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ABSTRACT 

 

Drug-drug interactions (DDIs) comprise an important cause of adverse drug reactions 

leading to excess hospitalizations. Drug metabolism is catalyzed by 75% by 

cytochrome P450 (CYP) enzymes and thus they are often involved in pharmacokinetic 

DDIs. In general, DDIs are studied in randomized controlled clinical trials in selected 

study populations. The overall aim of the present studies was to perform observational 

pharmacoepidemiological surveys on CYP-mediated DDIs in diseases important at the 

population level. 

The prevalence of co-administrations of four prodrugs (losartan, codeine, tramadol, 

and clopidogrel), three sulphonylureas (glibenclamide, glimepiride, and glipizide), or 

two statins (lovastatin and simvastatin) with well established agents altering CYP 

activity, as well as of statins with fibrates, was studied in Finland utilizing data from a 

university hospital medication database (inpatients) and the National Prescription 

Register of the Social Insurance Institution of Finland, Kela (outpatients). Clinical 

consequences of potential DDIs were estimated by reviewing laboratory data, and 

information from hospital care and cause-of-death registers. 

Concomitant use of study substrates with interacting medication was detected in up to 

one fifth of patients in both hospital and community settings. Potential CYP3A4 

interactions in statin users did not manifest in clear adverse laboratory values but 

pharmacodynamic DDIs between statins and fibrates predisposed patients to muscular 

toxicity. Sulphonylurea DDIs with CYP2C9 inhibitors increased the risk of 

hypoglycaemia. CYP3A4 inhibitor use with clopidogrel was not associated with 

significant changes in mortality but non-fatal thrombosis and haemorrhage 

complications were seen less often in this group. Concomitant administration of 

atorvastatin with clopidogrel moderately attenuated the antithrombotic effect by 

clopidogrel. The overall mortality was increased in CYP3A4 inducer and clopidogrel 

co-users. Atorvastatin used concomitantly with prodrug clopidogrel seems to be 

beneficial in terms of total and LDL cholesterol concentrations, and overall mortality 

compared with clopidogrel use without interacting medication.  

In conclusion, CYP-mediated DDIs are a common and often unrecognized 

consequence of irrational drug prescribing. 

Keywords: cytochrome P450, drug metabolism, drug-drug interactions, 

pharmacoepidemiology  
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TIIVISTELMÄ 

 

Lääkeaineyhteisvaikutukset (lääkeinteraktiot) ovat merkittäviä lääkehaittojen aiheuttajia, 

jotka vaativat huomattavan usein sairaalahoitoa rasittaen turhaan terveydenhuollon 

resursseja. Sytokromi P450 (CYP) -entsyymit katalysoivat 75 %:a lääkeaineiden 

aineenvaihduntareaktioista, jolloin myös farmakokineettiset lääkeinteraktiot ovat usein 

mekanismiltaan CYP-välitteisiä. Lääkeinteraktioita tutkitaan yleensä terveillä 

vapaaehtoisilla satunnaistetuissa, kontrolloiduissa kliinisissä kokeissa. Nyt esillä olevissa 

havannoivissa töissä oli tarkoituksena tutkia kansanterveydellisesti merkittäviin sairauksiin 

liittyviä CYP-välitteisiä lääkeinteraktioita farmakoepidemiologisin menetelmin.  

Yhteiskäytön vallitsevuutta tutkittiin neljän aihiolääkeaineen (losartaani, kodeiini, 

tramadoli ja klopidogreeli), kolmen sulfonyyliurean (glibenklamidi, glimepiridi ja 

glipitsidi) tai kahden statiinin (lovastatiini ja simvastatiini) sekä tunnettujen CYP-

aktiivisuutta muuttavien lääkeaineiden, ja lisäksi statiinien ja fibraattien välillä käyttämällä 

Turun yliopistollisen keskussairaalan (TYKS) lääkitystietokantaa ja Kelan tilastoa 

korvatuista resepteistä. Potentiaalisten interaktioiden kliinisiä merkityksiä arvioitiin 

TYKSin laboratoriotietokannan sekä hoitoilmoitus- ja kuolinsyyrekistereiden avulla. 

Valittujen CYP-substraattien ja interaktoita aiheuttavien lääkkeiden yhteiskäyttöä 

havaittiin jopa viidenneksellä sairaala- ja avohoitopotilaista. Potentiaaliset CYP3A4-

interaktiot eivät aiheuttaneet selviä haittoja ilmaisevia muutoksia statiinilla hoidettujen 

potilaiden laboratorioarvoissa, mutta fibraattien ja statiinien farmakodynaamiset 

lääkeinteraktiot altistivat potilaat lihasvaurioille. Sulfonyyliureoiden ja CYP2C9-

inhibiittoreiden samanaikainen käyttö lisäsi hypoglykemiariskiä. Kuolleisuudessa ei 

ollut merkitsevää eroa CYP3A4-inhibiittoreita käyttävillä klopidogreelipotilailla 

kontrolleihin verrattuna, mutta ei-kuolemaanjohtavia veritulppa- ja 

vuotokomplikaatioita havaittiin harvemmin. Atorvastatiinin käyttö heikensi hieman 

klopidogreelin verenhyytymistä estäviä vaikutuksia. Kokonaiskuolleisuus oli kohonnut 

CYP3A4-induktoreita ja klopidogreelia samanaikaisesti käyttävien ryhmässä. 

Atorvastatiinin ja aihiolääke klopidogreelin yhteiskäyttö vaikutti edullisesti kokonais- 

ja LDL-kolesterolipitoisuuksiin sekä kokonaiskuolleisuuteen verrattuna 

klopidogreelihoitoon ilman interaktioita aiheuttavaa lääkitystä. 

Yhteenvetona voidaan todeta, että CYP-välitteiset lääkeyhteisvaikutukset ovat yleinen 

ja usein tunnistamaton irrationaalisen lääkkeenmääräämisen seuraus. 

Avainsanat: sytokromi P450, lääkeainemetabolia, lääkeaineyhteisvaikutukset, 

farmakoepidemiologia 
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1  INTRODUCTION 

A drug-drug interaction (DDI) occurs when co-administration of two or more drugs 

alters the pharmacokinetics or -dynamics of one or both of the interacting drugs. 

Pharmacokinetic DDIs involve changes in either absorption, distribution, metabolism, 

or excretion phases in drug kinetics. Pharmacodynamic interactions do not involve 

changes in drug concentrations but are due to change in response to a given drug 

concentration. Metabolism plays an importat role in elimination by transforming drug 

molecules into an excretable form and by changing their biological activity. 

Cytochrome P450 (CYP) enzymes constitute a predominant family of metabolizing 

enzymes in the human body and are also involved in most of metabolic DDIs.  

Adverse drug reactions (ADRs) are a remarkable problem in health care. It has been 

estimated that 26% of ADRs leading to hospitalizations are due to DDIs. Drug-drug 

interactions cause not only adverse drug reactions and toxicity but also lack of efficacy. 

Pharmacokinetic DDIs, especially CYP-mediated DDIs, are widely studied starting 

already during the drug development process. However, it is important to emphasize 

also the pharmacodynamic side in DDI studies.  

DDI studies are usually performed in healthy volunteers and selected groups of patients 

by using randomized controlled studies while a pharmacoepidemiological approach has 

been applied mainly to detect drug-related adverse events at the population level 

(pharmacovigilance) but not much to study DDIs. Finland represents an adequate field 

for pharmacoepidemiological studies due to its valid and comprehensive patient 

registers with a rather homogenous population. 

The group of CYP substrates includes drugs from different drug therapy fields. The 

inhibitors and inducers of CYP enzymes include different types of drugs, also from the 

therapeutic point of view. This makes DDI control challenging especially at the CYP 

isoenzyme level. 

DDIs of drugs used by large populations or by vulnerable patient groups, such as 

elderly people, are of special importance. However, more research is needed. The 

chosen substrates of the present studies represent agents that are often used by these 

groups; drugs used in the treatment of hypertension, pain, dyslipidemia, type 2 diabetes 

mellitus, and increased blood coagulability. The correct use of drugs is essential for 

proper effectiveness and safety in these situations. 
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2  REVIEW OF THE LITERATURE 

2.1 Drug metabolism 

Drugs as other xenobiotics are foreign chemicals to the human body. Pharmacokinetics 

consists of absorption, distribution, metabolism, and excretion (ADME), of which 

metabolism and excretion contribute to drug elimination. Xenobiotic metabolism is 

also known as biotransformation. (Rang et al. 2007) 

Generally drug molecules are lipophilic to maintain effective absorption and 

distribution. Most drugs are, however, excreted in the urine. Renal excretion favours 

hydrophilic compounds and therefore biotransformation is needed to metabolize drugs 

to more polar products. Water-soluble compounds are excreted also into the bile. (Rang 

et al. 2007) 

The main organ in drug metabolism is the liver but also the gut, lungs, and skin are 

important. Apart from the liver, it is common for these organs that they are the main 

routes for xenobiotics to enter the body. When oral administration is concerned the 

amount of the drug in systemic circulation is usually less than what is absorbed from 

the gastrointestinal tract. This phenomenon is due to first-pass metabolism or 

presystemic extraction. (Rang et al. 2007)  

Drug metabolism can be divided into two main steps: phase I and phase II reactions. 

