al., 2001). One of the possible mechanisms behind 
CD73 induction in viral infection is release on pro-inflammatory cytokines by the 
infected cells. One of these cytokines, interferon-α (IFN-α), has been shown to induce 
CD73 activity and adenosine production in vivo (Niemela et al., 2004). 
 
2.2.3.3. Therapeutic potential of CD73 

Beneficial effects of adenosine signaling in numerous diseases make it an attractive 
candidate for therapeutical use. However, administration of adenosine produces severe 
side effects, such as hypotension and arrhythmias, which limit its use in clinical 
practice. Adenosine receptor agonists and antagonists represent another set of potential 
drugs. In this case, specificity and pharmacodynamics have been serious obstacles 
(Linden, 2001). Manipulation of endogenous adenosine generation is an approach 
which has a great therapeutic potential. Increased extracellular adenosine production 
was shown in the studies in which methotrexate and sulfasalazine were used (Morabito 
et al., 1998). Yet another approach is exogenous administration of CD73, which was 
used to dampen tissue damage in hypoxia-induced inflammation (Thompson et al., 
2004; Eltzschig et al., 2004). 
 
2.2.4. Vascular adhesion protein-1 (VAP-1) 

Leukocyte trafficking to the tissues belongs to the most important mechanisms 
enabling immunosurveilance under normal conditions and immune response in 
inflammation (von Andrian and Mempel, 2003; Muller, 2003). Both extravasation of 
lymphocytes to the secondary lymph organs in search for non-self antigens and 
emigration of activated lymphocytes and granulocytes to inflamed peripheral tissues 
occurs through multistep adhesion cascade (Springer, 1994). Leukocyte extravasation 
is mediated by adhesion molecules on leukocytes and endothelial cells. During the first 
phase of emigration cascade, endothelial selectins and their carbohydrate ligands on 
leukocyte surface enable tethering and rolling of leukocytes on endothelium. In the 
next step, chemoattractans and their serpentine receptors mediate shear-resistant 
adhesion of leukocytes. Finally, firm adhesion and transmigration of leukocytes 
through endothelium is dependent on leukocyte integrins and endothelial members of 
immunoglobulin superfamily. The abovementioned traditional adhesion molecules 
explain only partially the complex process of leukocyte extravasation. The concept is 
continuously being improved by discovery of additional molecules implicated in 
leukocyte emigration cascade (Salmi and Jalkanen, 2005; Ley et al., 2007). 

Ecto-enzymes represent a relatively new group of non-classical adhesion molecules. 
These enzymes expressed on endothelial or leukocyte surface have their catalytic 
domains outside of the cell membrane (Salmi and Jalkanen, 2005). Most of ecto-
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enzymes control leukocyte extravasation by their enzymatic activity, but some of them 
function also physically as adhesion molecules. Nucleotidases, ADP-ribosyl cyclases, 
ADP-ribosyl transferases, peptidases, proteases and oxidases are some of the ecto-
enzymes known to control leukocyte trafficking (Salmi and Jalkanen, 2005). VAP-1 
belongs to ecto-oxidases. 
 
2.2.4.1. Characterization of VAP-1 

VAP-1 was discovered using an antibody made against purified synovial vessels from 
arthritis patient (Salmi and Jalkanen, 1992). This antibody reduced binding of 
peripheral blood lymphocytes to post-capillary high endothelial venules in frozen 
section adhesion assays and in flow chamber assays. Endothelial expression of VAP-1 
is not limited to synovial vessels. VAP-1 was also found to be expressed on sinusoidal 
cells in the liver, small-caliber venules in numerous organs and high endothelial cells 
of lymphatic organs. Interestingly, VAP-1 is also expressed on non-endothelial cell 
types, such as adipocytes and smooth muscle cells (Salmi et al., 1993). 

Cloning of VAP-1 demonstrated that it belongs to semicarbazide-sensitive mono-
amine oxidases (SSAO) (Smith et al., 1998). SSAO catalyze oxidative deamination of 
primary amines producing the corresponding aldehyde, hydrogen peroxide and 
ammonium (Figure 4.). SSAO contain in their catalytic center copper and topa-
quinone, a unique modification of tyrosine residue, as co-factors (Klinman and Mu, 
1994; Jalkanen and Salmi, 2001). The reaction catalyzed by SSAO consists of two 
phases. During the reductive phase, transient Shiff-base is formed between the 
substrate and topa-quinone, which precedes aldehyde formation. SSAO is reoxidized 
during the subsequent oxidative phase, which is followed by the release of hydrogen 
peroxide and ammonium. Carbonyl-reactive substances, such as semi-carbazide and 
hydroxylamine, are inhibitors of SSAO activity (Klinman and Mu, 1994; Jalkanen and 
Salmi, 2001). 

VAP-1 is stored in endothelial cells under normal conditions intracellularly. 
Inflammation leads to translocation of VAP-1 from intracellular stores to the luminal 
surface. In humans, inflammation-induced up-regulation of VAP-1 was shown in 
synovitis, inflammatory bowel diseases and skin inflammations (Salmi et al., 1993). 
The animals studies revealed that surface expression of VAP-1 is only present in 
inflamed tissues (Jaakkola et al., 2000). Hence, translocation of VAP-1 from 
intracellular stores to luminal surface of vasculature is specific for the sites of 
inflammation. However, liver and kidney were found to express VAP-1 differently in 
humans and in mice, which complicates extrapolation of the findings from murine 
models to the humans (Bono et al., 1999). 

Serum SSAO activity was first detected four decades ago (Bergeret et al., 1957). 
Additional studies revealed that VAP-1 is the major source of SSAO activity in the 
circulation (Kurkijarvi et al., 2000). Under normal conditions, serum concentration of 
soluble VAP-1 in humans is 80 ng/ml (Kurkijarvi et al., 1998). This concentration does 
not change in numerous inflammatory conditions, but it was found to be elevated in 
diabetes and in certain liver diseases (Kurkijarvi et al., 2000; Salmi et al., 2002). 
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Figure 4. Enzymatic function of VAP-1. 
The figure shows the reaction catalyzed by VAP-1, a cell-surface expressed SSAO. VAP-1 
catalyzes oxidative deamination of primary amines with NH3, aldehydes and H2O2 as final 
products.  
 
 
2.2.4.2. In vitro studies of VAP-1 

In vitro inhibition of VAP-1 adhesive activity by anti-VAP-1 monoclonal antibodies 
diminished leukocyte binding to inflamed vasculature in both lymphoid and non-
lymphoid organs. The original observations of VAP-1 dependent leukocyte adhesion to 
frozen section were confirmed in chamber flow assays, which included defined shear 
stress. Besides firm adhesion, VAP-1 was shown in this study to play a role in rolling 
and transmigration of leukocytes through VAP-1 positive endothelial monolayer 
(Figure 5.) (Salmi and Jalkanen, 1992; Yoong et al., 1998; Lalor et al., 2002).Inhibition 
of enzymatic activity of VAP-1 by small molecular inhibitors produced in vitro similar 
reduction of leukocyte-endothelial interaction as use of anti-VAP-1 monoclonal 
antibodies (Salmi et al., 2001; Lalor et al., 2002; Koskinen et al., 2004). SSAO 
inhibitors interfered with all three steps of leukocyte extravasation. The importance of 
VAP-1 enzymatic activity for leukocyte emigration was confirmed using enzymatically 
inactive mutants (Koskinen et al., 2004). Anti-VAP-1 monoclonal antibodies have no 
effect on SSAO enzymatic activity and SSAO inhibitors do not alter the expression of 
antibody-defined epitopes of VAP-1 (Salmi et al., 2001; Koskinen et al., 2004; Bonder 
et al., 2005). Interestingly, blocking of VAP-1 with antibodies has no additive effect to 
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SSAO inhibition in leukocyte-endothelial interaction. Thus, VAP-1-mediated 
leukocyte adhesion to endothelium is believed to have two phases. Leukocyte binds 
during the first phase to the adhesive epitope recognized by antibodies. During the 
second phase, enzymatic reaction produces a covalent bond (Salmi and Jalkanen, 
2005). Importantly, biologically active end-products of VAP-1 catalyzed reaction 
induce expression of other adhesion molecules, such as E- and P-selectins, intercellular 
adhesion molecule-1, and CXCL8 (Jalkanen et al., 2007; Lalor et al., 2007). This way, 
enzymatic activity of VAP-1 enhances leukocyte binding to endothelium. 

