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1. Introduction

The notion of the distance between two points is one of the key concepts of
mathematics in diverse areas such as geometry, linear algebra, topology, function
theory, functional analysis and applied mathematics. The study of distances led
to the notion of a metric space introduced by M. Fréchet in his thesis in 1906. A
clue of the multitude of metrics and their many applications may be obtained by
inspecting the dictionary of distances [8].

In geometric function theory, which is the area of mathematics this thesis belongs
to, metrics are used in numerous ways. The basic function theoretic entities, such
as conformal mappings and analytic functions, have properties best expressed in
terms of the hyperbolic or chordal metric rather than the usual Euclidean metric.
For instance, Nevanlinna’s principle of the hyperbolic metric says that analytic
functions are distance decreasing with respect to the hyperbolic metric [22, p. 50].

The discovery of the hyperbolic geometry by J. Bolyai and N. Lobachevsky two
centuries ago was a great sensation. They solved, in particular, the two millenniums
old question about the parallel postulate, which fails in the hyperbolic geometry.
There are worlds very different from what an Euclidean observer sees. For instance,
it may happen that seeing the space locally is not enough to produce the correct
global picture. In geometric function theory these ideas were developed among
others by F. Klein, H. Poincaré, H.A. Schwarz and C. Carathéodory. An important
research theme is to investigate the characteristic features of metric spaces and to
compare different geometries to each other as well as to classify low-dimensional
manifolds (i.e. locally Euclidean spaces) in terms of the metrics they carry.

The key metric of this thesis, the quasihyperbolic metric, was introduced and
studied by F.W. Gehring and his students in the 1970’s [9, 10]. Thereafter it has
become an important tool in many problems on topics such as geometric function
theory and theory of mappings. The quasihyperbolic metric has been recently stud-
ied in several PhD theses [11, 13, 18, 19] and research articles [12, 21, 25, 26, 27].

Conformal invariants and conformally invariant metrics have an important role in
geometric function theory. One of the most important conformally invariant metrics
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is the hyperbolic metric of the unit ball Bn or the half-space Hn used extensively
both in the planar case n = 2 as well as in the higher dimensions n ≥ 3 [3].

In the planar case, one can use the Riemann mapping theorem to extend this
definition to the case of simply connected plane domains. In fact, this definition
can be extended even to the case of all plane domains with at least three boundary

points with respect to the extended plane R
2

= R2 ∪ {∞} by use of so called
universal covering maps [14, p. 126]. Neither one of these methods is applicable to
the higher dimensional case.

The quasihyperbolic metric can be defined for every domain G ⊂ Rn with at
least two boundary points with respect to R

n
= Rn ∪ {∞}. It was introduced

by F.W. Gehring and B.P. Palka [10] in 1976. It turns out that for the case of
planar simply connected domains the quasihyperbolic metric is comparable to the
hyperbolic metric [4, (8.4)] whereas for the case of plane domains with isolated
boundary points this is not the case [14, p. 138, 253].

For a domain G ( Rn, n ≥ 2 we define the quasihyperbolic length of a rectifiable
arc γ ⊂ G by

ℓk(γ) =

∫

γ

|dz|
d(z, ∂G)

,

where d(z, ∂G) is the Euclidean distance between z and ∂G, and the quasihyperbolic
metric by

(1.1) kG(x, y) = inf
γ

ℓk(γ),

where the infimum is taken over all rectifiable curves in G joining x and y.
During the past three decades the quasihyperbolic metric has found many appli-

cations in geometric function theory [17, 24, 26, 30]. Even so, the geometry defined
by the quasihyperbolic metric has been studied very little and some very basic ques-
tions remain open. In [31] M. Vuorinen presented a list of questions of this type.
Certain of these questions have already been discussed in [19]. The purpose of this
thesis is to shed light on some of these geometric properties.

One of the open questions in [31] was to determine the modulus of continuity of
the identity mapping between two metric spaces. We will consider this problem by
comparing the quasihyperbolic metric, the distance ratio metric and the spherical
metric, where the two latter metrics are defined in Section 2. We will start the
comparison with a simple domain, punctured space. These results immediately
generalize for a general subdomain of Rn. However, the results are sharp only in
the domain Rn \ {0}.

The trigonometry defined by the hyperbolic metric in the half-plane and in the
unit disk is classical [3] while the trigonometry defined by the quasihyperbolic metric
has not been studied even in simple domains, apart from the half-plane H2. In
Section 4 we will explore the quasihyperbolic trigonometry in punctured plane,
which is one of the few domains where the explicit formula for the quasihyperbolic
distance is known. One of our main results in this section is the Rule of Cosines
for the quasihyperbolic metric. Some of these results also follow easily from their
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Euclidean counterparts if we use the exponential mapping, see [20, p. 38]. However,
the key idea of this section is to represent the proofs in a way that generalization
is possible. This section raises the natural question of finding suitable counterparts
of the results for domains other than the punctured plane.

The quasihyperbolic metric has recently been studied [18, 25, 21] in convex do-
mains. However, there is little knowledge about the quasihyperbolic metric in non-
convex domains apart from the punctured space. In Section 5 we will estimate the
quasihyperbolic metric in two simple non-convex domains. We will estimate the
quasihyperbolic length of a closed simple curve in twice punctured plane and find
an estimation for the quasihyperbolic metric in the Euclidean annulus.

Finally, in Section 6 we will consider the geometry of metric balls defined by
the quasihyperbolic, distance ratio and spherical metrics. We will point out that
the shape of these metric balls depends on the radius as well as the shape of the
domain. We will consider connectivity and local convexity properties, like convexity
and starlikeness, of the metric balls.

2. Notation

In this section we introduce some definitions and notation. We begin with the
concept of metric spaces and define several particular metrics.

Let X be a nonempty set. A function m : X × X → [0,∞) is a metric on X if
for all x, y, z ∈ X

(1) m(x, y) = m(y, x) ≥ 0,
(2) m(x, y) = 0 if and only if x = y,
(3) m(x, y) ≤ m(x, z) + m(z, y) (triangle inequality).

A metric space (X, m) consists of a nonempty set X and a metric m on X. If
f : [0,∞) → [0,∞) is an increasing function such that f(t)/t is decreasing, then
(X, f ◦ m) is a metric space whenever (X, m) is [1, p. 146]. In particular, the
function f(t) = tα, for α ∈ (0, 1), satisfies this condition.

Let (X, m) be a metric space and γ a curve in X. If

m(x, y) + m(y, z) = m(x, z)

for all x, z ∈ γ and y ∈ γ′, where γ′ is the subcurve of γ joining x and z, then γ is
a geodesic segment or shortly a geodesic. We denote a geodesic between x and y by
Jm[x, y].

A metric space (X, m) is a geodesic metric space if there exists a geodesic segment
joining any two points x, y ∈ X.

In each metric space (X, m) we define a metric ball or m-ball with center x ∈ X
and radius r > 0 by

(2.1) Bm(x, r) = {y ∈ X : m(x, y) < r}.
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In the dimension n = 2 we call Bm(x, r) a metric disk or m-disk. We denote the
m-diameter of a nonempty set A ⊂ X by

diam m(A) = sup
x,y∈A

m(x, y).

We use notation Rn for n-dimensional Euclidean space, Bn(x, r) and Sn−1(x, r)
for Euclidean balls and spheres, respectively, with radius r > 0 and center x ∈
Rn. We abbreviate Bn(r) = Bn(0, r), Bn = Bn(1), Sn−1(r) = Sn−1(0, r) and
Sn−1 = Sn−1(1). We often identify R2 with the complex plane C. We denote by
∡(x, y, z) ∈ [0, π] the angle between line segments [x, y] and [y, z] at point y.

A domain G ⊂ Rn is starlike with respect to x ∈ G if for all y ∈ G the line
segment [x, y] is contained in G and G is strictly starlike with respect to x if each
ray from the point x meets ∂G at exactly one point. If G is starlike with respect
to x for all x ∈ G then it is convex . A domain G is strictly convex if for all points
x, y ∈ ∂G the open line segment (x, y) is contained in G.

The distance ratio metric or j-metric in a proper subdomain G of the Euclidean
space Rn, n ≥ 2, is defined by

jG(x, y) = log

(

1 +
|x − y|

min{d(x), d(y)}

)

,

where d(x) is the Euclidean distance between x and ∂G. If the domain G is un-
derstood from the context we use the notation j instead of jG. The distance ratio
metric was first introduced by F.W. Gehring and B.G. Osgood [9] and in the above
form by M. Vuorinen [29]. The metric space (G, jG) is not geodesic for any domain
G [15, Theorem 2.10].

Let G, G′ ⊂ Rn be domains such that G ⊂ G′ and let x, y ∈ G. The quasihy-
perbolic metric defined by (1.1) and the distance ratio metric are monotone with
respect to the domain, i.e.

kG(x, y) ≥ kG′(x, y) and jG(x, y) ≥ jG′(x, y).

By definition of the quasihyperbolic and the distance ratio metrics it is evident that
the shape of the domain G, or more precisely the boundary ∂G, defines the distances
kG(x, y) and jG(x, y) for x, y ∈ G. This fact is studied in item 5.17. F.W. Gehring
and B.P. Palka showed [10, Lemma 2.1 (2.2)] that

(2.2) jG(x, y) ≤ kG(x, y)

for all domains G ( Rn and x, y ∈ G. On the other hand, M. Vuorinen has shown
[30, Lemma 3.7 (2)] that if |x − y| < sd(x), s ∈ (0, 1), then

kG(x, y) ≤ 1

1 − s
jG(x, y).

It is easy to see that both of the metrics kG and jG are invariant under similarities
and Euclidean isometries [29, p. 34].
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The explicit formula for the quasihyperbolic metric is known only in a very few
domains. One of such domains is the punctured space Rn \ {0}. G.J. Martin and
B.G. Osgood showed [20, page 38] that for x, y ∈ Rn \ {0} and n ≥ 2

(2.3) kRn\{0}(x, y) =

√

α2 + log2 |x|
|y| ,

where α = ∡(x, 0, y) ∈ [0, π]. If the domain G is understood from the context
we use the notation k instead of kG. F.W. Gehring and B.G. Osgood proved that
for any domain G ( Rn the metric space (G, kG) is a geodesic metric space [9,
Lemma 1]. Note that the formula (2.3) is invariant under inversions x 7→ r2x/|x|2,
x ∈ Rn \ {0}.

The spherical metric in Rn = Rn ∪ {∞} is defined by

q(x, y) =















|x − y|
√

1 + |x|2
√

1 + |y|2
, x 6= ∞ 6= y,

1
√

1 + |x|2
, y = ∞.

The metric space (Rn, q) is not geodesic, which can be seen for example by choosing
x = e1 and z = −e1. Now q(x, z) = 1 and q(x, y) = q(y, z) = 1/

√
2 for all

y = (0, y2, . . . , yn) ∈ Rn. For the radii r ∈ (0, 1/
√

2] we have

diam q(Bq(x, r)) = diam q(Bq(x, r)) = diam q(∂Bq(x, r)) = 2r
√

1 − r2

whereas for r ∈ (1/
√

2, 1)

1 = diam q(Bq(x, r)) = diam q(Bq(x, r)) > diam q(∂Bq(x, r)) = 2r
√

1 − r2.

Therefore, in a metric space the inequality diam m(Bm(x, r)) < 2r may hold. It is

also possible that diam m(Bm(x, r)) < diam m(Bm(x, r)) as the example X = Z, m
is the Euclidean metric and r = 1 shows.

2.4. Open problem. For the quasihyperbolic metric we may ask whether there
exists a radius r0 > 0 such that

k(∂Bk(x, r)) = 2r

for all r ∈ (0, r0] and x ∈ G, where G ( Rn is a domain.

For convex domains Open problem 2.4 has been solved [21, Theorem 3.18].
Let (X1, m1) and (X2, m2) be metric spaces and f : X1 → X2 be a function.

Suppose that there exists a continuous function ωf : [0, r1) → [0, r2), r1, r2 > 0, with
ωf(0) = 0 such that

m2(f(x), f(y)) ≤ ωf(m1(x, y)).

This function ωf , if it exists, is called the modulus of continuity . The existence of
the modulus of continuity is equivalent to the uniform continuity of f .
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3. Comparison of metrics

In [31] several general topics were listed which are largely open for further inves-
tigation in the setup of metric spaces. One of these topics dealt with the study of
the uniform continuity of mappings between metric spaces. A specific example is to
study whether the identity mapping id is uniformly continuous as a mapping

(3.1) id : (G, m1) → (G, m2),

where m1 and m2 are metrics on G. We can see that for any domain G ( Rn the
identity mapping

id : (G, kG) → (G, jG)

is uniformly continuous and the modulus of continuity is also identity in view of
(2.2).