Phase I reactions are catabolic functionalization reactions based on hydrolysis, 

reduction, and oxidation. Phase II reactions involve conjugation and are anabolic 

processes. They include glucuronidation, sulfonation, methylation, acetylation, and 

amino acid and glutathione conjugation. Biotransformation is catalyzed by various 

enzyme systems, examples of which are shown in Table 2.1. One substrate may use 

several metabolic pathways. Phase I reactions introduce a functional group into the 

substrate molecule and phase II reactions attach a substituent to this reactive site of the 

derivative. If the drug is a mixture of stereoisomers the chirality also affects the 

metabolic behaviour. The activity of metabolites is usually less than that of the parent 

substrate but formation of active and toxic metabolites is possible. (Brophy et al. 2006, 

Parkinson and Ogilvie 2008)  

Drug metabolism involves remarkable inter- and intraindividual variations. The main 

causes for the alteration in drug metabolism are genetic polymorphisms in the genes 

coding catalyzing enzymes, concomitant use of other drugs or exposure to other 

xenobiotics (including drugs) that inhibit or induce metabolic enzymes, age, and 

physiological status and disease state. (Ingelman-Sundberg et al. 1999) 
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Drug metabolism is related to both efficacy and safety of drugs. It is important to 

determine by which enzymes a drug is metabolized to predict the effects of drug-drug 

interactions or interindividual variations. (Gonzalez and Tukey 2006) 

 
Table 2.1 Examples of the catalyzing enzymes in different phase I and phase II metabolic 
reactions 

   
Reaction   Enzyme 

 Phase I  

hydrolysis  carboxylesterase 
reduction  carbonyl reductase 
oxidation  cytochrome P450 

 Phase II  
glucuronidation  UDP-glucuronosyltransferase (UGT) 

sulfonation  sulfotransferase (SULT) 
methylation  methyltransferase (MT) 
acetylation  N-acetyltransferase (NAT) 

amino acid conjugation  amino acid specific NATs 
glutathione conjugation   glutathione-S-transferase (GST) 

2.1.1 Cytochrome P450 (CYP) enzymes 

Cytochrome P450 enzymes (CYPs) are a superfamily of enzymes that contain a non-

covalently bound haem in the polypeptide chain. CYPs are located in the endoplasmic 

reticulum consisting of phospholipid bilayers in the cytoplasm. When hydrophobic 

drug molecules enter the cell, they become embedded in the lipid bilayer where they 

then come into direct contact with the CYP enzymes. Haeme is the O2 binding moiety, 

the active site, in the CYP-mediated catalytic cycle to carry out the oxidation of 

substrates by either N-dealkylation, O-dealkylation, aromatic hydroxylation, N-

oxidation, S-oxidation, deamination, or, dehalogenation. (Gonzalez and Tukey 2006) 

The catalytic CYP cycle consists of seven steps: 1) binding of the substrate to the ferric 

form of the enzyme, 2) reduction of the haem group from the ferric to the ferrous state 

by an electron provided by NADPH via CYP reductase, 3) binding of molecular 

oxygen, 4) transfer of a second electron from CYP reductase and/or cytochrome b5, 5) 

cleavage of the O–O bond, 6) substrate oxygenation, 7) product release (Lin and Lu 

1998). Cytochrome P450s were named in 1961 based on the finding that when the 

haem iron is reduced and bound to carbon monoxide the pigment (P) has a spectral 

peak at 450 nm (Omura and Sato 1962). 

The human CYP enzyme family comprises 57 genes (Nebert and Russell 2002). 

Cytochrome P450 enzymes are present in most of the tissues that involve drug 

metabolism and dietary xenobiotics as well as synthesis of endogenous hormones. 

(Gonzalez and Tukey 2006) (Table 2.2) Further on, this thesis will concentrate on drug 

metabolism related CYPs. 
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CYPs are the most important enzymes involved in drug metabolism; they account for 

about 75% of all enzymatic biotransformation. Thus CYPs play also a major role in the 

phase I of the human metabolism. (Guengerich 2008) An evaluation of the mechanism 

for the metabolic clearance of 315 different drugs revealed that 56% of them were 

primarily cleared via CYP metabolism (Ingelman-Sundberg et al. 1999).  

 
Table 2.2 Human CYP families (modified from Nebert and Russell 2002) 

    
Family 

 
n of 

subfamilies 
n of 

genes 
Substrates/Functions 

 

CYP1 2 3 xenobiotics, arachidonic acid, eicosanoids 
CYP2 13 16 xenobiotics, arachidonic acid, eicosanoids 
CYP3 1 4 xenobiotics, arachidonic acid, eicosanoids 

CYP4 5 12 fatty acids, arachidonic acid, eicosanoids 
CYP5 1 1 thromboxane A2 synthase 
CYP7 2 2 cholesterol, bile acid synthesis 
CYP8 2 2 prostacyclin synthase, bile acid synthesis 

CYP11 2 3 steroidogenesis 
CYP17 1 1 steroid 17β-hydroxylase, 17/20-lyase 
CYP19 1 1 aromatase, estrogen synthesis 
CYP20 1 1 unknown 
CYP21 1 1 steroid 21-hydroxylase 
CYP24 1 1 vitamin D3 24-hydroxylase 
CYP26 3 3 retinoic acid hydroxylation 
CYP27 3 3 bile acid biosynthesis, vitamin D3 hydroxylation 
CYP39 1 1 24-hydroxycholesterol 7α-hydroxylase 
CYP46 1 1 cholesterol 24-hydroxylase 
CYP51 1 1 lanosterol 14α-desmethylase 
Total 42 57   

 

Of the 57 CYP proteins encoded by the human genome (Table 2.2) only five are 

responsible for the oxidative metabolism of 95% of all drugs (Figure 2.1). These five 

subtypes are CYP3A4, CYP2D6, CYP2C9, CYP2C19, and CYP1A1/2. (Guengerich 

2008, Johnson 2008) All isoenzymes in the same family have at least 40% and those in 

the same subfamily at least 55% amino acid similarity. An individual enzyme is 

identified by a number following the number and letter indicating the family and 

subfamily, respectively. (Nelson et al. 1996) 

The proportions on the CYP enzymes in human liver are presented in Figure 2.2 as 

reported with respect to age-, sex-, and race-related changes by Shimada et al. in 1994. 

The immunochemical in vitro study was performed by using human liver microsomes of 

Caucasian and Japanese subjects. Although the total CYP concentration was higher in 

Caucasians than in Japanese, the relative levels did not differ except that CYP2A6 and 

CYP2B6 levels were higher in Caucasians. (Shimada et al. 1994)  
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Figure 2.1 Propotions of the CYP enzymes responsible of the oxidative drug metabolism 
(Johnson 2008) 
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CYP2A6, 4%
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CYP2B6, 0.2%

Others, 24%

 

Figure 2.2 Proportions of CYP isoenzyme concentrations in human liver microsomes (Shimada 

et al. 1994)  

2.1.1.1 CYP3A4 

CYP3A4 isoenzyme is abundantly expressed in liver and small intestine where it 

contributes substantially to the first-pass metabolism of numerous drugs. It metabolizes 

more drugs than any other biotransforming enzyme. Among the substrates of CYP3A4 

there are members of several important drug classes: antiarrhythmic agents, 

anxiolytics, HIV protease inhibitors, lipid-lowering agents, and strong opioids. The 

substrates vary widely in size and structure. The active site of CYP3A4 is wide and it 

is capable of binding large substrates, two small molecules simultaneously, or 

individual substrates to discrete regions. CYP3A4 is both inhibitable and inducible. 

The number of the agents inhibiting or inducing CYP3A4 is small compared with the 
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amount of the substrates. The group of CYP3A4 inhibitors includes azole antifungals, 

macrolide antibiotics, and HIV protease inhibitors. The most important drugs among 

the inducers are antitubercular agent rifampicin and the antiepileptics carbamazepine, 

phenobarbital, and phenytoin. (Parkinson and Ogilvie 2008) 

2.1.1.2 CYP2C9 

CYP2C9 is a genetically polymorphic CYP isoenzyme with two main variant alleles: 

CYP2C9*2 and CYP2C9*3. These single-nucleotide polymorphisms (SNPs) decrease 

the catabolic activity of CYP2C9; CYP2C9*3 is associated with marked decrease and 

CYP2C9*2 with moderate decrease in the enzyme activity. In Northern Europe, the 

allele frequencies of these SNPs are 7.4% and 11.5%, respectively (Sistonen et al. 

2009). Individuals with the CYP2C9*3 allele are considered poor metabolizers (PMs) 

of CYP2C9. Homozygous CYP2C9*3/*3 is present in 0.3% of Caucasians (Goldstein 

2001). Substrates of CYP2C9 tend to represent acid- or sulfonamide-containing 

compounds. The main groups of the substrates are antidiabetic agents and non-steroidal 

anti-inflammatory drugs (NSAIDs). S-warfarin is one particular substrate of which the 

major metabolic pathway is CYP2C9-mediated. Its therapeutic index is narrow and 

thus careful dosing is essential, because warfarin-treated patients are vulnerable for 

treatment failure and adverse effects due to concentration alterations. In addition to 

interindividual changes in drug concentrations due to genetic factors, the alterations 

may result from inhibition or induction of CYP2C9. The list of CYP2C9 inhibitors 

includes some azole antifungals, amiodarone (an antiarrhythmic agent), and fluvoxamine 

(an antidepressive agent). Rifampicin (an antitubercular agent) is a potent inducer of 

CYP2C9. (Parkinson and Ogilvie 2008) 

2.1.1.3 CYP2D6 

CYP2D6 represents only 2% of the haepatic CYPs but it accounts for 12% of oxidative 

drug metabolism (Figures 2.1 and 2.2.). CYP2D6 substrates include antiarrhythmic 

agents, antidepressants, neuroleptics, and weak opioids. The substrates of CYP2D6 

contain a basic nitrogen that interacts with an anionic residue in the binding site of the 

enzyme. Strong inhibitors, like quinidine, can interact favourably with the anionic site 

but are not oxidized by the ezyme. In contrast to other CYPs, CYP2D6 is considered to 

be non-inducible. Based on the polymorphisms of CYP2D6 individuals can be 

categorized into four genotypes: poor metabolizers (PMs), intermediate metabolizers 

(IMs), extensive metabolizers (EMs), and ultra-rapid metabolizers (UMs) (Table 2.3). 

Five to 7% of Caucasians are PMs, the prevalence of UMs range from 1─2% to 

5─10% in Northern European and Southern European Caucasians, respectively. 

(Parkinson and Ogilvie 2008) 
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Table 2.3 Relationship between genotype and phenotype for a polymorphically expressed 
CYP2D6 (modified from Parkinson and Ogilvie 2008) 

  
Alleles Phenotype 

(wt/wt)n a UM 
wt/wt EM 
wt/*x EM 
wt/*y EM 
*x/*x EM or IM 
*x/*y IM 
*y/*y PM 

abbreviations: wt, fully active wild type; *x, 
partly active; *y, inactive 
a n ≥ 2 

2.1.2 Prodrugs 

Some drugs become pharmacologically active only after biotransformation. If the 

parent compound of a drug lacks activity, the drug is called a prodrug. Drugs with no 

or little pharmacological activity metabolizing to therapeutically active metabolites are 

designed for improving oral bioavailability by facilitating absorbtion or decreasing 

presystemic metabolism, lengthening the duration of action by slow metabolic release, 

or by improving the chemical stability of the active agent allowing tissue-selective 

delivery leading to its in situ activation. (Testa 2009) 

2.2 Drug-drug interactions 

When the effects of a drug are markedly altered as a result of coadministration of 

another drug it is a case of a drug-drug interaction (DDI). DDIs may be 

pharmacokinetic or pharmacodynamic, or combinations of these two interaction types. 