h i lli i i fi dh i i itethering rolling activation firm adhesion transmigration

chemotaxis

 

Figure 5. Extravasation cascade and VAP-1. 
The figure summarizes the role of VAP-1 in extravasation cascade. VAP-1 is involved in 
leukocyte rolling, firm adhesion and transmigration from the luminal surface of the endothelium 
to the tissue. 
 
 
2.2.4.3. Importance of VAP-1 in vivo 

Leukocytes roll faster and the number of firmly adherent and extravasated leukocytes 
is reduced in inflamed vasculature in vivo after administration of anti-VAP-1 mAb or 
inhibitors of VAP-1 enzymatic activity. The importance of VAP-1 was first shown in 
vivo in the studies using anti-VAP antibodies. Inhibition of adhesive function of VAP-
1 interfered with leukocyte trafficking in animal models of peritonitis, acute rejection 
of liver transplant and diabetes (Tohka et al., 2001; Martelius et al., 2004; Bonder et 
al., 2005; Merinen et al., 2005). Inhibition of VAP-1 enzymatic activity had anti-
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inflammatory effect in sepsis, stroke, lung inflammation, colitis, experimental allergic 
encephalomyelitis, arthritis, skin inflammation and uveitis (Koskinen et al., 2004; 
Salter-Cid et al., 2005; Marttila-Ichihara et al., 2006; Xu et al., 2006b; Noda et al., 
2007; O'Rourke et al., 2007a; O'Rourke et al., 2007b). 

Generation of VAP-1 deficient animals confirmed the observations from wild-type 
mice treated with anti-VAP-1 antibodies and SSAO inhibitors. Gene targeting of VAP-
1 resulted in an increase of leukocyte rolling velocity and a decrease of the number of 
firmly adherent and extravasated leukocytes in inflamed vasculature in vivo (Stolen et 
al., 2005). Peritonitis and synovitis in VAP-1 deficient mice were accompanied by 
significantly reduced leukocyte trafficking (Stolen et al., 2005; Marttila-Ichihara et al., 
2006). Lymphocyte response after oral immunization was also compromised in the 
absence of VAP-1 (Koskinen et al., 2007). 

Non-enzymatic glycation of proteins represents one of the mechanisms behind 
development of vascular diseases, such as atherosclerosis. Studies in mice over-
expressing VAP-1 on endothelium revealed that VAP-1 enzymatic activity leads to 
increased generation of advanced glycation end-products, provided there is sufficient 
substrate for SSAO activity (Stolen et al., 2004). Moreover, these mice develop 
glucose intolerance and glomerulosclerosis later in life. Products of SSAO activity may 
contribute to the development of vascular complications. Aldehydes generated by 
VAP-1 enzymatic activity together with increased plasma glucose levels accelerate 
non-enzymatic protein glycation (Yu and Zuo, 1997) Hydrogen peroxide, another 
product of SSAO activity, adds to vascular damage by oxidation of proteins. In 
humans, plasma concentration of soluble VAP-1 seems to be inversely proportionate to 
insulin concentration. VAP-1 most likely contributes to the development of 
vasculopathies also by mediating infiltration of inflammatory cells to the vascular 
lesions, generation of advanced glycation products and production of oxidants (Salmi 
et al., 2002).  
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3. AIMS OF THE STUDY 

The aims of the present study were to develop new treatment strategies for ALI by 
 
I  combining administration of antioxidants and the substrate for NOS 
 
II up-regulating CD73 activity 
 
III inhibiting enzymatic and adhesive function of VAP-1 
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4. MATERIALS AND METHODS 
Materials and methods are described in more detail in the original publications. 
 
Table 1. Characteristics of the cell cultures used for in vitro studies. 

Cell type Description Source or 
reference 

Used in 

HDMEC human dermal 
microvascular 

endothelial cells 

freshly isolated in 
the laboratory 

 

II 

HPMEC human pulmonary 
microvascular 

endothelial cells 

ScienCell 
Research 

Laboratories, UK 

II 

HUVEC 
 

human umbilical 
vein endothelial 

cells 

freshly isolated in 
the laboratory 

 

II 
 

 
 
Table 2. Characteristics of the animals used for in vivo studies. 
Male rats and sex-matched mice were used. All the animals used were weight- and 
age-matched. 

animal 
strain 

Description Source or 
reference 

Used in 

mouse 
C57BL/6 WT 

wild-type mice Central Animal 
Laboratory, Turku 

University, 
Finland 

II, III 
 

mouse 
C57BL/6 CD73-/- 

CD73 deficient 
mice 

Thompson et al, 
2004 

II 

mouse 
129S6 WT 

wild-type mice Central Animal 
Laboratory, Turku 

University, 
Finland 

III 
 

mouse 
129S6 VAP-1-/- 

VAP-1 deficient 
mice 

Stolen et at, 2005 
 

III 
 

mouse 
129S6 

mTIEhVAP-1 
TG/VAP-1-/- 

 

mice deficient in 
mouse VAP-1 

over-expressing 
human VAP-1 on 

endothelium 

Stolen et at, 2004 
 

III 
 

rat 
sprague-dawley 

wild-type rats Central Animal 
Laboratory, Turku 

University, 
Finland 

I 
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Table 3. Characteristics of the antibodies used for in vitro and in vivo studies. 
Antibody Antigen Source or 

reference 
Used in 

4G4 
 

human CD73 
 

Airas et al, 1993 II 
 

TK8-14 
 

human VAP-1 Kurkijarvi et al, 
2004 

III 

3G6 chicken T cells 
(neg. control) 

Kurkijarvi et al, 
2004 

II, III 

7-88 murine VAP Merinen et al, 
2005 

III 

7-106  murine VAP-1 Merinen et al, 
2005 

III 

9B5  human CD44 
(neg. control) 

Jalkanen et al, 
1986 

III 

 
Table 4. Materials. 

