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4	 Abstract

ABSTRACT

Milla Reiman. Antenatal inflammation and brain pathology in preterm infants. Department 
of Pediatrics, University of Turku. 

Chorioamnionitis is known to be an important risk factor underlying preterm delivery, and it 
has also been suggested to associate with brain lesions and deviant neurological development 
in both preterm and term infants. Cytokines are believed to be the link causing the deleterious 
effects of inflammation to the nervous system. Their genetic regulation has also been 
suggested to play a role, as interleukin (IL)-6 -174 and -572 genotypes, which partly regulate 
IL-6 synthesis responses, have been connected with deviant neurological development in 
preterm infants. We evaluated the association of histological chorioamnionitis with brain 
lesions, regional brain volumes, and the functioning of the auditory pathway in very low 
birth weight/very low gestational age (VLBW/VLGA) infants. In addition, we investigated 
the association between IL-6 -174 and -572 genotypes and histological chorioamnionitis, 
neonatal infections, and brain lesions and regional brain volumes in VLBW/VLGA infants. 

This study is a part of a larger multidisciplinary project PIPARI (Development and 
Functioning of Very Low Birth Weight Infants from Infancy to School Age), in which the 
survivors of a 6-year cohort of VLBW/VLGA infants (n=274) are being followed until 
school age in Turku University Central Hospital, Finland. Placental samples were collected 
in the delivery room, and were analyzed for histological inflammatory findings. Blood 
samples from the infants were collected and DNA was genotyped for IL-6-174 and -572 
polymorphisms (GG/GC/CC).  Brain ultrasound examinations were performed repeatedly 
in the neonatal intensive care unit and at term age, and were analysed for structural brain 
lesions. Brain magnetic resonance imaging was performed at term age, and was analysed for 
regional brain volumes. In addition, diffusion tensor imaging was performed at term, and 
was used to analyse fractional anisotrophy and the apparent diffusion coefficient of inferior 
colliculus. The brainstem auditory evoked potential recordings were carried out according to 
the routine clinical procedure at median age of 30 days after term age.

In our study, we found that histological chorioamnionitis was not an independent risk factor 
for brain lesions, reduced regional brain volumes or abnormal functioning of the auditory 
pathway in VLBW/VLGA infants. In addition, we found that IL-6 -174 GG and -572 GC 
genotypes were associated with a higher incidence of histological chorioamnionitis, and 
that -174 CC genotype associated with higher incidence of septicaemia. The analysed IL-
6 genotypes were not associated with other brain lesions, but a reduced volume of basal 
ganglia and thalami was associated with IL-6 -174 CC and -572 GG genotypes.

In conclusion, our findings suggest that histological chorioamnionitis is not an independent 
risk factor for the brain development of VLBW/VLGA infants, or that the risk caused by 
inflammation does not exceed the risks attributed to other underlying pathologies behind 
preterm deliveries. In addition, our findings give reason to propose that IL-6 promoter 
genotypes have a role in the defence against serious infections and in the brain development 
of VLBW/VLGA infants.   

Key Words: Preterm infant; Chorioamnonitis; Brain lesions; Brain volumes; Cytokines; 
Interleukin-6; Magnetic resonance imaging; Diffusion tensor imaging; Brainstem auditory 
evoked potentials
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TIIVISTELMÄ

Milla Reiman. Antenataalinen inflammaatio ja pikkukeskosen aivolöydökset. 
Lastenklinikka, Turun Yliopisto. 

Istukan tulehdus eli korionamnoniitti on ennenaikaisen synnytyksen merkittävä riskitekijä, ja 
lisäksi korioamnioniitin on ajateltu lisäävän sekä keskosten että täysiaikaisena syntyneiden 
lasten aivokomplikaatioita ja neurologisen kehityksen ongelmia. Keskushermostovaikutu
sten on ajateltu välittyvän sytokiinien kautta. Sytokiinien geneettisen säätelyn on esitetty 
olevan yhteydessä tulehduksen aiheuttamiin keskushermostovaikutuksiin, sillä interleukiini 
(IL)-6 geenin säätelyalueen -174 ja -572 genotyyppien on osoitettu olevan yhteydessä 
keskosten aivolöydöksiin ja heikompaan neurologiseen kehitykseen. Tämän väitöskirjatyön 
tarkoituksena oli tutkia histologisen korionamnioniitin yhteyttä pikkukeskosen aivolöydöksiin, 
aivojen osatilavuuksiin sekä kuuloradaston toimintaan.  Lisäksi tutkimme IL-6 -174 ja -572 
genotyyppien yhteyttä histologiseen korionamnioniittiin, vastasyntyneisyysajan infektioihin 
sekä aivolöydöksiin ja aivojen osatilavuuksiin pikkukeskosilla. 

Tämä tutkimus on osa laajempaa kokonaisuutta (Pienipainoisten riskilasten käyttäytyminen 
ja kehitys imeväisiästä kouluikään, PIPARI), jossa kuuden vuoden kohorttia (lapsia n=274) 
seurataan kouluikään saakka. Tutkimukseen kutsuttiin Turun yliopistollisessa keskussairaalassa 
1/2001-12/2006 välillä syntyneet alle 1501 g painavat keskoset, sekä huhtikuun 2004 
jälkeen lisäksi kaikki alle 32 raskausviikolla syntyneet keskoset. Tutkimuslapsista 
kerättiin taustatietoja kyselylomakkeilla sekä äidin ja lapsen potilaskertomuksista. 
Tutkimuslasten istukat analysoitiin tulehdusmuutosten selvittämiseksi. Lasten verinäytteet 
kerättiin IL-6 genotyyppien selvittämiseksi (GG/GC/CC). Aivot kuvannettiin toistuvilla 
ultraäänitutkimuksilla sairaalahoidon aikana ja lasketussa ajassa, jolloin tehtiin myös aivojen 
magneettikuvaus (MRI). MRI-kuvista analysoitiin aivojen osatilavuudet. Lisäksi aivojen 
diffuusiotensorikuvaus tehtiin lasketussa ajassa, ja tästä määritettiin colliculus inferiorin 
fraktionaalinen anisotropia sekä diffuusiovakio. Aivorungon herätevastetutkimus tehtiin 
kliinisen seurannan mukaisesti mediaani-iässä 30 vuorokautta lasketun ajan jälkeen. 

Tutkimuksessa todettiin, että histologinen korionamnioniitti ei lisännyt poikkeavia 
aivolöydöksiä eikä vaikuttanut aivojen osatilavuuksiin eikä kuuloradaston toimintaan 
pikkukeskosilla. Lisäksi selvitimme, että IL-6 -174 GG ja -572 GC genotyypit olivat 
yhteydessä histologisen korionamnioniitin suurempaan riskiin sekä IL-6 -174 CC genotyyppi 
oli yhteydessä sepsiksen suurempaan riskiin. Tutkitut IL-6 genotyypit eivät olleet yhteydessä 
poikkeaviin aivolöydöksiin, mutta basaaliganglioiden ja talamuksen pienentynyt tilavuus oli 
yhteydessä sekä IL-6 174 CC genotyyppiin että -572 GG genotyyppiin.

Löydöstemme perusteella histologinen korionamnioniitti ei ole itsenäinen riskitekijä 
pikkukeskosen poikkeavalle aivojen kehitykselle. Tulokset eivät poissulje histologisen 
korionamnioniitin haitallista vaikutusta keskosen aivojen kehitykselle, mutta riski ei 
vaikuttaisi olevan suurempi kuin muiden keskosuuteen liittyvien taustatekijöiden aiheuttama 
riski. Löydöksemme viittaavat siihen, että IL-6 säätelyalueen polymorfiat saattavat vaikuttaa 
sekä puolustuskykyyn vakavia infektioita vastaan että pikkukeskosen aivojen kehitykseen.   

Avainsanat: Keskonen; Korionamnioniitti; Aivolöydökset; Aivojen osatilavuudet; Sytokiinit; 
Interleukiini-6; Magneettitutkimus; Diffuusiotensori kuvaus; Aivorungon herätevaste-
tutkimus
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ABBREVIATIONS

ADC 	 Apparent diffusion coefficient
BAEP	 Brainstem auditory evoked potential
CI	 Confidence interval 
CLD	 Chronic lung disease
CONS	 Coagulase negative Staphylococci
CP	 Cerebral palsy
DNA	 Deoxyribonucleic acid
DTI	 Diffusion tensor imaging
e.g.	 Exempli gratia
ELBW	 Extremely low birth weight infants
FA	 Fractional anisotrophy
FOV	 Field of interest
IL	 Interleukin
IVH	 Intraventricular hemorrhage
LBW	 Low birth weight
LPS	 Lipopolysaccharide
MRI	 Magnetic resonance imaging
NEC	 Necrotising enterocolitis
OR	 Odds ratio
PCR	 Polymerase chain reaction
PLV	 Periventricular leukomalacia
PPROM	 Preterm premature rupture of the membranes
PROM	 Premature rupture of the membranes
ROI	 Region of interest
SD	 Standard deviation 
TE	 Time echo
TNF	 Tumour necrosis factor
TR	 Time repetition
US	 Ultrasound
VLBW	 Very low birth weight
VLGA	 Very low gestational age
WMD	 White matter disease
WMI	 White matter injury
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1.	 INTRODUCTION

Chorioamnionitis is an important risk factor underlying preterm delivery (Romero et 
al., 2006; Goldenberg et al., 2000). Preterm infants, especially very low birth weight 
(VLBW) and very low gestational age (VLGA) infants, are at increased risk for 
brain lesions and neurological developmental problems. Placental inflammation has 
been suggested to be one of the factors leading to brain pathology in preterm infants 
(Kaukola et al., 2006; Polam et al., 2005; Vergani et al., 2000; Leviton et al., 1999; 
DiSalvo, 1998). Cytokines, on the other hand, are believed to be the link causing the 
deleterious effects of inflammation to the nervous system, as high levels of several pro 
inflammatory cytokines have been seen in cord blood (Tauscher et al., 2003), neonatal 
blood (Nelson et al., 2003; Heep et al., 2003), and cerebro spinal fluid (Ellisonn et al., 
2005) in preterm infants subsequently developing brain lesions. The genetic regulation 
of inflammatory cytokines, i.e. the genetic composition of gene promoter regions, partly 
regulate the inflammatory response to stimuli, and has thus been suggested to also play a 
role in inflammation mediated brain injury. Indeed, single nucleotide polymorphisms in 
interleukin (IL)-6 promoter region (IL-6 -174 and -572 genotypes) have been connected 
with deviant neurological development in preterm infants (Harding et al., 2004; Resch et 
al., 2009; Harding et al., 2005). 

The role of histological chorioamnionitis in the development of brain lesions in VLBW/
VLGA infants is not sufficiently understood, and the relation of placental inflammation 
to brain volumes has not been investigated. The role of placental inflammation is also 
not known in relation to the functioning of the auditory pathway and hearing impairment 
in preterm infants. The significance of IL-6 promoter polymorphisms on inflammatory 
situations is complicated, and its relevance to the developing brain is not sufficiently 
investigated. 
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2.	 REVIEW OF THE LITERATURE

2.1.	 Very preterm delivery and infants

In Finland, 1 % of infants are born before 32 weeks of gestation (very low gestational 
age, VLGA) and 0.7 % are born below 1500 g (very low birth weight, VLBW) (National 
Birthregister, 2007).  Prematurity is the leading cause of perinatal mortality. It has been 
estimated that prematurity accounts for 75 % of perinatal deaths and VLGA infants 
represent 60 % of these (Slattery et al., 2002). In Finland, 11.1 % of VLWB/VLGA 
infants die before they reach the age of 1 year (Rautava et al., 2007). Preterm birth causes 
long-term morbidities, the brain and lung being most vulnerable for the consequences 
of prematurity (Saigal et al., 2008). In the Finnish National Register Study including 
all VLBW/VLGA infants born between 2000 and 2003, 23.4 % of infants had at least 
one long-term morbidity during the first 3 to 6 years of life (Korvenranta et al., 2009). 
For example, obstructive airway disease was seen in 20 %, hearing loss in 2.5 %, and 
visual disorder in 3.8 % (Korvenranta et al., 2009). In the 1990s, approximately 25 % of 
survivors of very preterm birth had some neurological disabilities, the most immature 
survivors being most affected (Saigal et al., 2008). In the last decade, the neurological 
morbidity rate has decreased. In the subgroup of extremely low birth weight (ELBW, 
birth weight below 1000 g) infants, the prevalence of cerebral palsy (CP) has decreased 
from approximately 13 % to 5 % in the United States (Wilson-Costello et al., 2007), 
and in preterm infants born before 27 weeks of gestation in Finland from 19 % to 8.5 
% (Korvenranta et al., 2009). In VLBW/VLGA infants born between 2000 and 2002 in 
Finland, the prevalence of CP has been 6.1 % (Korvenranta et al., 2009). A major cause 
of neurological disabilities in VLBW/VLGA infants is the high incidence of brain injury 
in this patient group. Intraventricular hemorrhage (IVH) is seen in approximately 26 
% and periventricular leukomalasia (PVL) in 3 % of VLBW/VLGA infants (Vermont 
Oxford Network Database, 2008). 

Preterm infants are also susceptible to inflammation and serious infections, such as 
chronic lung disease (CLD), necrotising enterocolitis (NEC), and septicaemia, largely 
because of  immature compensatory anti-inflammatory response (Schultz et al., 2004) 

resulting in enhanced inflammatory response compared with term born infants(Yoon 
et al., 2003) and adults (Schultz et al., 2004).  For example, in VLBW/VLGA infants, 
septicaemia is seen in 23 %, NEC in 7 %, and CLD in 34 % (Vermont Oxford Network 
Database, 2008). In Finnish preterm ELBW infants, septicaemia was seen in 22 %, NEC 
with bowel perforation in 9 %, and CLD in 39 % (Tommiska et al., 2001). 

Preterm births are classified into two groups: spontaneous preterm births and labour 
induction or caesarean delivery for maternal or fetal indications (Goldenberg et al., 2008). 
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Indicated preterm labour accounts for approximately 30 % of preterm births (Goldenberg 
et al., 2008). Spontaneous preterm births are further classified into spontaneous preterm 
birth with intact membranes and preterm premature rupture of the membranes (PPROM), 
and they account for 45 % and 25 % of preterm births, respectively (Goldenberg et al., 
2008; Slattery et al., 2002). Reasons for indicated preterm birth can be, for example, 
pre-eclampsia or eclampsia, and intrauterine growth restriction (Goldenberg et al., 2008; 
Slattery et al., 2002). Spontaneous preterm delivery can be caused by multiple factors, 
including infection or inflammation, vascular disease, and uterine overdistension, 
caused, for example, by multiple pregnancies (Goldenberg et al., 2008). Infection and 
inflammation become more frequent causes of preterm delivery as the gestational age 
decreases (Goldenberg et al., 2008). The causes of PPROM are often unknown, but 
a common risk factor is asymptomatic intrauterine infection (Andrews et al., 2000; 
Goldenberg et al., 2008; Goldenberg, 2002; Goldenberg et al., 2000). PPROM may also 
lead to ascending intrauterine infection, thus leading to preterm labour (Goldenberg et 
al., 2008). 