Pharmacokinetic interactions concern the ADME phases and result in increased or 

decreased delivery of drugs to the sites of action. In pharmacodynamic interactions the 

effects change without alterations in drug concentrations. As in drug metabolism, there 

are interindividual differences (see chapter 2.1) that make some patients more 

vulnerable to DDIs than others. (Oates 2006) 

2.2.1 Pharmacokinetic drug-drug interactions 

Most of the drugs are given orally and they are absorbed to the systemic circulation 

through the mucous membranes in the gastrointestinal tract. Absorption interactions 

may affect on the rate or the extent of absorption. The mechanism can be based either 

on changes in gastrointestinal pH or motility, complex formation, changes in 

transporter protein activity, (see examples in Table 2.4) or result from the combinations 

of these. The absorption can be impaired also due to malabsorption state, the 
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bioavailability of phenoxymethylpenicillin, for example, is reduced by neomycin-

induced malabsorbtion syndrome. (Stockley 2002a) 

After absorption the drug molecules are dissolved in plasma water or bound to plasma 

proteins, particularly to albumin. Equilibrium is established between the two forms and 

only the unbound molecules are pharmacologically active. The molecules occupying 

protein binding sites may be displaced by another drug which leads to increased 

concentration of the active form. (Stockley 2002a) However, changes in protein 

binding caused by drug-drug interactions will usually not influence the clinical 

exposure due to increased metabolism of the free drug (Benet and Hoener 2002). 

The passive drug disposition from blood to specific tissues depends on pH and lipid 

solubility of the drug and is highest in well-perfused organs like liver, kidney, and brain. 

The distribution may also result from active transportation which is the case especially in 

the central nervous system where the blood-brain barrier (BBB) restrains the transition 

through the vascular endothelium. (Buxton 2006) The transporter proteins in BBB are 

either influx transporters like OATP (organic anion-transporting polypeptide) and MCT 

(monocarboxylate transporter) or efflux transporters like P-gp (P-glycoprotein), BCRP 

(breast-cancer-resistance protein), OAT (organic anion transporter), and MRP 

(multidrugresistance-associated protein) (Urquhart and Kim 2009). With positron 

emission tomography (PET) in healthy volunteers it has been shown that CNS (central 

nervous system) exposure to P-gp substrate verapamil is significantly increased in the 

presence of P-gp inhibitor cyclosporine (Sasongko et al. 2005). (Table 2.4) 

The drugs that alter blood flow in the liver may have a marked effect on the extent of the 

first-pass metabolism and the bioavailability of other drugs (Stockley 2002a). (Table 2.4) 

Metabolic DDIs may occur during the phase I or phase II biotransformation reactions. They 

are mainly based on inhibition or induction of the metabolic enzymes (Table 2.1). Drug 

metabolism may end up to four different consequences: 1) an active parent substrate forms an 

inactive metabolite, 2) an active substrate forms an active metabolite, 3) an inactive substrate 

forms an active compound, 4) a parent compound transforms into toxic metabolite. CYPs are 

the main enzymes in metabolism and thus the main target enzymes for metabolic drug 

interactions. The mechanisms of enzyme inhibition and induction as well as DDIs involving 

CYP enzymes are discussed in detail in chapters 2.2.4 and 2.3.6. (Table 2.4) 
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Most of the drugs are excreted in urine or bile as water soluble metabolites. The 

mechanisms of the excretion phase interactions are based on changes in urinary pH, 

active tubular excretion, renal blood flow, re-metabolism by the gut flora (clinically 

irrelevant), and activity of transporter proteins in the gut and kidney. (Stockley 2002a) 

(Table 2.4) 

Transporter proteins, like P-glycoprotein (P-gp; also known as multidrug resistance 

transporter 1, MDR1) coded by ABCB1 gene (Gottesman 2002), play an important role 

in DDIs from the pharmacokinetic point of view because they affect the drug ADME in 

all four phases. Inhibition or induction of the transporters may enhance or impair: 1) 

the absorption in gut, 2) the distribution through the blood barriers like blood-brain 

barrier (BBB), blood-placental barrier (BPB), and blood-testis barrier (BTB), 3) the 

enzymatic metabolism rate by altering the drug concentrations, 4) the excretion in 

urine or bile (Table 2.4). Noteworthy alterations affect the efficacy and safety of drugs 

with narrow therapeutic index such as digoxin. On the other hand, the DDIs can be 

used to manipulate transporter (P-gp) activity, thus improving the cell uptake of drugs 

in cancer cells and through the BBB (Varadi et al. 2002, Newman et al. 2002) (Table 

2.4). P-gp and CYP3A have overlapping substrate specificity and tissue distribution 

suggesting synergy in the regulation of drug exposure (Wacher et al. 1995, Yu 1999, 

Zhang and Benet 2001). 

2.2.2 Pharmacodynamic drug-drug interactions 

In pharmacodynamic interactions the drug effect is changed in the presence of another 

drug at the site of action (receptors or ion channels, for example) without a change in 

drug concentration. However, the reaction is often indirect and involves interference 

with physiological mechanism. Disturbances in electrolyte balance during the use of 

potassium-depleting diuretics (e.g. furosemide) increase the sensitivity of myocardium 

to digitalis glycosides (e.g. digoxin) causing digitalis toxicity. (Stockley 2002a) 

In addition to adverse effects, pharmacodynamic interactions have beneficial effects, 

and they can be employed to gain therapeutic advantages. Additive or synergistic 

effects are used in achieving fewer drug-specific adverse effects by using submaximal 

doses of the drugs in concern. Combinations are common in the treatment of, for 

example hypertension, infections, and pain. For optimal drug therapy there are even 

manufactured combination products, such as losartan + diuretic (for hypertension), 

rifampicin + isoniazide + pyrazinamide (for tuberculosis), and codeine + NSAID (for 

pain). (Oates 2006) One reason for manufacturing combination products is the 

improvement of compliance (Erdine 2010). 

Solely toxic effects of pharmacodynamic interactions include additive prolongation of 

QT interval and serotonin syndrome. They both represent life-threatening ADRs. Two 

or more drugs prolonging QT interval increase the risk of torsades de pointes. Drugs 
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increasing serotonin activity may in concomitant use lead to over-stimulation of 

serotonin (5-HT) receptors in the central nervous system. This may occur even when 

one serotonergic drug is replaced with another. Serotonin syndrome is an iatrogenic 

condition that is difficult to diagnose due to variability of clinical manifestations and 

lack of awareness of the syndrome (Sun-Edelstein et al. 2008). (Stockley 2002a) 

2.2.3 Drug-drug interactions inflicting adverse drug reactions 

Serious and fatal ADRs are frequent and represent an important clinical issue. Fatal 

ADRs have been reported to be between the fourth and sixth leading cause of death in 

the US. When studying either patients experiencing an ADR in hospital (ADRIn) or 

patients admitted to hospital due to an ADR (ADRAd) the incidences of serious ADRs 

were 2.1 and 4.7%, and the incidences of fatal ADRs 0.19 and 0.13% (of ADRIn and 

ADRAd, respectively). When combining ADRIns and ADRAds the overall incidence 

of serious ADRs was 6.7% (95% CI 5.2─8.2) of hospital patients and the overall 

incidence of fatal ADRs 0.32% (95% CI 0.23─0.41). (Lazarou et al. 1998) 

It has been estimated that 26% of ADRs (McDonnell and Jacobs 2002) and 8% of all 

adverse drug events (Kelly 2001) leading to hospitalizations are caused by DDIs. Many 

of the DDI-involved hospitalizations could have been avoided with closer patient 

monitoring or the use of alternative medications (Juurlink et al. 2003). Polypharmacy 

and the use of drugs with narrow therapeutic index increase the risk for ADRs. The 

frequency of at least one interaction is predicted to be 50% for those who receive at least 

four drugs and even 90% for the patients receiving eight drugs or more (Weideman et al. 

1998). In a high-risk population of emergency department a potential adverse DDI was 

found even in 47% of the patients receiving three or more drugs (two or more in 

patients ≥ 50 years of age) (Goldberg et al. 1996). In primary health care patients at 

risk (receiving two or more drugs) the incidence rate of potential DDI was 12% for all 

and 22% for elderly (≥ 65 years of age) (Linnarsson 1993). 

2.2.4 Drug-drug interactions involving CYP enzymes 

Due to the major role of oxidative metabolism in drug elimination the alterations in 

CYP enzyme activity represent the main reason for DDIs. Many drugs can compete for 

the same enzyme which increases the significance of CYP inhibition. Generally the 

ADRs resulting from changes in drug concentrations are emphasized if the drug is 

metabolized by a single CYP pathway and has a narrow therapeutic index. Inhibitory 

interactions lead usually to more dramatic consequences to the patient but induction 

decreases efficacy and side effects. In case of prodrugs inhibition can reduce clinical 

efficacy. When the DDI concerns a polymorphic CYP enzyme, the EMs are more 

susceptible to enzyme inhibition and induction than PMs. DDIs can also be 

stereoselective (see Table 2.4). (Lin and Lu 1998, Pelkonen 2002) 
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Different human CYPs and their implication to DDIs as substrate, inhibitor, or inducer 

are listed in Table 2.5. The figures are based either on in vivo or in vitro studies in 

various models including tissue slices, microsomes, cell cultures, and purified and 

recombinant enzymes. (Rendic 2002) 

Table 2.5 Proportions of the human isoenzymes involved in CYP-mediated drug-drug 
interactions in all and separately as substrate, inhibitor, and inducer (modified from Rendic 
2002) 
     

CYP 
 

All 
(%) 

Substrate 
(%) 

Inhibitor 
(%) 

Inducer 
(%) 

1A1 3 3 3 6 
1A2 10 10 12 3 
1B1 1 1 1 1 
2A6 3 3 2 2 
2B6 4 4 3 13 
2C 25 25 27 21 
2E1 4 3 4 7 
2D6 16 15 22 2 * 
3A4 34 36 26 45 
Total 100 100 100 100 

* The common understanding is that CYP2D6 is non-inducible (Parkinson and Ogilvie 2008) but 
according to Rendic, haloperidol as well as organic solvents isopropranol and dimethyl sulfoxide 
stimulate CYP2D6 activity (Rendic 2002 referring to Kudo and Odomi 1998, Shin et al. 2001). 