Material Description Source Used in 
Ventilator 

neonatal ventilator 
 

Minibird 
 

Bird Company, 
USA 

I 
 

Anesthetics
ketamine Ketalar Pfizer, USA I, II, III 
xylazine Rompun Orion, Finland I, II, III 

Therapeutic agents 
superoxid 
dismutase 

 Sigma, USA I 

catalase  Sigma, USA I 
L-arginine  Braun, Germany I 

recombinant 
mouse IFN-β 

 R&D Systems, 
USA 

II 
 

Avonex recombinant 
human IFN-β 

Biogen Idec, USA II 

BTT2052/ 
SZE5302 

SSAO inhibitor Marttila-Ichihara 
et al, 2006 

III 

Microscopy tools
light microscope BX-60 Olympus, Japan I, II, III 
digital camera ColorView 12 Olympus, Japan I, II, III 

Detection tools
rat TNF-α 

detection kit 
ELISA 

 
R&D Systems, 

USA 
 

I 
 

MPO assay kit ELISA HyCult, 
Netherlands 

III 

EIA reader Spectra II Wallac, Finland I 
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Material Description Source Used in 
Detection tools

spectrometer Model 1409 Wallac, Finland II 
protein assay kit BCA Pierce, USA II, III 

fluorescence 
reader 

Ultra Tecan, 
Switzerland 

II, III 

fluorescence 
reader 

Infinite Tecan, 
Switzerland 

II, III 

Software
MultiCalc 
Advanced  

fitting software PerkinElmer, USA 
 

I 
 

SAS Enterprise 
guide 3.0  

statistical software SAS Institute, 
USA 

 

I, II, III 
 

ImageJ 
 

image processing 
software 

freely available 
 

I, II 
 

Other 
glycerophosphate  Sigma, USA II 

AMP  Sigma, USA II 
[2-3H]AMP 18.6 Ci/mmol Amersham, U.K. II 
TLC sheets Alugram SIL 

G/UV254 

Macherey-Nagel, 
Germany 

II 
 

Multiwell 96 
inserts 

 BD Falcon, USA II 

FITC-conjugated 
dextran 

70 kD 
 

Molecular Probes 
 

II 
 

RPMI  Sigma, USA II 
 

 

4.1. ANIMAL INSTRUMENTATION (I, II, III) 

The protocols were approved by the Committee on Animal Ethics of Turku University. 
 
4.1.1. Rats (I) 

Intramuscular injection of ketamine hydrochloride (110mg/kg of body weight) and 
xylazine (10 mg/kg of body weight) was used to induce anesthesia in rats. The depth of 
anesthesia was maintained by further intramuscular injections of ketamine and xylazine 
mixture. The body temperature of animals throughout the experiments was maintained 
using a heating lamp. Animals were mechanically ventilated via silicone tube inserted 
in the trachea with a mixture of room air and 25% O2 using neonatal ventilator. 
Maximum inspiration pressure was 20cm of H2O and the frequency was 30 breaths per 
minute. Venous catheter placed in the right femoral vein was used for fluid and drug 
administration. Intestinal ischemia was induced by placing a microvascular clamp on 
SMA at its aortic origin for 30 minutes. Ischemia phase was followed by 120 minutes 



Materials and Methods 

33 

of reperfusion. Sham-operated rats underwent laparotomy and dissection of SMA only. 
This protocol is an established and reproducible ALI model (Vejchapipat et al., 2006). 
 
4.1.2. Mice (II, III) 

Anesthesia in mice was induced by intraperitoneal injection of ketamine hydrochloride 
(110mg/kg of body weight) and xylazine (10 mg/kg of body weight). The depth of 
anesthesia was maintained by additional intraperitoneal injections of ketamine and 
xylazine. The mice spontaneously ventilated room air. Fluid loss was compensated by 
subcutaneous injections of saline. SMA was dissected via midline laparotomy and 
occluded by microvascular clamp for 30 min. Sham animals underwent superior 
mesenteric artery dissection without vascular occlusion. The wound was sutured in one 
layer. The ischemia phase was followed by the release of the microvascular clamp and 
wound closure. Mice were sacrificed after 240 minutes and the tissue samples were 
collected. This protocol has been used previously to induce indirect ALI (Ohara et al., 
2001).  
 

4.2. GRADING OF INTESTINAL DAMAGE (I, II, III) 

Paraffin-embedded samples of intestine were cut into 4 μm sections and stained with 
hematoxylin and eosin. Intestinal injury was scored according to original (I) or 
modified (II, III) Park's grading (Park et al., 1990). The original grading includes all 
degrees of intestinal IRI: grade 0, normal mucosa; grade 1, subepithelial space at the 
tips of the villi; grade 2, extended subepithelial space at the tips of the villi; grade 3, 
massive epithelial lifting down the sides of the villi; grade 4, villi denuded of 
epithelium; grade 5, loss of the villi; grade 6, injury of intestinal crypt layer; grade 7, 
necrosis of the entire intestinal mucosa; grade 8, transmural infarction. To simplify the 
scheme and include only the grades of injury we observed in our model, we modified 
the grading as follows: grade 0, normal mucosa; grade 1, subepithelial space and/or 
epithelial lifting in the villi; grade 2, villi denuded of epithelium, and grade 3, loss of 
the villi. In each slide, 5 randomly chosen fields of view under high magnification were 
graded. 
 

4.3. MEASUREMENT OF LUNG NEUTROPHIL INFILTRATION (I, 

III) 

To quantify the pulmonary neutrophil sequestration, we measured myeloperoxidase 
(MPO) concentration in the lungs using two different methods. We measured MPO 
activity (I) using previously described assay (Grisham et al., 1990). The lungs were 
excised after euthanasia and mechanically homogenized in a phosphate buffer. The 
solution was centrifuged twice (1500g at 4 °C for 15 minutes) to separate tissue debris. 
Hydrogen peroxide and 3.3'.5.5'-tetramethylbenzidine were added to the supernatant. 
Absorbance was measured by spectrophotometer at 655 nm. The concentration of 
MPO was calculated from the standard curve. The values were expressed per milligram 
of protein. 
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MPO concentration in the lungs was measured by ELISA (III). Animals were 
euthanized and lungs were perfused with 5 ml of saline through the right ventricle. 
Lungs were excised and mechanically homogenized in a buffer containing 200 mM 
NaCl, 5 mM EDTA, 10 mM tris, 10% glycine, 1 mM PMSF and 28 μg/ml aprotinin 
(pH 7.4). The solution was centrifuged twice (1500g at 4 °C for 15 minutes) to separate 
tissue debris. The supernatant was then assayed for MPO activity using a commercially 
available ELISA kit according to manufacturer’s instructions. To normalize the values 
from different experimental groups, average lung MPO concentration in non-treated 
animals with intestinal IRI and ALI was assigned 100%.  
 

4.4. LUNG TISSUE-AIR RATIO MEASUREMENT (I) 

To assess the degree of alveolar wall thickening caused by edema and cellular 
infiltration, paraffin-embedded samples of lungs were cut into 4 μm sections and 
stained with hematoxylin and eosin. Images from the sections obtained by digital 
camera were analyzed by image processing software ImageJ. The program was used 
according to manufacturers’ instructions to calculate tissue-air ratio in lungs. 
 

4.5. LUNG WET-DRY RATIO MEASUREMENT (I) 

To assess the lung vascular leakage, we measured lung wet-dry ratio. The lungs were 
removed and wet weight recorded. Lungs were afterwards placed in the oven at 70°C 
and dry weight was determined after 24 hours. 
 

4.6. LUNG AIRSPACE HEMORRHAGE MEASUREMENT (I) 

Airspace hemorrhage was graded as described previously (Tassiopoulos et al., 1997). 
Briefly, hematoxylin-eosin-stained lung sections from all animals were analyzed by a 
single blinded examiner and assigned one of the following grades of the extent of 
airspace hemorrhage: grade 0 - no changes, grade 1 - focal mild and subtle changes, 
grade 2 - multifocal mild changes, grade 3 - multifocal prominent changes, grade 4 - 
extensive prominent changes. 
 