2.2.	 Placental inflammation

2.2.1	 Pathogenesis
Intrauterine infection is rare in term pregnancies but is commonly seen in preterm 
births (Anrews et al., 2000; Goldenberg et al., 2008; Goldenberg, 2002; Goldenberg 
et al., 2000). Placental infection is often asymptomatic, and therefore it is difficult to 
clinically diagnose before delivery. The diagnostic criteria of placental infection, i.e. 
clinical chorioamnionitis, varies between study groups, but the diagnosis is usually 
based on a combination of ruptured membranes, maternal fever, maternal tachycardia, 
fetal tachycardia, maternal leukocytosis, and foul-smelling amniotic fluid (Soper et al., 
1996). 

Histological chorioamnionitis, i.e. placental inflammation, on the other hand, is based 
on the appearance of neutrophiles in the placental tissue, and hence is not the direct 
equivalent of clinical chorioamionitis. The prevalence of histological chorioamnionitis 
is gestational age-specific and decreases almost linearly from 45-60 % in VLBW infants 
to 5-10 % in term pregnancies (Redline, 2004). Intrauterine inflammation within the 
uterus can be seen between the maternal tissue and the fetal membranes, within the 
fetal membranes, within the placenta, in the amniotic fluid, or within the umbilical cord 
(Goldenberg et al., 2000). Inflammation is seen as neutrophilic infiltration of the tissues, 
and is called chorioamnionitis when seen in fetal membranes, and funisitis when present 
in the umbilical cord (Goldenberg, 2002). 
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Microorganisms can invade the uterine cavity by ascending from the vagina and cervix, 
by migration from the abdominal cavity through the Fallopian tubes, hematogenously 
through the placenta, or by needle contamination at amniocentesis or other invasive 
procedures (Goldenberg et al., 2008; Romero et al., 2006). Ascending infection is 
the most important pathway, and vaginal organisms spread first to the choriodecidual 
space and then can cross the intact fetal membranes and spread to the amniotic fluid 
and finally infect the fetus (Goldenberg et al., 2008; Goldenberg et al., 2000). On 
the other hand, in the presence of premature rupture of the membranes (PROM), the 
amniotic epithelial surface is directly exposed to bacterial flora of the cervix, facilitating 
the spread of microorganisms directly into the uterine cavity (Redline, 2004). The 
bacteria causing placental inflammation with intact membranes are most often vaginal 
organisms of low virulence, including Ureaplasma urealyticum, Mycoplasma hominis, 
Gardrenella vaginalis, Peptostreptococci and Bacteroides species (Goldenberg et al., 
2008; Goldenberg, 2002; Goldenberg et al., 2000). After PROM, the organisms most 
frequently seen with chorioamnionitis are Group B Streptococci and Escherchia coli 
(Goldenberg, 2002; Goldenberg et al., 2000). 

The timing of intrauterine infection is not sufficiently understood. During the fist 
trimester, the placenta and embryo are relatively well isolated from infection (Redline, 
2004). At the turn of the fisrt and second trimester the organisms from the maternal 
circulation gain access to the fetally perfused placental villi with the onset of perfusion 
of the intervillous space (Redline, 2004). At 18 to 20 weeks of gestation, the gestational 
sac fuses with the uterine lining and organisms from the decidua vera gain access to the 
fetal membranes (Redline, 2004). Microbial colonization may precede conception, as is 
in the case of chronic endometritis, or micro-organisms may invade the uterus during 
the pregnancy (Goldenberg et al., 2008; Redline, 2004).  After the fetal membranes seal 
the uterine cavity, the organisms usually no longer ascend from the vagina to the uterus 
(Goldenberg et al., 2000). It is thought that if the microorganisms are not destroyed by 
the mother’s immune system in the few months after expanded membranes have sealed 
the uterine cavity, the infection becomes symptomatic and can lead to preterm labour or 
PROM (Goldenberg et al., 2000). However, in PROM, the uterine cavity is exposed to 
vaginal bacterial flora even later in the pregnancy. 

2.2.2	 Pathway to very preterm delivery
Approximately 25-40 % of all preterm births are complicated by intrauterine infection, 
while from spontaneous preterm deliveries occurring around 24 weeks of gestation, 
nearly all are associated with chorioamnionitis (Andrews et al., 2000; Goldenberg 
et al., 2008; Goldenberg, 2002; Goldenberg et al., 2002) Accordingly, intrauterine 
infection is an important mechanism leading to preterm delivery by activating the 
innate immune system (Goldenberg et al., 2000; Romero et al., 2006) In most cases 
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placental inflammation is asymptomatic, and PROM or preterm labour is the first 
sign of infection. Microbial invasion activates the decidua and fetal membranes to 
produce cytokines, which act with endotoxins and exotoxins to stimulate prostaglandin 
synthesis and release leading to uterine contractions (Goldenberg, 2002; Goldenberg 
et al., 2000; Romero et al., 2006). Cytokines also initiate neutrophil chemotaxis, 
infiltration, and activation, leading to synthesis and release of metalloproteases which 
then attack the fetal membranes and soften the cervix by remodelling the collagen 
fibers (Goldenberg, 2002; Goldenberg et al., 2000; Romero et al., 2006). The pathway 
leading from placental infection to preterm delivery is shown in Figure 1. The 
proinflammatory cytokines thought to be of major significance include tumour necrosis 
factor α (TNF- α), interleukin (IL)-1α, IL-1β, IL-6, IL-8, and granulocyte-colony 
stimulating factor (Goldenberg, 2002; Goldenberg et al., 2000; Romero et al., 2006). 
From anti-inflammatory cytokines, IL-10 is believed to have a role in maintaining 
pregnancy, and indeed, IL-10 expression has been shown to be reduced in association 
with chorioamnionitis (Romero et al., 2006). Other possible pathways may also include 
chorionic infection which decreases the activity of prostaglandin dehydrogenases, 
leading to larger amounts of prostaglandins reaching the myometrium and causing 
contractions (Goldenberg et al., 2000). On the other hand, in the case of fetal infection, 
the rise in fetal production of cortisol increases the production of prostaglandins and 
may thus lead to contractions (Goldenberg et al., 2000). 

Synthesis and 
release of TNF- , IL-

1, IL-6, IL-8

Neutrophil
chemotaxis, 

infiltration and 
activation

Metalloprotease
synthesis and release

Ptostaglandin
synthesis and 

release

Contractions

Membrane
weakening and 

rupture
Cervical ripening

Choriodecidual
bacterial colonization

FIGURE 1. Potential pathway leading from placental infection to preterm delivery (Goldenberg, 
2002).
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2.2.3	 Consequences to the central nervous system
Clinical and histological chorioamnionitis and maternal fever during delivery have all 
been associated with cerebral palsy (CP) in term born infants (Redline et al., 2000; Wu 
et al., 2003; Grether et al., 1997). Maternal fever and clinical chorioamnionitis have also 
been shown to be risk factors for birth asphyxia and neonatal encephalopathy including 
seizures, cerebral depression, and central nervous system dysfunction (Blume et al., 
2008). 

Among preterm infants the situation is less clear. Even though preterm infants are thought 
to be more susceptible to infections and inflammation, the reported consequences of 
intrauterine infections have been inconsistent in different studies. Several studies 
have shown an association between clinical (Alexander et al., 1998) and histological 
chorioamnionitis (DiSalvo, 1998; Kaukola et al., 2006; Leviton et al., 1999; Polam et 
al., 2005; Vergani et al., 2000) and brain pathology in VLBW/VLGA infants. Clinical 
chorioamnionitis has been connected with IVH and PVL in preterm VLBW infants 
(Alexander et al., 1998). Histological chorioamnionitis, on the other hand, has been 
associated with white matter damage (WMD) and IVH in VLBW/VLGA infants (Kaukola 
et al., 2006; Kaukola et al., 2005; Leviton et al., 1999; Polam et al., 2005; Vergani et al., 
2000). In contrast, Kaukola et al. (Kaukola et al., 2006) found no association between 
histological chorioamnionitis and WMD in ELBW infants, and Holcroft et al. (Holcroft 
et al., 2003). were unable to associate clinical chorioamnionitis with IVH and PVL in 
VLBW infants.

Among more mature preterm infants the findings have been equally inconsistent. 
Clinical (Hatzidaki et al., 2009; Verma et al., 1997) and histological chorioamnionitis 
(Rocha et al., 2007) have been associated with brain pathology, but on the other hand, a 
few studies have been able to show only a trend (Kumazaki et al., 2002; Murata et al., 
2005) or no association (Vergani et al., 2004) between histological chorioamnionitis and 
PVL or IVH. The association between clinical chorioamnionitis and PVL has also been 
contradicted (Spinillo et al., 1998). 

The role of clinical and histological chorioamnionitis in preterm infants’ neurological 
development has also been widely studied. There are studies showing an association 
between clinical and histological chorioamnionitis and CP in VLBW/VLGA infants 
(Constantine et al., 2007; Jacobsson et al., 2002) but several studies have found no 
association between clinical (Grether et al., 2003; O’Shea et al., 1998,) and histological 
chorioamnionitis (Gray et al., 2001; Grether et al., 2003) and in utero infection (Andrews 
et al., 2008) and CP. In a recent study by Andrews et al. (Andrews et al., 2008) with very 
preterm infants at the age of 6 years, in utero exposure to acute inflammation was not 
associated with CP, low IQ or neurodevelopmental delay, and they even reported a trend 
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indicating higher IQ in the presence on funisitis. PPROM was also associated with lower 
frequency of IQ <70 and major disability (Andrews et al., 2008). 

It can be concluded from the literature that the findings about the neurological 
consequences of chorioamnionitis are contradictory. It is likely that the situation is more 
complex among immature preterm infants than in otherwise healthy term born infants, 
and that other, still unknown, factors play a role in determining the consequences of 
chorioamnionitis.    

2.3.	 Cytokines

Cytokines are multifunctional pleiotrophic proteins that play a major role in initiating and 
mediating an inflammatory reaction. They also participate in cell-to-cell communication 
and cellular activation. Cytokines are released by many cells, including epithelial cells, 
endothelial cells, and the cells of the immune system. Cytokines are generally classified 
as being either pro-inflammatory or anti- inflammatory, and they have a wide spectrum 
of biological activities that help to coordinate the response to infection, including 
acting on the liver, bone marrow endothelia, hypothalamus, fat and muscle, and 
lymphocytes.(Janeway et al., 1997 ) In addition to being involved in immune responses, 
cytokines also have a functional role in the peripheral and central nervous system, as 
they modulate the action, differentiation and survival of neuronal cells, and on the other 
hand, participate in the pathogenesis of neurotoxic and neurodegenerative disorders 
(Szelényi et al., 2001).

2.3.1	 Pathway to very preterm delivery
In association with intra uterine infection, the fetal membranes produce cytokines, 
which leads to uterine contractions, softening of the cervix, and membrane rupture 
(Goldenberg, 2002; Goldenberg et al., 2000; Romero et al., 2006). In addition to 
amniotic fluid (Menon et al., 2008) and cervical (Kurkinen-Räty et al., 2001) IL-6 
concentrations associating with preterm birth, the association has also been reported 
between elevated levels of neonatal blood cytokines (L-1β, IL-6, soluble IL-6 receptor-
α, IL-8, matrix metalloproteinase-9, transforming growth factor-β1) and preterm birth 
when compared to term born infants (Skogstrand et al., 2008). Accordingly, Skogstrand 
et al. (Skogstrand et al., 2008) suggested this to implie that inflammation of fetal origin 
might be a cause of preterm delivery, but it is more likely that it merely reflects the 
enhanced inflammatory response of preterm infants to delivery (Schultz et al., 2002; 
Yoon et al., 2003). Furthermore, elevation in maternal blood cytokines in mid pregnancy 
has been associated with preterm delivery before 35 weeks of gestation with or without 
histological chorioamnionitis (Gargano et al., 2008), and with delivery at 30-36 weeks 
of gestation (Curry et al., 2007). 
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2.3.2	 Connection to placental inflammation and neonatal inflammatory diseases
Fetal cytokines seem to have a role in the placental inflammatory process, since 
elevated pro-inflammatory cytokine levels have been found in cord blood in the 
presence of chorioamnionitis ( Dollner et al., 2002; Kashlan et al., 2000; Kaukola 
et al., 2006; Shalak et al., 2002; Tasci et al., 2006; Yanowitz et al., 2002; Yoon et 
al., 2000). High levels of interleukin IL-6, IL-8, IL-1β, and tumour necrosis factor 
(TNF)α in full term infants (Dollner et al., 2002; Tasci et al., 2006) and elevated IL-
6 concentrations in preterm infants (Pacora et al., 2002; Yoon et al., 2000) as well 
as elevated IL-6 and IL-8 concentrations in a subgroup of VLBW/VLGA infants 
(Kashlan et al., 2000; Kaukola et al., 2006; Yanowitz et al., 2002) have all been 
associated with histological chorioamnionitis and/or funisitis. High levels of blood 
cytokines during the perinatal period have also been associated with histological 
chorioamnionitis in very preterm infants (Paananen et al., 2008). In addition, high 
cord blood levels of IL-6 in term born infants have been connected with clinical 
chorioamnionitis (Shalak et al., 2002).  Elevated IL-6 levels have also been found 
in the cerebrospinal fluid of infants with histological and clinical chorioamnionitis 
(Laborada et al., 2005). Since proinflammatory cytokines, at least in healthy term 
placentas, are not transmitted through the placenta (Aaltonen et al., 2005), these 
findings suggest that chorioamnionitis can also lead to fetal inflammatory response. 
Although, it has to be kept in mind that cytokine levels are highly affected by several 
external factors, delivery being one of them (Kilpinen et al., 2001), making the 
studies based on cytokine levels prone to errors.

In addition to chorioamnionitis, fetal cytokines have been studied in relation to neonatal 
inflammatory diseases. Elevated cord blood IL-6 concentrations have been measured in 
preterm infants subsequently developing sepsis, congenital pneumonia or necrotizing 
enterocolitis (NEC) (Weeks et al., 1997) and in VLGA infants with increased risk for 
systemic inflammatory response syndrome and NEC (Goepfert et al., 2004). Elevated 
amniotic fluid TNFα has also been associated with necrotising enterocolitis (NEC) in 
infants born before 34 weeks of gestation (Hitti et al., 2001). In addition, elevated cord 
blood IL-6 and IL-8 levels (An et al., 2004) and elevated blood IL-8 in the perinatal 
period (Paananen et al., 2008) have been associated with progression of chronic lung 
disease (CLD) in VLBW/VLGA infants. 