2.2.4.1 CYP enzyme inhibition 

CYP enzyme inhibition can be divided roughly into reversible and irreversible 

processes or into three categories: reversible inhibition, quasi-irreversible inhibition, 

and irreversible inhibition (Figure 2.3). Among these, reversible inhibition is the most 

common mechanism responsible for the DDIs. (Lin and Lu 1998) 

Reversible inhibition can be further divided into competitive, non-competitive, 

uncompetitive, and mixed-type inhibition. In competitive inhibition the binding of the 

inhibitor prevents the binding of the substrate to the active site of the enzyme. In non-

competitive inhibition the inhibitor binds not to the active but to another site of the 

enzyme. The presence of the inhibitor has no effect on binding of substrate but its 

metabolism is still hindered. In uncompetitive inhibition the inhibitor does not bind to 

the free enzyme but to the enzyme-substrate complex. Also in this case the substrate 

cannot be metabolized by the enzyme. Mixed-type inhibition displays elements of both 

competitive and non-competitive inhibition. (Lin and Lu 1998, Pelkonen et al. 2008) 

(Figure 2.3) 

Reversible enzyme inhibition is transient and the normal function of the enzyme is able 

to continue after the inhibitor has been eliminated from the body. Reversible inhibition 
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involves probably the first step of the CYP catalytic cycle (see chapter 2.1.1). The 

inhibitors causing reversible inhibition act rapidly. They bind to the enzyme with weak 

bonds which are formed and broken down easily. Many of the CYP inhibitors causing 

reversible inhibition are nitrogen-containing drugs. They bind to the prosthetic haem 

iron or to the lipophilic region of the enzyme. Inhibitors that bind to both regions 

simultaneously are more potent. (Lin and Lu 1998, Pelkonen et al. 2008) 

Both irreversible and quasi-irreversible inhibitions require the formation of active 

metabolites. They evolve during at least one CYP catalytic process cycle. The loss of 

enzyme activity persists even after the elimination of the inhibitor from the body and 

de novo biosynthesis of new enzymes is required to restore the CYP activity. (Lin and 

Lu 1998) 

The CYP inhibitors causing irreversible inhibition contain such functional groups that 

can be oxidized by the CYP enzyme to reactive intermediates. The intermediates 

inactivate the enzyme prior to the release from the active site. The inhibitors causing 

irreversible inhibition are divided into mechanism-based inactivators and suicide 

substrates (Figure 2.3). Mechanism-based inhibitors contain terminal double or triple 

bond and can be oxidized by CYP to radical intermediates that alkylate the prosthetic 

haem group and inactivate the enzyme. Suicide inhibition inactivates the enzyme 

completely by covalent binding to apoprotein. (Lin and Lu 1998) 

In quasi-irreversible inhibition the metabolite forms a stable complex with the CYP 

prosthetic haem. The complex is called the metabolic intermediate (MI) complex. It 

sequesters the enzyme into a functionally inactive state. (Lin and Lu 1998) 
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irreversible
inhibition

competitive 
inhibition
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Figure 2.3 Substrate and inhibitor binding to enzyme in different types of CYP inhibition (Lin and Lu 
1998, Pelkonen et al. 2008) 

2.2.4.2 CYP enzyme induction 

From a biological point of view induction protects the cells from toxic xenobiotics by 

increasing the metabolic activity. In drug therapy there are two concerns related to 

CYP induction: 1) induction may reduce pharmacological effects by increasing drug 

metabolism, 2) induction may result in increased toxicity due to the increased 

production of the toxic metabolites. (Lin and Lu 1998) 

In most cases CYP enzyme induction by xenobiotics is mediated by a group of ligand-

activated transcription factors and ensues from increased gene transcription. However, 

some non-transcriptional mechanisms are also known. (Lin and Lu 1998, Pelkonen et 

al. 2008) As a consequence of CYP induction both the amount of enzyme and 

endoplasmic reticulum in hepatocytes increase. CYP induction interactions are delayed 

at the beginning and at the end of the concomitant use, and may then arise even after 

withdrawal of the inducer. It is possible to adapt the interaction by raising the dosage 

of the affected drug. This requires, however, careful monitoring, and includes the risk 

of overdose when withdrawing the inducing drug. (Stockley 2002a) 
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2.2.4.3 Methods in CYP-mediated drug-drug interaction research 

CYP enzymes are widely studied due to their remarkable potential to cause clinically 

significant DDIs. Testing the CYP profile of a new drug (as a substrate, inhibitor, or 

inducer for CYPs) is a prerequisite for the marketing authorization (EMEA 1997, FDA 

1997, FDA 1999). Screening of drug candidates for their DDI potential is performed in 

vitro and in vivo (human studies) and is encouraged to be started in the early stages of 

the drug development process (Figure 2.4). Examples of probe substrates for studying 

the CYP inhibition or induction effects of the new drug are listed in Table 2.6. Probe 

drugs used one at a time or as a cocktail are presented also in two Nordic articles 

(Pelkonen et al. 1998, Christensen et al. 2003). 

Table 2.6 Examples of marker substrates used in studying interaction potential of new drugs in 

vitro and in vivo [modified from EMA draft guideline currently under revision (EMA 2010) and 
FDA directions to drug development process (FDA 2006a)] 
 

  Markers  
CYP in vitro  in vivo 

1A2 phenacetin * **  theophylline * ** 
   caffeine * ** 

2A6 coumarin **   
 nicotine **   

2B6 efavirenz * **  efavirenz * ** 
 bupropion * **  S-bupropion * 

2C8 paclitaxel *  amodiaquine * 
 amodiaquine *  repaglinide ** 
 taxol **  rosiglitazone ** 

2C9 S-warfarin * **  S-warfarin * ** 
 diclofenac * **  tolbutamide * ** 
 tolbutamide **   

2C19 S-mephenytoin * **  omeprazole * ** 
   esomeprazole ** 
   lansoprazole ** 
   pantoprazole ** 

2D6 bufuralol * **  metoprolol * 
 dextromethorphan **  desipramine * ** 
   dextromethorphan ** 
   atomoxetine ** 

2E1 chlorzoxazone **  chlorzoxazone ** 
3A4 midazolam * **  midazolam * ** 

 testosterone * **  buspirone ** 
 nifedipine *  felodipine ** 
 triazolam *  lovastatin ** 
 dexamethasone *  eletriptan ** 

   sildenafil ** 
   simvastatin ** 
   triazolam ** 
* accodring to EMA   
** according to FDA   
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Human liver microsomes from several donors are the most important tool in studying 

CYP activity in vitro. CYP antibodies, cloned CYP cDNAs (complementary 

deoxyribonucleic acid) and recombinant proteins as well as isolated hepatocytes and 

radiolabelled drugs may be used to confirm the results from the microsome studies. 

(FDA 1997) In vitro interaction studies should be performed before phase I clinical 

studies (EMA 2010). The early data of pharmacokinetics is important because the 

DDIs in vivo will not depend only on the potency but also on the dose and the 

concentration of the compound in the active site (Rodrigues and Lin 2001). In vitro 

studies can assess the presence or absence of enzyme inhibition but have a limited 

capability to identify induction (FDA 1999). According the new EU guideline (EMA 

2010) the extent of enzyme induction should be investigated in hepatocytes from ≥ 3 

donors for CYP3A, CYP2B6, and CYP1A2. In addition to this, the activity of mRNA 

(messenger ribonucleic acid) as well as the function of nuclear receptors PXR, CAR, 

and AH can be measured. The later preclinical stages of drug development and the data 

available from animal studies can attempt be used to predict DDIs in humans. The US 

Food and Drug Administration (FDA) has defined animal studies important in 

toxicology but they are not regulated (FDA 1997). (Figure 2.4) 

In general, if no interactions are detected in appropriately performed in vitro studies 

there is no need for further surveys (EMEA 1997, FDA 1997). If inhibition has been 

seen in vitro the pharmacokinetics of the probe drug is studied alone and at a steady 

state of the inhibiting drug (EMA 2010).  

According to the European Medicines Agency (EMA, earlier EMEA) draft guideline 

on investigation of drug interactions metabolic DDIs should be studied in vivo if the 

metabolic pathways are responsible for more than 25% of the total clearance or if 

metabolites are estimated to have more than 50% of the pharmacological activity 

(EMA 2010). Pharmacokinetic in vivo interaction studies in humans begin in the phase 

I of the drug development process and are performed more elaborately during the 

phase II and phase III studies (Figure 2.4). They are usually carried out in healthy 

volunteers. Subjects drawn from the general patient population offer certain 

advantages, including the opportunity to investigate pharmacodynamic endpoints not 

presented in healthy volunteers. Subjects are genotyped or phenotyped if any of the 

enzymes mediating the metabolism are polymorphically distributed, notably CYP2D6 

and CYP2C19. (EMEA 1997, FDA 1999) 

The study design in in vivo metabolic DDI studies is usually a randomized crossover 

study type (EMEA 1997, FDA 1999). Studies can be run as unblinded unless 

pharmacodynamic endpoints are part of the assessment. The time at observing 

endpoints depends on whether inhibition or induction is studied. When the drugs are 

given chronically a one-sequence crossover design is possible. When the drugs or their 

metabolites exhibit long elimination half-life (T1/2el) also parallel design may be used. 

(FDA 1999) This is, however, not recommended due to wide inter-individual 
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variability (EMA 2010). The recommended measures and parameters are exposure 

measures such as area under the plasma concentration-time curve (AUC), maximum 

concentration (Cmax) and time to maximum concentration (Tmax), and pharmacokinetic 

parameters like clearance (CL), volume of distribution (Vd) and T1/2el. A specific 

objective is to determine whether the interaction is sufficiently potent to necessitate 

dosage adjustments and additional therapeutic monitoring. To provide adequate dosage 

recommendation also steady state studies and parameters such as trough concentration 

(Cmin) are valuable. (EMEA 1997, FDA 1999) 

Population studies (phase IV) in a sufficient number of patients are valuable addition to 

phase II and III trials to get acquainted with unsuspected interactions or to confirm 

absence of suspected interactions (Figure 2.4). A relatively new method, population 

pharmacokinetics, can also detect unsuspected DDIs. (EMEA 1997, FDA 1999) 

Generally extensive efforts have been made to characterize the human CYP system, 

and with recent advances in molecular biology and in silico methods the high-

throughput screening (HTS) assays can now be performed earlier in the drug-

development process to identify CYP profiles (Rodrigues and Lin 2001). Ex vivo 

testing, in perfused placenta, for example, is also a method to test CYP activity and 

interaction potential but is not in routine use (Deshmukh et al. 2003).  

On average only 0.1 ‰ of the candidate molecules reach the drug market as full-

fledged products (Figure 2.4). The reasons why the drug candidates fail to reach the 

market are shown in Figure 2.5. Nowadays, human pharmacokinetics is only a 

marginal cause of dropouts with 8% proportion (Guengerich and MacDonald 2007). 