4.7. SERUM TNF-α MEASUREMENT (I) 

Rat TNF-α concentration in serum was measured with ELISA according to 
manufacturer’s instructions. Absorbance was read at 450 nm on an EIA reader with 
fitting statistical software to calculate the results. 
 

4.8. IN VIVO ENDOTHELIAL PERMEABILITY MEASUREMENT (II) 

In vivo endothelial permeability was measured by assessment of FITC-conjugated 
dextran extravasation. Mice were injected intravenously 70 kD FITC-conjugated 
dextran (25 mg/kg body weight in 0.2 ml sterile saline) 5 minutes prior to euthanasia. 
Lung tissue samples were collected after killing and snap frozen in liquid nitrogen. 
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Frozen lung samples were cut into 7 μm sections and observed in fluorescence 
microscope. Color images of three randomly chosen fields under high magnification 
obtained by digital camera were analyzed by image processing software ImageJ. The 
percentage of section area exhibiting fluorescence above an arbitrarily chosen 
background value was used to determine the extent of vascular leakage.  
 

4.9. IN VITRO ENDOTHELIAL PERMEABILITY MEASUREMENT (II) 

HPMEC were grown to confluency in Multiwell 96 inserts (8-μm pore size). The cells 
were treated 24 hours prior to the experiment with IFN-β (500 U/ml) or left untreated. 
AMP (50 μM) was added for the last 15 minutes to ensure the presence of CD73 
substrate. 70 kD FITC-conjugated dextran (500 μg/ml) was applied to the upper wells. 
The flux of the labelled dextran to the bottom wells was measured kinetically using a 
fluorescence reader (Tecan Ultra). 
 

4.10. CD73 ACTIVITY MEASUREMENT (II) 

CD73 activity in the lung lysates and on the surface of HPMEC was assayed by thin-
layer chromatography (TLC), as described previously (Yegutkin et al., 2001). Briefly, 
the analyzed samples consisted of lung lysate, RPMI 1640, 5 mmol/l β-
glycerophosphate, and AMP with tracer [2–3H]AMP. Incubation times were chosen to 
ensure the linearity of the reaction with time, so that only up to 10% of the initially 
introduced substrate would be metabolized during the assay. Aliquots of the mixture 
were applied to Alugram SIL G/UV254 TLC sheets and separated with 
isobutanol/isoamyl alcohol/2-ethoxyethanol/ammonia/H20 (9:6:18:9:15) as solvent.  
3H-labeled AMP and its dephosphorylated nucleoside derivatives were visualized in 
UV light and quantified using a Wallac-1409β spectrometer. CD73 activity was 
expressed as nmol AMP hydrolyzed by 1 mg protein/h. BCA Protein Assay Kit was 
used to determine the protein concentration in the lysates. 
 

4.11. CD73 EXPRESSION MEASUREMENT (II) 

Expression of CD73 on endothelial surface was studied by immunofluorescence 
analyses as previously described (Airas et al., 1993). EDTA-trypsin (5 mM) was used 
to detach HPMEC, which were subsequently incubated with mAb (5 x 105 cells per 
staining, mAb concentration 10 µg/ml). The cells were incubated either with 3G6 
(negative control mAb) or 4G4 (anti-CD73 mAb) for 20 min at 4°C and washed twice. 
Thereafter, the cells were incubated for 20 min at 4°C with 1/100 diluted FITC-
conjugated sheep anti-mouse-IgG mAb containing 5% AB serum and washed twice. 
Finally, the cells were fixed with 1% paraformaldehyde. All incubations and washes 
were performed with PBS. Flow cytometry was used to detect fluorescence. The mean 
fluorescence intensity was calculated by subtraction of the fluorescence intensity of the 
cells stained with negative control mAb from the fluorescence intensity of the cells 
stained with anti-CD73 mAb. 
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4.12. SSAO ACTIVITY MEASUREMENT (III) 

Lung and abdominal fat samples were collected at the end of reperfusion. Tissue 
samples were cut into small pieces and lysed in an equal volume of lysis buffer (PBS 
and 0.2% Triton X-100). Enzymatic activity of VAP-1 was determined by 
measurement of hydrogen peroxide production using fluoropolarimetric assay, as 
described previously (Salmi et al., 2001). 
 

4.13. STATISTICAL ANALYSIS (I, II, III) 

Statistical analysis was performed using non-parametric one-way ANOVA (Kruskal-
Wallis and Mann-Whitney U tests) and repeated measures for ANOVA (cell culture 
permeability assays). SAS Enterprise guide 3.0 was used to calculate exact p-values. 
P<0.05 was considered statistically significant. The results were expressed as 
mean±SEM. 
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5. RESULTS 

5.1. INTESTINAL AND LUNG DAMAGE AFTER INTESTINAL 
ISCHEMIA 
Ischemia-reperfusion (IR) of intestine may cause damage to all parts of intestinal wall, 
provided that the duration of ischemia and reperfusion periods is sufficiently long. In 
the rats (I), 30 minutes long ischemia and 120 minutes long reperfusion caused a 5.7-
fold increase of intestinal damage when compared to the sham-operated animals 
(p=0.0001). In the mice (II, III), average grade of intestinal damage observed in the 
sham-operated animals was 0.4 (II) and 0.1 (III). Grade of intestinal injury was 
significantly increased by 30 minutes of intestinal ischemia and 240 minutes of 
reperfusion to 1.35 (II, p=0.002) and 2.1 (III, p=0.007).  

The potential of intestinal IR to trigger SIRS with subsequent damage to remote 
organs is well established. Both in the rats (I) and in the mice (II, III), we confirmed 
the presence of lung injury by histological examination of HE-stained lung sections 
from the pilot animals. Intestinal IR caused in the rats besides the morphological 
changes also significant 1.9-fold increase of lung wet-dry ratio when compared to 
sham-operated animals (I, p=0.0001). In the mice, we observed a 5.25-fold increase of 
lung vascular leakage (II, p=0.02) and 2.3-fold increase of lung neutrophil infiltration 
(III, p=0.002). 
 

 
Figure 6. Intestinal IR injury in rats. 
Sprague-dawley rats underwent sham operation (n=10) or 30 minutes long intestinal 
ischemia and 120 minutes long reperfusion (n=10). Intestinal damage was 
semiquantitatively graded according to the original Park’s scheme and expressed as 
mean±SEM. ** p<0.01 
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Figure 7. Intestinal IRI in C57BL/6 mice. 
C57BL/6 mice underwent sham operation (n=7) or 30 minutes long intestinal ischemia 
and 240 minutes long reperfusion (n=15). Intestinal damage was semiquantitatively 
graded according to the modified Park’s scheme and expressed as mean±SEM.  
** p<0.01 
 

5.2. COMBINATION OF NO DONOR AND ANTIOXIDANTS IN ALI 
5.2.1. Supplementation of arginine reduces lung damage in ALI  

NO has several protective effects in ALI. Depletion of NO in ALI can only be 
compensated by increased activity of NOS with greater demand for arginine, which is 
its substrate. In our model, administration of arginine reduced lung wet-dry ratio by 3% 
(p=0.03), MPO concentration by more than 50% (p non-significant), tissue-air ratio by 
more than 50% (p<0.001), and degree of air-space hemorrhage by 60% (p non-
significant). In conclusion, increasing availability of NOS substrate reduced lung 
damage after intestinal IR. 
 