2.3.3	 Consequences to the central nervous system
Cytokines are known to modulate the action, differentiation and survival of 
neuronal cells, and on the other hand, cytokine overexpression has been reported 
in the pathogenesis of neurotoxic and neurodegenerative disorders (Szelényi et al., 
2001). High levels of IL-1β, IL-6, and IL-8 in cord blood have been associated 
with development of intracerebral hemorrhage in VLGA infants (Tauscher et al., 
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2003), and high concentrations of proinflammatory cytokines in neonatal blood have 
been seen in VLGA infants with later brain ultrasound abnormalities (Heep et al., 
2003; Nelson et al., 2003). In addition, elevated IL-6, IL-1β, and TNFα levels in 
amniotic fluid have been seen in pretem infants born before 35 weeks of gestation 
subsequently developing white matter lesions (Yoon et al., 1997) and grade 3-4 
intraventricular hemorrhage (Hitti et al., 2001). On the other hand, Ellison et al. 
(Ellisonn et al., 2005) showed that in VLGA infants, cytokine concentrations in 
blood did not correlate to concentrations in cerebrospinal fluid (CSF), suggesting 
that plasma cytokine levels may poorly reflect the cerebral inflammatory response in 
preterm infant. They found an association between high CSF levels of IL-6, IL-10, 
and TNFα and white matter injuries (WMI), but no correlation between neonatal 
blood cytokines and WMI (Ellisonn et al., 2005).  

Since neonatal cytokines have been associated with brain injury in preterm infants, the 
role of cytokines in neurological development has also been under intensive research. In 
full term infants, higher neonatal blood levels of IL-1β, IL-6 , IL-8, and TNFα have been 
associated with abnormal neurodevelopmental outcome at 30 months of age (Bartha et 
al., 2004). In addition, elevated IL-6 levels in neonatal blood at 6 hours of age have been 
reported to associate with lower scores in modified Dubowitz neurological examination 
and with hypoxic ischemic encephalopathy and/or seizures (Shalak et al., 2002). In 
contrast, in studies with preterm infants, neonatal cytokines have not consistently been 
associated with abnormal neurodevelopmental outcome. Kaukola et al. (Kaukola et al., 
2006) found no association between cord blood IL-1α, IL-1β, IL-6, IL-8, and TNFα 
levels and neurodevelopmental outcome in ELBW infants at two years of corrected age. 
Nelson et al. (Nelson et al., 2003) evaluated the association between neonatal cytokines, 
including IL-1, IL-6, IL-8, and TNFα, and later diagnosis of CP in VLBW infants. They 
found that none of the measured cytokine concentrations were related to CP. However, 
in a recent study, high levels of IL-6 and TNF-α in cord blood have been associated with 
low scores in the Bayley Scales of Infant Development psychomotor developmental 
index and TNF-α with CP in very preterm infants at the corrected age of 2 years (Hansen-
Pupp et al., 2008).

2.3.4	 Interleukin-6
IL-6 is expressed in multiple cell types, and the gene has a complex transcriptional 
regulation. Table 1 shows the wide variety of actions of IL-6. 
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TABLE 1. Actions of IL-6 (Papanicolaou et al., 1998)

Hematologic Proliferation of multipotential hematopoietic progenitors
Myeloma and plasmacytoma cell growth

Immunologic Differentiations and maturation of B cells (B-cell stimulating factor 2)
Production of immunoglobulin by B cells
Proliferation and differentiation of T cells

Hepatic Hepatocyte stimulation
Introduction of various genes of the acute-phase response (C-reactive 
protein, haptoglobin, fibrinogen)

Neurologic Nerve cell differentiation
Gliosis (in transgenic mice)

Cardiac Myocardial hypertophy
Endocrine Induction of thermogenesis (endogenous pyrogen)

Stimulation of the hypothalamic pituitary-adrenal axis
Stimulation of vasopressin secretion
Stimulation of growth hormone secretion 
Suppression of the thyroid axis
Suppression of serum lipid levels
Osteoporosis (postmenopausal or due to hypogonadism)

IL-6 has been shown to be essential for normal brain function, for example memory 
processes (Braida et al., 2004), and protection from brain injury ( Loddick et al., 1998; 
Matsuda et al., 1996; Penkowa et al., 2000; Winter et al., 2004). IL-6 has been suggested 
to act as a neuroprotective agent in response to head trauma in adult patients (Winter et al., 
2004), and in animal models it has been shown to be an important endogenous inhibitor of 
neuronal death during cerebral ischemia (Loddick et al., 1998) and act as a trophic agent 
on ischemic hippocampal neurons (Matsuda et al., 1996). IL-6 –type cytokines also act 
as factors influencing the development of neurons and glial cells in the central nervous 
system, and have been shown to be essential at least for the development of astrocytes 
(Koch et al., 2007; Nakanishi et al., 2007; Taga et al., 2005). On the other hand, long-
term overexposure to IL-6 has been suggested to be harmful for central nervous system, 
and can interfere with the neurogenesis of adult transgenic mice (Vallières et al., 2002) 
and cause neuronal damage, reactive astrocytosis, and proliferative angiopathy leading 
to profound neurologic disease (Campbell et al., 1993). 

2.3.4.1 IL-6 promoter polymorphism and inflammatory response
The production of IL-6 is controlled at the translational level, and genetic factors partly 
regulate the level of IL-6 response. Single nucleotide polymorphisms in the IL-6 gene 
promoter region at positions -174 (G/C) and -572 (G/C) have been shown to affect 
IL-6 expression. IL-6 G at position -174 has been found to associate with elevated 
IL-6 expression in HeLa cells both unstimulated and after stimulation with IL-1 and 
lipopolysaccharide (LPS) (Fishman et al., 1998). Leukocytes stimulated with endotoxins 
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(Rivera-Chavez et al., 2003) and macrophages both unstimulated and after stimulation 
with leishmania antigen (Castellucci et al., 2006) have also shown elevated IL-6 response 
in association with the GG genotype. In addition, in vivo studies have shown that the IL-
6 -174 GG genotype is associated with higher levels of IL-6 in patients with sepsis/septic 
shock (Tischendorf et al., 2007), pancreatic adenocarcinoma/chronic pancreatitis (Talar-
Wojnarowska et al., 2008), non-functioning pancreatic endocrine tumors/gastrointestinal 
neuroendocrine tumors (Berković et al., 2007), and in generally healthy adults (Raunio 
et al., 2007). On the other hand, in patients with sepsis/septic shock, CC genotype has 
associated with higher IL-6 response ex vivo after stimulation with LPS in a whole 
blood assay (Tischendorf et al., 2007). In vivo, CC genotype has been connected with 
elevated production of IL-6 in patients with atrial fibrillation (Marcus et al., 2008), and 
in neonates and neonatal monocytes stimulated with lipopolysaccharide (Kilpinen et al., 
2001). In addition, C allele has been shown to associate with a higher IL-6 level in 
patients with abdominal aortic aneurysms (Jones et al., 2001) and cardiovascular disease 
as well as in their healthy control group (Jenny et al., 2002). Considering the discrepancy 
of the findings described above, it seems that the regulation of IL-6 synthesis is a 
complex process, and many factors need to be taken into account. Some studies have 
even reported no association between IL-6-174 polymorphism and IL-6 response in vivo 
(Potaczek et al., 2007; Taudorf et al., 2008) and ex vivo (Heesen et al., 2002; Kiszel 
et al., 2007),  and different responses in control versus patient groups (Potaczek et al., 
2007) and in neonates versus adults (Kilpinen et al., 2001). It has been suggested that 
genetic polymorphism in the promoter area of IL-6 gene influences IL-6 transcription 
not by a simple additive mechanism but rather through complex interactions determined 
by the haplotype (Terry et al., 2000). 

C allele at the position -572 has been associated with increased IL-6 synthesis in the 
Western population after coronary artery by-pass surgery (Brull et al., 2001) and in 
patients with acute coronary syndrome (Mälarstig et al., 2007). In addition, in the Chinese 
Han population, C allele was seen with higher plasma IL-6 levels when stimulated with 
LPS (Gu et al., 2008). On the other hand, in the Korean population, it has been shown 
that the GG genotype associates with higher levels of IL-6 in healthy subjects (Koh et 
al., 2009; Shin et al., 2007) and in men with coronary artery disease not taking a lipid-
lowering drug (Jang et al., 2008), suggesting a possible racial difference in the regulation 
of IL-6 synthesis.

2.3.4.2 IL-6 promoter polymorphism in association with infections
IL-6-174 polymorphism has been associated with the incidence, clinical course, and 
outcome of several infectious diseases and autoimmune disorders. Sepsis, a consequence 
of inadequate immune system activation, has been associated with IL-6-174 GG genotype 
in preterm infants (Ahrens et al., 2004; Harding et al., 2003). GG genotype has also been 
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associated with the common cold (Nieters et al., 2001) and recurrent otitis media in 
children (Emonts et al., 2007; Patel et al., 2006). A trend between IL-174 G and histologic 
chorioamnionitis has also been found (Speer et al., 2006) However, the findings of the 
role of IL-6-174 polymorphism on infections have not been consistent. The C allele 
has also been associated with increased incidence of sepsis in pediatric intensive care 
patients (Michalek et al., 2007), with increased incidence of late blood stream infections 
in African American mechanically ventilated VLBW infants (Baier et al., 2006), and 
with septic shock in adults (Tischendorf et al., 2007). In addition, Göpel et al. (Göpel 
et al., 2006) and Schlüter et al. (Schlüter et al., 2002) found no association between the 
incidence of sepsis and IL-6-174 genotype in VLBW infants. The association between 
maternal IL-6 -174 genotypes and the incidence of preterm delivery has  been studied 
showing no association between IL-6 -174 genotypes and preterm birth (Annells et al., 
2004; Lamie et al., 2005; Mattar et al., 2006; Moura et al., 2009; Stonek et al., 2008). 

The association of IL-6-572 genotypes with infectious diseases has been less explored. In 
two available studies, IL-6-572 C associated with higher incidence of sepsis in pediatric 
intensive care unit patients (Michalek et al., 2007) and adult trauma patients (Gu et al., 
2008).

2.3.4.3 IL-6 promoter polymorphism and brain lesions and neurological development
Since IL-6 has a variety of protective as well as deleterious effects on the central nervous 
system, it is plausible that IL-6 promoter polymorphism, affecting the synthesis of IL-
6, would play a role in both brain development and pathology. In Caucasians, IL-6-174 
G and -572 C have both been connected with intracranial aneurysmal disease (Morgan 
et al., 2006). In the Chinese population, on the other hand, IL-6-572 GG genotype has 
been associated with intracranial aneurysms (Sun et al., 2008), possibly indicating 
a racial difference in the regulation of IL-6 synthesis. In studies concerning preterm 
infants, IL-6-174 and -572 polymorphisms have been connected with brain pathology 
and neurological development. Harding et al. (Harding et al., 2004) found an association 
between IL-6-174 CC genotype and brain pathology and disability at 2 and 5,5 years 
in very preterm infants. Göpel et al. (Göpel et al., 2006), on the other hand, found no 
association between IL-6-174 polymorphisms and brain pathology in VLBW infants. 
IL-6 -174 CC and GC genotypes have also been associated with mental retardation in 
preterm infants with cystic PVL, suggesting the IL-6 -174 polymorphism to modify the 
severity of perinatal brain injury (Resch et al., 2009). IL-6-572 C has not been shown 
to associate with brain pathology in very preterm infants, but has been connected with 
impaired cognitive development at the age of 2 and 5,5 years (Harding et al., 2005). 

The literature related to the associations of IL-6 -174 and -572 genotypes with brain 
lesions and neurological development has been summarised in Table 2.
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TABLE 2. The literature related to the associations of IL-6 -174 and -572 genotypes with brain 
lesions and neurological development.

IL-6 -174 -174 G -174 C
Harding et al., 2004 
(N=148)

IL-6-174 CC associated with brain 
pathology and disability at 2 and 
5,5 years in VLGA infants

Göpel et al., 2006 
(N=1206)

No association between IL-6-174 polymorphisms and brain pathology 
in VLBW infants

Resch et al., 2009 
(N=56 cases + 46 
preterm and 395 
term controls)

IL-6 -174 CC and GC associated 
with mental retardation in preterm 
infants with cystic PVL

Morgan et al., 2006 
(N=91 cases + 2720 
controls) 

IL-6 -174 G associated with 
intracranial aneurysmal disease in 
Caucasians

IL-6 -572 -572 G -572 C
Harding et al., 2005 
(N=113)

IL-6 -572 C associated with 
impaired cognitive development at 
2 and 5,5 years in VLGA infants

Sun et al., 2008 
(N=240 cases + 240 
controls)

IL-6-572 GG associated with 
intracranial aneurysms in the 
Chinese 

Morgan et al., 2006 
(N=91 cases + 2720 
controls)

IL-6 -572 C associated with 
intracranial aneurysmal disease in 
Caucasians

2.4.	 Brain pathology in preterm infants

2.4.1	 Brain injury
Preterm infants are at an increased risk for brain injury. Whether preterm birth and 
brain damage are both consequences of previous events, or whether preterm birth is an 
independent cause of brain damage, is not known (Arpino et al., 2005). Brain damage in 
preterm infants primarily affects the white matter (Inder et al., 2000; Rees et al., 2005), 
and the most common type of damage is PVL, IVH, and periventricular hemorrhagic 
infarction (Arpino et al., 2005; Whitelaw et al., 2001). In recent years, the incidence of 
cystic PVL visible in cranial ultrasound (US) examination has been 3 % and IVH 26 % 
in VLBW infants (Vermont Oxford Network Database, 2008). Diffuse, non-cystic PVL 
has been estimated to be more common than the cystic type in VLBW infants (Rees et 
al., 2005; Volpe, 2003).

PVL is necrosis of white matter in the typical location in the posterior periventricular white 
matter adjacent to the lateral ventricle and in the white matter adjacent to the foramina of 
Monro (Barkovich, 1995). PVL can be caused by focal periventricular necrosis or more 
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diffuse cerebral white matter injury (Inder et al., 2000). The focal form usually occurs in 
the area of the end zones of the long penetrating arteries adjacent to the lateral ventricles, 
and undergoes cavity formation over 1-3 weeks (Inder et al., 2000; Rees et al., 2005) 
Diffuse white matter damage less commonly forms cysts, and may remain undetected by 
cranial US examination (Inder et al., 2000). Magnetic resonance imaging (MRI) studies 
have shown diffuse damage to be very common in premature infants (Rees et al., 2005; 
Volpe, 2003). PVL has also been suggested to be related to a disturbance in subsequent 
cortical neuronal development (Inder et al., 2000) and deep gray matter injury (Rees et 
al., 2005), and the focal form can selectively damage the periventricular crossroads of 
growing thalamocortical and associative pathways (Kostović et al., 2006). Diffuse white 
matter injury, on the other hand, predominantly affects developing oligodendrocytes and 
the subplate zone (Kostović et al., 2006).  

IVH in preterm infants usually originates from the subependymal germinal matrix, and 
often ruptures through the ependyma into the ventricles (Whitelaw et al., 2001). IVH is 
divided into three grades, grade 1 confined to the subependymal matrix, grade 2 in the 
ventricle without distending it, and grade 3 extending more than half the length of the lateral 
ventricle distending the ventricle (Whitelaw et al., 2001). IVH may also be accompanied by 
periventricular hemorrhagic infarction, which is seen in 15-20 % of infants with IVH (Inder 
et al., 2000; Whitelaw et al., 2001). Periventricular hemorrhagic infarction is hemorrhagic 
necrosis of the periventricular white matter from the venous origin (Inder et al., 2005). It is 
usually asymmetric, and follows the distribution of the medullary veins in periventricular 
white matter, and in 80 % of cases is associated with IVH (Inder et al., 2000; Whitelaw 
et al., 2001). In fact, it has been suggested that IVH/germinal matrix hemorrhage leads 
to obstruction of terminal veins, leading to hemorrhagic venous infarction and thus to 
periventricular hemorrhagic infarction (Inder et al., 2000).