More than two decades ago inappropriate pharmacokinetics was the major problem and 

the reason for 39.4% of the development discontinuations (Prentis et al. 1988). The 

extrapolation of in vivo systems has become more accurate with the help of developed 

in vitro methods and in silico techniques, such as crystallizing and modelling the 

structures of human CYP enzymes (Guengerich 2008). 
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clinical efficacy, 25%

animal toxicity, 20%

commercial, 20%

human adverse 
events, 11%

financial , 8%

human 
pharmacokinetics, 8%

formulation, 3%

other, 5%

 

Figure 2.5 Proportions of the reasons why the drug candidates have not reached the end of the 
drug development process and have not been launched to the market (modified from 
Guengerich and MacDonald 2007) 

2.3  CYP-mediated metabolism and interaction profile of the investigated drugs  

2.3.1 Losartan 

Losartan is an angiotensin II (ATII) type 1 (AT1) receptor blocker used as an 

antihypertensive agent (See 2001). Losartan is a prodrug; its active metabolite is 

responsible for the decrease in blood pressure (Munafo et al. 1992). The parent 

compound is transformed to carboxylic acid metabolite EXP3174 (E-3174) by 

CYP2C9 (Yasar et al. 2001) (Figure 2.6). Concomitant use of CYP2C9 inhibitors, 

fluconazole and bucolone, has been shown to prevent the formation of the active 

metabolite in healthy volunteers (Kaukonen et al. 1998, Kobayashi et al. 2008) Also in 

patients with CYP2C9*3 variant allele (see chapter 2.1.1.2) the metabolism of single 

dose losartan to EXP3174 as well as its hypotensive effect are significantly reduced 

(Sekino et al. 2003). Losartan is manufactured as an unmixed product but also in 

combination with hydrochlorothiazide diuretic (see chapter 2.2.2). 

N
N

N NH

N

N
Cl

CH
2
OH

N
N

N NH

N

N
Cl

COOH

CYP2C9

losartan EXP3174  

Figure 2.6 Chemical structures of losartan and its active metabolite EXP3174 (active sites in bold) 
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2.3.2 Codeine and tramadol 

Codeine and tramadol are weak opioid analgesics. They are both prodrugs. Codeine 

(methylmorphine) is converted into morphine by CYP2D6 (Dayer et al. 1988) (Figure 

2.7 a). The O-demethylation is essential for analgesia. The use of CYP2D6 inhibitor 

quinidine has been shown to reduce the analgesic effect and codeine abuse (Desmeules 

et al. 1991, Sindrup et al. 1992, Sindrup et al. 1996, Caraco et al. 1996, Caraco et al. 

1999, Kathiramalainathan et al. 2000). Also the threshold of experimental pain is 

increased in EMs but not PMs of CYP2D6 (see chapter 2.1.1.3) lacking the activation 

process (Sindrup et al. 1990, Poulsen et al. 1996b). Codeine itself has an exceptionally 

low affinity to opioid receptors. Tramadol is a codeine analog with weak μ-opioid 

receptor affinity. It is used as a racemic mixture. The (+)-enantiomer binds to μ 

receptor and increases serotonin activity, the (–)-enantiomer stimulates α2-adrenergic 

receptors and inhibits noradrenalin reuptake. The analgesic effect of tramadol is partly 

due to its ability to increase noradrenalin and serotonin activity. However, most 

important is the metabolism to active O-desmethyltramadol by CYP2D6 (Poulsen et al. 

1996a) (Figure 2.7 b). Concomitant use of CYP2D6 inhibitor paroxetine decreases the 

analgesic effect of tramadol (Laugesen et al. 2005). Weak opioids are often used in 

combination with NSAIDs (see chapter 2.2.2) and are available also as combination 

products, with ibuprofen or paracetamol, for example. Codeine has also antitussive 

effects. (Gutstein and Akil 2006) 

a) 
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CYP2D6
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b) 
 

CH
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OH
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N

O
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tramadol

CYP2D6

O-desmethyltramadol  

Figure 2.7 Chemical structures of codeine (a) and tramadol (b), and their active metabolites 
(active sites in bold) 
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2.3.3 Lovastatin and simvastatin 

Statins are HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase inhibitors 

used in treatment of dyslipidemia. They are effective both in the primary and 

secondary prevention of aterosclerotic heart disease. They lower LDL (low-density 

lipoprotein) cholesterol concentrations in plasma by increasing the LDL clearance and 

upregulation of LDL receptors. They also decrease VLDL (very-low-density 

lipoprotein) cholesterol and triglyceride concentrations and increase HDL (high-

density lipoprotein) cholesterol levels slightly. Combination products with ezetimibe, 

for example, are available. Lovastatin and simvastatin as lactone prodrug forms are less 

active than the respective β-hydroxy acid metabolites (Figure 2.8). Both parent drugs 

undergo extensive first-pass metabolism. CYP3A4 is mainly responsible for the 

biotransformation. Lovastatin is oxidized to three known primary metabolites: 6’β-

hydroxylovastatin, 6’-exomethylene metabolite, and 3’’β-hydroxylovastatin. All these 

metabolites are pharmacologically active. It is probable that the first two derive from a 
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Figure 2.8 Chemical structures of lovastatin (a) and simvastatin (b), and their CYP metabolites 
(active sites in bold) 
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single metabolic intermediate (Figure 2.8 a). Simvastatin is metabolized to at least four 

primary metabolites: 6’β-hydroxysimvastatin, 6’-exomethylene metabolite (which may 

derive from a common metabolic precursor), 6’β-hydroxymethyl metabolite, and 3’-

hydroxysimvastatin (Figure 2.8 b). CYP3A4 inhibitors (e.g. clarithromycin, 

erythromycin, telithromycin, itraconazole, ketoconazole, diltiazem, and verapamil) 

have been shown to increase the exposure to lovastatin and simvastatin. By increasing 

the statin concentration these kinds of DDIs increase the incidence of skeletal muscle 

toxicity, an ADR concerning the entire class of otherwise well-tolerated statins, and the 

risk of potentially fatal rhabdomyolysis. CYP3A4 inducers rifampicin and 

carbamazepine, on the other hand, have been shown to reduce simvastatin 

concentrations (Kyrklund et al. 2000, Ucar et al. 2004). The synergistic effects of 

fibrates and statins give therapeutic advantages in severe dyslipidemia but their 

concomitant use increases the risk of myopathy. (Williams and Feely 2002, Neuvonen 

et al. 2006, Caron et al. 2007) 
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2.3.4 Glibenclamide, glimepiride, and glipizide 

Glibenclamide (also known as glyburide), glimepiride, and glipizide are second-

generation sulphonylureas. These antidiabetic agents bind to the SUR1 receptors in 

pancreatic β-cells and close the potassium-dependent ATP channels when potassium 

intake decreases and the cell membrane depolarizes. The calcium intake then initiates 

the insulin excretion from β-cells. (Kirchheiner et al. 2005) Sulphonylureas bind also 

to SUR2 receptor subtypes SUR2A in cardiac tissue and SUR2B in smooth muscle 

which may have relevance in mechanisms of cardiac morbidity and peripheral vascular 

resistance in type 2 diabetes mellitus (Ashcroft and Gribble 2000). 

Glibenclamide is an antidiabetic drug that is extensively metabolized by CYP2C9 in 

the liver. The main metabolites are 3- and 4-hydroxyglibenclamide (Figure 2.9 a). 

They both have antihyperglycaemic activity and contribute to the glucose lowering 

effect of glibenclamide. Glibenclamide is excreted into urine (50%) and into faeces 

(50%). Long T1/2el of the parent compound and the metabolites leads to long-lasting 

hypoglycaemic events and increases the risk of hypoglycaemic episodes. (Kirchheiner 

et al. 2005) In studies in healthy subjects the clearance of glibenclamide is less than 

half and insulin secretion significantly higher in PMs (CYP2C9*3/*3 homozygous, see 

chapter 2.1.1.2) compared with wild type subjects (Kirchheiner et al. 2002). Also 

heterozygous carriers of CYP2C9*3 allele have greater glibenclamide and glimepiride 

AUCs in plasma compared with wild-type subjects (Niemi et al. 2002, Yin et al. 2005).  

From glimepiride CYP2C9 forms a hydroxyl metabolite (Figure 2.9 b) that has 

approximately one third of the activity of the parent compound. This metabolite is 

oxidized further to carboxylic acid. (Kirchheiner et al. 2005) In healthy volunteers it 

has been shown that concomitant use of CYP2C9 inhibitors fluconazole and 

fluvoxamine prolongs T1/2el and increase Cmax of glimepiride (Niemi et al. 2001a). In 

the same study fluconazole but not fluvoxamine increased also the AUC of glimepiride 

compared with placebo. Gemfibrozil increases the AUC of glimepiride modestly 

(Niemi et al. 2001d). On the other hand, rifampicin has been shown to decrease the 

AUC and T1/2el in healhy volunteers (Niemi et al. 2000).  

Glipizide is structurally very similar to glibenclamide (see Figures 2.9 a and c) 

differing only in the aryl ring portion. The role of CYP2C9 is also similar; glipizide is 

transformed into 3- and 4-hydroxymetabolites (Figure 2.9 c). (Kirchheiner et al. 2005) 

A CYP2C9 inducer, rifampicin, decreases the plasma AUC and Cmax and shortens the 

T1/2el of both glibenclamide and glipizide in healthy volunteers (Niemi et al. 2001b).  

All the studies on sulphonylurea kinetcs mentioned above (Niemi et al. 2000, Niemi et 

al. 2001a, Niemi et al. 2001b, Niemi et al. 2001d, Kirchheiner et al. 2002, Niemi et al. 

2002, Yin et al. 2005) were performed in settings with single dose sulphonylurea 

exposures. However, in continous exposure to high concentrations of sulphonylureas, 

the relationship between the drug concentration and the hypoglycaemic effet appears to 
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be bell-shaped. This is probably due to the downregulation of β-cell sensitivity. 