In this section we study whether the identity mapping is uniformly continuous as
a mapping in (3.1) for mi ∈ {q, kG, jG} and for different domains G. We consider
first the quasihyperbolic and distance ratio metrics in Rn \ {0}, then in Rn \ {z}
for z ∈ Rn and finally for a general domain G ⊂ Rn. The result for Rn \ {0} is
formulated in the following theorem.

3.2. Theorem. For all x, y ∈ Rn \ {0}
(i) 2q(x, y) ≤ k(x, y) ≤ π

log 3
j(x, y),

(ii) q(x, y) log 3 ≤ j(x, y) ≤ k(x, y).

The constant in the first inequality of (i) is the best possible and the second inequal-
ity of (i) holds with equality for x = −y. The first inequality of (ii) holds with
equality for x = −y, |x| = 1, and the second inequality of (ii) holds with equality for
∡(x, 0, y) = 0.

3.3. Punctured space. Next we compare the quasihyperbolic, the spherical and
the distance ratio metrics in the punctured space Rn \ {0} and in a general punc-
tured space Rn \ {z}, z ∈ Rn. By [18, Theorem 1.6], kG(x, y) ≤ πjG(x, y)/ log 3 for
G = Rn \ {0} and x, y ∈ G. Combining this with (2.2) gives us

(3.4) j(x, y) ≤ k(x, y) ≤ π

log 3
j(x, y)

for x, y ∈ G = Rn \ {0}. By [30, 3.32 (1)]

q(x, y) ≤ ekG(x,y) − 1

2
for x, y ∈ G = Rn \ {0}.

The results of this section were motivated by the following open problem posed
by M. Vuorinen [31, 8.2] in 2006:

3.5. Open problem. Does there exist a constant c such that

q(x, y) ≤ ck(x, y)

for x, y ∈ Rn \ {0}?
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Besides 3.5 we may ask the same question for the distance ratio metric and
furthermore, we may ask whether there exist functions ω1 and ω2 such that k(x, y) ≤
ω1(q(x, y)) and j(x, y) ≤ ω2(q(x, y)) for all x, y ∈ Rn \ {0}.

It turns out that such functions ω1 and ω2 do not exist as the following proposition
shows.

3.6. Proposition. Let G = Rn \ {z}, z ∈ Rn, and m ∈ {kG, jG}. Then there does
not exist a function ω such that

m(x, y) ≤ ω(q(x, y))

for all x, y ∈ G. Moreover, the mapping id : (Rn \ {0}, q) → (Rn \ {0}, m) is not
uniformly continuous.

Proof. By the symmetry of G we may assume z = te1 for t ≥ 0. Let us assume,
on the contrary, that there exist a function ω : [0, r1) → [0, r2), r1, r2 > 0, such that
k(x, y) ≤ ω(q(x, y)) for all x, y ∈ G. Let us fix c ∈ [0, 1] and denote

xi = e1

(

t +
1

i

)

and yi = e1
c
√

1 − c2(1 + 2it + i2(1 + t2)) − i − i2t

c2(1 + 2it + i2(1 + t2)) − i2
.

Now for all i ≥ 1 we have q(xi, yi) = c, |xi| → t as i → ∞ and

|yi| =
c
√

1 − c2(1/i2 + 2t/i + (1 + t2)) − 1/i − t

c2(1/i2 + 2t/i + (1 + t2)) − 1
→ c

√
1 − c2(1 + t2) − t

c2(1 + t2) − 1

as i → ∞. We will show that f(t) < 0, t ≥ 0, for the function

f(t) =
c
√

1 − c2(1 + t2) − t

c2(1 + t2) − 1
− t =

c(1 + t2)(
√

1 − c2 − ct)

c2(1 + t2) − 1
.

Clearly
√

1 − c2 − ct < (>)0 and c2(1 + t2) − 1 > (<)0 for t > (<)
√

1 − c2/c and
thus f(t) < 0 for t 6=

√
1 − c2/c. By the l’Hospital Rule

lim
t→

√
1−c2/c

f(t) = lim
t→

√
1−c2/c

c(2
√

1 − c2t − c − 3ct2)

2c2t
= − 1

2c
√

1 − c2

we have f(t) < 0 for t ≥ 0.
Because d(xi) → 0 as i → ∞ and (c

√
1 − c2(1 + t2) − t)/(c2(1 + t2) − 1) < t, we

have

∞ > ω(c) ≥ k(xi, yi) ≥ j(xi, yi) = log

(

1 +
|xi − yi|

min{d(xi), d(yi)}

)

→ ∞

as i → ∞. This contradiction completes the proof for the case m = k. For m = j
the proof is similar. �

Before answering the question 3.5 we introduce a useful lemma.

3.7. Lemma. Let x, y > 0.
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(i) For α ∈ [0, π] and x 6= y

x2 + y2 − 2xy cos α

α2 + (log x − log y)2
≤ (x − y)2

(log x − log y)2
.

(ii) For x 6= y we define

g(x, y) =
|x − y|√

1 + x2
√

1 + y2| log x − log y|

and

g(x, x) = lim
y→x

g(x, y) =
x

1 + x2
.

Then g(x, y) ≤ 1/2.

Proof. (i) By [7, (2)] we have xy(log x − log y)2 ≤ (x − y)2. Since 1 − cos α =
2 sin2(α/2) ≤ α2/2, it follows that

(1 − cos α)xy(log x − log y)2 ≤ α2

2
(x − y)2,

which is equivalent to the claim.
(ii) If x 6= y, then by [7, (2)]

|x − y|√
1 + x2

√

1 + y2| log x − log y|
≤ x + y

2
√

1 + x2
√

1 + y2
=

q(x,−y)

2
≤ 1

2
.

By the arithmetic-geometric mean inequality g(x, x) ≤ 1/2. �

Let us define, for a domain G ( Rn and the metric m ∈ {kG, jG}, the following
constant

cG,m = sup
x,y∈G
x 6=y

q(x, y)

m(x, y)
.

Clearly we have q(x, y) ≤ cG,mm(x, y) for all x, y ∈ G. We solve now Open problem
3.5 for the quasihyperbolic metric.

3.8. Theorem. For G = Rn \ {0} and x, y ∈ G we have

q(x, y)

kG(x, y)
≤ 1

2
.

Moreover, cG,k = 1/2.
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Proof. Let us denote α = ∡(x, 0, y) and assume |x| 6= |y|. By the definition of q(x, y)
and k(x, y) and Lemma 3.7

q(x, y)

k(x, y)
=

√

|x|2 + |y|2 − 2|x||y| cosα
√

1 + |x|2
√

1 + |y|2
√

α2 + log2(|y|/|x|)

≤ ||x| − |y||
√

1 + |x|2
√

1 + |y|2| log(|y|/|x|)|

≤ 1

2
.

If |x| = |y|, then

q(x, y)

k(x, y)
=

2|x| sin(α/2)

(1 + |x|2)α ≤ |x|
1 + |x|2 ≤ 1

2
.

Let us finally show that the constant 1/2 is the best possible. By choosing |x| =
1 = |y| we have

q(x, y)

kG(x, y)
=

sin(α/2)

α
→ 1

2

as α → 0 and the assertion follows. �

Next we find a solution for 3.5 in the case of the distance ratio metric.

3.9. Theorem. For G = Rn \ {0} and x, y ∈ G we have

q(x, y)

jG(x, y)
≤ 1

log 3

with equality for x and y such that x = −y and |x| = 1. In particular, cG,j = 1/ log 3.

Proof. We may assume |x| ≤ |y| and denote α = ∡(x, 0, y). If α = 0, then by the
definition of q(x, y) and j(x, y) and Lemma 3.7 (ii)

q(x, y)

j(x, y)
=

|y| − |x|
√

1 + |x|2
√

1 + |y|2 log(|y|/|x|)
≤ 1

2
<

1

log 3

and the assertion follows.
Assume α > 0. Let us consider the function

f(a) =
c

√

1 + |x|2
√

1 + a2 log(1 + c/|x|)

for a > |x|. Clearly f(a) is decreasing in a. Therefore, by definition q(x, y)/j(x, y)
is a decreasing function in |y| for fixed |x − y|.
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If |x − y| ≥ 2|x|, then the quantity q(x, y)/j(x, y) is maximized when |x − y| =
|x| + |y| and thus

q(x, y)

j(x, y)
=

|x − y|
√

1 + |x|2
√

1 + |y|2 log
(

1 + |x−y|
|x|

)

≤ |x| + |y|
√

1 + |x|2
√

1 + |y|2 log
(

2 + |y|
|x|

)

≤ |x| + |y|
√

1 + |x|2
√

1 + |y|2
1

log 3
≤ 1

log 3
,

where the last inequality follows from the fact that (|x|+|y|) ≤ (
√

1 + |x|2
√

1 + |y|2)
is equivalent to 0 ≤ (1 − |x||y|)2.

If |x − y| < 2|x|, then the quantity q(x, y)/j(x, y) is maximized when |x| = |y|
and thus

q(x, y)

j(x, y)
=

|x − y|
√

1 + |x|2
√

1 + |y|2 log
(

1 + |x−y|
|x|

)

≤ 2|x| sin(α/2)

(1 + |x|2) log(1 + 2 sin(α/2))

≤ 2|x|
(1 + |x|2)

1

log 3
≤ 1

log 3
.

where the second inequality follows from the fact that for a ∈ [0, 1] the function
a/ log(1 + 2a) is decreasing.

By choosing |x| = 1 and y = −x we have q(x, y)/jG(x, y) = 1/ log 3 and the
assertion follows. �

Proof of Theorem 3.2. The assertion follows from equation (3.4) and Theorems 3.8
and 3.9. �

We compare next the quasihyperbolic, the spherical and the distance ratio metrics
in a general punctured space Rn \ {z}, z ∈ Rn. By definition kRn\{0}(x, y) =
kRn\{z}(x − z, y − z) and jRn\{0}(x, y) = jRn\{z}(x − z, y − z) for all x, y ∈ Rn \ {0}.
Therefore, we are interested only in the relation between the spherical metric and
the metric m ∈ {kRn\{z}, jRn\{z}}.
3.10. Lemma. Let z ∈ Rn, t = |z| and G = Rn \ {z}. Then

cG,k ≤ 1

2
+

1

4
t(t +

√
4 + t2)

and equality holds for t = 0.

Proof. By [30, Lemma 1.54 (4)]

q(x, y) ≤ bq(x − z, y − z)
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for x, y, z ∈ Rn and b = 1 + (|z|(|z| +
√

4 + |z|2))/2. Therefore, by Theorem 3.8

q(x, y) ≤ bq(x − z, y − x) ≤ b

2
kRn\{z}(x − z, y − z) =

b

2
kRn\{0}(x, y)

and equality holds for t = 0. Therefore the assertion follows. �

In Lemma 3.10 we obtained an upper bound for cG,k in the case of Rn \ {z},
z ∈ Rn. The following theorem gives a lower bound for cG,k.

3.11. Theorem. Let z ∈ Rn, t = |z| and G = Rn \ {z}. Then

cG,k ≥ t +
√

1 + t2

2
and equality holds for t = 0.

Proof. By the symmetry of G we may assume z = te1 and n = 2. We choose
x = d + hi and y = d − hi for d = t −

√
1 + t2 and h > 0. Now

q(x, y)

kG(x, y)
=

h

(1 + h2 + d2) arctan(h/(t − d))

implying

lim
h→0

q(x, y)

kG(x, y)
= lim

h→0

1

(1 + h2 + d2)

h

arctan(h/(t − d))

=
1

1 + d2
lim
h→0

(t − d)

(

1 +
h2

(t − d)2

)

=
t − d

1 + d2
=

√
1 + t2

1 + (t −
√

1 + t2)2
=

t +
√

1 + t2

2

and the assertion follows. Equality in the claim holds for t = 0 by Theorem 3.8. �

Let us introduce the counterpart of Lemma 3.10 for the distance ratio metric.

3.12. Lemma. Let z ∈ Rn, t = |z| and G = Rn \ {z}. Then

cG,j ≤
1

log 3
+

1

2 log 3
t(t +

√
4 + t2)

and equality holds for t = 0.