The two pathways commonly believed to cause brain injuries in preterm infants are 
prenatal hypoxic/ischaemic injury and inflammatory/infective insults (Arpino et al., 
2005; Inder et al., 2000; du Plessis et al., 2002; Rees et al., 2005). Preterm infants are 
particularly vulnerable for brain injury, mainly because of the immaturity of the central 
nervous system. The vessels penetrating the cerebral wall are highly undeveloped at 
24 to 28 weeks of gestation, forming vascular end zones and border zones in cerebral 
white matter, and this exposes preterm infants born at this stage to injury in the presence 
of cerebral ischemia (Inder et al., 2000). In addition, preterm infants have impaired 
cerebrovascular regulation, and at least in clinically unstable infants, the rate of cerebral 
blood flow is lowered during systemic hypotension (Inder et al., 2000). Immature 
oligodendrocytes have also been suggested to be vulnerable in the premature brain, 
for example to cerebral ischemia, glutamate, inflammatory cytokines, and free radical 
attack, whereas the mature oligodendrocytes seem to be more resistant (Inder et al., 
2000; du Plessis et al., 2002; Rees et al., 2005). Cytokine toxicity is most marked in 
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the most immature oligodendrocytes, and can be mediated through direct cytotoxicity, 
inhibiting the differentiation of oligodendrocyte precursors, stimulating oligodendrocyte 
apoptosis, and causing vacuolar myelin degeneration (du Plessis et al., 2002). It has 
also been suggested that cytokine toxicity may be caused by disturbances in glutamate 
transport (du Plessis et al., 2002). In association with IVH, the factors making premature 
brain particularly vulnerable include the fragility of the germinal matrix vascular bed 
(Whitelaw et al., 2001). During the third trimester, the germinal matrix produces glial 
precursors of oligodendroglia and astrocytes, and requires a rich blood supply for rapid 
cell division (Whitelaw et al., 2001). The vessels do not have extensive connective tissue 
support, and are thus prone to blood pressure changes and hypoxic-ischemic reperfusion 
and free radical injury (Whitelaw et al., 2001).

2.4.2	 Brain volumes
Several studies have shown that preterm infants have smaller regional brain volumes 
at term age compared with term born infants both in the white matter and gray matter 
regions. For example, reductions in cerebral cortical gray matter and deep gray matter 
have been reported in preterm infants at term age (Boardman et al., 2006; Inder et al., 
2005; Srinivasan et al., 2007). More precisely, the parieto-occipital, inferior occipital, 
sensorimotor, orbitofrontal, and premotor regions have been shown to be smaller in 
preterm infants compared with term born infants (Peterson et al., 2003; Thompson 
et al., 2007), as have thalamic and lentiform volumes (Inder et al., 2005; Srinivasan 
et al., 2007). Smaller cerebellar volumes have also been reported in preterm infants 
(Limperopoulos et al., 2005; Shah et al., 2006). In addition to studies at term age, the 
brain volumes of preterm infants have also been investigated in childhood (Peterson et 
al., 2000; Reiss et al., 2004), adolescence (Allin et al., 2001; Isaacs et al., 2000; Kesler et 
al., 2008; Nosarti et al., 2008; Nosarti et al., 2002) and adulthood (Fearon et al., 2004). 
The association between prematurity and reduction in volumes of cortical gray matter 
(Kesler et al., 2008; Nosarti et al., 2008; Nosarti et al., 2002; Peterson et al., 2000; 
Reiss et al., 2004), deep gray matter (Isaacs et al., 2000; Kesler et al., 2008; Nosarti et 
al., 2008; Nosarti et al., 2002; Peterson et al., 2000), white matter (Fearon et al., 2004; 
Kesler et al., 2008; Nosarti et al., 2008; Peterson et al., 2000; Reiss et al., 2004), and 
the cerebellum (Allin et al., 2001; Nosarti et al., 2008; Peterson et al., 2000) was seen 
in all of the studies. However, the pathogenesis and etiology of brain volume reductions 
in preterm infants is not well known.  Suggested etiologies have been low gestational 
age (Boardman et al., 2006; Inder et al., 2005; Limperopoulos et al., 2005; Nosarti et al., 
2008), prolonged supplemental oxygen dependence (Boardman et al., 2007; Thompson 
et al., 2007), treatments used in neonatal intensive care (i.e. postnatal steroids and 
indometacine treatment) (Thomson et al., 2008), and brain pathology (Boardman et al., 
2006; Inder et al., 2005; Inder et al., 1999; Limeropoulos et al., 2005; Lin et al.,  2001; 
Srinivasan et al., 2007; Thompson et al., 2008; Thompson et al., 2007; Vasileiadis et al., 
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2004). For example, moderate or severe WMI has been associated with reduced cortical 
gray matter volume (Inder et al., 2005), hippocampal volume (Thompson et al., 2008), 
and the volumes of the dorsal prefrontal, sensorimotor, midtemporal, parieto-occipital, 
and inferior occipital regions (Thompson et al., 2007). Boardman et al. (Boardman et 
al., 2006) and Srinivasan et al. (Srinivasan et al., 2007) have both shown diffuse WMI to 
associate with smaller volumes of thalami and lentiform nuclei, and PVL has been shown 
to associate with smaller volumes in the thalami, cortical gray matter, and myelinated 
white matter (Inder et al., 1999; Lin et al.,  2001). Cerebellar volumes have been shown 
to be reduced in association with brain pathology, even in the absence of cerebellar 
injury (Limperopoulos et al., 2005), and even uncomplicated IVH (grades I-II) has been 
suggested to reduce the volumes of cortical gray matter (Vasileiadis et al., 2004). Recent 
reports have suggested that it is possible that instead of prematurity itself, the pathologies 
associated with prematurity are responsible for reductions in brain volumes at term age. 
Boardman et al. (Boardman et al., 2007) showed that in preterm infants born before 33 
weeks of gestation without focal parenchymal lesions or posthemorrhagic ventricular 
dilatation, the cerebral volume was not reduced at term age compared with term born 
infants. Hippocampal volumes have also been seen to be preserved in preterm infants 
without WMI, indometacine treatment, or postnatal steroids (Thompson et al., 2008), 
and cortical gray matter volumes have been shown to be normal in preterm infants with 
no brain lesions (Mewes et al., 2006). On the other hand, Kesler et al. (Kesler et al., 
2008) have shown reduced white and gray matter in 12 year old preterm boys with 
normal neonatal US findings. In the light of recent publications, it is impossible to know 
whether prematurity is the cause of reduced brain volumes in preterm infants later in 
their lives, or whether the cause to reduced volumes is brain injuries and other diseases 
or treatments associated with prematurity, as the majority of the studies have been carried 
out without a healthy preterm control group.

The reductions in regional brain volumes have been shown to affect the development 
of preterm infants. Cognitive development at 18 to 20 months corrected age has been 
shown to be delayed in preterm infants with smaller sensorimotor and midtemporal white 
matter volumes (Peterson et al., 2003). A decrease in cerebral gray matter (Nosarti et al., 
2008; Reiss et al., 2004), cortical (Peterson et al., 2000), and cerebellar volume (Allin et 
al., 2001) has been associated with poor cognitive performance at 8 and 14 to 15 years 
of age. Memory functions in 2 (Beauchamp et al., 2008) and 13 (Isaacs et al., 2000) 
year old preterm infants have been shown to be affected by reduction of hippocampal 
volumes. In addition, the reduction of caudate nuclei (Abernethy et al., 2004; Abernethy 
et al., 2002; Nosarti et al., 2005) and thalamus volume (Gimenez et al., 2006) has been 
suggested to cause developmental and behavioural problems in preterm infants. 
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2.4.3	 Brain maturation
The level of brain maturation in preterm infants, and other subtle changes in the brain 
structure, is difficult, and in some cases impossible, to measure using conventional MRI or 
US. Diffusion tensor imaging (DTI), which is based on water diffusivity, is a fairly novel 
method to examine subtle changes in brain white matter structure. The apparent diffusion 
coefficient (ADC) value in DTI reflects free movement of water in a tissue, whereas the 
fractional anisotropy (FA) value reflects the directionality of diffusion (Beaulieu et al., 
2002). Anisotropy in neural tissue is due to dense packing of axons, axonal membranes and 
myelin sheaths and can thus be used in estimating white matter maturation and myelination 
(Beaulieu et al., 2002). Brain water content decreases with increasing gestational age, and 
white matter complexity increases with increasing myelination, constricting water motion 
(Dudink et al., 2008).  Indeed, ADC values of several brain white matter areas have been 
shown to decrease (Hüppi et al., 1998; Neil et al., 1998) and FA values increase (Dudink 
et al., 2007; Gilmore et al., 2004; Hüppi et al., 1998; Neil et al., 1998) with increasing 
gestational age. Brain maturation occurring after the perinatal period can also be detected 
with DTI. Studies of white matter tracts have shown that the development of decreasing 
ADC and increasing FA with increasing age can be seen from preterm infants born at 28 
gestational weeks into childhood, adolescence, and young adulthood (Berman et al., 2005; 
Forbes et al., 2002; McGraw et al., 2002; Schmithorst et al., 2002; Schneider et al., 2004; 
Snook et al., 2005; Zhang et al., 2005). In addition to providing information of normal 
brain maturation, DTI is also feasible in studying brain injury, and even subtle changes 
in white matter structure.  Preterm infants at term age, compared with term born infants, 
have been shown to have higher ADC values (Hüppi et al., 1998) and lower FA values 
(Anjari et al., 2007; Hüppi et al., 1998) in several white matter regions, suggesting that 
preterm birth disrupts normal brain development. Lower FA values of a wide range of 
white matter structures have even been seen in VLBW infants in childhood (Yung et al., 
2007) and adolescence (Skranes et al., 2007; Vangberg et al., 2006). In addition, WMI has 
been shown to disturb white matter maturation, causing changes in ADC and FA values. 
For example, ADC has been shown to be higher (Counsell et al., 2003) and FA lower 
(Hüppi et al., 2001) in infants with WMI compared with controls. In addition, in newborns 
with WMI, ADC has been shown to increase or fail to decline, and FA has failed to increase 
with increasing age (Miller et al., 2002). Hüppi et al. (Hüppi et al., 2001) also showed that 
focal white matter injury can have major deleterious effects on the development of fibre 
tracts, resulting in low FA values in areas containing descending fibres from the injured 
white matter.

2.5.	 Hearing impairment in preterm infants

Prematurity (D’Mello et al., 1995; Korres et al., 2005; Mayr et al., 1994; Singh et al., 
1998) and low birth weight (D’Mello et al., 1995; Korres et al., 2005; Morlet et al., 
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1998; Van Naarden et al., 1999; Vohr et al., 2000) have been related to an increased risk 
for sensorineural hearing impairment, and up to 27 % of preterm VLBW infants have 
been found to have peripheral and/or central hearing impairment at term age (Jiang et 
al., 2001) Common co-morbidities associated with prematurity, including brain lesions, 
infections, and inflammatory diseases, have also been associated with greater risk for 
hearing impairment. Hearing deficits have been associated with congenital infections 
(Das et al., 1996; Yoshikawa et al., 2004), especially congenital cytomegalovirus 
infections (2006, Barbi et al., 2006; Barbi et al., 2003; Fowler et al., 2006; Iwasaki et 
al., 2007; Ogawas et al., 2007; Wen et al., 2002). Meningitis (Bao et al., 1998; Das et al., 
1996; Meyer et al., 1999; Singh et al., 1998), sepsis (Marlow et al., 2000; Meyer et al., 
1999; Singh et al., 1998; Stoll et al., 2004), and necrotising enterocolitis (NEC) (Stoll et 
al., 2004) have all been shown to be risk factors for sensorineural hearing impairment. 
The role of chorioamnionitis on hearing impairments, on the other hand, is not well 
established. One study group searched for an association between chorioamnionitis and 
hearing impairment (Fung et al., 2003), and found that chorioamnionitis did not associate 
with the incidence of hearing impairment in extremely premature infants. 

Brain lesions have been associated with hearing impairment in preterm infants (Marlow 
et al., 2000; Patra et al., 2006), and even uncomplicated IVH has been associated with 
deafness (Patra et al., 2006). In addition, preterm infants with hearing loss had smaller 
volume of brain stem at term age compared with infants with no neurosensory disability 
(Valkama et al., 2001). Myelination delays and migrational abnormalities of the central 
nervous system have also been seen in children with sensorineural hearing loss (Lapointe 
et al., 2006). DTI has also been used in imaging subjects with hearing impairment. Three 
groups have reported reduced FA of the inferior colliculus in patients with sensorineural 
hearing impairment compared with normally hearing controls (Chang et al., 2004; Lin et 
al., 2008; Wu et al., 2009),  suggesting the inferior colliculus to be the most sensitive area 
to neuronal damage in the auditory pathway. DTI has not been used in the investigation 
of hearing impairment of preterm infants. 

2.5.	 Gaps in the current literature

Placental inflammation is an important risk factor for preterm delivery and it has also 
been suggested to associate with brain pathology and neurological development in 
preterm infants. However, the relationship between placental inflammation and brain 
development is inadequately understood, and the association of chorioamnionitis on 
regional brain volumes has not been investigated. The role of placental inflammation 
is also not known in relation with the development and functioning of the auditory 
pathway in preterm infants. Cytokines have been suggested as a possible link causing 
the deleterious effects of inflammation to the nervous system but the role of their genetic 
regulation is not sufficiently known in preterm infants. 
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3.	 AIMS OF THE STUDY

The aims of this study were:

1.	 To evaluate the association between histological inflammation of the placenta and 
brain findings in ultrasound examinations and regional brain volumes in MRI in 
VLBW/VLGA infants.

2.	 To evaluate whether genotypes of interleukin-6 (IL-6) gene promoter positions -174 
and -572 associate with histological chorioamnionitis and neonatal inflammatory 
diseases in VLBW/VLGA infants.

3.	 To test the novel hypothesis of a possible association between IL-6 -174 and -
572 genotypes and brain volumes and to evaluate their role on brain findings in 
VLBW/VLGA infants. 

4.	  To investigate whether placental inflammation and neonatal inflammatory diseases 
affect the auditory pathway.
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4.	 PATIENTS AND METHODS

This study is a part of the larger multidisciplinary PIPARI project (Development and 
Functioning of Very Low Birth Weight Infants from Infancy to School Age), where a 
6-year cohort of VLBW/VLGA infants (n=274, 42 deceased) are being followed until 
school age in Turku University Central Hospital, Finland. 