5.2.2. Administration of antioxidants protects from ALI  

ALI is accompanied by massive increase of oxygen and nitrogen radical formation in 
the lungs. We found that antioxidant administration decreased lung wet-dry ratio by 
6% (p=0.03), MPO concentration by 70% (p=0.002), tissue-air ratio by almost 40% 
(p=0.001) and degree of air-space hemorrhage by more than 70% (p=0.03). We 
conclude that supplementation of oxygen radical scavengers attenuated lung injury 
after intestinal IR. 
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5.2.3. Combination of arginine and antioxidants abolishes positive effects of each 

treatment and enhances systemic inflammation  

When we compared the animals treated by arginine and antioxidants with non-treated 
controls, we found that the treatment had no effect on any of the measured parameters 
of lung damage. However, concomitant administration of arginine and antioxidants 
lead to highly significant 36-fold increase in plasma TNF-α concentration (p=0.001).  

In conclusion, NO donor and antioxidants reduced lung damage after intestinal IR 
when administered alone. Concomitant administration of arginine and antioxidants 
abolished positive effects of each of these treatments. Morever, the combination 
treatment enhanced systemic inflammatory response. 
 

5.3. THE ROLE OF CD73 IN ALI 
5.3.1. CD73 has a critical role in intestinal IRI and ALI  

After sham operation, both CD73 deficient and WT mice had similarly low grade of 
intestinal damage. IR caused significant increase in damage in both groups. However, 
the increase in CD73 deficient mice was more than twice as dramatic as in the WT 
animals. What more, there was a significant difference between the intestinal damage 
observed in CD73 deficient and WT mice (p=0.03). 

Quantification of pulmonary extravasation of intravenously administered FITC-
labeled dextran showed that the leakage in sham-operated CD73 deficient mice was 
slightly increased when compared to their WT controls (statistically non-significant 
difference). Pulmonary vascular leakage increased significantly in both WT and CD73 
deficient mice after intestinal IRI. However, ALI in CD73 deficient mice was 
associated with 80% more pulmonary leakage than their WT littermates (p=0.03). This 
finding underlines the importance of CD73 in development of indirect ALI. 
 
5.3.2. IFN-β administration prevents and treats acute lung injury  

Marginal pulmonary leakage observed in WT mice undergoing sham operation was 
increased over 5-fold in our model of indirect ALI (p=0.005). Importantly, IFN-β 
preventive treatment reduced the leakage in the lungs of WT mice by more than 90% 
when compared to nontreated littermates (p=0.0001). The vascular leakage in IFN-β 
pre-treated mice was similar to sham-operated animals. The effect of IFN-β 
pretreatment on the lung damage is not mediated by reduction of primary organ injury, 
since there was no significant difference in intestinal IRI in the IFN-β treated and non-
treated animals. Therefore, IFN-β seems to reduce pulmonary endothelial permeability 
by acting directly in the lungs. 

A single dose of IFN-β administered intravenously at the beginning of reperfusion 
period promoted vascular barrier function as efficiently as a three-day pre-treatment. 
FITC-labeled dextran extravasation was reduced by 90±9 % in this group when 
compared to the controls (p<0.001). Therefore, IFN-β diminishes vascular leakage in 
indirect ALI also when administered after the onset of the disease.  
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5.3.3. Positive effect of IFN-β administration is CD73-dependent 

While lung leakage was completely prevented in WT mice suffering from ALI, CD73 
deficient mice did not respond to treatment at all. In non-treated animals, there was 
only less than two-fold difference in vascular leakage between CD73 deficient and WT 
mice. After IFN-β treatment the difference became over 16-fold. This evidence 
strongly points towards CD73 dependency of the protective effect of IFN-β.  
 
5.3.4. IFN-β functions via CD73 up-regulation  

In vitro screening for inducers of CD73 on endothelial surface identified IFN-β as a 
potential candidate. CD73 activity in the lungs of WT mice receiving IFN-β 
pretreatment for 3 days prior to induction of ALI caused a 2.3-fold increase (p=0.002). 
Importantly, the dose used was the same as in the treatment of multiple sclerosis. Next, 
we found that expression of CD73 by HPMEC increased more than 2-fold after a 24 h 
IFN-β treatment. CD73 activity in HPMEC was also augmented (p=0.049). CD73 was 
also inducible on other endothelial cell types such as HUVEC and HDMEC by IFN-β 
treatment. For instance, on HUVEC both the surface expression (51±14 % increase in 
specific MFI for CD73, mean±SEM, n=7, p=0.02) and catalytic activity (94±9 % 
increase in CD73 activity mean±SEM, n=3, p<0.05) were induced with 1000 U/ml of 
IFN-β when compared to non-stimulated cells. IFN-β treatment decreased HPMEC 
permeability by almost 40% when compared to non-treated control (p=0.005). Thus, 
IFN-β treatment increases CD73 expression and activity and inhibits leakage also in 
human pulmonary endothelial cells. 
 

5.4. THE ROLE OF VAP-1 IN ALI 
5.4.1. VAP-1 expression in WT, gene-modified mice and humans  

Expression of VAP-1 on the pulmonary capillaries and larger vessels of WT mice is 
irregular and weak. Pulmonary vessels in VAP1-/- mice are completely devoid of VAP-
1 expression. Several vessels in the lungs of transgenic mice and all the pulmonary 
vessels in humans are strongly VAP-1 positive.   

Intestinal vasculature and smooth muscle layer in WT mice are weakly VAP-1 
positive. VAP-1-/- mice do not express VAP-1 on any structures within intestine. In 
contrast, transgenic mice have strongly VAP-1-positive intestinal vessels but negative 
smooth muscle layer. Intestinal vasculature and smooth muscle cells in humans are 
strongly VAP-1 positive.  
 
5.4.2. VAP-1 is crucial in the development of intestinal IRI and indirect ALI 

Intestinal IR resulted in the destruction of intestinal villi and inflammation of the 
intestinal crypts. Grading of intestinal damage revealed that VAP-1 deficiency was 
associated with almost 40% reduction of tissue injury (p=0.02). Moreover, VAP-1 
deficient mice had almost 40% less lung damage when compared to the WT controls 
(p=0.02). These data identify VAP-1 as a crucial molecule in the development of both 
IRI and ALI by using genetic targeting of the molecule. 
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5.4.3. Enzymatic activity of murine VAP-1 contributes to the development of 

intestinal IRI and indirect ALI 

Intestinal damage increased more than 18-fold after IR when compared to the sham-
operated animals (p=0.007). SSAO inhibitor-treated mice had intestinal damage 
decreased by almost 80% when compared to the vehicle-treated controls (p=0.03). 
Administration of anti-VAP-1 mAb had no significant effect on intestinal IRI when 
compared to non-specific mAb-treated controls. Therefore, enzymatic activity of VAP-
1 mediates the development of intestinal IRI in WT mice. 

Intestinal IRI caused 130% increase in lung damage when compared to sham-
operated animals (p=0.002). Administration of SSAO inhibitor lead to over 30% 
reduction of lung neutrophil infiltration when compared to the vehicle-treated controls 
(p=0.03). Use of anti-VAP-1 mAb had no effect on lung damage. Thus, catalytic 
activity of VAP-1 mediates the development of indirect ALI in WT mice. 
 