Proof. By [30, Lemma 1.54 (4)]

q(x, y) ≤ bq(x − z, y − z)

for x, y, z ∈ Rn and b = 1 + (|z|(|z| +
√

4 + |z|2))/2. Therefore by Theorem 3.9

q(x, y) ≤ bq(x − z, y − x) ≤ b

log 3
jRn\{z}(x − z, y − z) =

b

log 3
jRn\{0}(x, y)

and equality holds for t = 0. Therefore the assertion follows. �

Similarly as for the quasihyperbolic metric, we find a lower bound for cG,j in the
case G = Rn \ {z}, z ∈ Rn.
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3.13. Lemma. Let z ∈ Rn, t = |z| and G = Rn \ {z}. Then

cG,j ≥
1 + t2 − t

√
1 + t2

√
1 + t2

(

1 + t2 − t
√

2t
√

1 + t2 − t2
)

log
(

3 − 2t√
1+t2

)

and equality holds for t = 0.

Proof. We show that there exists x, y ∈ G such that

q(x, y) = c(t)jG(x, y),

where

c(t) =
1 + t2 − t

√
1 + t2

√
1 + t2

(

1 + t2 − t
√

2t
√

1 + t2 − t2
)

log
(

3 − 2t√
1+t2

) .

By the symmetry of G we may assume z = te1. We choose x, y ∈ G such that
|x − z| = |y − z| and (x + y)/2, 0 and z are on the same line. If x1, y1 ≥ 0, then
q(x, y) = q(x − 2x1e1, y − 2y1e1) and jG(x, y) ≥ jG(x − 2x1e1, y − 2y1e1). If x1 ≥ 0
and y1 ≤ 0, then by rotation about the origin we can find x′, y′ ∈ G such that
|x − y| = |x′ − y′|, |x| = |x′|, |y| = |y′| and x′

1, y
′
1 ≤ 0. Now q(x, y) = q(x′, y′) and

jG(x, y) ≥ jG(x′, y′). Therefore we may assume that x1, y1 ≤ 0.
For any x ∈ G, we choose y = 2x1e1−x and we show that q(x, y)/kG(x, y) ≤ c(t).

We denote h = |x − x1e1| and d = |x1| implying |x| =
√

h2 + d2 = |y|, |x − y| = 2h

and |x − z| =
√

h2 + (t + d)2 = |y − z|. We are interested in the function

f(d, h) =
q(x, y)

jG(x, y)
=

2h

(1 + h2 + d2) log (1 + u)

for h > 0, d > 0 and u = 2h/(
√

h2 + (t + d)2). We define f(t, h) = limd→t f(d, h)
and f(d, 0) = limh→0 f(d, h).

By a straightforward computation we obtain

∂f(d, h)

∂d
=

4h (v − d log (1 + u))

(1 + d2 + h2)2 log2 (1 + u)
,

where

v =
h(1 + d2 + h2)(d + t)

(h2 + (d + t)2)(2h +
√

h2 + (d + t)2)
,

and
∂f(d, h)

∂h
=

2 ((1 + d2 − h2) log (1 + u) − 2v(d + t))

(1 + d2 + h2)2 log2 (1 + u)

and ∂f(d, h)/∂d = 0 = ∂f(d, h)/∂d is equivalent to d =
√

t2 + 1 − h2 − t.
Now we would like to find the maximum value of the function

g(h) = f(
√

t2 + 1 − h2 − t, h) =
h

log
(

1 + 2h√
1+t2

)

(t2 + 1 − t
√

t2 + 1 − h2)
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for h ∈ (0,
√

t2 + 1). Instead of finding the maximum of the function g(h) we settle
for the fact that maximum of the function g(h) on (0,

√
t2 + 1) is greater than or

equal to g(1/(1 + t)2), because (1 + t2 − t
√

1 + t2)/
√

1 + t2 ≤
√

t2 + 1. Since

h

(

1 + t2 − t
√

1 + t2√
1 + t2

)

=

(

1 + t2 − t
√

1 + t2
)

[

log
(

3 − 2t√
1+t2

)]−1

√
1 + t2

(

1 + t2 − t
√

2t
√

1 + t2 − t2
) ,

we can choose c(t) = h((1 + t2 − t
√

1 + t2)/
√

1 + t2).
Equality in the claim for t = 0 follows from Theorem 3.9. �

3.14. General domain. We can use Lemmas 3.10 and 3.12 to estimate the ratio
of the metrics in a general domain.

3.15. Corollary. Let G ⊂ Rn be a domain and z ∈ ∂G such that t = |z|. Then

cG,k ≤ u(t),

where

u(t) =
1

2
+

1

4
t(t +

√
4 + t2).

Proof. Since G ⊂ Rn \ {z}, we have kRn\{z}(x, y) ≤ kG(x, y). Therefore by Lemma
3.10

q(x, y) ≤ u(t)kRn\{z}(x, y) ≤ u(t)kG(x, y)

and the assertion follows. �

3.16. Corollary. Let G ⊂ Rn be a domain and z ∈ ∂G such that t = |z|. Then

cG,j ≤ v(t),

where

v(t) =
1

log 3
+

1

2 log 3
t(t +

√
4 + t2).

Proof. Since G ⊂ Rn \ {z}, we have jRn\{z}(x, y) ≤ jG(x, y). Therefore by Lemma
3.12

q(x, y) ≤ v(t)jRn\{z}(x, y) ≤ v(t)jG(x, y)

and the assertion follows. �

3.17. Open problems. Theorems 3.8 and 3.9 show that the upper bounds in Lem-
mas 3.10 and 3.12 are sharp for z = 0. This raises two natural questions for the
general punctured space.

3.18. Open problem. Let G = Rn \ {z} be a domain and z ∈ Rn \ {0}. Is it true

q(x, y)

kG(x, y)
≤ |z| +

√

1 + |z|2
2

for all x, y ∈ G?

3.19. Open problem. What is the exact value of cG,j for the domain G = Rn \{z},
z ∈ Rn \ {0}?
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4. Quasihyperbolic trigonometry

There are not many domains where an explicit formula for the quasihyperbolic
distance is known. The simplest such a domain is the complement of the origin,
which we shall study in this section for the case n = 2. It turns out that numerous
classical results for the plane geometry hold with very minor modifications in this
case, too. This raises the general question whether and to what extent the results
of this section have counterparts for a general plane domain. This topic is beyond
the scope of this present investigation. The proofs are presented keeping possible
generalizations in mind. For most of the results a shorter proof would follow from
the results of G.J. Martin and B.G. Osgood [20].

We denote the n-dimensional Lebesgue measure by m and the (n−1)-dimensional
surface measure of Sn−1 by ωn−1. The quasihyperbolic volume of a Lebesgue mea-
surable set A ⊂ G is defined by

(4.1) mk (A) =

∫

A

dm(z)

d(z)n
.

In the case n = 2 we call mk(A) the quasihyperbolic area.
Since (G, k), G = R2 \ {0}, is a geodesic metric space, like the usual hyperbolic

space, it is possible to consider basic geometry. In item 4.6 we consider basic
trigonometric identities of geodesic trigons. In items 4.28, 4.47 and 4.54 we consider
the quasihyperbolic area of quasihyperbolic triangles, quadrilaterals and disks.

The main results of this section are the Euclidean model of the quasihyperbolic
geometry in (G, kG) for G = R2 \ {0} introduced in item 4.59 and the following
theorem. For the definition of a quasihyperbolic triangle and trigon, we refer to
Definition 4.8.

4.2. Theorem (Law of Cosines). Let x, y, z ∈ R2 \ {0}.
(i) For the quasihyperbolic triangle △k(x, y, z)

k(x, y)2 = k(x, z)2 + k(y, z)2 − 2k(x, z)k(y, z) cos ∡k(y, z, x).

(ii) For the quasihyperbolic trigon △∗
k(x, y, z)

k(x, y)2 = k(x, z)2 + k(y, z)2 − 2k(y, z)k(z, x) cos ∡k(y, z, x) − 4π(π − α),

where α = ∡(x, 0, y).

The Law of Cosines is a fundamental tool in the Euclidean geometry (see [5,
Chapter 10]). We show that Theorem 4.2 also has a similar role in the quasihyper-
bolic trigonometry by proving several corollaries in item 4.28. The Euclidean model
was implicit already in the paper of G.J. Martin and B.G. Osgood [20] but as far as
we know Theorem 4.2 as well as the consequences have never been published in this
form. Very recently J. Väisälä has studied the quasihyperbolic geometry in planar
domains [27].

The domains Bn and Rn\{0} are the extremal domains where the quasihyperbolic
metric is defined. The results of the quasihyperbolic metric in these two domains
can be used to estimate kD for other domains D ⊂ Rn, because by rescaling and
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translating we may assume either D ⊂ Rn \ {0} or Bn ⊂ D. Roughly speaking one
could expect that the results for kR2\{0} may have generalizations to other cases,
too. For instance, is there a counterpart of the Law of Cosines in Theorem 4.2 for a
general domain in the form of an inequality? In this direction we have proved that
Theorem 4.2 (i) holds as an inequality for the half-plane H2 = {z ∈ C : Im z > 0}.

4.3. Logarithmic spirals. Next we consider some properties of logarithmic spirals.
By (2.3) the geodesic Jk[x, y] is a subset of a logarithmic spiral whose polar equation
is r = aebθ for a = |x| exp(−b arg x) and b = (1/φ) log(|y|/|x|), where φ is the signed
angle between x and y at 0.

For s ∈ (0, 1) and x, y ∈ R2 \ {0}, |x| ≤ |y|, there exists z ∈ Jk[x, y] such
that k(x, y) = k(x, z) + k(z, y) and k(x, z) = sk(x, y). By (2.3) we can choose z
to be a point such that |z| = |x|1−s|y|s, ∡(x, 0, z) = s∡(x, 0, y) and ∡(z, 0, y) =
(1 − s)∡(x, 0, y).

We consider now some basic properties of the logarithmic spiral. Let us define a
ray by R (x) = {z ∈ R2 \ {0} : z = tx, t ∈ (0,∞)} for any x ∈ R2 \ {0}. The angle
between R (z) and the tangent of the logarithmic spiral at an intersection point is
given by [2, p. 189-190]

(4.4) arctan
1

b
.

Note that the angle arctan(1/b) does not depend on z and therefore the angle
between the ray R (z) and the logarithmic spiral is always a constant. In the case
b = 0 the logarithmic spiral is a ray and in the limiting case b = ∞ the logarithmic
spiral is a circle.

By (4.4) the logarithmic spirals r1 = a1e
b1θ and r2 = a2e

b2θ are orthogonal if
b1 = −1/b2. There are infinitely many logarithmic spirals containing two fixed
points. Polar equation of the logarithmic spiral, which contains two distinct points
x = (r1, 0), y = (r2, φ2) ∈ R2 \ {0}, φ2 ∈ (−π, π], and the quasihyperbolic geodesic
Jk[x, y] is

r(φ) = r1 exp

(

φ

φ2
log

r2

r1

)

.

Figure 4.5. An example of two orthogonal logarithmic spirals.
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For a given logarithmic spiral S = {(r, φ) : r = aebφ} and a point p = (r1, φ1) ∈ S
we can define a logarithmic spiral S ′, which is orthogonal to S and contains p, by

S ′ = {(r, φ) ∈ R2 \ {0} : r = r1e
(φ1−φ)/b}.

An example of two orthogonal logarithmic spirals is represented in Figure 4.5. Note
that the family of logarithmic spirals is invariant under stretching, inversions and
rotations about the origin.

4.6. Geodesic trigons. We define quasihyperbolic triangles and trigons and find
basic trigonometric properties of these geodesic trigons.

For x, y ∈ R2 \ {0} a geodesic Jk[x, y] is unique by (2.3) if ∡(x, 0, y) < π. If
∡(x, 0, y) = π, then there are exactly two geodesics joining x and y and they are
symmetric about the line that contains x and y.

Let us fix x, y ∈ R2 \ {0} such that ∡(x, 0, y) = αxy ∈ (0, π]. Then Jk[x, y] is a
logarithmic spiral, i.e. for any z ∈ Jk[x, y] we have

|z| = r(αxz) = |x| exp

(

αxz

αxy

log
|y|
|x|

)

,

where αxz = ∡(x, 0, z) ∈ [0, αxy]. If αxy = 0 then Jk[x, y] is the line segment [x, y].

4.7. Definition. For distinct x, y, z ∈ R2 \ {0} we define the quasihyperbolic angle
∡k(x, y, z) at y to be the Euclidean angle between the geodesics Jk[x, y] and Jk[y, z].