4.1.	 Patients

Inclusion criteria for the main study were 1) infant’s birth weight ≤1500 grams (VLBW), 
and after April 2004, infant’s birth weight ≤1500 grams or gestational age below 32 
weeks (VLGA), 2) infant’s parents spoke and understood written Finnish or Swedish, 
and 3) families lived inside the hospital catchment area. 

For study I, the study population consisted of 121 infants born between January 2002 
and March 2006. The exclusion criteria were 1) the placental sample was not available 
and /or 2) brain imaging was not available in surviving infants. Seventy two infants were 
excluded due to missing placenta (n=71) or brain imaging studies (n=1). 

For study II, the study population consisted of 107 infants born between January 2002 
and October 2006. The exclusion criteria were: 1) no placental sample was available 
and /or 2) no DNA sample was available. One hundred and one infants were excluded 
owing to an unavailable placenta (n=41) or DNA sample (n=31) or both (n=29). In 
multifetal pregnancies, the second and/or third infant was excluded from the analyses 
if the infants had the same gender, the same blood type and both IL-6 genotypes were 
similar. Altogether, 10 infants were excluded for this reason.

For study III, the study population consisted of 175 infants born between January 2001 and 
December 2006. The exclusion criteria were 1) DNA sample was not available and/or 2) 
brain imaging was not available. Ninety infants were excluded due to a missing DNA sample 
(n=89) or brain imaging (n=1). In multifetal pregnancies the second and/or third child were 
excluded from the analyses if the infants had the same gender, had the same blood type and 
both IL-6 genotypes were similar. Altogether, 9 infants were excluded for these reasons.

For study IV, the study population consisted of 135 infants born between January 2002 
and December 2006. In this study we included infants who had had at least 2 of the 3 
following examinations performed: 1) histological examination of the placenta, 2) DTI 
of the inferior colliculus, 3) BAEP recording. Altogether 53 infants of the eligible infants 
were excluded because of missing examinations (no placental samples and MRI for 
DTI (n=36), no placental samples and BAEP measurements (n=1), no MRI for DTI and 
BAEP measurements (n=11), all examinations missing (n=5)). 
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Parental consent was obtained after verbal and written information. The present study 
was approved by the Ethics Committee of the Hospital District of the South-West Finland 
in June 2001.

4.2.	 Methods

4.2.1	 Data collection
The clinical data were collected prospectively as a part of the PIPARI protocol 
(see Table 3).  Gestational age was estimated according to first or second trimester 
ultrasonography, which is performed routinely in Finland. The mother was defined 
as having clinical chorioamnionitis if her C-reactive protein value was pathological, 
she had fever, or premature rupture of membranes (PROM) over 18 hours prior to the 
delivery. In study I, if PROM was the only sign of clinical infection without histological 
chorioamnionitis, the mother was excluded from the clinical chorioamnionitis group. 
Neonatal inflammatory diseases, including septicaemia, chronic lung disease (CLD), 
and necrotising enterocolitis (NEC) were defined according to the Vermont-Oxford 
Network definitions as given for each year (Studies II and IV).(Vermont Oxford 
Network Database, 2005)

TABLE 3. Characteristics of the study infants. Means (SD) and [min, max] are presented for 
gestational age, birth weight and birth weight z score.

Characteristics Study I
n=121

Study II
n=107

Study III
n=175

Study IV
n=135

Male 69 (57 %) 65 (61 %) 102 (58 %) 84 (62 %)
Singleton
Twin
Triplet

90 (74 %)
25 (21 %)
6 (5 %)

79 (74 %)
23 (21 %)
5 (5 %)

124 (71 %)
43 (25 %)
8 (5 %)

93 (69 %)
36 (27 %)
6 (4 %)

Caesarean section 76 (63 %) 69 (64 %) 107 (61 %) 80 (59 %)
Gestational age (weeks) 28+4 (2+6) 

[22+5, 36+1]
29+0 (2+5) 

[23+5, 36+1]
29+0 (2+5) 

[23+0, 36+1]
29+1 (2+5) 

[23+3, 36+1]
Birth weight (g) 1047 (306) 

[485, 1820]
1110 (325) 
[560, 2120]

1126 (343) 
[400, 2120]

1155 (343) 
[560, 2120]

Birth weight z score -1.47 (1.48) 
[-4.70, 2.20]

-1.53 (1.51) 
[-4.70, 2.20]

-1.36 (1.49) 
[-4.90, 3.40]

-1.44 (1.47) 
[-4.70, 2.20]

Birth weight z score < -2,0 39 (32 %) 36 (34 %) 54 (31 %) 38 (28 %)
Apgar at 5 min < 5 19 (16 %) 13 (12 %) 30 (17 %) 17 (13 %)
Clinical chorioamnionitis 35 (29 %) 34 (32 %) 55 (31 %) 39 (29 %)
Chronic lung disease 18 (15 %) 14 (13 %) 23 (13 %) 19 (14 %)
Necrotising enterocolitis 3 (2 %) 3 (3 %) 11 (6 %) 3 (2 %)
Septicaemia 16 (13 %) 11 (10 %) 30 (17 %) 12 (9 %)
Neonatal death 7 (6 %) 0 (0 %) 0 (0 %) 0 (0 %)
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4.2.2	 Histological analyses of the placenta (I, II, IV)
The placenta was routinely inspected by a midwife or an obstetrician after birth and 
thereafter immediately immersed in 10% aqueous solution of formalin for fixation. The 
size, weight, insertion of umbilical cord, and possible gross pathological features were 
recorded. A pathologist examined the placenta, the membranes, and the umbilical cord 
and sampled tissue for the histological process. At least two non-consecutive sections 
were studied from every placenta, umbilical cord and fetal membranes. In the case of 
gemini or trigemini pregnancies, all placentas, cords and membranes were sampled. 
Extra samples were taken if warranted by macroscopical impression. The histological 
specimens were prepared in a routine manner through an ascending series of ethanol, 
xylene, embedded in paraffin, cut at 3-5 µm and rehydrated in a series of xylene and a 
descending series of ethanol and stained with hematoxylin and eosin.

All specimens were analysed by two investigators (HK, MR) blinded to clinical and 
neuroradiological findings. Chorioamnionitis was divided into maternal and fetal 
components, and each case was assigned a stage and a grade as described by Redline et 
al. (Redline et al., 1998) (Table 4). Consensus scores were used for grading and staging. 
In addition, other findings such as the presence of hemangiomas of the umbilical cord, 
foci of calcification, and infarcts were recorded.

TABLE 4. Chorioamnionitis was designated into maternal and fetal components, and each case 
was assigned a stage and a grade (Redline et al., 1998).

Maternal stages
1 Neutrophils in subchorionic fibrin of chorionic plate
2 Neutrophils in the chorion laevae
3 Neutrophils in the chorion laevae and adjacent amnion
4 Neutrophil karyorhexis or eosinophilia of basement membrane without amnionic 

epithelial sloughage
5 Neutrophils plus amnionic epithelial sloughage

Maternal grades*
1 Rare neutrophils (<10/high power field [HPF])
2 Intermediate neutrophils (11 – 30/HPF)
3 Abundant neutrophils (>30/HPF)

*Maternal grade was based on intensity of inflammation in the area worst affected. 

Fetal stages
1 Neutrophils in chorionic vessels only
2 Neutrophils in the umbilical cord vein wall (umbilical phlebitis)
3 Neutrophils in all 3 umbilical vessel walls (umbilical panvasculitis)
4 Neutrophils in Wharton’s jelly (umbilical perivasculitis)
5 Subnecrotizing funisitis
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Fetal grades*
1 Low
2 Mediate
3 High

*Fetal grade was based on the intensity of inflammation in the most severely affected umbilical 
or chorionic plate vessel.

 
 

1 2
3 

FIGURE 2. On the left, normal fetal membrane with intact amnion epithelium (1). On the 
right, severe chorioamnionitis with dense infiltrate of granulocytes (2) and sloughing of amnion 
epithelium (3).

4.2.3	 IL-6 genotyping (II, III)
DNA was extracted from EDTA blood samples using the nucleon BACC3-reagent kit 
(Amersham Biosciences, US). Analyzed IL-6 promoter regions were amplified using 
polymerase chain reaction (PCR). The primers were chosen on the basis of previous 
published studies (Brull et al., 2001; Fishman et al., 1998). PCR was performed in 25 
µl using 100 ng genomic DNA as a template, 0.4 µM of each primer, 80 µM dNTP 
and ~2 U DNA polymerase [DynaZyme II/DynaZyme EXT (Finnzymes, FIN) for IL-
6 -572 and FastStart Taq (Roche Diagnostics, GE) for IL-6 -174]. PCR included 5 
min denaturation at 95ºC and 35 amplification cycles (40 s at 95ºC, 30 s at 60ºC 
and 40 s at 72ºC for IL-6 -572 and 1 min at 95ºC, 1 min at 53ºC and 1 min at 72ºC 
for IL-6 -174) and a final elongation of 5 min at 72ºC. Genotypes were resolved by 
using restriction fragment length polymorphism. The restriction endonucleases used 
were BsrBI (NEB, US) for IL-6 -572 and NIaIII (NEB, US) for IL-6 -174. Digestion 
was performed at 37ºC in 15 µl using 6-10 µl of PCR product and 3 U of restriction 
endonuclease for 2 h. The size of the digestion products was determined by using 
agarose gel electrophoresis.
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FIGURE 3. IL-6 -174 (above) and -572 (below) single nucleotide polymorphism restriction 
fragment analyses.  On the sides, 50 base pair molecule weight markers. Above, 1 and 2; -174 
GC restriction fragments, 3 and 4; -174 CC restriction fragments, 5 and 6; -174 GG restriction 
fragments. Below, 1, 2, 5, and 6; -572 GG restriction fragments, 3 and 4; -572 GC restriction 
fragments.  

4.2.4	 Cranial ultrasound examination (I, III)
Cranial US examinations in the neonatal intensive care unit were performed for all study 
infants at 3 to 5 days, at 7 to10 days, at one month of age and, thereafter, monthly until 
discharge from hospital. The US examinations were performed using a 7 MHz vector 
transducer (Sonos 5500 Hewlett-Packard). The classification of IVH (grades I to IV) was 
done according to Papile (Papile et al., 1978). Multiple cysts with typical location were 
classified as cystic PVL. 

The cranial US examination at term was performed with a 7.5 MHz vector transducer 
(Aloka SSD 2000) during 1/2002 – 8/2002 and an 8 MHz vector transducer (General 
Electric Logic 9) thereafter by a pediatric radiologist (HR). Ventriculomegaly was 
defined according to the reference values for VLBW infants at term (Virkola 1988). 

The infants were categorized into three groups according to the most pathological finding 
on brain US examinations: 1) normal, 2) mildly abnormal and 3) severely abnormal. The 
division into these groups was done as described by Rademaker et al. (Rademaker et al., 
2005) (Table 5).
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TABLE 5. Cranial US classification (Rademaker et al., 2005).

Normal No abnormalities
Germinal layer/plexus cysts
Subependymal pseudocysts
Calcifications

Mildly abnormal IVH grade I/II
Germinal layer necrosis
Ventricular dilatation

Severely abnormal IVH grade III/IV
Cystic PVL II/III
Thalamic lesion
Focal infarction
Convexity haemorrhage
Ventricular dilatation following a haemorrhage with need for
therapeutic intervention

4.2.5	 Brain MRI (I, III, IV)
MRI study of the brain was performed at term on the same day as the US examination. 
The imaging took place during postprandial sleep without sedation or anesthesia. 
Ear protection was used (3M Disposable Ear Plugs 1100, 3M, Brazil; Würth Hearing 
protector, Art.-Nr. 899 300 232, Würth, Austria). The MRI equipment was either an open 
0.23 Tesla Outlook GP (Philips Medical Inc., Vantaa, Finland), or 1.5 Tesla Philips Intera 
(Philips Medical Systems, Best, The Netherlands). The information about brain lesions 
in MRI was not used for further analysis as the upgrading of the equipment may result in 
non-comparable findings between the first and the latter half of the sample.

4.2.5.1 Regional volumes (I, III)
For volume measurements, at 0.23 T we obtained a T1-weighted field echo sequence 
with time repetition (TR) of 30 ms, a time echo (TE) of 10 ms, a flip angle of 45 degrees, 
a slice thickness of 5 mm, a field of view of 220 x 220 mm2 and a matrix of 256 x 256 
was obtained in the coronal plane. At 1.5 T we obtained coronal T1-weighted inversion 
recovery sequence TR of 3500 ms, a TE of 400 ms, a time inversion of 15 ms, a flip 
angle of 90 degrees, a slice thickness of 4.8 mm, a field of view (FOV) of 180 x 180 mm2 
and a matrix of 256 x 256. The sequences were optimized relative to the field strength 
of the equipment used. 

The postacquisition volume measurements were performed on a GE workstation (GE 
AW1.0, GE Medical Systems, Milwaukee, USA) by one neuroradiologist (RP). The 
coronal T1-weighted images were loaded in the Functool 1.0.post-processing soft-ware 
(GE Medical Systems, Milwaukee, USA). The volume measurement was manually 
performed separating the cerebrospinal fluid and the skull from brain tissue image by 
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image. Anatomical differentiation of the brain areas was based both on the anatomic 
landmarks and on signal intensity differences of the brain structures. The regional brain 
volumes measured were cerebral volume, cerebellar volume, frontal lobe volume, the 
combined volume of the medulla oblongata and the pons and the combined volume 
of basal ganglia and thalami. The basal ganglia and thalami were measured as a block 
and the anatomic border between these basal gray matter nuclei and unmyelinated deep 
white matter on both field strength images was easily delineated by visual inspection. 
The medial border of the basal ganglia and thalami was formed by the third ventricle, the 
lateral border was formed by the external capsule and the inferior border was formed by 
the upper border of the mesencephalon. 

                       
FIGURE 4. T2 weighted midline magnetic resonance image of a preterm infant’s brain at term 
age.

4.2.5.2 Diffusion tensor imaging (IV)
The infants were imaged using 1.5 T high field strength MR equipment at term age. The 
infants were imaged with the following protocol: axial T2-weighted images with TR of 
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5097 ms, a TE of 120 ms, a flip angle of 90 º, a slice thickness of 4 mm, a FOV 200 x 
200 mm2 and a matrix of 256 x 256, axial T1-weighted images with a TR of 496 ms, a 
TE of 14 ms, a flip angle of 90º, a slice thickness of  4 mm, a FOV of 200 x 200 mm2 
and matrix of 256 x 256, sagittal T2-weighted images with a TR of 4851 ms, a TE of 
120 ms, a flip angle of 90º, a slice thickness of 4 mm, a FOV of 200 x 200 mm2 and a 
matrix of 256 x 203. 