5.4.4. IRI and ALI do not induce VAP-1 activity 

SSAO activity in the tissues of VAP-1-deficient mice was undetectable, which 
suggests that VAP-1 is the major source of SSAO activity both in abdominal fat and in 
the lungs. Neither IRI nor ALI lead to induction of VAP-1 activity in the tissues when 
compared to sham-operated animals. VAP-1 catalytic activity was decreased by 60% in 
the abdominal fat and by over 80% in the lungs after administration of SSAO inhibitor. 
Administration of anti-VAP-1 mAb did not affect VAP-1 enzymatic activity in the 
tissues. Therefore, neither IRI nor ALI induces the catalytic activity of VAP-1. 
 
5.4.5. VAP-1 mediates intestinal IRI and indirect ALI in humanized mice 

Administration of SSAO inhibitor to the humanized VAP-1 mice resulted in almost 
50% decrease in intestinal IRI (p=0.01). Administration of anti-VAP-1 mAb did not 
affect intestinal IRI. In indirect ALI, inhibition of enzymatic activity of human VAP-1 
caused 30% decrease in lung damage when compared to the vehicle-treated controls 
(p=0.05) Interference with the adhesive function of VAP-1 using anti-VAP-1 mAb had 
no significant effect on the lung injury. In conclusion, enzymatic function of human 
VAP-1 mediates development of tissue damage in both IRI and ALI.  
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6. DISCUSSION 

Indirect ALI is a consequence of SIRS. In experimental setting, there are numerous 
approaches to trigger SIRS and thus induce indirect ALI. Intravenous injection of LPS, 
similarly as cecal ligation and puncture, mimic sepsis-induced ALI (Chatterjee et al., 
2007; Wu et al., 2007). Hemorrhage shock either alone or in combination with trauma 
represents another frequently used model of indirect ALI (Powers et al., 2003; Homma 
et al., 2005). Since SIRS is accompanied by compromised visceral perfusion, intestinal 
IRI is a well established and reproducible model of indirect ALI (Ohara et al., 2001). 
We decided to induce ALI by intestinal IRI, because this model allowed us to 
investigate the role of endothelial enzymes in both IRI and ALI.  

We used two models of intestinal IRI with different lengths of reperfusion. 30 
minutes long intestinal ischemia followed by 120 minutes long reperfusion in the rats 
produced similar morphological changes in the intestine as 30 minutes long ischemia 
followed by 240 minutes reperfusion. Loss of epithelial layer and loss of entire villi 
belonged to the most common findings. However, the lung changes after longer 
reperfusion period were more pronounced. While the increase of lung water content 
after 120 minutes of reperfusion was less than two-fold, 240 minutes of reperfusion 
allowed vascular leakage to increase over five-fold. Thus, intestinal IRI resulted in 
intestinal and lung damage in both cases.  

In the first part of our study, we focused on the role of NOS in indirect ALI. 
Bioavailability of NO is decreased during ALI due to its peroxynitrite-generating 
reaction with superoxide (Stuart-Smith and Jeremy, 2001). Depletion of NO results in 
pulmonary vasoconstriction and enhanced adhesion of leukocytes to endothelium. NO 
donors have protective effects in ALI by increasing availability of NO in the 
pulmonary circulation  (Sheridan et al., 1999; Chu et al., 2005). We challenged this 
concept in the rat model of intestinal IRI-induced ALI. We chose to administer NO 
intravenously. Administration of NO via inhalation was not suitable, because our aim 
was to improve both local changes in the lungs and attenuate the systemic 
inflammation. Inhaled NO was shown to be inactivated by haemoglobin in the lungs 
and not to have systemic effects (Rimar and Gillis, 1993).  

In our model, increasing availability of NOS substrate improved all the measured 
parameters. Arginine administration reduced vascular leakage, as reflected by wet-dry 
ratio. Moreover, tissue-air ratio and intra-alveolar hemorrhage, which are parameters of 
pulmonary morphological damage, were significantly improved by increasing 
availability of NO. Interestingly, we observed a strong trend towards reduction of 
neutrophil infiltration after arginine administration when compared to non-treated 
controls. However, this 50% decrease was not statistically significant (p=0.08), 
although it most likely has a biological importance. We can conclude that 
intravenously administered NO donor attenuates lung damage in ALI. 

Although pathophysiology of indirect ALI is still incompletely understood, one of 
the accepted mechanisms is a substantial increase in oxidative stress (Chabot et al., 
1998). Granulocytes and endothelial cells in the lungs get activated during excessive 
inflammatory response. These activated cells are capable of generating large quantities 
of reactive oxygen species during ALI. In healthy individuals, the radicals are 
scavenged by endogenous antioxidants, for instance SOD, catalase and glutathione. In 
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ALI, increased production of reactive oxygen species results in depletion of 
antioxidants. These conditions facilitate accumulation of   oxygen and nitrogen radicals 
in ALI patients (Lang et al., 2002). Interestingly, high degree of oxidant stress in ICU 
patients was found in several studies to be associated with decreased survival (Cowley 
et al., 1996; Motoyama et al., 2003).  

Identification of increased oxidant stress in the critically ill patients were followed 
by numerous experimental studies. Administration of antioxidant significantly reduced 
pulmonary damage in ALI in different animal models (Frei, 1994). Our findings are in 
line with the previously published literature. Treatment with antioxidants decreased 
significantly all the measured parameters of lung damage. Wet-dry ratio was reduced 
by 6%, tissue-air ratio by 40%, neutrophil infiltration by 70% and intra-alveolar 
hemorrhage by more than 70%.  

The beneficial effects of antioxidant administration in ALI were never confirmed in 
the clinical trials. Although antioxidants improved in some cases lung physiology of 
ALI patients, mortality in this patient group was not significantly decreased (Calfee 
and Matthay, 2007). Naturally, increased oxidant stress contributes only partially to the 
complex pathophysiology of ALI development. Therefore, a combination of 
antioxidants with another treatment might have synergic effect. Administration of NO 
donor was an especially attractive option, because its effects do not overlap with the 
effects of antioxidants. Intriguingly, we found that only a separate administration of 
antioxidants and arginine reduced lung damage in ALI. Simultaneous administration of 
scavengers with NO donor failed to improve any of the parameters of lung injury in 
our model of indirect ALI. Interestingly, this combination enhanced systemic 
inflammatory response resulting in an important increase of serum TNF-α. One 
possible explanation of our findings is that increased availability of NO lead to 
increased production of nitrogen reactive species and worsened already present 
oxidants stress. Another possibility is an interaction between the administered 
compounds resulting in inactivation of both of them. However, this unexpected effect 
of combining two beneficial treatments requires future studies.  

Extravasation of protein-rich fluid with its deposition in pulmonary interstitial and 
alveolar space is a characteristic feature of ALI. Increased capillary permeability leads 
to development of pulmonary edema and it compromises alveolar-capillary barrier. 
Congested lungs perform insufficient gas exchange, which results in arterial 
hypoxemia refractory to supplementary oxygen therapy. The only treatment of 
ALI/ARDS that was shown to reduce mortality is based on ventilation strategies, 
which highlights the importance of alveolar-capillary barrier disruption for the 
outcome in this frequent syndrome (Ware and Matthay, 2000). 