Note that by definition the quasihyperbolic angle is determined by the geodesics
and not by the points. By (4.4) we can find an expression for the angle between the
geodesic Jk[x, y] and the ray R (x). Namely, the function

α(x, y) =







π/2, if |x| = |y|,
arctan

(

αxy

| log(|y|/|x|)|

)

, if |x| 6= |y|,

describes the angle between the ray R (x) and Jk[x, y]. The function α can be used
to calculate quasihyperbolic angles between two intersecting geodesics.

4.8. Definition. For distinct x, y, z ∈ R2 \ {0} we define a geodesic trigon T to be
Jk[x, y]∪ Jk[y, z]∪ Jk[z, x] for fixed sides Jk[x, y], Jk[y, z] and Jk[z, x]. The interior
of a geodesic trigon is the set of points in R2 \ {0} that is enclosed by the geodesic
trigon. The points x, y and z are called the vertices of the geodesic trigon.

If the interior of the geodesic trigon is simply connected we call T quasihyperbolic
triangle and use notation △k(x, y, z). Otherwise T is called quasihyperbolic trigon
and denoted by △∗

k(x, y, z).

Note that ∂△∗
k(x, y, z) is the boundary of a domain D ⊂ R2, which contains the

origin. Clearly the quasihyperbolic triangle is always unique and it is contained
in the closure of a half-plane H with 0 ∈ ∂H . Therefore arbitrary points x, y, z ∈
R2 \ {0} need not form a quasihyperbolic triangle. An example of a quasihyperbolic
triangle and a quasihyperbolic trigon is represented in Figure 4.9.
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Figure 4.9. An example of a quasihyperbolic triangle (left) and a
quasihyperbolic trigon (right).

For distinct x, y, z ∈ R2 \ {0} we fix Jk[x, y], Jk[y, z] and Jk[z, x] and denote by
αx = ∡k(z, x, y), αy = ∡k(x, y, z) and αz = ∡k(y, z, x), where each angle αi is the
angle measured from the set that is enclosed by Jk[x, y]∪Jk[y, z]∪Jk[z, x]. Especially
αx, αy and αz are the angles of a quasihyperbolic triangle △k(x, y, z).

One of the basic facts about hyperbolic geometry is that the sum of the angles of
a triangle is less than π [3, 14]. For the quasihyperbolic geometry of Rn \ {0} the
sum of angles of a quasihyperbolic triangle is π, as in the Euclidean geometry, and
the sum of angles of a quasihyperbolic trigon is equal to 3π.

4.10. Theorem. Let x, y, z ∈ R2 \ {0} be distinct points. If x, y and z form a
quasihyperbolic triangle, then αx + αy + αz = π. Otherwise αx + αy + αz = 3π.

Proof. We know that each geodesic in R2 \ {0} is a subset of a logarithmic spiral.
We use the fact that the angle between a logarithmic spiral and the ray R (x) is
always a constant for any x ∈ R2 \ {0}.

We consider first the case where x, y and z form a quasihyperbolic triangle, i.e.
x, y, z ∈ H for a half-plane H such that 0 ∈ ∂H . We may assume H = {z ∈
C : Im z > 0} and arg x ≤ arg y ≤ arg z.

If y ∈ Jk[x, z], then αx = αz = 0 and αy = π and the claim is clear.
Let us assume y /∈ Jk[x, z]. Now αx = α(x, y)− α(x, z), αx = α(x, z)− α(x, y) or

αx = π − α(x, y) − α(x, z) (see Figure 4.11).
If αx = α(x, y)−α(x, z), then αz = α(z, x)−α(z, y) and αy = α(y, z)+π−α(y, x).

Therefore αx + αy + αz = π.
If αx = α(x, z)−α(x, y), then αz = π−α(z, x)−α(z, y) and αy = α(y, x)+α(y, z)

and αx + αy + αz = π.
Finally, if αx = π − α(x, y) − α(x, z), then αz = α(z, x) − α(z, y) and αy =

α(y, x) + α(y, z). Therefore αx + αy + αz = π.
Let us then assume that x, y and z form a quasihyperbolic trigon. Now αx =

α(x, y) + α(x, z), αx = α(x, y) + π − α(x, z), αx = α(x, z) + π − α(x, y) or αx =
2π − α(x, y) − α(x, z) (see Figure 4.12).
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Figure 4.11. The three different cases of αx in the case that x, y
and z form a quasihyperbolic triangle. In each case arg x = π/2.

Figure 4.12. The three essentially different cases in the case that
x, y and z form a quasihyperbolic trigon. In each case arg x = 0.

If αx = α(x, y) + α(x, z), then

(αy, αz) =
(

π − α(y, x) + α(y, z), 2π − α(z, x) − α(z, y)
)

or
(αy, αz) =

(

2π − α(y, x) − α(y, z), π − α(z, x) + α(z, y)
)

.

Either way, we have αx + αy + αz = 3π.
If αx = α(x, y) + π − α(x, z), then

(αy, αz) =
(

2π − α(y, x) − α(y, z), α(z, x) + α(z, y)
)

or
(αy, αz) =

(

π − α(y, x) + α(y, z), α(z, x) + π − α(z, y)
)

.

In both cases, we have αx + αy + αz = 3π.
The case αx = α(x, y)+π−α(x, z) can be obtained from the case αx = α(x, y)+

π − α(x, z) by changing y and z.
Finally, if αx = 2π − α(x, y) − α(x, z), then

(αy, αz) =
(

α(y, x) + π − α(y, z), α(z, x) + α(z, y)
)

or
(αy, αz) =

(

α(y, x) + α(y, z), α(z, x) + π − α(z, y)
)

.

In both cases, we have αx + αy + αz = 3π. �

We introduce then the Pythagorean Theorem for the quasihyperbolic triangles in
a special case.
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4.13. Lemma. Let △k(x, y, z) be a quasihyperbolic triangle, ∡(x, 0, y) = 0 and |z| =
|x|. Then

k(y, z)2 = k(x, y)2 + k(x, z)2.

Proof. By (2.3) k(x, y) =
∣

∣ log |x| − log |y|
∣

∣, k(x, z) = ∡(x, 0, z) and

k(y, z) =
√

α2
yz + (log |y| − log |z|)2,

where αyz = ∡(y, 0, z). Since ∡(y, 0, z) = ∡(x, 0, z) and |x| = |z|, the assertion
follows. �

Before generalizing Lemma 4.13 we introduce a convenient notation for a sector
of an annulus

Sxy = {z ∈ R2 \ {0} : |x| < |z| < |y|, ∡(z, 0, x) + ∡(z, 0, y) = ∡(x, 0, y)},
where x, y ∈ R2 \ {0}, |x| < |y| and ∡(x, 0, y) ∈ (0, π).

4.14. Theorem. For any quasihyperbolic triangle the Pythagorean Theorem, the
Law of Sines and the Law of Cosines are true. In particular, for a quasihyperbolic
triangle △k(x, y, z) with ∡k(y, x, z) = π/2 we have

k(y, z)2 = k(x, y)2 + k(x, z)2,

for a quasihyperbolic triangle △k(x, y, z)

k(x, y)

sin αz

=
k(y, z)

sin αx

=
k(z, x)

sin αy

and

(4.15) k(x, y)2 = k(x, z)2 + k(y, z)2 − 2k(x, z)k(y, z) cos αz.

Proof. Let us consider the smallest possible set Sab that contains the interior of
△k(x, y, z) with |a| < |b|. By Theorem 4.10 Sab has a corresponding rectangle S
in the metric space (R2, | · |) with height k(a, a|b|/|a|) and width k(a, b|a|/|b|)) and
similarly △k(x, y, z) has a corresponding triangle △(x′, y′, z′) in (R2, | · |) with the
same angles. By the definition of Sab we have x, y, z ∈ ∂Sab and x′, y′, z′ ∈ ∂S (see
Figure 4.16).

By Lemma 4.13 |x′ − y′| = k(x, y), |y′ − z′| = k(y, z) and |z′ − x′| = k(z, x). Now
the assertion follows from the Euclidean Pythagorean Theorem, the Euclidean Law
of Sines and the Euclidean Law of Cosines. �

4.17. Remark. Let T (x, y, z) be a geodesic trigon in a metric space (X, d) and let
C(a, b, c) be a comparison triangle in R2 such that d(x, y) = |a− b|, d(y, z) = |b− c|
and d(z, x) = |c − a|. If for all geodesic trigons T and u, v ∈ T

(4.18) d(u, v) ≤ |u − v|,
where u and v are comparison points of u and v respectively, then (X, d) is called
CAT(0) space [6]. The inequality (4.18) is called the CAT(0) condition.
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b
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y′

x′

z′

S

Figure 4.16. The points a, b and c in the proof Theorem 4.14.

By Theorem 4.14 the quasihyperbolic triangles in the metric space (R2 \ {0}, k)
satisfy the CAT(0) condition. However, the quasihyperbolic trigons need not satisfy
the CAT(0) condition. Let us consider the case x = 1, y = ei 2π/3 and y = e−i 2π/3.
Now

k(x, y) = k(y, z) = k(z, x) =
2π

3
and

∡k(x, y, z) = ∡k(y, z, x) = ∡k(z, x, y) = π

and the comparison triangle is an equilateral triangle with side length 2π/3.
Let us denote u = −1 and u ∈ R2 be the comparison point of u. Now

k(x, u) = π >
π√
3

= |x − u|

and therefore (R2 \ {0}, k) is not a CAT(0) space.

Let us now consider trigonometry of the quasihyperbolic trigons.

4.19. Theorem. If △∗
k(x, y, z) is a quasihyperbolic trigon and α = ∡(x, 0, y), then

k(x, y)2 = k(x, z)2 + k(y, z)2 − 2k(y, z)k(z, x) cos αz − 4π(π − α).

Proof. Let us denote by γ1 the geodesic from x to y and by γ2 6= γ1 the subarc of a
logarithmic spiral such that a, b ∈ γ implies ∡(a, 0, b) ≤ 2π − α. Let u ∈ γ2 such a
point that ∡(x, 0, u) = ∡(u, 0, y). Now by integrating the element of length along
the curve we obtain

(4.20)

∫

γ2

|dv|
d(v)

=

√

(2π − α)2 + log2 |x|
|y| .

On the other hand, as in the proof of Theorem 4.14 we can show that

(4.21)

(
∫

γ2

|dv|
d(v)

)2

= k(x, z)2 + k(y, z)2 − 2k(x, z)k(y, z) cos αz.
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Now by (4.20) and (2.3)

k(x, y)2 =

(
∫

γ2

|dv|
d(v)

)2

− 4π(π − α)

and the assertion follows by (4.21). �

4.22. Corollary. Let △∗
k(x, y, z) be a quasihyperbolic trigon, αz = π/2 and α =

∡(x, 0, y). Then

k(x, y)2 = k(x, z)2 + k(y, z)2 − 4π(π − α).

Proof of Theorem 4.2. The assertion follows from Theorems 4.14 and 4.19. �

The Law of Sines for the Euclidean and the quasihyperbolic triangles is based on
the fact that a triangle can be circumscribed by a circle by locating the circumcenter
as the point of intersection of the perpendicular bisectors. However, this is not true
for the quasihyperbolic trigons in general.

Similarly, other results from the Euclidean trigonometry are true in the quasihy-
perbolic trigonometry, if the geometric objects involved are contained in a half-plane
H with 0 ∈ ∂H .

4.23. Inequality of cosines. By Theorem 4.19 we see that the Law of Cosines
(4.15) is not true for the quasihyperbolic trigons in R2 \ {0}. Instead of the Law of
Cosines we could consider the following inequality of cosines

(4.24) k(x, y)2 ≥ k(x, z)2 + k(y, z)2 − 2k(y, z)k(z, x) cos ∡k(y, z, x).

By Theorem 4.2 inequality (4.24) is true for the quasihyperbolic metric in R2 \ {0}.
The following lemma shows that it is also true for the quasihyperbolic metric in H2,
because then the quasihyperbolic metric coincides with the hyperbolic metric.

4.25. Lemma. Let x, y, z ∈ H2 be distinct points. Then

kH2(x, y)2 ≥ kH2(x, z)2 + kH2(y, z)2 − 2kH2(y, z)kH2(x, z) cos γ,

where γ is the Euclidean angle between geodesics Jk[z, x] and Jk[z, y].

Proof. Let us denote a = kH2(x, z), b = kH2(y, z) and c = kH2(x, y). By [3, 7.12]

cosh c = cosh a cosh b − sinh a sinh b cos γ

and since the function cosh is increasing on [0,∞), we need to show that

cosh a cosh b − sinh a sinh b cos γ ≥ cosh
√

a2 + b2 − 2ab cos γ.