The diffusion tensor imaging was performed with the following sequence: the TR was 
2837 ms, the TE was 68 ms, slice thickness was 5 mm, the FOV was 200 x 200 mm2 and 
the reconstructed matrix was 256 x 256.  We acquired a T2-weighted reference image 
(b=0 s/mm2) and 15 diffusion weighted images (b=600 s/mm2) in noncollinear gradient 
directions per section. We used a lower b-value than in the imaging of the adults, because 
of the immaturity and higher water content of the brain of infants compared to that 
of adults. The FA values and the ADC values of the right and left inferior colliculus 
were measured twice by a neuroradiologist (RP) using Pride software (Philips Medical 
Systems, Best, The Netherlands) with the region of interest (ROI) method. The pixel 
size in diffusion tensor images was 0.78 x 0.78 mm x mm. The mean ROI area in FA 
and ADC measurements was 28.6 pixels (SD 5.7 pixels) and ranges 16 to 41 pixels. 
The reproducibility of the ROI measurements was verified by two measurements. The 
Pearson´s correlation coefficient of repeated ROI measurements for FA in the right 
colliculus inferior was 0.74819, for FA in the left colliculus inferior it was 0.80582, for 
ADC of the right colliculus inferior it was 0.42177 and for the ADC of the left colliculus 
inferior it was 0.72675. All of the p values were significant (p<0.0001, p<0.0001, 
p<0.0006 and p<0.0001, respectively).

4.2.6	 Brainstem auditory-evoked potential (IV)
The BAEP recordings were carried out according to the routine clinical BAEP recording 
procedure at the department of clinical neurophysiology, Turku University Hospital. 
Median age for BAEP recording was 30 days after term age (range -23-202 days from 
term age). The laboratory was soundproof and fully equipped for clinical evoked potential 
measurements. The room temperature was kept at 20-22ºC. Prior to the BAEP recording, 
a pediatrician inspected the auditory canals with an otoscope for possible obstacles (ear 
wax was removed) and middle ear infections. In case of an infection, BAEP recording was 
rescheduled. During the recording, the participant lay on a bed or in the parent’s arms. A 
nurse inserted tubal insert phone electrodes (TIPtrode; Nicolet Biomedical Instruments, 
Madison, WI, USA) that delivered auditory stimuli. The BAEP responses were recorded 
with surface electrodes on both mastoid processes. The forehead was carefully wiped 
with alcohol-soaked gauze and three Ag-AgCl electrodes were attached on the skin, the 
ground at midline, and the two reference electrodes for both sides at the Fp1’ and Fp2’ 
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positions according to the international 10/20 system of electrode placement. Electrode 
impedances were kept under 5.0 kΩ.

The BAEP recording was performed with an eight channel Nicolet Viking IV device 
(Nicolet Biomedical Instruments, Madison, WI, USA). The BAEPs were elicited with 
a rarefaction click stimulus of 85 dB nHL intensity and 100 µs duration given at a rate 
of 10.3 Hz, while a masking noise of 45 dB nHL was delivered to the contralateral ear, 
and the responses were amplified with the high and low pass filters set at 100 Hz and 
3 kHz, respectively. For both sides, the BAEP was recorded at least twice to ascertain 
reproducibility. The peak latencies of waves I, III, and V, as well as the interwave intervals 
(I-III, I-V, III-V) were measured from ipsilateral responses on both sides. The amplitudes 
of wave I and V were measured from the negative peak to the following through (I´, V´), 
and the amplitude ratio I/V was also calculated. Waves I, III, and V were identified and 
marked manually on the computer screen by a nurse, and the results were confirmed and 
visually analyzed by a clinical neurophysiologist (SJ).

4.2.7	 Statistical analyses
In all studies, diagnostic plots were produced to ensure that assumptions of the analyses 
were reasonably satisfied. If assumptions of parametric analyses were not met, variables 
were transformed to achieve approximate normal distributions. 

In studies I-III, univariate analyses were performed using the following methods:

The effect of categorical predictor variables on continuous outcome variables was studied 
using One-way analysis of variance. Association between continuous predictor variables 
and brain volumes were studied using regression analysis. Group comparisons between 
study infants and the VLBW infants excluded due to missing placental samples were 
assessed with Pearson’s Chi-Square test for categorical variables. Logistic regression 
analysis was used to determine the relationship between IL-6-174 and -572 genotypes 
(GG/GC/CC) and categorical outcome variables. If the logistic regression model did not 
converge, significance levels were obtained using Fisher’s exact test. Cumulative logit 
models were created to test the hypothesis that explanatory variables were associated 
with ordinal brain ultrasound findings. 

In study IV, univariate associations between continuous variables were analysed using 
Pearson’s correlation coefficients separately on both the right and left side. The paired-
samples t-test was used to measure if there was any difference in the results of the BAEP 
and DTI measurements between the left and right sides. Associations between categorical 
independent variables and continuous outcome variables were studied using mixed 
model repeated measures analyses. To correct for a possible correlation between two 
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observations from one child, compound symmetry was used as a correlation structure in 
all mixed models. 

In study I, post-hoc power analysis with 80% power was used to calculate the detectable 
mean difference in total brain volumes between the cases with and without placental 
inflammation. 

In study I, multivariate analysis was done using stepwise methods. Cumulative logit 
models were used for ordinal outcome variables and multiple regression was used for 
continuous outcome variables. Variables significant at p-value below 0.05 were retained 
in the final stepwise model. Analysis of covariance was used to study the effect of brain 
pathology on brain volumes controlling for the same covariates as in the final model of 
the previous multiple regression analysis. 

In studies II and III, analysis of covariance was used for multivariate analysis of the 
effects of IL-6-174 and -572 genotypes on continuous outcome variables, controlling 
for any confounding effects of gender, gestational age and the z score of birth weight. 
Associations between IL-6-174 and -572 genotypes and dichotomous outcome variables 
were further studied using logistic regression models, which were adjusted for the same 
variables as above. Cumulative logit models were used for ordinal variables, again 
adjusted for the same variables. When gestational age was used as an outcome variable, 
only the z score of birth weight and gender were used as covariates.  

In study IV, the first stage of the multivariate analysis of each outcome variable was 
to enter within subjects variable side, between subjects background variables gender, 
gestational age, birth weight SD, and age at BAEP measurement to a mixed model as 
fixed effects. Age at BAEP recording was not used as a predictor of FA and ADC values. 
Then histological chorioamnionitis, fetal chorioamnionitis, combined CLD and NEC, 
and septicaemia were added to the mixed model one at a time and their effects were 
assessed in the presence of background variables.

In all studies, statistical analyses were performed using SAS (version 9.1; SAS Institute, 
Cary, NC). Results are presented with 95 % confidence intervals. Two-sided p values 
were used with p<0.05 being considered statistically significant. 
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5.	 RESULTS

5.1.	 Placental pathology (I, II, III)

In our study population, the prevalence of maternal chorioamnionitis was 44 %, fetal 
chorioamnionitis 23-26 %, and total prevalence of histological chorioamnionitis was 40-
45 % (Table 6). The statistical analyses were done with dichotomization of histological 
chorioamnionitis, without using detailed information on stages and grades, as this was 
found not to affect the results.

In study I, in the presence of clinical chorioamnionitis, histological inflammation was 
found in 94% of the placentas. On the other hand, clinical chorioamnionitis was present 
in 61 % of cases with maternal histological chorioamnionitis and in 81 % of the cases 
with fetal chorioamnionitis. There were only 7 cases with PROM alone without other 
signs of clinical chorioamnionitis or histological chorioamnionitis. 

TABLE 6. The prevalence of histological chorioamnionitis in the study population. 

Study I
n=121

Study II
n=107

Study IV
n=135

Histological chorioamnionitis 54 (45 %) 47 (44 %) 49 (40 %)
        Maternal chorioamnionitis 53 (44 %) - -
        Fetal chorioamnionitis 31 (26 %) - 28 (23 %)

5.2.	 IL-6 polymorhism (II, III)

The prevalence of different genotypes did not differ significantly from the Finnish 
reference population (Hulkkonen et al., 2001; Noponen-Hietala et al., 2005). The 
prevalence of IL-6 -174 and -572 genotypes (GG/GC/CC) is shown in Table 7. In study 
II, IL-6 -174 genotyping was done successfully to all but one, and -572 genotyping was 
done successfully to all of the study infants. In study III (n=175), IL-6 -174 and -572 
genotyping was done successfully on all but one sample in both groups. 

TABLE 7. The prevalence of IL-6 -174 and 572 genotypes (GG/GC/CC) in the study population. 

Study II
n=107

Study III
n=174

GG
n (%)

GC
n (%)

CC
n (%)

GG
n (%)

GC
n (%)

CC
n (%)

Il-6 -174 29 (27 %) 53 (50 %) 24 (23 %) 38 (22 %) 91 (52 %) 45 (26 %)
IL-6 -572 102 (95 %) 5 (5 %) 0 (0%) 163 (94 %) 11 (6 %) 0 (0 %)
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5.3.	 Brain lesions (I, III)

Cranial US examinations were carried out according to the protocol in the intensive care 
unit, and infants were categorized into three groups according to the most pathological 
finding on brain ultrasound examinations. Out of the 121 study patients in study I, 7 
died before term. All of them were classified into the severely abnormal brain pathology 
group. Five of them had confirmed brain pathology at autopsy. Study III did not include 
non surviving infants. The findings in brain US examinations are shown in Table 8. 

TABLE 8. Findings from the cranial ultrasound examinations of study infants until term age. 

Study I
n=121

Study III
n=175

Normal 56 (45 %) 97 (55 %)
Mildly abnormal 50 (40 %) 66 (38 %)
Severely abnormal 19 (15 %) 12 (7 %)

5.4.	 Regional brain volumes (I, III)

In study I, 103 infants of the 113 surviving study infants were successfully measured 
for regional brain volumes. One infant missed MRI because of being in another hospital 
at term age, and nine infants had qualitatively inadequate images preventing reliable 
volume measurements. In study III, 153 study infants were measured for regional brain 
volumes. Of the 175 study patients, 3 infants missed brain MRI and 19 had qualitatively 
inadequate images preventing reliable volume measurements. Mean values of the 
regional brain volumes are shown in Table 9.

TABLE 9. Mean values (ml) and [SD] of the regional brain volumes in the study population.

Study I
n=103

Study III
n=153

Cerebrum 370.4 [45.4] 369.7 [48.0]
Cerebellum 24.4 [4.4] 24.2 [5.3]
Frontal lobe 128.9 [23.9] 126.4 [24.8]
Medulla oblongata and pons together 6.0 [2.39] 6.0 [2.3]
Basal ganglia and thalami together 24.9 [4.6] 25.1 [4.5]

5.5.	 Diffusion tensor imaging of the inferior colliculus (IV)

DTI studies were performed at term age successfully on 59 of the study infants. The low 
number of DTI measurements is due to the lack of 1.5 T MRI studies prior to June 2004, 
and to some qualitatively inadequate images. Results from the DTI measurements are 
shown in Table 10.
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TABLE 10. Means, (SD) and [min, max] presented for fractional anisotropy (FA) and apparent 
diffusion coefficient (ADC) of inferior colliculus in diffusion tensor imaging (DTI). Results of 
DTI studies of inferior colliculus are available from 59 study infants. Values are shown separately 
for right and left side (p-value and SD are shown for comparison).

DTI Right Left p (SD)
FA  0.361 (0.055) [0.235, 0.496] 0.370 (0.054) [0.236, 0.513] 0.067 (0.04)
ADC 1.065 (0.115) [0.879, 1.427] 1.013 (0.084) [0.864, 1.221] 0.001 (0.12)

5.6.	 Brainstem auditory evoked potentials (IV)

Altogether, 129 infants had BAEP recordings done. Eight infants had some or all of the 
BAEP waves absent. The absent responses could not be used in the statistical analyses 
of latencies. Results from the BAEP recordings are shown in Table 11.

TABLE 11. Means, (SD) and [min, max] presented for brainstem auditory evoked potential 
(BAEP) values (latencies (I, III, V), inter peak latencies (I-III, I-V, III-V), amplitudes (I-I’, V-V’) 
and amplitude ratio (I/V)). Results of BAEP recordings are shown of 129 study infants. Values 
are shown separately for right and left side (p-value and SD are shown for comparison). The 
distribution of absent responses is also shown.

BAEP* Right Left p (SD)
I  (ms) 2.07 (0.14) [1.68, 2.76] 2.09 (0.16) [1.62, 2.88] 0.179 (0.11)
III  (ms) 4.80 (0.31) [4.11, 6.06] 4.82 (0.29) [4.32, 5.79] 0.406 (0.21)
V  (ms) 7.01 (0.34) [6.03, 8.25] 7.00 (0.32) [6.24, 7.80] 0.282 (0.18)
I-III  (ms) 2.70 (0.26) [1.98, 3.87] 2.72 (0.25) [2.28, 3.60] 0.430 (0.18)
I-V  (ms) 4.93 (0.31) [4.08, 6.06] 4.90 (0.30) [4.08, 5.61] 0.038 (0.16)
III-V  (ms) 2.21 (0.27) [1.11, 2.88] 2.18 (0.25) [1.23, 2.73] 0.048 (0.20)
I-I’  (µV) 0.41 (0.25) [0, 1.21] 0.41 (0.22) [0, 1.01] 0.805 (0.28)
V-V’  (µV) 0.36 (0.16) [0, 0.95] 0.37 (0.17) [0, 0.94] 0.351 (0.19)
I/V  1.33 (1.03) [0, 5.13] 1.44 (1.69) [0, 14.5] 0.733 (0.58)
Absent responses n=8 n=4
I 5 2
III 5 3
V 5 3

5.7.	 Histological chorioamnionitis in association with brain lesions (I)

Histological chorioamnionitis on the fetal side was associated with brain lesions in univariate 
analysis (p= 0.023, OR= 2.46, CI= 1.13– 5.41), whereas overall histological chorioamnionitis 
(including maternal and fetal chorioamnionitis) and maternal chorioamnionitis were not. In 
addition, clinical chorioamnionitis (p= 0.016, OR= 2.54, CI= 1.19– 5.40), low gestational 
age (p= <0.0001, OR= 1.06, CI= 1.03– 1.08 per one day decrement), low birth weight z 
score (p= 0.050, OR= 1.27, CI= 1.00– 1.61 per one unit increase) and low Apgar scores 
(p= 0.002, OR= 4.52, CI= 1.73– 11.82) associated with brain lesions in univariate analyses. 
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In multivariate analyses using stepwise cumulative logistic regression analysis, the only 
significant background factor associating with brain lesions was the infant’s low gestational 
age (p<0.0001, OR= 1.06, CI= 1.03– 1.08 per one day decrement). 

5.8.	 Histological chorioamnionitis in association with regional brain 
volumes (I)

Histological and clinical chorioamnionitis were not associated with regional brain 
volumes. 

Female gender and lower z score of birth weight correlated with smaller total brain tissue 
volume in multivariate analyses using a stepwise multiple regression model (p= 0.001 
and p<.0001, respectively). In addition, lower gestational age associated with smaller 
total brain volume (p= 0.0002). 

Smaller cerebellar volumes associated with female gender (p= 0.047), low birth weight z 
score (p=0.001), and low gestational age (p= 0.003) in multivariate analyses. 

The combined volume of the basal ganglia and thalami was associated with a low birth 
weigh z score in multivariate analyses (p= 0.0002). In addition, low gestational age was 
a risk factor for small combined volume of basal ganglia and thalami (p= 0.007). 