Endothelium is the main control point of macromolecular and fluid extravasation 
Therefore, the response of capillary endothelium to inflammatory cytokines might be a 
key moment in ALI development. Intestinal IR is an established model of ALI and is 
associated with high levels of circulating pro-inflammatory cytokines. Our in-vivo 
model of ALI induced 25% decrease in CD73 activity in the mouse lungs. CD73 is up-
regulated in certain models of inflammation, such as hypoxia and ventilator-induced 
lung injury, as a part of innate anti-inflammatory response. Increased adenosine 
production by CD73 prevents uncontrolled inflammation with detrimental effects. Our 
findings suggest that systemic inflammation down-regulates adenosine production. 
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This down-regulation participates in the loss of balance between pro- and anti-
inflammatory mechanisms, thus favoring development of inflammation-mediated 
damage. 

CD73 has a crucial role in the regulation of endothelial barrier function. The control 
of endothelial permeability by CD73 is mediated by generation of adenosine, which 
binds to its receptors expressed on endothelial surface. CD73 has been shown to 
control pulmonary leakage in normal conditions, hypoxia-induced inflammation and 
ventilator-induced lung damage (Lennon et al., 1998; Thompson et al., 2004; Eckle et 
al., 2007). However, most of the critical patients suffering from respiratory dysfunction 
develop SIRS-induced indirect ALI. Intestinal IRI is a widely used experimental model 
of indirect ALI. This model has a clinical relevance, since the critical patients have 
often under-perfused splanchnic area resulting in non-occlusive intestinal ischemia. 
Occlusion of mesenteric artery by en embolus or a thrombus is often the cause of AMI. 
Majority of the patients with this diagnosis dies of MODS with ALI as one of its 
components. In our model, intestinal IRI-induced indirect ALI resulted in a significant 
increase of pulmonary vascular permeability in both WT and CD73 deficient mice. 
Importantly, CD73 deficient animals developed more pronounced endothelial barrier 
dysruption than their WT controls. Sham operated CD73 deficient mice had only 
mildly increased pulmonary leakage when compared to their WT littermates. 
Therefore, it can be concluded that the lack of CD73 is compensated by other 
mechanisms under normal conditions and the endothelial barrier function is 
maintained. However, after induction of SIRS, CD73-generated adenosine becomes a 
key player in the control of endothelial permeability in the lungs.  

Direct lung injury caused by hypoxia or mechanical ventilation results in significant 
up-regulation of CD73 (Eckle et al., 2007; Eltzschig et al., 2004; Thompson et al., 
2004). Thus, CD73 seems to form part of innate anti-inflammatory response. In 
contrast, SIRS induced indirect ALI caused 25% decrease in CD73 activity. In this 
case, pathological down-regulation of endogenous adenosine generation might be one 
of the mechanisms behind dysruption of endothelial barrier function. Exogenously 
administered CD73 prevents pulmonary vascular leakage via generation of adenosine, 
which subsequently activates A2B adenosine receptors (Eckle et al., 2007). However, 
clinical use of CD73 purified from snake venom is not feasible without extensive 
clinical trials. On the contrary, IFN-β is a clinically used drug capable of increasing 
endogenous CD73 activity. IFN-β caused about two-fold induction of CD73 expression 
and activity on endothelium in the normal conditions. In ALI, IFN-β administration 
completely prevented the decrease of CD73 activity and led to 130% increase of 
enzyme activity . This way, even in a model of inflammation which otherwise down-
regulates CD73 activity, we were able to induce pharmacologically a strong anti-
inflammatory reaction. Increased adenosine availability could thus re-establish the 
balance between pro- and anti-inflammatory mechanisms attenuating the damage in 
several organs. To test whether IFN-β effect was CD73-dependent, we treated CD73 
deficient animals. Strikingly, IFN-β had no beneficial effect in these animals. Thus, we 
conclude that IFN-β-mediated protection from vascular leakage in lungs during 
indirect ALI is CD73 dependent and most likely is mediated via adenosine signalling. 

Although IFN-β influences numerous biologic functions, the most prominent effects 
of this cytokine reside in the modulation of immune system (Theofilopoulos et al., 
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2005). IFN-β functions via binding to its receptors expessed on immune as well as non-
immune cells, including endothelial cells (Indraccolo et al., 2007). Binding of IFN-β to 
the receptors changes  expression of hundreds of genes and results in modulation of 
both innate and adaptive immune processes (Der et al., 1998). Administration of IFN-β 
in multiple sclerosis patients was found to enhance blood-brain barrier function (Stone 
et al., 1995). In animal models of stroke, IFN-β reduced the size of necrotic area, 
diminished inflammatory cell infiltration and prevented dysruption of blood-brain 
barrier (Liu et al., 2002 and Veldhuis et al., 2003). However, the molecular mechanism 
underlying the enhancement of endothelial barrier function by IFN-β has not been 
suggested previously. We are the first to identify induction of CD73 as a key control 
point of IFN-β-mediated reduction of vascular leakage. Interestingly, delayed 
administration of IFN-β enhanced endothelial barrier function as efficiently as when 
administered preventively. Therefore, our data shows that acute lung injury can be both 
prevented and treated by pharmacological induction of CD73. Our findings regarding 
inducibility of CD73 on several endothelial cell types by IFN-β suggest that this 
treatment could have similar effects in other syndromes associated with dysruption of 
endothelial barrier. Up-regulation of CD73 expression and activity on endothelial cells 
has been previously shown after treatment with IFN-α, which shares the receptor with 
IFN-β (Niemela et al., 2004). Notably, other tested cytokines did not up-regulate CD73 
on endothelium. Therefore, induction of CD73 activity is a novel molecular 
mechanism behind IFN-β-mediated promotion of endothelial barrier function. 

Increased leukocyte trafficking to the tissues suffering from IRI significantly 
contributes to the tissue damage. Studies performed in the mice deficient in the 
classical endothelial adhesion molecules have shown that lack of these molecules is 
associated with decreased tissue damage in IRI (Kakkar and Lefer, 2004). In the model 
of myocardial IRI, deficiency in P-selectin and E-selectin reduced the tissue damage by 
40% (Jones et al., 2000). In the same model, genetic targeting of ICAM-1 resulted in 
40% attenuation of tissue damage (Jones et al., 2000). In addition to the traditional 
adhesion molecules, adhesion cascade is controlled also by ectoenzymes expressed on 
endothelial surface (Salmi and Jalkanen, 2005). We provide the first genetic evidence 
that the tissue damage in IRI is reduced in VAP-1 deficiency. Genetic targeting of 
VAP-1 caused almost 40% decrease of tissue damage in the model of intestinal IRI. 
Therefore, VAP-1 seems to contribute to the development of IRI to a similar extent as 
the classical adhesion molecules. 

Exaggerated inflammatory response accompanied by leukocyte infiltration mediates 
tissue damage in indirect ALI. In pre-clinical studies of ALI, neutrophil depletion 
resulted in improved outcome (Abraham et al., 2000). The critical patients with high 
neutrophil blood counts experience more pronounced respiratory dysfunction and have 
poor prognosis (Baughman et al., 1996; Azoulay et al., 2002). Genetic targeting of the 
classical adhesion molecules in ALI has been shown to be associated with decreased 
tissue damage (Kamochi et al., 1999). Some ectoenzymes expressed on endothelial 
surface also control development of  ALI (Eckle et al., 2007a). Using the model of 
intestinal IRI-induced ALI, we found that VAP-1 deficiency diminishes lung damage 
by almost 40%. Our results are similar to the observations in selectin deficient animals. 
Lung injury in P-selectin deficient mice was reduced by 30% (Kamochi et al., 1999). 
Strikingly, deficiency in ICAM-1 decreased lung damage in ALI by 80% (Kamochi et 
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al., 1999). ICAM-1 is expressed on pulmonary endothelial surface much more than 
VAP-1 or P-selectin, which is probably responsible for its more important role in the 
development of ALI.  