Let us therefore show that the function

f(x) = cosh a cosh b − x sinh a sinh b − cosh
√

a2 + b2 − 2abx

is non-negative on [−1, 1]. Clearly

f(−1) = cosh a cosh b + sinh a sinh b − cosh
√

a2 + b2 + 2ab

= cosh(a + b) − cosh |a + b| = 0
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and

f(1) = cosh a cosh b − sinh a sinh b − cosh
√

a2 + b2 − 2ab

= cosh(a − b) − cosh |a − b| = 0.

By a straightforward computation we obtain

f ′′(x) =
a2b2

(

sinh
√

a2 + b2 − 2abx −
√

a2 + b2 − 2abx cosh
√

a2 + b2 − 2abx
)

(a2 + b2 − 2abx)3/2
.

Because a, b > 0, we have a2+b2−2abx = (a−b)2+2ab(1−x) > 0 for x ∈ (−1, 1) and
for x = ±1 in the case of a 6= b. Since sinh t < t cosh t for all t > 0, we have f ′′(x) < 0
for x ∈ [−1, 1] and therefore f is concave on [−1, 1]. Since f(−1) = 0 = f(1), the
function f is non-negative on [−1, 1] and the assertion follows. �

Note that equality in Lemma 4.25 holds true if and only if x, y and z are on the
same line that is orthogonal to the boundary of the domain H2.

4.26. Remark. The Law of Cosines for the quasihyperbolic metric is true neither
in G1 = R3 \ {0} nor in G2 = R2 \ {0, 1}. This can be seen by observing that the
Pythagorean Theorem is not true.

Let us first consider G1. Choose x = e1, y = e2 and z = e3. Now kG1
(x, y) =

kG1
(y, z) = kG1

(z, x) = π/2 and ∡k(x, y, z) = ∡k(y, z, x) = ∡k(z, x, y) = π/2.
Therefore

kG1
(x, y)2 + kG1

(y, z)2 = π2/2 > π2/4 = kG1
(z, x)2

and the Pythagorean Theorem is not true.
Let us then consider G2. We find first a formula for kG2

(1/2, 1/2+ci) when c > 0.
Since in G2, Jk[1/2, 1/2 + ci] = [1/2, 1/2 + ci], we have

(4.27) kG2
(1/2, 1/2 + ci) =

∫ 1/2+c

1/2

dx
√

1/4 + x2
= log(2c +

√
4c2 + 1).

Choose a = 1/2, b = 1/4 and c = 1/2 + i/2. Now by (2.3), kG2
(a, b) = log 2,

kG2
(a, c) =

√

π2 + 4 log 2/4 and by (4.27), kG2
(b, c) = log(1 +

√
2). Because

∡k(a, b, c) = π/2 and

kG2
(a, b)2 + kG2

(b, c)2 = (log 2)2(log(1 +
√

2))2 > 1 >
π2 + 4 log 2

16
= kG2

(b, c)2,

the Pythagorean Theorem is not true.
It is not known whether the Pythagorean inequality k(x, y)2 + k(y, z)2 ≤ k(x, z)2

holds in the domain Gi, i ∈ {1, 2}, for points x, y, z ∈ Gi such that ∡k(x, y, z) = π/2.

4.28. Quasihyperbolic area of quasihyperbolic triangle. Next we consider the
quasihyperbolic area defined by (4.1). Since the quasihyperbolic area of quasihy-
perbolic trigons is always infinity, we concentrate on the quasihyperbolic area of a
quasihyperbolic triangle △k(x, y, z). We may assume that αx ≥ max{αy, αz}. We
consider the side Jk[y, z] as the base side and define the height of △k(x, y, z) as



ON HYPERBOLIC TYPE METRICS 27

kR2\{0}(x, u) for u ∈ Jk[y, z] such that ∡k(x, u, y) = π/2. Note that u exists by
Theorem 4.14 and it is uniquely defined.

4.29. Lemma. Let △k(x, y, z) be a quasihyperbolic triangle in R2 \ {0} and αx ≥
max{αy, αz}. Then the height of △k(x, y, z) is

√

k(x, y)2 −
(

k(y, z)2 + k(x, y)2 − k(x, z)2
)2

4k(y, z)2
.

Proof. Since ∡k(x, u, y) = π/2 and ∡k(x, u, z) = π/2, we have by Theorem 4.14

(4.30) k(x, u)2 = k(x, y)2 − k(y, u)2

and

(4.31) k(x, u)2 = k(x, z)2 − k(z, u)2.

Since u ∈ Jk[y, z], we have k(y, z) = k(y, u) + k(u, z) and therefore by (4.30) and
(4.31)

k(x, y)2 − k(y, u)2 = k(x, z)2 −
(

k(y, z) − k(y, u)
)2

,

which is equivalent to

(4.32) k(y, u) =
k(x, y)2 + k(y, z)2 − k(x, z)2

2k(y, z)
.

By (4.30) and (4.32) the assertion follows. �

The formula for the height of △k(x, y, z) given in Lemma 4.29 is equivalent to
√

k(x, z)2 −
(

k(y, z)2 + k(x, z)2 − k(x, y)2
)2

4k(y, z)2
.

We find now a formula for the quasihyperbolic area of two special domains and
then extend the result to an arbitrary quasihyperbolic triangle.

4.33. Lemma. The quasihyperbolic area of Sxy is

∡(x, 0, y) log
|y|
|x| .

Proof. By a simple computation

mk (Sxy) =

∫

∡(x,0,y)

0

(

∫ |y|

|x|

dx

x

)

dφ

=

∫

∡(x,0,y)

0

log
|y|
|x|dφ

= ∡(x, 0, y) log
|y|
|x| .

�
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For a fixed Sxy let us denote z = y|x|/|y|. Now k(x, z) = ∡(x, 0, y) and k(z, y) =
log(|y|/|x|). Therefore the quasihyperbolic area of Sxy is equal to k(x, z)k(z, y) =
∡(x, 0, y) log(|y|/|x|).

Each Sxy is divided into two right quasihyperbolic triangles by the geodesic
Jk[x, y], see Figure 4.34. The next result gives the quasihyperbolic area of these
quasihyperbolic triangles.

b

b

b

0

Sxy

Jk[x, y]

x y

Figure 4.34. The set Sxy and the geodesic Jk[x, y].

4.35. Lemma. The geodesic Jk[x, y] divides Sxy into two quasihyperbolic triangles
which both have the quasihyperbolic area

∡(x, 0, y)

2
log

|y|
|x| .

Proof. We denote α = ∡(x, 0, y) and the two quasihyperbolic triangles by T1 and
T2. We assume that T2 is closer to the origin. By a simple computation

mk (T1) =

∫ α

0

(

∫ |y|

|x| exp((φ/α) log(|y|/|x|))

dx

x

)

dφ

=

∫ α

0

log

(

( |y|
|x|

)1−φ/α
)

dφ

=
α

2
log

|y|
|x| .(4.36)

The quasihyperbolic area of T2 is obtained by Lemma 4.33 and (4.36). �

4.37. Corollary. Let △k(x, y, z) be a quasihyperbolic triangle in R2 \ {0} such that
∡k(y, x, z) = π/2. Then the quasihyperbolic area of △k(x, y, z) is

k(x, y)k(x, z)

2
.

Proof. If either Jk[x, y] or Jk[x, z] is subset of the ray R (x), then the assertion follows
by Lemma 4.35. Otherwise we may assume x, y, z ∈ H2 = {u ∈ C : Im u > 0} and
|y| ≤ |z|.
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Let us assume |x| ≥ |y| and denote a = z|y|/|z|, b = z|x|/|z| and c = y|x|/|y| (see
Figure 4.38).

b

b

b

b

b
b

b

0

y

c

a
b

z

x

Figure 4.38. The points a, b and c in the proof of Corollary 4.37.

By Lemmas 4.33 and 4.35 the quasihyperbolic area of △k(x, y, z) is

k(a, y)k(c, y)− k(a, y)k(a, z) + k(b, x)k(b, z) + k(c, x)k(c, y)

2

=
1

2

(

k(a, y)k(c, y) + k(a, y)k(b, z) − k(b, x)k(b, z) − k(c, x)k(c, y)
)

=
1

2

(

(

k(b, x) + k(c, x)
)(

k(c, y) + k(b, z)
)

− k(b, x)k(b, z) − k(c, x)k(c, y)
)

=
1

2

(

k(b, x)k(c, y) + k(c, x)k(b, z)
)

,(4.39)

because k(c, y) − k(a, z) = k(b, z) and k(a, y) = k(b, x) + k(c, x). By Theorem 4.14
we have

(4.40)
k(x, y)

k(c, x)
=

k(x, z)

k(b, z)
,

(4.41)
k(x, y)

k(c, y)
=

k(x, z)

k(b, x)

and

(4.42) k(b, x)2 + k(b, z)2 = k(x, z)2.

By (4.40) and (4.41) the formula (4.39) is equivalent to

1

2

(

k(b, x)2 k(x, y)

k(x, z)
+ k(b, z)2 k(x, y)

k(x, z)

)

.

By (4.42) the formula (4.39) is equivalent to k(x, y)k(x, z)/2 and the assertion fol-
lows.

The case |x| < |z| can be considered similarly. �

The next theorem gives Heron’s formula for the quasihyperbolic triangles.
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4.43. Theorem. Let △k(x, y, z) be a quasihyperbolic triangle. Then the quasihyper-
bolic area of △k(x, y, z) is

√

s
(

s − k(x, y)
)(

s − k(y, z)
)(

s − k(z, x)
)

,

where s =
(

k(x, y) + k(y, z) + k(z, x)
)

/2.

Proof. By Theorem 4.14 the quasihyperbolic triangle △k(x, y, z) can be separated
into two right quasihyperbolic triangles by the height geodesic Jk[x, u], where u ∈
Jk[y, z] and ∡k(x, u, y) = π/2. By the proof of Lemma 4.29 we know that

k(y, u) =
k(x, y)2 + k(y, z)2 − k(x, z)2

2k(y, z)

and

k(z, u) = k(y, z) − k(y, u) =
k(x, z)2 + k(y, z)2 − k(x, y)2

2k(y, z)
.

By Corollary 4.37 the quasihyperbolic area of △k(x, y, z) is

(4.44)
k(x, u)k(y, u)

2
+

k(x, u)k(z, u)

2
=

k(x, u)k(y, z)

2
.

By Lemma 4.29 and (4.44) the quasihyperbolic area of △k(x, y, z) is

1

2
k(y, z)

√

k(x, y)2 −
(

k(y, z)2 + k(x, y)2 − k(x, z)2
)2

4k(y, z)2

=
1

4

√

4k(y, z)2k(x, y)2 −
(

k(y, z)2 + k(x, y)2 − k(x, z)2
)2

=
1

4

√

t
(

t − 2k(x, y)
)(

t − 2k(y, z)
)(

t − 2k(z, x)
)

,

where t = k(x, y) + k(y, z) + k(z, x). Since s = t/2 the assertion follows. �

Also by the Euclidean Law of Sines the quasihyperbolic area of a quasihyperbolic
triangle △k(x, y, z) is equal to

(4.45)
k(x, y)k(x, z) sin αx

2
=

k(y, x)k(y, z) sin αy

2
=

k(z, x)k(z, y) sin αz

2
.

4.46. Remark. The quasihyperbolic area of a quasihyperbolic triangle defined by
vertices is not monotone with respect to the domain. Let us consider the quasi-
hyperbolic triangle with the vertices x = 0, y = −ti and z = −y for t > 0 in
domains G1 = R2 \ {−1} and G2 = R2 \ {−1, 1}. We denote the quasihyperbolic
triangle in G1 by T1 and in G2 by T2. Now T1 contains an open set whereas T2 is
degenerate, a subset of the line {w ∈ R2 : Re w = 0}. Therefore, mkG2

(T2) = 0 while

mkG1
(T1) > 0. Moreover, mkG1

(T1) → ∞ as t → ∞.
On the other hand, let us consider the quasihyperbolic triangle with the vertices

x = 0, y = −i, z = t for t ∈ (1/2, 1) and denote the quasihyperbolic triangle
in G1 by T3 and in G2 by T4. Now mkG1

(T3) < mkG1
(T5) < ∞, where T5 is the
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quasihyperbolic triangle with vertices x, y and 1 in G1. However, mkG2
(T4) → ∞

as t → 1.