None of the background variables were associated with the combined volume of medulla 
oblongata and pons. 

5.9.	 Histological chorioamnionitis and neonatal infections in association 
with BAEP measurements (IV) (unpublished data)

Of the 129 infants with BAEP recordings, 117 had available placental samples. 
Histological chorioamnionitis (including maternal and fetal chorioamnionitis) was not 
associated with BAEP responses, but fetal chorioamnionitis associated with prolongation 
of the III-V interval in univariate analyses (estimate=0.175, SE=0.052, p=0.001). 
Combined CLD and/or NEC were associated with the prolongation of wave V latency 
(estimate=0.192, SE=0.080, p=0.019), and septicaemia associated with the prolongation 
of wave III latency (estimate=0.224, SE=0.095, p=0.020) and the diminishing of wave 
I amplitude (estimate=-0.138, SE=0.055, p=0.014) and I/V amplitude ratio (estimate= 
-0.277, SE=0.114, p=0.017). In multivariate analysis controlled for previously entered 
variables (side of measurement, gender, gestational age and z score of birth weight 
and age at the time of BAEP examination), fetal chorioamnionitis no longer associated 
with BAEP results. The associations between combined CLD and/or NEC and wave 
V latency (estimate=0.17, SE=0.08, p=0.044), and septicaemia and wave III latency 
(estimate=0.21, SE=0.10, p=0.037) were still seen in multivariate analyses, but the effect 
of septicaemia on wave I amplitude was no longer significant.
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5.10.	Histological chorioamnionitis and neonatal infections in association 
with the DTI of the inferior colliculus (IV) (unpublished data)

Forty-six infants had both DTI and placental samples available. Histological 
chorioamnionitis and neonatal inflammatory diseases had no association with FA 
and ADC of the inferior colliculus in univariate analyses or in multivariate analyses 
controlled for previously entered variables (side of measurement, gender, gestational 
age and z score of birth weight and age at the time of BAEP examination). In addition, 
gender, gestational age, and z score of birth weight were not associated with FA and 
ADC of the inferior colliculus.

5.11.	 Correlation between the BAEP and DTI of the inferior colliculus (IV)

Fifty six infants had both BAEP recording and DTI done. Wave I, III, and V latencies were 
negatively correlated with FA values of thr inferior colliculus on the left side (correlation 
coefficient r=-0.28, p=0.038; r=-0.27, p=0.046; r=-0.30, p=0.027 respectively). In 
addition, wave I latency correlated positively with ADC value on the left (r=0.29, 
p=0.033). I-III interval correlated negatively with FA values on the right side (r=-0.37, 
p=0.008). Wave V amplitude was positively correlated with FA values on the left side 
(r=0.27, p=0.047). 

5.12.	 IL-6 polymorphism in association with histological chorioamnionitis (II)

The IL-6-174 GG genotype was associated with histological chorioamnionitis both 
in univariate (p=0.023, GG versus CC: OR=3.80, CI=1.21–11.92; GG versus GC: 
OR=3.40, CI =1.32–8.79; GC versus CC: OR=1.12, CI=0.40–3.09) and in multivariate 
analyses adjusted for gender, gestational age and z score of birth weight (p=0.009, GG 
versus CC: OR=6.31, CI=1.51–26.43; GG versus GC: OR=5.56, CI =1.73–17.85; GC 
versus CC: OR=1.14, CI=0.33–3.87). In addition, the IL-6 -572 GC genotype correlated 
to histological chorioamnionitis in multivariate analyses (p=0.039, OR=16.22, CI=1.15–
228.43). IL-6 -174 or -572 genotypes were not associated with gestational age.

5.13.	 IL-6 polymorphism in association with neonatal infections (II)

Of the eleven study infants with septicaemia, the majority had septicaemia caused by 
Gram-positive bacteria (n=10), including coagulase negative Staphylococci (CONS) 
and group B Streptococci. One septicaemia was caused by Gram-negative bacteria 
(Klebsiella pneumoniae) and one fungal infection occurred in a patient with previous 
CONS-septicaemia. Since only 3 infants had NEC, it was grouped together with CLD 
for statistical analyses.
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IL-6-174 genotypes correlated to septicaemia both in univariate analyses (p=0.012, 
CC versus GG: OR=3.57, CI=0.81–15.74; GC versus GG: OR=0.17, CI=0.02–1.68; 
CC versus GC: OR=21.41, CI=2.46–186.72) and in multivariate analyses adjusted for 
gender, gestational age and z score of birth weight (p=0.027, CC versus GG: OR=3.05, 
CI=0.65–14.36; GC versus GG: OR=0.17, CI=0.02–1.78; CC versus GC: OR=18.27, 
CI=1.98–168.37). From the 11 infants with septicaemia, 7 had IL-6 -174 CC genotype, 
and they all had Gram-positive infections. IL-6 -174 genotypes were not associated with 
CLD and/or NEC. IL-6-572 genotypes were not associated with septicaemia or CLD 
and/or NEC in univariate analyses. Multivariate analyses could not be done, because 
none of the infants with the -572 GC genotype had septicaemia, CLD, or NEC.

5.14.	 IL-6 polymorphism in association with brain injury (III)

IL-6 -174 and -572 genotypes were not associated with the incidence of mildly or severely 
abnormal brain lesions in univariate or in multivariate analyses adjusted for gender, 
gestational age and z score of birth weight. Only gestational age associated significantly 
with structural brain lesions in US examinations (p<0.0001, OR=1.04, CI=1.02–1.06). 

5.15.	 IL-6 polymorphism in association with regional brain volumes (III)

Mean values of the regional brain volumes related to the IL-6 -174 and -572 genotypes 
are shown in Table 12. 

TABLE 12. Mean values (ml) and [95 % confidence intervals] of the regional brain volumes 
related to the IL-6 -174 and -572 genotypes (GG/GC/CC) in the study population (n=153).

Cerebrum Cerebellum Frontal lobe Medulla 
oblongata and 
pons together

Basal ganglia 
and thalami 

together
IL-6-174
    CC 361.6

[346.0 – 377.2]
23.4

[21.7 – 25.1]
123.2

[115.0 – 131.3]
5.1

[4.6 – 5.8]
23.5

[22.0 – 24.9]
    GC 372.2

[361.8 – 382.6]
24.0

[22.8 – 25.1]
126.6

[121.2 – 132.0] 
5.3

[4.9 – 5.6]
25.2

[24.3 – 26.2]
    GG 375.1

[359.5 – 390.7]
25.8

[24.1 – 27.5]
130.5

[122.4 – 138.6]
5.9

[5.3 – 6.6]
26.7

[25.2 – 28.1]
IL-6-572
    GG 368.4

[360.5 – 376.3]
24.0

[23.1 – 24.8]
125.4

[121.3 – 129.4]
5.3

[5.0 – 5.6]
24.8

[24.1 – 25.6]
    GC 380.8 

[350.9 – 410.7]
26.2

[22.9 – 29.5]
140.2

[124.8 – 155.6]
5.9

[4.9 – 7.5]
28.7

[25.9 – 31.5]
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The IL-6 -174 CC genotype associated with a smaller volume of basal ganglia and 
thalami both in univariate (p= 0.008, CC versus GC: estimated difference between 
means= -1.77, CI= -3.82– 0.27; CC versus GG: estimated difference between means= 
-3.19, CI= -5.61– -0.78; GC versus GG: estimated difference between means= -1.42, 
CI= -3.47– 0.63) and in multivariate analyses controlling for possible confounding 
effects of gender, gestational age and z score of birth weight (p=0.009, CC versus GC: 
estimated difference between means= -1.34, CI= -3.30–0.61; CC versus GG: estimated 
difference between means= -3.03, CI= -5.33– -0.73; GC versus GG: estimated difference 
between means= -1.69, CI= -3.64– 0.27). The IL-6 -572 GG genotype also associated 
with a smaller volume of basal ganglia and thalami both in univariate (GG versus 
GC: p= 0.008, estimated difference between means= -3.86, CI= -6.72– -1.00) and in 
multivariate analyses (GG versus GC: p=0.009, estimated difference between means= 
-3.60, CI= -6.30– -0.91). In addition, smaller gestational age and smaller z score of 
birth weight were significantly associated with reduction in basal ganglia and thalami 
volume (p=0.004, estimated difference between means=0.06, CI=0.02 – 0.10; p<0.0001 
estimated difference between means=1.22, CI=0.70 – 1.74 respectively). IL-6-174 and 
-572 genotypes were not associated with the other regional brain volumes measured. 

The associations between IL-6 -174 genotypes and basal ganglia and thalami volume 
was not explained by the association between the same genotype and septicaemia 
(unpublished data).



	 Discussion	 47

6.	 DISCUSSION

The PIPARI Study was designed to investigate the brain development in the context of 
preterm birth focusing on the risk factors and protective factors beginning from the fetal 
life. The outcome measures included brain injuries as detected by imaging methods and 
the developmental outcome of the child. This part of the PIPARI Study focuses on the 
role of antenatal inflammation on the brain imaging findings.   

Despite the fact that chorioamnionitis has been widely studied in association with preterm 
infants’ brain pathology, this is the first study to evaluate the effects of histological 
chorioamnionitis and IL-6 promoter polymorphisms on brain pathology in an unselected 
VLBW/VLGA infant cohort using modern imaging equipment, including volumetric 
MRI as well as DTI. 

6.1.	 Histological chorioamnionitis in association with brain lesions 

Our findings are in contrast with several earlier studies (DiSalvo, 1998; Kaukola et al., 
2006; Leviton et al., 1999; Polam et al., 2005; Vergani et al., 2000) which suggested that 
chorioamnionitis plays a major role in brain pathology in VLBW/VLGA infants. We found 
no independent role for histological chorioamnionitis on the brain pathology of VLBW/
VLGA infants. Similar to our results, several studies consisting of preterm infants born 
before 34 weeks of gestation have concluded that there is no evidence of chorioamnionitis 
directly associating to brain injuries (Kumazaki et al., 2002; Murata et al., 2005; Vergani 
et al., 2004). Andrews et al. (Andrews et al., 2008) even reported a trend indicating higher 
IQ in the presence on funisitis in VLBW infants. As the only independent risk factor for 
brain pathology in this study population of VLBW/VLGA infants was low gestational 
age, it is plausible that the association between histological chorioamnionitis and brain 
pathology reflects the strong link between chorioamnionitis and preterm birth, which, 
itself, relates to brain pathology. It is also worth noting that even though there is strong 
evidence associating chorioamnionitis with brain pathology and abnormal neurological 
development in term infants, data concerning preterm infants is scarce. As there is always 
some pathology underlying a preterm birth, our results can be interpreted so that histological 
chorioamnionitis, even though possibly affecting the brain, does not cause any greater risk 
for brain pathology than other causes behind preterm delivery.  

Earlier studies have suggested fetal inflammation to be more deleterious to the preterm 
infants’ central nervous system than inflammation limited to the maternal tissues (Bejar 
et al., 1988; DiSalvo, 1998; Leviton et al., 1999; Yoon et al., 2003). This hypothesis 
was also supported by our study, as fetal chorioamnionitis associated with brain injury 
in univariate analysis even though the association was not seen after adjusting for 
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confounding factors. The deleterious effects of fetal inflammatory response may be 
caused by elevated cytokine levels. It has been shown in term placentas that cytokines 
do not pass the placenta (Aaltonen et al., 2005), thus preventing the matermal cytokines 
affecting the fetuses’ brain.

6.2.	 Histological chorioamnionitis in association with regional brain 
volumes 

VLBW/VLGA infants (Inder et al., 2005; Shah et al., 2006; Thompson et al., 2007), and 
even preterm infants born closer to term age (Boardman et al., 2006; Limperopoulos et 
al., 2005; Peterson et al., 2003; Srinivasan et al., 2007), have been shown to have smaller 
regional brain volumes at term age compared with term born infants. The etiology of 
reduced brain volumes is not yet understood in detail, but it has been suggested that 
premature birth alone does not sufficiently explain small regional brain volumes at term 
age in preterm infants (Boardman et al., 2007; Mewes et al., 2006) or in the VLBW/VLGA 
sub group ( Thompson et al., 2008). Our hypothesis was that histological chorioamnionitis 
is one of the factors leading to reduced brain volumes but this was not supported by our 
results. As far as we know, this was the first study to evaluate the association between 
placental inflammation and brain volumes. According to our study, it seems that low 
gestational age and delayed growth for gestational age are the best predictive factors for 
small brain volumes in VLBW/VLGA infants. They were both independent risk factors 
for all but one regional brain volume i.e. the combined volume of the medulla oblongata, 
and pons. The lack of association with brain stem volume is possibly due to the early 
fetal development of this area, making it less prone to developmental problems caused 
by the insult of preterm delivery (Cohen et al. 1990). 

Severely abnormal brain findings were associated with several smaller regional brain 
volumes in our study.  This finding is also in accordance with earlier studies associating 
brain pathology with reduced brain volumes in VLBW/VLGA infants (Inder et al., 
2005; Inder et al., 1999; Lin et al., 2001; Thompson et al., 2008; Thompson et al., 2007; 
Vasileiadis et al., 2004). Considering that low gestational age had a strong association 
with brain lesions, it may be that brain lesions explain the association seen between low 
gestational age and reduced brain volumes in our study population. 

6.3.	 Histological chorioamnionitis and neonatal infections in association 
with auditory impairment 

6.3.1	 BAEP
Several perinatal infections, including sepsis (Marlow et al., 2000; Meyer et al., 1999; 
Singh et al., 1998; Stoll et al., 2004) and NEC (Stoll et al., 2004), have been associated 
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with hearing deficits. Consistent with earlier studies, we found a significant association 
between combined CLD and/or NEC and septicaemia and prolongation of BAEP 
responses. Whether chorioamnionitis is a risk factor for hearing impairment has, on the 
other hand, not been sufficiently explored. Theoretically chorioamnionitis could have 
deleterious effects on the brain stem leading to hearing deficits in VLBW/VLGA infants. 
To our knowledge, only two study groups have previously investigated the possible 
association between chorioamnionitis and hearing with inconsistent results (Fung et al., 
2003; Suppiej et al., 2009). Fung et al. (Fung et al., 2003) found that chorioamnionitis 
did not affect the incidence of hearing impairment in premature infants born before 
28 weeks of gestation, and Suppiej et al. (Suppiej et al., 2009) found an association 
between histological chorioamnionitis and incidence of hearing loss in VLGA infants. 
In univariate analyses in our study population, fetal chorioamnionitis associated with 
prolongation of III-V inter peak interval. This association disappeared when adjusted for 
confounding factors, but it is still plausible that chorioamnionitis may have a deleterious 
effect on auditory function. The association may merely be concealed by the strong 
association between gestational age and chorioamnionitis. The hypothesis that placental 
inflammation could affect the integrity and maturation of the auditory pathway seen as 
changes in BAEP responses has not been previously tested. 