(Melander et al. 1998) 
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Figure 2.9 Chemical structures of glibenclamide (a), glimepiride (b) and glipizide (c), and their 
hydroxylated metabolites (active sites in bold) 



Review of the literature 

 

34 

2.3.5 Clopidogrel 

Clopidogrel is an ADP-receptor antagonist used to inhibit platelet aggregation. The 

approved indications are to reduce the rate of stroke, myocardial infarction (MI), and 

death in patients with recent MI or stroke, established peripheral arterial disease, or 

acute coronary syndrome. The fixed dose is 75 mg per day possibly with initial loading 

dose of 300 mg. (Majerus and Tollefsen 2006) Clopidogrel is a thienopyridine prodrug 

activated by CYP enzymes. However, only 15% of clopidogrel metabolism is CYP-

related, for 85% of clopidogrel is hydrolyzed by esterases to an inactive carboxylic 

acid derivative. The activation of clopidogrel consists of two steps. CYPs are 

responsible for the oxidation of the thiophene ring to 2-oxo-clopidogrel and for the 

further oxidation resulting in opening of the thiophene ring and formation of carboxyl 

and thiol groups (Figure 2.10). (Clarke and Waskell 2003, Nguyen et al. 2005) The 

thiol group binds with ADP-receptor P2Y12 when the normal activation of glycoprotein 

GPIIb/IIIa in fibrinogen clotting is prevented (Savi et al. 2001). Recently it has been 

defined that the formation of 2-oxo-clopidogrel is mediated by CYP2C19, CYP1A2, 

and CYP2B6 (by 44.9, 35.8, and 19.4%, respectively) whereas the active metabolite, 

R-130964, is formed by CYP3A4, CYP2B6, CYP2C19, and CYP2C9 (with 

contribution of 39.8, 32.9, 20.6, and 6.8%, respectively) (Kazui et al. 2010) (Figure 

2.10).  

Ketoconazole, a well known CYP3A4 inhibitor, has been shown to decrease the 

AUC and Cmax of the active R-130964 metabolite of clopidogrel (Farid et al. 2007). 

In vitro clopidogrel metabolism is inhibited by more than 90% by atorvastatin also 

metabolized primarily by CYP3A4 (Clarke and Waskell 2003). In a platelet 

activation study in coronary artery implantation patients measuring platelet 

aggregation inhibition, atorvastatin but not pravastatin (a statin not undergoing CYP 

metabolism) attenuated clopidogrel activation (Lau et al. 2003). In the same study 

erythromycin and troleandomycin (both CYP3A4 inhibitors) impaired the platelet 

activation inhibition of clopidogrel whereas rifampicin (a CYP3A4 inducer) 

enhanced it. These effects of rifampicin on clopidogrel efficacy have also been seen 

in another study in healthy volunteers (Lau et al. 2004). The first published 

CYP2C19-mediated DDI associated with diminished clopidogrel activation was due 

to concomitant use of omeprazol (Gilard et al. 2006). Thereafter, patients carrying 

mutant CYP2C19*2 have been associated with significantly diminished platelet 

aggregation and increased risk of stent thrombosis and cardiovascular ischemic event 

following coronary stent placement (Sibbing et al. 2009, Shuldiner et al. 2009). 

CYP2C19*17 carriers are associated with significantly increased bleeding risk 

(Sibbing et al. 2010). 
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Figure 2.10 Chemical structures of clopidogrel and its CYP metabolites (active sites in bold) 
 

2.3.6 Inhibitors and inducers of CYP3A4, CYP2C9, and CYP2D6 isoenzymes 

The CYP inhibitors and inducers included in the studies are listed in Table 2.7 with 

short introductions to referred literature. 
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2.4  Pharmacoepidemiological studies 

Pharmacoepidemiology is defined as a study of the use and the effects of drugs in a 

large number of people (Strom 2005). The main focus is often on the risks of 

uncommon, unexpected, and latent adverse reactions (Garbe and Suissa 2007). On the 

other hand, both beneficial and adverse drug effects can be investigated (Garbe and 

Suissa 2007), which enables a better assessment of the risk-benefit balance for drug use 

(Strom 2005). In the drug development trajectory pharmacoepidemiology is presented 

in phase IV (Figure 2.4). The contribution of phase IV studies to the drug development 

process is a relatively new field, although US Food and Drug Administration (FDA) 

has required post-marketing research to one third of the approved drugs since the 

1970s (Strom 2005). During the 14 years between 1993 and 2006, FDA withdrew 20 

drugs from the US market for safety reasons with an average of 1.5 drug withdrawals 

per year (range 0–4) (Issa et al. 2007).  

In addition to industry and regulatory point of view, pharmacoepidemiology is an 

important tool in academic studies on clinical pharmacological problems. They are 

usually run as observational designs with different case-control or cohort settings 

(Strom 2005, Garbe and Suissa 2007). 

Drug utilization studies are an important tool in improving rational drug use. The 

definition “prescribing, dispensing, administering, and ingesting of drugs” implies the 

several steps involved in drug utilization. The World Health Organization (WHO) gives 

even a broader definition as “marketing, distribution, prescription and use of drugs in a 

society, with special emphasis on the resulting medical, social and economic 

consequences”. (Garbe and Suissa 2007) 

2.4.1 Advantages and limitations of pharmacoepidemiology 

The 20 drugs FDA withdrew from the US market during 1993–2006 had been in use 

approximately four and a half years (range 6–519 months) (Issa et al. 2007). Due to the 

limited sample size (approximately up to 3000) the pre-marketing phase III studies are 

unlikely to detect uncommon adverse effects (Strom 2005). Phase III studies proving the 

efficacy and safety of the new drug are mostly conducted as randomized controlled 

clinical trials (RCTs). The sample sizes needed to be exposed to sufficient statistical 

power of a rare ADR are prohibitively large for premarketing studies. This means that rare 

ADRs will usually be detected only when the drug has been used in large patient 

populations after drug marketing. (Garbe and Suissa 2007) In RCTs the follow-up time 

may also be too short to detect long-term effects (Schneeweiss 2007). The short duration 

renders the detection of ADRs developing after a long induction period or cumulative 

drug intake impossible (Garbe and Suissa 2007). 
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RCTs differ from routine clinical care in several ways: selected study populations 

defined by strict inclusion and exclusion criteria are not representative of subsequent 

users for the drugs because the most vulnerable patient groups (the elderly, patients 

with comorbid conditions, pregnant women, and children) are under-represented; the 

surveillance of the patients is more intensive in clinics chosen for research centres due 

to better facilities and more frequent patient monitoring for the ADRs; treatment 

regimens allow no individual treatment variation in contrast to the adjustments made 

constantly in routine care; placebo controlled efficacy data from the trials conducted to 

compare an active substance against no treatment are rarely relevant in routine practice 

where one or more alternative therapies are available for most conditions. (Garbe and 

Suissa 2007, Schneeweiss 2007) 

In addition to issues of resources, proper RCTs cannot always be implemented because 

of ethical issues. The character of the disease may affect the RCT process. If the 

disease is presupposed to cause prominent sufferings, the drug may be launched by fast 

track procedure. This is the case with HIV and cancer drugs, for example. When the 

drug therapy is absolutely essential for the patient the use of placebo in RCTs is not 

ethically accepted but active therapy must be offered for each study groups. (FDA 

2006b) The fast track process may also be used in launching vaccination products 

under the threat of pandemia (EMEA 2008). 

Pharmacoepidemiology can be used for comparing active treatment groups and 

studying new indications and user groups. Register-based studies offer a possibility to 

research retrospective data of high quality. A sophisticated study plan improves the 

chances for quick response with low cost. There are no recall- or interview-biases. 

However, patients’ compliance as well as the indications of drug therapy and the use of 

over-the-counter (OTC) drugs are unknown (Garbe and Suissa 2007). 

Pharmacoepidemiological studies carry also some specific methodological challenges 

like immortal time bias, confounding by indication, and depletion of susceptibles 

(Garbe and Suissa 2007). To illustrate and understand confounding factors it is 

recommended to use causal diagrams or directed acyclic graphs (Schneeweiss 2007, 

Greenland et al. 1999). The use of propensity scores is proposed as a new method of 

adjusting for covariate imbalances (Garbe and Suissa 2007).  

In register studies one special characteristic of the data is that the information has not 

been gathered for research purposes. The features in data impede register-based 

research compared with other quantitative research especially when combining data 

from different register sources. (retki.stakes.fi/EN/index.htm) 

2.4.2 Data sources in pharmacoepidemiological research  

The first approach in pharmacoepidemiological studies was based on spontaneous 

reports of drug-related morbidity or mortality. Later controlled studies have been 



Review of the literature 

 

41 

performed to examine whether the outcomes occur more often in an exposed than in 

unexposed population. (Strom 2005) 

After the thalidomide disaster in the early 1960s WHO set up its International Drug 

Monitoring Program. An independent centre in Uppsala, Sweden is responsible for the 

collection of data about ADRs from 95 countries (in 2009) around the world, especially 

from the WHO member states, and the generation of signals of drugs which might 

possibly have problematic side effects. Uppsala Monitoring Centre receives more than 

half a million individual case safety reports annually and holds more than 4.7 million 

active reports in its database. (www.who-umc.org) In Finland physicians, dentists, and 

pharmacists are asked to report any noticed or suspected adverse drug reactions to the 

national register from which the gathered information is forwarded to WHO 

(www.fimea.fi). 

Spontaneous reporting schemes are effective in the recognition of ADRs occurring 

shortly after initiation of the drug therapy but less successful in identifying reactions 

with long induction periods. Spontaneous reporting systems suffer from underreporting 

and, on the other hand, some ADRs are more likely to be reported than others because 

of their known association with the therapy. It is noteworthy that one false case report 

may lead to misconception and numerous false ADR reports. This phenomenon is 

called media bias. (Garbe and Suissa 2007) 

A great number of pharmacoepidemiological studies have been conducted as field studies, 

but thereafter existing data sources, including multipurpose cohort studies or large 

health databases, have been used increasingly. Record linkage study databases can be 

divided into two categories: administrative databases and physician-based databases. 

Pharmacy-based prescription databases may be included in both categories depending on 

the local practice. (Garbe and Suissa 2007) 

As an example of an administrative database the Saskatchewan Health Database based 

on a health insurance program include the patient records of more than one million 

inhabitants living in Saskatchewan province, Canada. All the residents of the province 

have been enrolled in the publicly funded health system which makes the population 

representative and fairly stable (compared with the situation in the US, for example, 

where the insurance policy is over-representing social welfare recipients). The 

systematic data collection has been conducted since 1962 and computerized since 

1976. The data include population registry, cancer registry, hospitalization information, 

medical services data, outpatient prescription drug information, and vital statistics. 