4.47. Quasihyperbolic area of quasihyperbolic quadrilateral. We consider
next convex quasihyperbolic quadrilaterals.

4.48. Definition. A quasihyperbolic quadrilateral xyzu is Jk[x, y]∪Jk[y, z]∪Jk[z, u]∪
Jk[u, x] for x, y, z, u ∈ R2 \ {0} and fixed Jk[x, y], Jk[y, z], Jk[z, u] and Jk[u, x], where
△k(x, y, u) and △k(y, z, u) are quasihyperbolic triangles. If the domain enclosed by
the quasihyperbolic quadrilateral xyzu does not contain origin and is convex with
respect to the quasihyperbolic metric, then it is a convex quasihyperbolic quadrilat-
eral.

The following theorem is Bretschneider’s formula for the quasihyperbolic quadri-
laterals.

4.49. Theorem. The quasihyperbolic area of a convex quasihyperbolic quadrilateral
xyzu is

√

(p − kxy)(p − kyz)(p − kzu)(p − kux) − kxykyzkzukux cos2
αx + αz

2
,

where kab = k(a, b), p = (kxy + kyz + kzu + kux)/2, αx = ∡k(u, x, y) and αz =
∡k(y, z, u).

Proof. Let us denote the quasihyperbolic area of xyzu by A. Clearly A is equal to
the sum of the quasihyperbolic areas of △k(x, y, z) and △k(x, y, u). By (4.45)

A =
kxykxu sin αx

2
+

kzykzu sin αz

2

which is equivalent to

(4.50) 4A2 = k2
xyk

2
xu sin2 αx + k2

zyk
2
zu sin2 αz + 2kxykyzkzukux sin αx sin αz.

By the Law of Cosines

k2
xy + k2

xu − 2kxykxu cos αx = k2
zy + k2

zu − 2kzykzu cos αz

which is equivalent to

(4.51)
(k2

xy + k2
xu − k2

zx − k2
zu)

2

4
= (kxykxu cos αx − kzykzu cos αz)

2.

Now (4.50) and (4.51) together give us

4A2 +
(k2

xy + k2
xu − k2

zx − k2
zu)

2

4
= k2

xyk
2
xu + k2

zyk
2
zu + 2kxykyzkzukux cos(αx + αz)

which is equivalent to

4A2 = 4(p − kxy)(p − kyz)(p − kzu)(p − kux) − 4kxykyzkzukux cos2 αx + αz

2

and the assertion follows. �
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We also introduce another formula for the quasihyperbolic area of quasihyperbolic
quadrilaterals.

4.52. Theorem. The quasihyperbolic area of a convex quasihyperbolic quadrilateral
xyzu is

k(x, z)k(y, u) sin θ

2
,

where θ is the angle between the geodesics Jk[x, z] and Jk[y, u].

Proof. Let us denote the quasihyperbolic area of xyzu by A, kab = k(a, b) and the
intersection point of the geodesics Jk[x, z] and Jk[y, u] by v. Since sin α = sin(π−α),
we have by (4.45)

A =
kxvkyv sin θ

2
+

kyvkzv sin θ

2
+

kzvkuv sin θ

2
+

kuvkxv sin θ

2

= sin θ

(

k(x, v) + k(z, v)
)(

k(y, v) + k(u, v)
)

2

and the assertion follows. �

4.53. Remark. We could also consider quasihyperbolic polygons in R2 \ {0} by
defining a quasihyperbolic polygon to be the union of given geodesics J0, . . . , Jm

such that ∪m
p=0Jp is a simple and closed curve in a slit plane and for p, r ∈ {0, . . .m},

p 6= r, Jp∩Jr is a singleton set if p = r±1(mod m+1) and ∅ otherwise. The quasi-
hyperbolic area of the quasihyperbolic polygons can be obtained as the Euclidean
area of the Euclidean polygons.

4.54. Quasihyperbolic perimeter and quasihyperbolic area of quasihyper-

bolic disk. We determine the quasihyperbolic perimeter and the quasihyperbolic
area of quasihyperbolic disk Bk(x, M). The next lemma shows that the quasihy-
perbolic perimeter of the quasihyperbolic disk is equal to the Euclidean perimeter
of the Euclidean disk for small radii.

4.55. Lemma. For r ∈ (0, π] the quasihyperbolic perimeter of Bk(x, r) is equal to
2πr.

Proof. We may assume x = 1. Let us first consider regular quasihyperbolic n-gon
Pn. By Theorem 4.14 the perimeter of Pn is equal to

2rn sin
π

n

and by letting n approach to infinity the assertion follows. �

We consider next the quasihyperbolic area of the quasihyperbolic disk for small
radii.

4.56. Lemma. For r ∈ (0, π] we have mk (Bk(x, r)) = πr2.
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Proof. We may assume x = 1. Let us denote φ = ∡(1, 0, z) for z = (s, φ) ∈ R2 \ {0}.
By (2.3)

mk

(

Bk(1, r)
)

=

∫ r

−r

∫ e
√

r2−φ2

e−
√

r2−φ2

1

s
dsdφ

= 2

∫ r

−r

√

r2 − φ2dφ

= (r
√

r2 − r2 + r2 arctan
r√

r2 − r2
)

−(−r
√

r2 − r2 + r2 arctan
−r√

r2 − r2
)

= πr2.

�

The next theorem gives the quasihyperbolic area of the quasihyperbolic disk for
large radii.

4.57. Theorem. For r > π the quasihyperbolic area of Bk(x, r) is equal to

2π
√

r2 − π2 + 2π2 arctan
π√

r2 − π2
.

Proof. We may assume x = 1. Let us denote φ = ∡(1, 0, z) for z = (s, φ) ∈ R2 \ {0}.
By (2.3)

mk

(

Bk(1, r)
)

=

∫ π

−π

∫ b

a

1

s
dsdφ

= 2

∫ π

−π

√

r2 − φ2dφ

= (π
√

r2 − π2 + π2 arctan
π√

r2 − π2
)

−(−π
√

r2 − π2 + π2 arctan
−π√

r2 − π2
)

= 2π
√

r2 − π2 + 2π2 arctan
π√

r2 − π2
,

where a = e−
√

r2−φ2

and b = e
√

r2−φ2

. �

4.58. Corollary. For x ∈ R2 \ {0} and r > 0

mk

(

Bk(x, r)
)

< 4πr

and for r > π

mk

(

Bk(x, r)
)

> 2π
√

r2 − π2.
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Proof. The assertion follows from Lemma 4.56 and Theorem 4.57, because for r > π

2π
√

r2 − π2 + 2π2 arctan
π√

r2 − π2
≤ 2π

√
r2 − π2 + π3 < 4πr.

�

4.59. Euclidean model of quasihyperbolic metric. We show that the metric
space (R2 \ {0}, k) is equivalent to the metric space (C2, m), where C2 = {x ∈
R3 : d(x, R ·e3) = 1} and m is a metric in C2. We define a mapping λ : R2\{0} → C2

by

(4.60) λ(x) =
(

sin(arg x), cos(arg x), log |x|
)

and the metric m for x, y ∈ C2 by

m(x, y) = d
(

λ(x), λ(y)
)

,

where d is the Euclidean distance on the surface C2.

Figure 4.61. An example of a geodesic trigon in the metric spaces
(R2 \ {0}, k) and (C2, m).

By a simple computation we obtain

m(x, y) =

√

α2 + log2 |x|
|y| ,

where α = | arg x − arg y| ∈ [0, π). By (2.3) and (4.60) a geodesic in the metric
(R2 \ {0}, k) is a subset of a helix.

We may consider the surface C2 as an infinite cylinder and then a geodesic in the
metric (R2 \ {0}, k) is a line segment in the infinite cylinder, see Figure 4.61.
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4.62. Open problems. We pose some open problems concerning the quasihyper-
bolic trigonometry.

4.63. Open problem. Let G ⊂ Rn be a domain and mG ∈ {ρG, kG}, where ρG is
the hyperbolic metric whenever it is defined (see [4]). Does the inequality

mG(x, y)2 ≥ mG(x, z)2 + mG(y, z)2 − 2mG(y, z)mG(z, x) cos ∡k(y, z, x)

hold for all domains G ( Rn and distinct points x, y, z ∈ G?

4.64. Open problem. Let G ( R2 \ {0}, △1 be a quasihyperbolic triangle in
R2 \ {0} with side lengths a, b and c and △2 be a quasihyperbolic triangle in G with
the same side lengths. Can we use Theorem 4.43 to estimate the quasihyperbolic
area of △2?

5. Estimations of the quasihyperbolic distance

The explicit formula for the quasihyperbolic distance is known only in a few
special domains. In this section we estimate the quasihyperbolic length and distance
in some special cases, where the explicit formula is not known.

5.1. Quasihyperbolic distance in twice punctured plane. We consider the
quasihyperbolic metric k in twice punctured plane R2

−1,1 = R2 \ {−1, 1}. We find
a lower bound for ℓk(γ) in terms of d(γ, {−1, 1}), where γ ⊂ R2

−1,1 is a closed
rectifiable curve that encloses {−1, 1}.
5.2. Lemma. Let x ∈ R2

−1,1 with Rex < 0, F = {z ∈ R2 : Re z = 0} and E = {z ∈
R2 : Im z = 0, Re z < −1}. Then

k(E, x) + k(x, F ) ≥ k(y, F ),

where y = −1 − d(x).

Proof. By (2.3), k(E, x) = k(y, x) and by the triangle inequality

k(y, F ) ≤ k(y, x) + k(x, F ) = k(E, x) + k(x, F )

and the assertion follows. �

Let E be as in Lemma 5.2, fix a closed rectifiable curve γ ⊂ R2
−1,1 such that it

encloses {−1, 1} and denote x = 1 + d(γ, {−1, 1}). By (2.3) the function

s(h) = k(x, hi) + k(hi, E)

=

√

(π − arctanh)2 + log2

√
1 + h2

d(γ, {−1, 1}) + π − arctan h,(5.3)

h ∈ [0,∞), gives us

(5.4) k(x, E) = min
h≥0

s(h).

We use the function s(h) and (5.4) to estimate the quasihyperbolic length of the
curve γ. First we obtain lower bounds for ℓk(γ). The lower bound of the following
lemma gives a good estimate for ℓk(γ), when d(γ, {−1, 1}) is close to 0.
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5.5. Lemma. Let γ ⊂ R2
−1,1 be a closed rectifiable curve that encloses {−1, 1} and

denote d = d(γ, {−1, 1}). Then

ℓk(γ) ≥ 3π

2
+ 2 log

√
2

d
.

Proof. By (5.4)
ℓk(γ) ≥ 2k(1 + d, E) ≥ min

h≥0
2g(h)

for the function

g(h) = log

√
1 + h2

d
+ π − arctanh, h ≥ 0.

Since g′(h) = 2(h − 1)/(1 + h2) = 0 is equivalent to h = 1, we have

g(h) ≥ g(1) =
3π

4
+ log

√
2

d
and the assertion follows. �

We define the function w : (0,∞) → (0,∞) by

(5.6) w(h) =
√

h2 + 1 exp

(

arctan h − π

h

)

.

Since w′(h) = w(h)(h+π−arctanh)/h2 > 0, the function w(h) is a homeomorphism.
The following two results give a good lower bound for ℓk(γ), when d(γ, {−1, 1})

is large.

5.7. Theorem. Let γ ⊂ R2
−1,1 be a closed rectifiable curve enclosing {−1, 1}. Then

ℓk(γ) ≥ (π − arctan h)

√

1 +
1

h2
+

3π

2
,

where h is such that

(5.8) d(γ, {−1, 1}) = w(h)

and w(h) is defined by (5.6).

Proof. Let us denote F = {z ∈ R2 : Re z = 0} and E = {z ∈ R2 : Im z = 0, Re z <
−1}. By the symmetry we may assume that γ is closest to {−1, 1} in the second
quadrant. By trivial estimate we know that in each quadrant the quasihyperbolic
length of γ is at least π/2. Therefore we have

ℓk(γ) ≥ inf k(x, y) + 3π/2,

where x ∈ E, y ∈ F and |x + 1|, |y + 1| ≥ d(γ, {−1, 1}).
By Lemma 5.2 it is sufficient to minimize k(x, y) for x ∈ E, d(x) = d(γ, {−1, 1})

and y = hi. We denote f(h) = k(x, y) and d = d(γ, {−1, 1}). By (2.3)

f(h) =

√

(π − arctan h)2 + log2

√
h2 + 1

d
.
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It is easy to verify that f ′(h) = 0 is equivalent to (5.8) and therefore f(h) ≥
(π − arctanh)

√
1 + h−2. �

5.9. Corollary. Define

t1(d) = (π − arctan(deπ))

√

1 +
e−2π

d2
, for d > 0,

and

t2(d) =

(

π − arctan
π

log(1/d)

)

√

1 +

(

log(1/d)

π

)2

, for d ∈ (0, 1).