6.3.2	 DTI of the inferior colliculus 
Brain white matter maturation and myelination can be evaluated using DTI, as a high 
FA value reflects mature, densely packed, and myelinated white matter (Beaulieu 
et al., 2002). The inferior colliculus has been shown to have reduced FA values in 
patients with sensorineural hearing impairment compared with normal hearing controls 

(Chang et al., 2004; Lin et al., 2008; Wu et al., 2009). Our hypothesis that histological 
chorioamnionitis and neonatal infections have deleterious effects on the central auditory 
pathway seen as changes in DTI values of the inferior colliculus was not supported by 
our findings, as we found that histological chorioamnionitis and neonatal infections did 
not to associate with DTI values of the inferior colliculus in VLBW/VLGA infants. In 
addition, none of our confounding factors, including gestational age and z score of birth 
weight, were associated with the DTI values of the inferior colliculus. To our knowledge, 
the association between histological chorioamnionitis and neonatal infections and DTI 
values of the inferior colliculus has not been previously tested. Even though the inferior 
colliculus is especially vulnerable for injury in the developing brain (Folkert et al., 2008) 
and has been suggested to be the most sensitive area in the auditory pathway to neuronal 
damage (Chang et al., 2004), it seems to be fairly unaffected by other risk factors, such 
as low gestational age and low birth weight z score, associated with altered DTI values. 
This may be explained by the early myelinisation of the statoacusticus system (Rorke-
Adams et al., 2007), which makes it less vulnerable for the developmental problems 
caused by preterm delivery. 
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We found in our study that fetal chorioamnionitis and neonatal infections were associated 
with delayed BAEP latencies but were not associated with the DTI of the inferior 
colliculus. In addition, known risk factors of hearing impairment, low gestational age and 
birth weight, were also associated with BAEP results but not with DTI values. It could 
be postulated that if the DTI method was as sensitive as BAEP in detecting dysfunction 
of the brain stem auditory circuit, these risk factors would have also been associated 
with DTI values of the inferior colliculus. On the other hand, DTI values were correlated 
with BAEP responses, suggesting that, at least to some degree, DTI findings reflect the 
integrity of the auditory pathway in preterm infants.

6.4.	 IL-6 polymorphism in association with histological chorioamnionitis 

The association between IL-6 promoter polymorphism and histological chorioamnionitis 
has not been widely studied. Only one previous study has shown a trend between the 
IL-6 -174 G allele and histological chorioamnionitis (Speer et al., 2006), and IL-6 -572 
genotypes have not been studied in relation to chorioamnionitis at all. However, the 
role of cytokines, including IL-6, in chorioamnionitis seems to be indisputable, as high 
levels of cord blood pro-inflammatory cytokines have been connected to histological 
chorioamnionitis in several studies (Dollner et al., 2002; Kashlan et al., 2000; Kaukola et 
al., 2006; Shalak et al., 2002; Tasci et al., 2006; Yanowitz et al., 2002; Yoon et al., 2000). 

As IL-6 promoter polymorphisms at positions -174 and -572 have been shown to affect 
IL-6 response, it is plausible that these polymorphisms also associate with the incidence 
of histological chorioamnionitis. We evaluated the association between IL-6 -174 and -
572 polymorphisms and the incidence of histological chorioamnionitis in VLBW/VLGA 
infants and found that both IL-6 -176 GG and -572 GC genotypes were associated with 
higher incidence of histological chorioamnionitis. Our study supports the finding made 
by Speer et al. (Speer et al., 2006) associating the IL-6 -174 GG genotype with a slightly 
higher incidence of histological chorioamnionitis. Even though the literature is not 
consistent with which IL-6 -174 genotype is related to higher IL-6 synthesis response 
and inflammatory response, these findings suggest it to be the GG genotype. In addition, 
the finding that the IL-6 -572 GC genotype associated with histological chorioamnionitis 
is consistent with the findings associating the C allele with increased IL-6 synthesis and 
thus with stronger inflammatory response. 

6.5.	 IL-6 polymorphism in association with neonatal infections 

Earlier studies have been inconsistent in regard to the association between IL-6 -174 
polymorphism and septicaemia. The IL-6 -174 CC genotype has been associated with 
increased incidence of sepsis in pediatric intensive care patients (Michalek et al., 
2007), with increased incidence of late blood stream infections in African American 
mechanically ventilated VLBW infants (Baier et al., 2006), and with septic shock in adults 
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(Tischendorf et al., 2007). On the other hand, in two other studies, the -174 GG genotype 
has been associated with increased incidence of septicaemia in preterm infants (Ahrens 
et al., 2004; Harding et al., 2003), and a number of studies have found no association 
between IL-6 -174 genotypes and septicaemia in preterm infants (Göpel et al., 2006; 
Schlüter et al., 2002). In our study, we found the IL-6-174 CC genotype to correlate with 
the incidence of septicaemia. This discrepancy might be explained by haplotypes, rather 
than genotypes, influencing IL-6 transcription, as has been suggested earlier (Terry et 
al., 2000). Racial differences have also been suggested to play a role in the regulation 
of IL-6 synthesis (Baier et al., 2006), but this is not likely in this situation, as the main 
population were Caucasians in most of these studies. It has also been suggested that 
IL-6 promoter polymorphism might be associated with organism-specific blood stream 
infections, as Ahrens et al. (Ahrens et al., 2004) found that the IL-6 -174 GG genotype 
was especially related to an increase in Gram-positive infections. However, our results 
do not support this finding, since in our study, from 11 infants with septicaemia, 7 had 
the IL-6 -174 CC genotype, and they all had Gram-positive infections.

Earlier studies have associated IL-6-572 C with a higher incidence of sepsis in pediatric 
intensive care unit patients (Michalek et al., 2007) and adult trauma patients (Gu et al., 
2008). In our study population, we found no association betweeb IL-6 -572 genotypes 
to neonatal infections in univariate analyses. We were not able to perform multivariate 
analyses, as none of the infants with the -572 GC genotype had septicaemia, CLD, or 
NEC. 

It is of interest that different genotypes of IL-6 -174 seemed to be predisposing to 
chorioamnionitis and septicaemia. However, where histological chorioamnionitis 
reflects the individual’s inflammatory response to infectious stimuli, septicaemia is 
a consequence of inadequate immune system activation. It is plausible that a strong 
inflammatory response may indeed be protective against severe infections such as 
septicaemia i.e. the IL-6-174 GG genotype associates with a stronger IL-6 response 
resulting in better protection against serious infections.

6.6.	 IL-6 polymorphism in association with brain lesions 

IL-6 has been shown to have multiple significant functions in the central nervous 
system development (Koch et al., 2007; Nakanishi et al., 2007; Taga et al., 2005), 
normal functioning (Braida et al., 2004), and protection from injury (Loddick et al., 
1998; Matsuda et al., 1996; Penkowa et al., 2000; Winter et al., 2004) as well as being 
shown to be deleterious in overexposure (Campbell et al., 1993; Vallières et al., 2002). 
Several studies have suggested IL-6 to have a role in the process causing brain lesions 
in preterm infants. High levels of IL-6 in cord blood, neonatal blood, amniotic fluid, and 
CSF have all been associated with the development of brain pathologies, including IVH 
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and WMI (Ellisonn et al., 2005; Heep et al., 2003; Hitti et al., 2001; Nelson et al., 2003; 
Tauscher et al., 2003; Yoon et al., 1997).  In addition, IL-6 -174 and -572 genotypes have 
been connected with deviant neurological development, brain pathologies, and mental 
retardation in PVL patients in preterm infants (Harding et al., 2005; Harding et al., 2004; 
Resch et al., 2009), suggesting that the genetic regulation of IL-6 response plays a role 
in the brain development of preterm infants. 

In our study population, however, we did not find any association between IL-6 -174 and 
-572 genotypes and brain injuries. The same notion has also made by Göpel et al. (Göpel 
et al., 2006), as they reported no association between IL-6-174 polymorphisms and brain 
pathology in VLBW infants. In addition, even though IL-6 -572 genotypes have been 
connected with the impaired cognitive development of preterm infants (Harding et al., 
2005), the same study showed no association between genotypes and brain pathology. 
It is possible that our rather small sample size prevented us from finding the association 
between genotypes and brain lesions, but as the association has been made by only one 
study group (Harding et al., 2004), it may be that the effects of IL-6 and the impact of 
IL-6 synthesis regulation are more subtle and are not shown in overt brain pathology.

6.7.	 IL-6 polymorphism in association with regional brain volumes 

Despite not finding any association between IL-6 promoter polymorphisms and brain 
lesions, we did find an association between IL-6 -174 CC and -572 GG genotypes and 
a smaller combined volume of basal ganglia and thalami. The same genotypes were 
associated with a trend for smaller volumes also in the other brain regions, compared with 
other genotypes. IL-6 has been suggested to interfere with neurogenesis (Vallières et al., 
2002) and to cause neuronal damage, reactive astrocytosis, and proliferative angiopathy 
(Campbell et al., 1993). The basal ganglia and thalamus are particularly vulnerable to e.g. 
hypoxic-ischemic insults during development (Cowan et al., 2003), so it is plausible that 
this area is also vulnerable to the effects of IL-6, and hence the association is only seen 
in the deep gray matter area. On the other hand, it may be that the association seen here is 
not caused by the deleterious effects of excess IL-6 exposure, but is in fact a consequence 
of insufficient IL-6 production. As IL-6 has been shown to protect against brain injury 
(Matsuda et al., 1996; Loddick et al., 1998; Winter et al., 2004), stronger IL-6 response 
could hence lead to better protection against the consequences of deleterious insults. For 
example, raised parenchymal IL-6 levels have been found to correlate with improved 
outcome after traumatic brain injury (Winter et al., 2004), and higher levels of IL-6 
have been reported to significantly reduce ischemic brain damage after permanent focal 
cerebral ischemia in rat (Loddick et al., 1998) and prevented ischemia-induced learning 
disability and neuronal and synaptic loss in gerbils (Matsuda et al., 1996). The beneficial 
role of higher IL-6 production in brain volume development is in accordance with our 
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results, as the IL-6 -174 CC and -572 GG genotypes associated with smaller deep gray 
matter volume seem to be those associated with lower IL-6 synthesis response. 

The IL-6 -174 CC genotype associated with smaller volumes of deep gray matter 
correlated with the incidence of septicaemia in our study (study II). It can be suggested 
that the severe infection could be a factor disturbing brain development and leading to 
smaller brain volumes (Shah et al., 2002). However, the associations between IL-6 -174 
genotypes and the combined volume of basal ganglia and thalami did not explain the 
septicaemia in our study population.

6.8.	 Future research 

The relatively small number of study infants may limit the power of our study to detect 
weak associations, and it may also lead to incidental findings. In addition, the number of 
rare complications, such as septicaemia, NEC and CLD, was low, and therefore limits 
the potential to draw clinical conclusions from our findings. In studies II-IV, the genetic 
samples and brain imaging findings were not available from the demised patients leading 
to a selection bias as only survivors were investigated. Another limitation, and a potential 
source of bias, is the fairly large number of infants excluded because of missing placental 
samples. Placental samples were obtained less frequently when the infant had low Apgar 
scores or died during the first day of life suggesting that the new policy of placental 
collection was not yet uniformly applied in emergency situations by the clinical staff. 
A potential limitation to our study is also the upgrading of the MRI equipment during 
the data collection period. This might affect the image contrast, and thus the ability to 
differentiate adjacent anatomic structures. To avoid this, we selected easily definable 
anatomic landmarks, which are not affected by contrast changes in MRI. In study IV, the 
most severely abnormal BAEP responses, i.e. the absent latencies, could not be used in 
the statistical analyses of latencies, thus possibly undermining the associations between 
chorioamnionitis and neonatal infections and BAEP responses. 

Although we have intriguing preliminary findings concerning IL-6 promoter 
polymorphisms, it has to be kept in mind that  we only analyzed two single nucleotide 
polymorphisms from one cytokine, when several other factors obviously also play a role 
in determining the effects of inflammatory situations. The other factors should be studied 
with larger sample size by using the modern methods of human genome research. Future 
studies should also be designed to include samples from non-survivors. 

As our study groups were small, these results should be repeated in larger samples and in 
other populations before implementing the results in the clinical guidelines. In addition, 
a long term follow up is needed to determine the clinical significance of our findings.
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CONCLUSIONS

Placental inflammation has been thought to be a risk factor for the central nervous system 
of preterm infants. This has also, to some degree, guided the clinical management of 
preterm delivery as clinical diagnosis of placental inflammation may trigger a decision 
to induce a preterm delivery as a precaution to protect the infant’s brain (Canavan et 
al., 2004). Our findings give reason for reconsideration. We found no evidence that 
placental inflammation would pose a direct risk for brain pathology in VLBW/VLGA 
infants, as histological chorioamnionitis was not significantly associated with brain 
lesions, smaller brain volumes, or with the integrity of auditory pathway in our patient 
population. A recent study by Andrews et al. (Andrews et al., 2008) also suggests that 
chorioamnionitis is not harmful, but might even be beneficial for very preterm infants. 
They found that in utero exposure to acute inflammation was not associated with CP, low 
IQ or neurodevelopmental delay, and they even reported a trend indicating higher IQ in 
the presence on funisitis (Andrews et al., 2008). In addition, there is evidence that at 25 
to 29 weeks of gestation, histological chorioamnionitis associates with higher survival 
rates in preterm infants, and that neonatal survivors have a higher incidence of fetal 
response to chorioamnionitis (Lahra et al., 2004). The mechanism behind this might be 
lung maturation induced by chorioamnionitis, as in animal models, chorioamnionitis has 
been shown to result in clinically significant lung maturation (Boris et al., 2009). IL-6 
is one of the cytokines suggested to mediate the deleterious effects of chorioamnionitis 
to the infant’s brain. The role of IL-6 has been thought to be merely deleterious in 
the process of chorioamnionitis and brain injury, but our findings give reason to draw 
contradictory conclusions. Our findings suggest that IL-6 promoter polymorphisms, 
which act functionally in the regulation of IL-6 expression, have a role in protecting 
against serious infections and also protecting the brain development of VLBW/VLGA 
infants. The genotypes associated with higher incidence of chorioamnionitis, and which 
thus appeared to be associated with higher inflammatory response, were associated 
with lower incidence of septicaemia. The genotypes associated with small volumes of 
deep gray matter were, quite unexpectedly, genotypes that seemed to associate with 
low inflammatory response. This finding gives reason to speculate that inflammatory 
cytokines can also have a beneficial effect on the central nervous system, and that strong 
inflammatory response may even be protective not only against serious infections, but 
also for brain development in VLBW/VLGA infants. This quite unexpected finding has 
also been supported by Kaukola et al. (Kaukola et al., 2006) who found that in preterm 
infants with histological chorioamnionitis, infants with high IL-6 concentrations had a 
more favourable neurologic outcome than the infants with lower IL-6 concentrations. 

In conclusion, our findings suggest that histological chorioamnionitis, in itself, is not 
a major risk factor for the brain development of VLBW/VLGA infants, or that the risk 
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caused by inflammation does not outweight the risks attributed to other underlying 
pathologies behind preterm delivery. In addition, our findings give reason to propose a 
beneficial role for inflammation and IL-6 in defence against serious infections and in the 
brain development of VLBW/VLGA infants.  
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