Recognition of VAP-1 as an important molecule in the development of IRI and 
indirect ALI led to further studies. In these studies, we separately investigated the 
contribution of each of the two functional modalities of VAP-1 to the tissue damage in 
IRI and ALI. Interestingly, inhibition of enzymatic activity of VAP-1 caused 80% 
reduction of tissue damage in IRI. Almost identical protection from IRI by SSAO 
inhibition has been shown in the model of stroke, where the tissue damage was 
diminished by 75% (Xu et al., 2006). Although inhibitors of VAP-1 catalytic activity 
used in both studies have been screened with panels of kinases and phosphatases, non-
specific effects of these compounds cannot be excluded. In fact, the SSAO inhibitor we 
used in the treatment of IRI has been shown to inhibit together with VAP-1 also other 
amine oxidases. Genetic targeting is the only way to specifically inactivate the 
molecule of interest. Hence, superior protection from IRI by SSAO inhibitors might be 
a consequence of non-specific effects of inhibitors. A different reason for less effective 
reduction of tissue damage in IRI by genetic targeting might be a compensation for 
lacking molecule. The acute start of VAP-1 inactivation by SSAO inhibitors does not 
allow for a similar compensation.  Interestingly, diabetic estrogen-treated 
ovariectomized female rats used in the stroke study were protected from IRI to a 
similar degree as the mice in our study. These results suggest that SSAO inhibition is a 
potent anti-inflammatory therapy even the subjects more susceptible to post-ischemic 
inflammation. 

SSAO inhibitors attenuated pulmonary inflammation in indirect ALI by 30%. 
Although expression of VAP-1 on pulmonary endothelium was much higher in the 
humanized mice than in the wild-type animals, enzymatic inhibition of both murine 
and human VAP-1 resulted in a similar reduction of tissue damage. Earlier studies 
suggested that SSAO inhibition might be beneficial in LPS-induced pulmonary 
inflammation (Yu et al., 2006). 40% reduction of pulmonary inflammation offered by 
SSAO inhibitor used in this study might be partially attributed to a different model. 
The authors induced direct lung injury by instillation of LPS in the trachea, which 
models pneumonia. In contrast, we induced indirect ALI by intestinal IRI-triggered 
systemic inflammation. This model is more relevant for clinical practice, as most of the 
critical patients suffer from indirect ALI caused by systemic inflammation. 
Interestingly, contribution of VAP-1 to the pulmonary injury seems to be similar 
regardless of the model. 

Use of anti-VAP-1 mAb has been shown to be beneficial in a number of models of 
inflammation. However, the potential of blocking adhesive function of VAP-1 in IRI 
and ALI remains unknown. We did not observe any significant effect of anti-adhesive 
therapy targeted at VAP-1 in the model of intestinal IRI. Neither WT nor humanized 
mice benefited from administration of anti-VAP-1 mAb in this model.  Likewise, 
pulmonary injury was not diminished by use of anti-VAP-1 mAb in our model of 
indirect ALI. More potent anti-inflammatory effect of blocking adhesive function of 
VAP-1 in the earlier studies might stem from a different expression pattern of the 
molecule in different tissues. Also, VAP-1 has been shown to be inducible by 
inflammation in several inflammatory conditions. However, we found that IRI and ALI 
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do not induce VAP-1, which might explain the lack of effect of anti-VAP-1 anti-
adhesive therapy in these models.  

In both models of acute inflammation, we found enzymatic activity of VAP-1 to be 
more important than its mAb-inhibitable adhesive function in the development of 
tissue injury. One of the possible explanations for the more potent anti-inflammatory 
effects of SSAO inhibitors is their capability to freely diffuse to the tissues and the 
cells. Thus, inhibitors of VAP-1 enzymatic activity inhibit besides endothelial surface-
expressed also intracellularly stored VAP-1. In contrast, anti-VAP-1 mAb only block 
the molecules expressed on the endothelium. Moreover, anti-VAP-1 mAb only block 
adhesive function of VAP-1 without interference with its enzymatic activity. SSAO 
inhibitors affect negatively both functional modalities of VAP-1, as inhibition of VAP-
1 enzymatic activity interferes also with the adhesion cascade. Therefore, protective 
effects of SSAO inhibitors and no significant effects of anti-VAP-1 mAb in the models 
of IRI and ALI seem rational.  

In conclusion, we provide the first genetic evidence of the crucial role of VAP-1 in 
IRI and in ALI. Our data show that it is the enzymatic activity of VAP-1 rather than its 
mAb inhibitable adhesive function, which contributes to the tissue injury in these 
clinically relevant models of acute inflammation. We also show that human VAP-1 in 
transgenic animals contributes to the development of tissue damage in IRI and ALI 
similarly to murine VAP-1. A new generation of highly selective SSAO inhibitors 
suitable for oral administration has become recently available. Future clinical trials will 
evaluate potential benefits of third-generation SSAO inhibitors in IRI and ALI. 

Taken together, we have identified two novel treatment strategies for ALI. IFN-β-
induced up-regulation of CD73 enhanced endothelial barrier function both in vitro and 
in vivo. Inhibition of VAP-1 enzymatic activity by small molecular SSAO inhibitor 
reduced lung neutrophil infiltration in ALI. Efficacy of both IFN-β and third-
generation SSAO inhibitors can be readily tested in clinical trials. Moreover, we have 
recognized a potentially harmful combination of antioxidants and NO donor. 
Combining these treatments in indirect ALI augmented systemic inflammation, which 
could be fatal in critical patients. 
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7. CONCLUSIONS 
ALI is a clinical syndrome of respiratory dysfunction of sudden onset accompanied by 
bilateral pulmonary infiltrates, which are not caused by left atrial hypertension. 
Mortality rate of the patients with acute lung injury remains despite the progress in 
intensive care medicine around 40%. Since neutrophil infiltration and extravasation of 
protein-rich liquid are the hallmarks of the first phase of acute lung injury, we decided 
to study endothelial enzymes capable of controlling these events. 

First, we hypothesized that availability of NO can be increased more efficiently by 
administration of both arginine and antioxidants. Surprisingly, the substances had only 
beneficial effect in ALI when administer separately. Their combination abolished these 
positive effects and enhanced systemic inflammatory response. Second, we decided to 
study the role CD73-generated adenosine in indirect ALI. We observed that CD73 
controls pulmonary vascular permeability in this model. Besides identifying CD73 as a 
crucial player in the development of vascular leakage in ALI, we also 
pharmacologically modulated its activity to reduce lung edema. Treatment with IFN-β 
prevented dysruption of endothelial barrier via induction of CD73 activity. Most 
importantly, IFN-β treatment was equally efficient in treatment of pulmonary vascular 
leakage when the disease had already started. Third, we tested whether VAP-1 
mediates lung damage in indirect ALI. We showed that lung neutrophil infiltration is 
mediated mainly via enzymatic function of VAP-1.  

In conclusion, we identified two novel strategies in treatment of ALI and one 
potentially dangerous combination of drugs beneficial when administered separately. 
We recommend to avoid combination of arginine and antioxidants in the treatment of 
ALI. IFN-β should be tested in a clinical trial for treatment of ALI and possibly other 
conditions accompanied by increased vascular permeability. Finally, we propose 
inhibition of enzymatic function of VAP-1 as a novel target in treatment of indirect 
ALI. 
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