Moreover, define a decreasing function t : (0,∞) → (π/2,∞) by

t(d) =

{

t1(d), d ≥ d0,
t2(d), d ∈ (0, d0),

with d0 =
√

2e−3π/4 ∈ (0, 1). Then for a closed rectifiable curve γ ⊂ R2
−1,1 that

encloses {−1, 1}, d = d(γ, {−1, 1}), we have

ℓk(γ) ≥ t(d) +
3π

2
.

Proof. By Theorem 5.7, ℓk(γ) ≥ g(h)+3π/2, where g(h) = (π−arctan h)
√

1 + h−2,
and

(5.10) d =
√

h2 + 1e(−π+arctan h)/h.

The function g(h) is decreasing on (0,∞), because

g′(h) = −π + h − arctanh

h2
√

1 + h2
≤ 0.

Let us assume h ≥ 1, which is equivalent to d ≥ d0. By (5.10)

d ≥ he(−π+arctan h)/h ≥ he−π/h ≥ he−π

and hence h ≤ eπd. Therefore

g(h) ≥ g(eπd) = t1(d).

Let us next assume h ∈ (0, 1), which is equivalent to d ∈ (0, d0). Now by (5.10)

d =
√

h2 + 1e(−π+arctan h)/h ≥ e−π/h

and hence h ≤ π/ log d−1. Therefore, we have

g(h) ≥ g(π/ log d−1) = t2(d).

By (5.10), h = 1 is equivalent to d =
√

2e−3π/4 and therefore ℓk(γ) ≥ t(d) + 3π/2.
The assertion follows since t2(d0) > 2 > t1(d0) and t(d) is clearly a decreasing
function. �
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For d > 0 we define

p (d) = inf ℓk(γ),

where the infimum is taken over all closed rectifiable curves γ that enclose {−1, 1}
and satisfy d(γ, {−1, 1}) = d. Next we find upper bounds for p (d).

Let γ0 be the closed curve consisting of the left half of S1(−1, d), line segments
[−1+di, 1+di] and [−1−di, 1−di] and right half of S1(1, d). Clearly p (d) ≤ ℓk(γ0),
because γ0 encloses {−1, 1} and d(γ0) = d. By a straightforward computation we
obtain ℓk(γ0) = 2π + 4 log((1 +

√
1 + d2)/d) and therefore

(5.11) p (d) ≤ 2π + 4 log
1 +

√
1 + d2

d
.

We improve the upper bound of (5.11) in the following lemma.

5.12. Lemma. For d > 0

p (d) ≤ 2s(d + 1)

and

p (d) ≤ 3π

2
+ 2

√

9π2

16
+ log2

√
2

d
= 2s(1),

where s(h) is the function defined in (5.3).

Proof. By (5.4)

p (d) ≤ 2

(

min
h≥0

s(h)

)

for the function s(h). Since minh≥0 s(h) ≤ s(1) and minh≥0 s(h) ≤ s(1 + d), the
assertion follows. �

Combining the results of Lemma 5.5, Corollary 5.9 and Lemma 5.12 gives us

(5.13)
3π

2
+ max{l1(d), l2(d)} ≤ p (d) ≤ 2π + u(d)

for

u(d) = 2s(d + 1),

l1(d) = 2 log

√
2

d
,

l2(d) =

√

1 +
e−2π

d2
(π − arctan(deπ)).

Note that u(d) → 0 and max{l1(d), l2(d)} → π/2 as d → ∞. By Lemma 5.5 and
Lemma 5.12 we have

(5.14)
3π

2
+ 2 log

√
2

d
≤ p (d) ≤ 3π

2
+ 2

(

log

√
2

d

)

v(d)



ON HYPERBOLIC TYPE METRICS 39

for

v(d) =

√

9π2

16(log(
√

2/d))2
+ 1.

In particular, v(d) ≥ 1 and v(d) → 1 as d → 0. The functions of (5.13) and (5.14)
are illustrated in Figure 5.15.
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Figure 5.15. Left: Functions u(d), p (d) (dashed line) and
max{l1(d), l2(d)} of (5.13). Right: Upper and lower bounds of (5.14).

5.16. Corollary. We have p (d) − 2 log(1/d) → 3π/2 + log 2 as d → 0.

Proof. By (5.14)

3π

2
≤ p (d) − u(d) ≤ 3π

2
+

√

9π2

4
+ u(d)2 − u(d)

for the function u(d) = 2 log(
√

2/d), d > 0. Since u(d) → ∞ as d → 0, we have
√

9π2

4
+ u(d)2 − u(d) → 0

as d → 0 and the assertion follows. �

5.17. Quasihyperbolic distance in annulus. We estimate the quasihyperbolic
metric and the distance ratio metric in a Euclidean ball Bn(r), its complement
Rn\Bn(r) and in an annulus Bn(R)\Bn(r) for 0 < r < R. Since the quasihyperbolic
geodesics in these domains are not known, we estimate the quasihyperbolic distance
by using the logarithmic spirals. Before stating our main result we introduce a
notation for the Euclidean annulus. For 0 < r < R < ∞ we denote

A(r, R) = {z ∈ Rn : r < |z| < R}.
5.18. Theorem. Let m ∈ {k, j}, R > 1 and G = A(1/R, R). Then there exists a
constant c(R) ≥ 1 such that c(R) → 1 as R → ∞ and

mG(x, y) ≤ c(R)mRn\{0}(x, y)

for all x, y ∈ A(1/
√

R,
√

R).
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5.19. Lemma. For r > 0, G = Rn \ Bn(r) and x, y ∈ G

kG(x, y) ≤ kRn\{0}(x, y)l(x, y),

where

l(x, y) =















log(|y| − r) − log(|x| − r)

log |y| − log |x| , |x| 6= |y|,
|x|

|x| − r
, |x| = |y|.

Proof. Let us first assume |x| < |y|. Denote α = ∡(x, 0, y), b = (1/α) log(|y|/|x|)
and a = |x|. Now (r(ϕ), ϕ) for r(ϕ) = aebϕ defines the polar coordinates of the
logarithmic spiral from x to y as ϕ goes from 0 to α. Therefore

kG(x, y) ≤
∫ α

0

√

r(ϕ)2 + r′(ϕ)2

r(ϕ) − r
dϕ

=
√

1 + b2

∫ α

0

r(ϕ)

r(ϕ) − r
dϕ

=

√
1 + b2

b
log

|y| − r

|x| − r

= kRn\{0}(x, y)
log |y|−r

|x|−r

log |y|
|x|

.

If |x| = |y|, then we consider the shortest circular arc γ ∈ Sn−1(0, |x|) that
connects x and y. Now

kG(x, y) ≤
∫

γ

|dz|
d(z)

=

∫ α

0

|x|
|x| − r

dϕ = α
|x|

|x| − r
= kRn\{0}(x, y)

|x|
|x| − r

,

where α = ∡(x, 0, y), and the assertion follows. �

5.20. Theorem. For r > 0, G = Rn \ Bn(r) and x, y ∈ G

kG(x, y) ≤ min{|x|, |y|}
min{|x|, |y|} − r

kRn\{0}(x, y).

Proof. By Lemma 5.19 we need to show that for all b ≥ a > r

log b−r
a−r

log(b/a)
≤ a

a − r
,

which is equivalent to g(r) ≤ g(0) for

g(r) = (a − r) log
b − r

a − r
.

By a simple computation we obtain

g′(r) =
b − a

b − r
+ log

b − r

a − r
and g′′(r) = − (a − b)2

(a − r)(b − r)2
.
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Therefore, g′′(r) < 0 and g′(r) < g′(0) = 1 − a/b − log(b/a) ≤ 0, where the last
inequality holds, because f(c) = 1 − 1/c − log c is a decreasing function for c ≥ 1
and f(0) = 0. Since g′(r) ≤ 0, the function g(r) is decreasing and g(r) ≤ g(0). �

Similarly as in the proof of Theorem 5.20 we can obtain that for R > 0 and
x, y ∈ Bn(R) with |x|, |y| ≥ R/2

(5.21) kBn(R)(x, y) ≤ max{|x|, |y|}
R − max{|x|, |y|}kRn\{0}(x, y).

5.22. Theorem. Let 0 < r < R < ∞. Then for x, y ∈ A(r, R)

kA(r,R)(x, y) ≤







mkRn\{0}(x, y), if |x|, |y| ≤ (r + R)/2,
MkRn\{0}(x, y), if |x|, |y| > (r + R)/2,
mkRn\{0}(x, z) + MkRn\{0}(z, y), otherwise,

where m = max{|x|/(|x| − r), |y|/(|y| − r)}, M = max{|x|/(R − |x|), |y|/(R− |y|)}
and where z is the point of intersection of the logarithmic spiral from x to y and
Sn−1((r + R)/2).

Proof. The assertion follows from Theorem 5.20, (5.21) and the following fact

kA(r,R)(x, y) ≤







kRn\Bn(r)(x, y), if |x|, |y| ≤ (r + R)/2,
kBn(R)(x, y), if |x|, |y| > (r + R)/2,
kRn\Bn(r)(x, z) + kBn(R)(z, y), otherwise.

�

Note that by Theorem 5.22 in an annulus the quasihyperbolic distance between
two points, that are far away from the boundary, is roughly at most the quasi-
hyperbolic distance in punctured space. Moreover, for any domain G ⊂ Rn with
A(r, R) ⊂ G we have kG ≤ kA(r,R) and therefore we can use the upper bound
of Theorem 5.22 also for the quasihyperbolic distance in G. On the other hand,
G ⊂ Rn \ {0} implies kRn\{0} ≤ kG.

5.23. Corollary. Let R > 1 and G = A(1/R, R). Then there exists a constant
c(R) ≥ 1 such that c(R) → 1 as R → ∞ and

kG(x, y) ≤ c(R)kRn\{0}(x, y)

for all x, y ∈ A(1/
√

R,
√

R).

Proof. Let us denote r = 1/R, m =
√

r/(
√

r − r) and M =
√

R/(R −
√

R). Now
m ≥ max{|x|/(|x| − r), |y|/(|y|− r)} and M ≥ max{|x|/(R− |x|), |y|/(R− |y|)}. If
|x|, |y| ≤ (r + R)/2 then by Theorem 5.22

kG(x, y) ≤ mkRn\{0}(x, y) ≤ (m + M)kRn\{0}(x, y).

If |x|, |y| > (r + R)/2 then by Theorem 5.22

kG(x, y) ≤ MkRn\{0}(x, y) ≤ (m + M)kRn\{0}(x, y).
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If |x| ≤ (r + R)/2 and |y| > (r + R)/2 then by Theorem 5.22

kG(x, y) ≤ mkRn\{0}(x, z) + MkRn\{0}(z, y)

≤ (m + M)(kRn\{0}(x, z) + kRn\{0}(z, y))

= (m + M)(kRn\{0}(x, y)).

Because kG(x, y) ≤ (m+M)kRn\{0}(x, y) for all x, y ∈ A(1/
√

R,
√

R), we may choose

c(R) = m + M = 1 +
2√

R − 1
.

Now c(R) ≥ 1, because R > 1 and c(R) → 1 as R → ∞. �

The following theorem shows that Corollary 5.23 holds also for the distance ratio
metric.

5.24. Theorem. Let R > 1 and G = A(1/R, R). Then there exists a constant
c(R) ≥ 1 such that c(R) → 1 as R → ∞ and

jG(x, y) ≤ c(R)jRn\{0}(x, y)

for all x, y ∈ A(1/
√

R,
√

R).

Proof. Since the x = y is clearly true, we assume x 6= y. Let us first assume
R ∈ (1, 4]. Since |x| ≤

√
R and dG(x) ≥ 1/

√
R − 1/R, we have

jG(x, y)

jRn\{0}(x, y)
≤

log

(

1 +
|x − y|

1/
√

R − 1/R

)

log

(

1 +
|x − y|√

R

) =

log

(

1 +
R√

R − 1
|x − y|

)

log

(

1 +
1√
R
|x − y|

) ≤ R3/2

√
R − 1

,

because R/(
√

R − 1) > 1/
√

R and log(1 + az)/ log(1 + bz) ∈ (1, a/b] for a > b > 0
and z > 0.