More than 100 pharmacoepidemiological studies have been completed using the 

Saskatchewan Health Database as the data source. (www.health.gov.sk.ca, Garbe and 

Suissa 2007) 

The General Practice Research Database (GPRD), as an example of a physician-based 

database, is a database of anonymized longitudinal medical records from primary care. 
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Since 1987 electronic data has been collected from 488 primary care practices 

throughout the United Kingdom covering about 5.5% of the population. Containing 

comprehensive observational data of 39 million person years from clinical practice, it 

is a valuable tool for academic research. There are over 550 research papers published 

in peer-reviewed journals. GPRD includes also lifestyle information parameters (body 

mass index, height, weight, and smoking and alcohol consumption) which are 

important confounders not usually recorded in health databases. (www.gprd.com) 

2.4.2.1 Finnish registers for pharmacoepidemiological use 

In Finland we have long traditions of maintaining registers. The general register of 

vital statistics including births, deaths, and marriages was initiated as early as 1749. 

The first nationwide computerized register was Cancer Register established in 1952. 

Registration of new cases of tuberculosis and sexually transmitted diseases was 

initiated in the 1950s. In the 1960s computerized registers of congenital malformations, 

occupational diseases, adverse drug reactions, causes of death, as well as the first 

version of the Hospital Discharge Register were introduced. (Gissler and Haukka 2004) 

Current nationwide health registers are presented in Table 2.8. 

The system of identification numbers was launched in the 1960s along with the general 

health insurance. All Finnish citizens and permanent residents of Finland have a unique 

personal identification number, also known as identity number or social security 

number. This provides good opportunities for compilation of health and social welfare 

data. The legislation from 1987 (revised in 1999 to meet EU requirements) includes 

strict data protection laws prohibiting the collection of sensitive health and social 

information but an exemption provides for data collection for statistical and scientific 

purposes aiming to improve health and welfare. The institution maintaining the register 

has the right to grant an authorization for a researcher, but when hospital records are 

linked to register data the permission must be applied for from the Ministry for Social 

Affairs and Health. Statement from an ethics committee is not obligatory in register 

studies. (Gissler and Haukka 2004) 

Finland, as well as the other Nordic countries, provides excellent possibilities for high-

quality register-based research. However, there are still some obstacles hindering 

effective use of register data. The Finnish Information Centre for Register Research 

(ReTki) was introduced in the beginning of the 21st century aiming to promote the use 

of national registers for research purposes, particularly in social and health sciences. 

(retki.stakes.fi/EN/index.htm) 
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3 AIMS OF THE STUDY 

The overall aim was to study the prevalence and clinical consequences of cytochrome 

P450-mediated drug-drug interactions with a pharmacoepdemiological approach. The 

specific aims were: 

1.  To investigate the prevalence of DDIs between drugs inhibiting the activity of 

CYP2C9 or CYP2D6 and the prodrugs losartan, codeine, and tramadol 

2.  To study the prevalence and clinical consequences of CYP2C9 inhibitor use 

together with the insulin secretagogues glibenclamide, glimepiride, and glipizide 

in hospitalized type 2 diabetes mellitus patients 

3.  To investigate the prevalence of concomitant use of CYP3A4 inhibitors and 

inducers with simvastatin, lovastatin and clopidogrel, and its clinical 

consequences both in hospital and open care settings 

4.  To study the prevalence and clinical consequences of interactions between 

statins and fibrates, and to characterize the prevalence and clinical effects of the 

use of atorvastatin by patients on clopidogrel 

 

 



Materials and methods 

 

45 

4  MATERIALS AND METHODS 

4.1  Data sources 

4.1.1  Turku University Hospital patient registers  

At Turku University Hospital the complete information on the medication of all 

patients has been prospectively recorded by nurses into an electronic Unix-based 

database since the beginning of 1996. The laboratory data has been in electronic form 

since 1994. The laboratory database contains information not only for hospitalized 

patients but includes also information on tests performed in several health centres 

within the service area of the hospital. The Finnish Multilab software forms an 

aggregate laboratory database. The laboratory tests can be offered and the results 

followed by this standardized cache operating system. Also the traditional patient files 

are still archived. 

4.1.2  National Prescription Register 

The National Prescription Register of Kela, the Social Insurance Institution of Finland 

exists since 1994 and includes all reimbursed medication purchases. The register has 

been created for administrative purposes but also researchers can be granted 

permission to use the databank. The information is collected monthly from all 

pharmacies and includes about 25 million prescriptions every year. Information on the 

indication of the medication is scarce but further information may be available 

indirectly if the patient is entitled to special reimbursement. Medicines used in 

hospitals, over-the-counter (OCT) drugs, and relatively inexpensive packages are 

examples of drug treatments that are not registered in the database. (Klaukka 2001) 

4.1.3  Finnish Care Register 

The Finnish Care Register (HILMO), initially known as Hospital Discharge Register, 

includes data of hospital discharges and treatment periods in hospitals. It is the most 

often used register in health care research in Finland. The HILMO register has been in 

use since the 1960s and gathers now data on about 1.2 million hospital discharges 

annually. Validation studies have shown that HILMO contains 95% of all hospital 

discharges and, when compared against corresponding medical records, the most 

relevant information, like diagnoses and surgical procedures, were recorded correctly 

in 95% of the discharges. (www.stakes.fi/verkkojulkaisut/papers/DP1-2006.pdf) The 



Materials and methods 

 

46 

current register keeper is the National Institute for Health and Welfare 

(www.thl.fi/en_US/web/en/Home). 

4.1.4  Causes of Death register  

The Causes of Death register is produced by Statistics Finland. The register consists of 

statistics on causes of death and on trends in mortality. Statistics Finland also 

maintains an archive of death certificates, which have been available since 1936. Since 

1969 the data has been available as a longitudinal file and since 1996 the ICD-10 

classification system (see chapter 4.1.7) has been in use. The statistics on causes of 

deaths are produced annually. (www.stat.fi/til/ksyyt/index_en.html) 

4.1.5  The Finnish ADR register 

The Finnish Medicines Agency Fimea, earlier National Agency for Medicines, is 

responsible for continuous drug safety monitoring. In addition to that, Fimea maintains 

the adverse drug reaction register. The Finnish ADR register is a compilation of 

individual ADR reports and has been available since the 1960s. The data is extracted 

from reports from holders of marketing authorizations and from spontaneous reports 

from health care professionals. Spontaneous reporting system is considered important 

since especially rare ADRs can be detected only after wider use when divergent patient 

populations are treated. Fimea collects information on suspected ADRs, especially 

when they are serious, unexpected, or the suspected drug is new and has been on the 

market less than two years. It is noteworthy that the products may also lack efficacy or 

have adverse effects when used in combination with other medicines. (www.fimea.fi) 

4.1.6  ATC codes  

The Anatomical Therapeutic Chemical (ATC) classification system created and 

updated by WHO Collaborating Centre for Drug Statistics Methodology in Norway 

divides substances into different groups according to the organ or system on which 

they act and their therapeutic, pharmacological and chemical properties. The 

classification has five different levels (see Table 4.1). The first level contains 14 main 

groups. The second level describes pharmacological/therapeutic subgroups, the third 

and fourth levels are chemical/pharmacological/therapeutic subgroups, and the fifth 

level is the chemical substance. (www.whocc.no)  
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Table 4.1 Structure of ATC codes with glibenclamide ATC as an example (www.whocc.no) 
    

Level Symbol Example Definition 

1 letter A alimentary tract and metabolism 
2 two numbers A10 drugs used in diabetes 
3 letter A10B blood glucose lowering drugs, excl. insulin 
4 letter A10BB sulfonamides, urea derivatives 
5 two numbers A10BB01 glibenclamide 

4.1.7  ICD-10 codes  

International Classification of Diseases (ICD) is used to classify diseases and other 

medical disorders recorded on many types of health and vital records including death 

certificates and health records like morbidity statistics derived from hospital case 

records and discharge data. ICD is an internationally recognized classification system 

and a statistical tool for between-country comparisons for clinical, epidemiological, 

and quality purposes. When WHO was founded in 1948 it took over the responsibility 

for the ICD when the sixth revision was introduced but the classification originates 

from the International List of Causes of Death initiated in the 1850s. The current tenth 

revision of ICD, ICD-10, by the World Health Assembly was adopted in the Nordic 

countries between 1994 and 1999. (www.who.int/en/, www.helsedirektoratet. 

no/nordclass_english/) 

4.1.8  NCSP codes  

The Nordic Medico-Statistical Committee (NOMESCO) published the first edition of 

the NOMESCO Classification of Surgical Procedures (NCSP) in 1996. Finland 

introduced the national version NCSP-F in 1997. (www.helsedirektoratet. 

no/nordclass_english/) 

4.2  Study subjects and methods 

The drug-drug interactions of cytochrome P450 enzyme substrates losartan, codeine, 

tramadol, lovastatin, simvastatin, glibenclamide, glimepiride, glipizide, and clopidogrel 

were studied with interacting drugs listed in Table 4.2. The interacting drugs were 

identified by performing literature searches in the MEDLINE database 

(www.ncbi.nlm.nih.gov/pubmed/). Also the book Stockley’s Drug Interactions 

(Stockley 2002b) and an interaction card on CYP-mediated DDIs compiled for 

physicians’ checklist [klifa.utu.fi/interaktiokortti.pdf (in Finnish)] were referred in 

Studies I and IV, respectively. 
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In addition to inhibitors and inducers of relevant CYP isoenzymes, concomitant use of 

fibrates with lovastatin and simvastatin was studied. The use of fibrates increases the 

risk of muscular toxicity of statins (Williams and Feely 2002). Cases of life-

threatening, even fatal, rhabdomyolysis have been published (Pierce et al. 1990, van 

Puijenbroek et al. 1996, Federman et al. 2001, Kursat et al. 2005, Unal et al. 2008).  

A CYP3A4 substrate atorvastatin has been shown to inhibit clopidogrel metabolism by 

more than 90% in vitro (Clarke and Waskell 2003, Jacobsen et al. 2000) and attenuate 

clopidogrel activation as measured by platelet aggregation inhibition ex vivo (Lau et al. 

2003, Neubauer et al. 2003). However, later in vivo (Wienbergen et al. 2003, Saw et al. 

2003, Mukherjee et al. 2005, Saw et al. 2007, Lotfi et al. 2008, Geisler et al. 2008) and 

ex vivo studies (Muller et al. 2003, Mitsios et al. 2004, Serebruany et al. 2004, 

Gorchakova et al. 2004) show no difference in outcomes between the patients using 

CYP-metabolized statins or non-CYP statins with clopidogrel. Only one clinical study 

indicates that the use of atorvastatin or other substances potentially inhibiting CYP3A4 

activity has been associated with increased risk of cardiovascular outcome after 

percutaneous coronary intervention in clopidogrel-treated patients when compared with 

clopidogrel alone (Brophy et al. 2006). Because the role of atorvastatin as CYP3A4 

inhibitor is controversial, it was excluded from the inhibitor group but analyzed as a 

separate study group in the clopidogrel study (Study IV). (Table 4.2) 

The medication data was reviewed and thereby the study patients, both in Turku 

University Hospital (Studies I–IV) and nationwide in Finland (Studies II and IV), 

identified by searching medication registers using the ATC codes (see chapter 4.1.6) 

The ATC codes of the drugs included in the final analyses are listed in Table 4.2. Only 

pharmaceutical dosage forms leading to systemic exposure were included. The 

alterations of the ATC codes during the study years were taken into account, for 

example the ATC codes of statins have been changed from group B04AB to C10AA 

(www.whocc.no). 