We may assume |x| ≤ |y| and denote r = 1/R. If R > 4 then R−
√

R >
√

R and

therefore d(x, ∂G) = |x| − r for all x ∈ A(
√

r,
√

R). Now

jG(x, y)

jRn\{0}(x, y)
=

log

(

1 +
|x − y|
|x| − r

)

log

(

1 +
|x − y|
|x|

) =

log

( |x − y| + |x| − r

|x| − r

)

log

( |x − y|+ |x|
|x|

)

≤ |x|
|x| − r

= 1 +
r

|x| − r

≤ 1 +
r

1/
√

r − r
= 1 +

1

R3/2 − 1
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because log((z + c)/c)/ log((z + d)/d) ∈ (1, d/c] for 0 < c < d and z > 0. Now we
can choose

c(R) =











R3/2

√
R − 1

, R ∈ (1, 4],

1 +
1

R3/2 − 1
, R > 4

and since c(R) → 1 as R → ∞, the assertion follows. �

Proof of Theorem 5.18. The assertion follows from Corollary 5.23 and Theorem
5.24. �

5.25. Remark. By Corollary 5.23 and Theorem 5.24 one could ask the following
question: for R > 1 and G = A(1/R, R), does there exists a constant c(R) ≥ 1 such
that c(R) → 1 as R → ∞ and

(5.26) kG(x, y) ≤ c(R)jRn\{0}(x, y)

for all x, y ∈ A(1/
√

R,
√

R). We show that such c(R) does not exist.
By (3.4) and Theorem 5.24

kG(x, y) ≤ π

log 3
jG(x, y) ≤ π

log 3
c′(R)jRn\{0}(x, y)

where c′(R) → 1 as R → ∞. Now by choosing c(R) = c′(R)π/ log 3 the condition
(5.26) is satisfied but c(R) → π/ log 3 as R → ∞. However, by choosing x ∈
A(1/

√
R,

√
R) and y = −x ∈ A(1/

√
R,

√
R) we have

kG(x, y)

jRn\{0}(x, y)
=

π

log 3

and this is true for all R > 1.

5.27. Open problems. In item 5.1 we considered the quasihyperbolic length of a
closed curve in punctured plane. We can also consider a similar problem in a finitely
punctured plane.

5.28. Open problem. Let z1, . . . , zm ∈ R2 and γ be a simple and closed curve
that encloses the points z1, . . . , zm. Find a lower bound for ℓkG

(γ), where G =
R2 \ {z1, . . . , zm}.

6. Properties of metric balls

In this section we consider some properties of metric balls defined by (2.1). The
study of convexity of metric balls was motivated by the following open problem
posed by M. Vuorinen [31, 8.2] in 2006:

6.1. Open problem. Does there exist a constant r0 > 0 such that the metric ball
Bm(x, r) is convex in the Euclidean geometry for m ∈ {q, k, j} and for all r ∈ (0, r0)?
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Instead of convexity in 6.1 we are also interested in strict convexity, starlikeness
and strict starlikeness of metric balls.

For the spherical metric 6.1 is very simple. It is easy to verify that spherical
balls Bq(x, r) are strictly convex (and hence strictly starlike) whenever r ∈ (0, (1 +
|x|2)−1/2) or r > 1.

6.2. Convexity properties. Open problem 6.1 for the distance ratio metric has
been solved in [15]. We showed that Bj(x, r) is (strictly) convex whenever r ∈
(0, log 2] (r ∈ (0, log 2)) and strictly starlike with respect to x whenever r ∈ (0, log(1+√

2)]. We also showed that Bj(x, r) is always convex in convex domains and always
starlike with respect to x in domains that are starlike with respect to x.

Open problem 6.1 for the quasihyperbolic metric was first considered by O. Martio
and J. Väisälä [21]. They showed that in convex domains quasihyperbolic balls Bk

are always convex. Later the convexity of the quasihyperbolic balls with small radii
was considered in punctured space in [16]. We showed that in punctured space
quasihyperbolic balls are strictly convex whenever the radius is less than or equal
to one. We also showed that the quasihyperbolic balls Bk(x, r) are starlike with
respect to x in domains that are starlike with respect to x and strictly starlike with
respect to x in the punctured space whenever r ∈ (0, κ], where κ is defined in [16,
(4.1)] and has a numerical approximation κ ≈ 2.83297. Recently J. Väisälä solved
the convexity problem in planar domains and showed that the quasihyperbolic disk
is strictly convex whenever the radius is less than or equal to one [27].

6.3. Connectivity of metric balls. If a metric space is geodesic, then all metric
balls are connected. For nongeodesic metric spaces the connectivity of metric balls
depends on the setting. For example, spherical balls are always connected while j-
balls need not be connected [15, Remark 4.9 (2)]. We construct next such a domain
that for any m ∈ N the j-ball has exactly m components.

Let us first consider the planar case n = 2. The generalization to n > 3 is
straightforward. We denote by m the number of components of the j-ball we want
to construct. We assume first m ≥ 9 and denote the (m − 1)th roots of unity
by ε1, . . . , εm−1. Let Ep = {z ∈ R2 : |z| ≤ 2, ∡(z, εp, 2εp) ≤ π/(m − 1)} for all
p = 1, . . . , m − 1 and

(6.4) Gm = R2 \
m−1
⋃

p=1

Ep.

The set G12 is illustrated in Figure 6.6.

6.5. Lemma. For m ≥ 9 and Gm as in (6.4) the j-ball Bj(0, log 4) has exactly m
components.

Proof. Let us denote α = π/(m − 1). By geometry d(Ei, Ei+1) = 2 sin(α) and ∂Ei

consists of a circular arc and two line segments.
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Let us first show that Bj(0, log 4) has a component in B2(0, 3/2). Let x ∈ Gm

with |x| = 3/2. Since 2 sin(α) < 1, we have

j(0, x) = log

(

1 +
3

2d(x)

)

≥ log

(

1 +
3

2 sin(α)

)

> log 4.

We show next that there exists y ∈ Bj(0, log 4) such that |y| > 2. We choose y =

eiα(cos(α) +
√

4 − sin2(α)). Now d(y) = 1 = d(0) and |y| = cos(α) +
√

4 − sin2(α).
Therefore

j(0, y) = log

(

1 + cos(α) +
√

4 − sin2(α)

)

< log 4,

where the last inequality follows from the fact that cos(α) +
√

4 − sin2(α) < 3.
By similar computation it is easy to verify that j(0, yp) < r for points yp =

eiα+2αp(cos(α) +
√

4 − sin2(α)), p = 1, . . . , m − 1.
Let us finally show that each yp is in a different component of Bj(0, log 4). By the

symmetry of Gm it is sufficient to show that for all z ∈ (2,∞) we have j(0, z) ≥ log 4.
If |z| ≥ 3, then j(0, z) = log(1 + |z|) ≥ 4. If z ∈ (2, 3), then d(z) ∈ (0, 1) and

j(0, z) = log

(

1 +
|z|

d(z)

)

= log

(

1 +
2 + d(z)

d(z)

)

= log
2(1 + d(z))

d(z)
> log 4.

Now we have shown that there is one component of BjGm
(0, log 4) in B2(0, 3/2)

and m − 1 components symmetrically in R2 \ B2(0, 3/2). By the symmetry of Gm

these have to be the only m components of Bj(0, log 4). �

Let us recall the notation for the Euclidean annulus

A(r, R) = {z ∈ Rn : r < |z| < R}
for 0 < r < R < ∞. In the case m = 2, . . . , 8 we can choose

Gm = R2 \
(

A(1, 2) \
m−2
⋃

p=0

Dp

)

,

where Dp = {z ∈ R2 : d(Lt, z) < sin(π/8)} and Lt = {u ∈ R2 : u = tepiπ/8, t > 0}.
By the proof of Lemma 6.5 we can easily see that BjGm

(0, log 4) has exactly m
components. The set G5 is illustrated in Figure 6.6.

Figure 6.6. Examples of the domain G12 (left) and G5. The gray
area represents the complement of the domain.
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6.7. Remark. In Lemma 6.5 we could [15, Remark 4.9] choose any radius log(3+ε),
ε > 0, instead of log 4. Then we just have to make sure that d(E1, E2) is small
enough.

We estimate then the size of the j-balls.

6.8. Lemma. Let G ⊂ Rn be a domain, x ∈ G, and r > 0. Then for each connected
component D of Bj(x, r) we have

diam k(D) ≤ c(r, n).

Proof. By [23, Theorem 3.8] Bn(x, d(x)(1 − e−r)) ⊂ Bj(x, r) ⊂ Bn(x, d(x)(er − 1))
and therefore

d(Bj(x, r))

d(Bj(x, r), ∂G)
≤ er − 1

1 − e−r
= er.

By [28, proof of Corollary 2.18]

diam k(D) ≤ c′(n)

(

2 +
d(Bj(x, r))

d(Bj(x, r), ∂G)

)n

≤ c′(n)(2 + er)n = c(r, n).

�

6.9. Remark. We consider a lower bound for the constant c(r, n) of Lemma 6.8 in
a special case. Let n = 2 and define

F0 = {z ∈ R2 : 0 < Re z < 10, Im z > 0}
and for m ≥ 1

Fm = {z ∈ R2 : Im z = 2m, Re z ≤ 8},
F ′

m = {z ∈ R2 : Im z = 2 + 2m, Re z ≥ 2}
and consider the domain

G = F0 \
( ∞
⋃

m=1

Fm ∪ F ′
m

)

.

Let x = 1 + i, r = log(4(1 + t)) and yt = 1 + i(3 + 4t) for t = 1, 2, . . . . Now

j(x, yt) = log (3 + 4t) < r

and therefore yt ∈ Bj(x, r). By the selection of r we have t = er/4−1 and therefore

diam k(Bj(x, r)) ≥ 18 + 20t = 5er − 2.

By Lemma 6.8 diam k(Bj(x, r)) ≤ c′(2)(1 + er)2 = c′(2)(1 + 2er + e2r).

Let us assume that G ⊂ Rn is a domain such that Rn \ G is bounded. We find
an estimate for the lower bound of the radius of the quasihyperbolic and distance
ratio metric balls that encloses ∂G.

6.10. Lemma. Let G ⊂ Rn be a domain such that Rn \ G ⊂ Bn(r) and fix x ∈
Rn \ Bn(r). Then Bk(x, R) encloses Rn \ G for all R > π|x|/(|x| − r).
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Proof. By Theorem 5.20

kG(x,−x) ≤ |x|
|x| − r

kRn\{0}(x,−x) =
|x|π

|x| − r

and the assertion follows. �

6.11. Lemma. Let G ⊂ Rn be a domain such that Rn \ G ⊂ Bn(r) and fix x ∈
Rn \ Bn(r). Then Bj(x, R) encloses Rn \ G for all R > log((3|x| − r)/(|x| − r)).

Proof. Now

jG(x,−x) ≤ log

(

1 +
2|x|

|x| − r

)

= log

(

3|x| − r

|x| − r

)

and the assertion follows. �

6.12. Open problems. In view of [27] and [16, p. 197] Open problem 6.1 can be
reduced to the following one:

6.13. Open problem. Are the quasihyperbolic balls Bk(x, r) convex in the Eu-
clidean geometry in domains that are starlike with respect to x for all r ∈ (0, 1]?

We can also ask the uniqueness of geodesics.

6.14. Open problem. Are quasihyperbolic geodesics unique in simply connected
planar domains?

The convexity problem is linked to uniqueness of the geodesics and prolongation
of the geodesics:

6.15. Open problem. Does there exist runi > 0 such that for all domains G ⊂ Rn

each quasihyperbolic geodesic with quasihyperbolic length less than runi is unique?

6.16. Open problem. Does there exist rpro > 0 such that for all x, y ∈ G with
k(x, y) < rpro there exist z ∈ G with k(x, z) = rpro and Jk[x, y] ⊂ Jk[x, z]?

Open problem 6.1 implies 6.15, which implies 6.16, in general and all three open
problems are true in the planar case [27]. A domain G ⊂ Rn is close-to-convex if
Rn \ G is a union of half-lines that do not intersect except for the tips. We may
modify 6.1 for the close-to-convex domains.

6.17. Open problem. Does there exist a constant r0 > 0 such that the metric ball
Bm(x, r) is close-to-convex in the Euclidean geometry for m ∈ {k, j} and for all
r ∈ (0, r0)?

6.18. Remark. Let us define

G = R3 \ {z ∈ R3 : z = e3t, |t| ≥ 1}
and consider the metric (G, k). It can be shown that for all x, y ∈ R2 we have
Jk[x, y] ⊂ R2. It was also indicated to the author by O. Martio and J. Väisälä that
in this metric the uniqueness constant runi is less than π, which was a conjecture in
[16, p. 201].
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