Table 4.2 The ATC codes of the study drugs found in the searches and included in the analyses 
with the related study numbers. The lists involve the ATC changes during the study years. 
 

Study drugs ATCs  Study number 

substrates      
losartan C09CA01 C09DA01   I 

codeine * M01AE51 N02AA59 N02AA79  I 
tramadol N02AX02 N02AX52   I 
lovastatin B04AB02 C10AA02   II 

simvastatin B04AB01 C10AA01   II 
glibenclamide A10BB01    III 

glimepiride A10BB12    III 
glipizide A10BB07    III 

clopidogrel B01AC04    IV 
CYP2C9 inhibitors      

amiodarone ** C01BD01    I, III 
fluconazole ** J02AC01    I, III 
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Study drugs ATCs Study number 

fluvoxamine ** N06AB08    I, III 
gemfibrozil C10AB04    I, III 

metronidazole ** A02BD02 A02BD03 J01XD01 P01AB01 I, III 
miconazole ** A01AB09 † A07AC01 J02AB01  I, III 

phenytoin N03AB02 N03AB52   I 
sulfamethoxazole ** ‡ J01EC01 J01EE01   I, III 

tamoxifen L02BA01    I, III 
trimethoprim J01EA01 J01EE01 J01EE02  III 

valproate N03AG01    III 
zafirlukast R03DC01    I, III 

CYP2D6 inhibitors      

celecoxib M01AH01    I 
chloroquine P01BA01    I 

chlorpromazine N05AA01    I 
clomipramine N06AA04    I 

dextropropoxyphene M03BB53 N02AC04 N02AC54 N02AC74 I 
flecainide C01BC04    I 
fluoxetine N06AB03    I 

hydroxychloroquine P01BA02    I 
levomepromazine N05AA02    I 

moclobemide N06AG02    I 
paroxetine N06AB05    I 

propafenone C01BC03    I 
quinidine C01BA01 C01BA51 C01BA71  I 

terbinafine D01BA02    I 
thioridazine N05AC02    I 

CYP3A4 inhibitors      

clarithromycin A02BDXX  J01FA09   II, IV § 
cyclosporine L04AA01    II, IV 

diltiazem C08DB01    II, IV 
erythromycin J01FA01    II, IV § 
fluconazole J02AC01    IV 
fluoxetine N06AB03    IV 

itraconazole J02AC02    II, IV § 
ketoconazole J02AB02    II §, IV § 
telithromycin J01FA15    IV § 

verapamil C08DA01 C08DA51 C09BB10  II, IV 
CYP3A4 inducers      

carbamazepine N03AF01    II, IV 
dexamethasone C05AA09 H02AB02   IV § 
phenobarbital N03AA02    II # 

phenytoin N03AB02 N03AB52   II, IV 
rifampicin J04AB02 J04AM02   II #, IV § 

others      
bezafibrate B04AC02 C10AB02   II 
clofibrate B04AC01 C10AB01   II # 

gemfibrozil B04AC04 C10AB04   II 
atorvastatin C10AA05       IV 

* only as analgesic       
** CYP2C9 inhibitors considered clinically most relevant in Study III 
† oral gel, the only topical drug form included in the studies 
‡ in Finland all sulphamethoxazole products are combinations including also trimethoprim  
§ found in outpatient data only 
# found in inpatient data only 
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A single subject could have more than one interaction period during the follow-up and 

each of them was counted in the analysis separately; multiple periods of the same 

group of interacting drugs were allowed but patients receiving both CYP2C9 inhibitor 

and CYP2C9 inducer (Study III) or CYP3A4 inhibitor and CYP3A4 inducer (Studies 

II and IV) during the study periods were excluded. Patients receiving CYP3A4 

inhibitor or CYP3A4 inducer with fibrate were included in the fibrate group (Study II) 

and patients receiving CYP3A4 inhibitor and atorvastatin were included in the 

CYP3A4 inhibitor group. In Study I phenytoin was regarded as CYP2C9 inhibitor (see 

Table 2.7) but in Study III the patients receiving phenytoin were excluded due to 

uncertain interaction potential of this possible competitive CYP2C9 inhibitor (Fischer 

et al. 2002). The controls did not receive interacting medication at any time during the 

whole study periods. 

The selections of the study patients were exposure-based so that the designs would be 

considered as cohort studies. However, the controls were not matched to the cases but 

all the patients receiving the study substrates without defined interacting drugs (Table 

4.2) were seen as controls.  

4.2.1  Inpatients  

Exposure to study substrates with or without concomitant interacting treatment 

(Studies I–IV) was searched retrospectively in the Turku University Hospital electronic 

medication database (chapter 4.1.1). In addition to patient identification, the following 

drug-related data was collected from the database: trade name, strength, dosage form 

and ATC code of the drug; dosage of the drug; starting and stopping dates of 

medication and the ward. The data was reviewed manually to ascertain the adequate 

allocation of the patients to the different study groups. Concomitant use was 

considered as a potential interaction and the patient was classified to the interaction 

group if the co-administration of chosen drug pairs overlapped at least for two days. 

The study population consisted of all patients and treatment periods in the wards of 

internal medicine (n = 8), pulmonary diseases (n = 3), neurology (n = 2), and oncology 

(n = 2) in Turku University Hospital during the study periods (see Figure 4.1). These 

wards were considered as medication intensive and the stay of patients in these wards 

long enough to allow meaningful follow-up. Patients treated in the emergency room, 

intensive care units, or outpatient clinics were not included in the study. The oncology 

wards were included in Study I only because in these wards the use of analgesics is 

voluminous but, on the other hand, the disease status of the patients complicated.  

The personnel of the wards in Turku University Hospital were not aware of the study. 

During the study periods there was no computerized prescription support tool warning 

for drug-drug interactions integrated with the hospital data processing systems. 
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To assure the quality of the data a half year run-in period was allowed after the 

initiation of the medication database in the beginning of 1996 before the start date of 

the data searches, July 1, 1996 in Studies I–III (see Figure 4.1). Glimepiride was 

launched onto the Finnish market on July 7, 1997 [namweb.nam.fi/namweb/ 

do/haku/process (in Finnish)]. The beginning of the study period in Study III thus 

included glibenclamide and glipizide only. Clopidogrel became available in Finland on 

July 15, 1998 and the study period of Study IV was decided to start on January 1, 

1999. 

In Study IV, after identifying the patients in the electronic database, the archived 

patient files were studied manually. This gave further information on the patients, for 

example indication of the clopidogrel treatment, predisposing factors (diabetes 

mellitus, cardiac insufficiency, and hypertension), and other concomitant medication. 

The concomitant medication was referred as drugs in use on discharge day. The co-

medication was transformed into ATC codes and divided into six categories: the codes 

beginning with B (blood and blood forming organs), C (cardiovascular system), J 

(antiinfectives for systemic use), M (musculo-skeletal system), N (nervous system), 

and R (respiratory system). In addition, the drugs increasing or decreasing bleeding 

risk were categorized as listed in Table 4.3. In case less than five levels of the ATC 

classification (see chapter 4.1.6) are mentioned, all the substrates of the subgroup are 

included. 
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In Studies II–IV the clinical outcomes of the potential interactions were assessed by 

examining the patients’ routinely determined laboratory values in the laboratory 

database of Turku University Hospital. The analyzed laboratory parameters are listed 

in Table 4.4. The laboratory data of the already identified study patients was reviewed 

by using automatic data processing (ADP) codes of National nomenclature of 

laboratory tests maintained by the Association of Finnish Local and Regional 

Authorities (www.kunnat.net/k_etusivu.asp?path=1;161;279). The changes made to the 

ADP codes during the study years were taken into account. 

Table 4.4 Laboratory parameters measuring clinical outcomes of the potential interactions 

   
Laboratory parameter Abbreviation * Study number 

total cholesterol fP-Chol II, IV 
high-density lipoprotein cholesterol fP-HDL-Chol II, IV 

high-density lipoprotein cholesterol / 
total cholesterol ratio HDL-Chol/Chol-ratio II, IV 

low-density lipoprotein cholesterol fP-LDL-Chol II, IV 
triglycerides fP-Trigly II, IV 

creatine kinase P-CK  II, IV 
alanine amino transferase P-ALAT II, III 

gamma-glutamyl transferase P-γGT II, III 
fasting plasma glucose fP-Gluc  III 

glycosylated haemoglobin B-GHb-A1C  III 
plasma potassium P-K III 

plasma sodium P-Na III 
urinary glucose bodies U-Gluc III 
urinary ketone bodies U-Keto III 

haematocrit B-HCT IV 
haemoglobin B-Hb IV 

leucocyte count fB-Leuc IV 
erythrocyte count B-Eryt IV 

mean corpuscular haemoglobin E-MCH IV 
mean corpuscular volume E-MCV IV 

thrombocyte count B-Trom IV 
* f, fasting; P, plasma; B, blood; U, urine; E, erythrocyte  
 

In Studies III and IV the follow-up period of the laboratory value analyses was the 

same as the drug exposure period (interaction or control) with an exception of the 

CYP3A4 inducer group in Study IV. For this particular group the values measured 

within one day after the beginning and one week after the end of the interaction were 

taken into account. If the exact stopping date of CYP2C9 inhibitor exposure could not 

be ascertained in Study III (the patient was discharged with ongoing interacting 

medication, for example) the duration of the CYP2C9 inhibitor use was approximated 

according to standard clinical practice: trimethoprim 5 days, metronidazole 14 days, 

fluconazole 5 weeks, and miconazole 5 weeks. Treatment with other CYP2C9 

inhibitors was assumed to be continuous and all the recorded laboratory values were 

included in the analyses. If both the starting and stopping dates of the sulphonylurea 

treatment were unclear the patient was excluded from the laboratory analyses. In Study 
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II the laboratory values that were measured within seven days after the beginning and 

seven days after the end of the exposure were included. In addition, only patients with 

a minimum of seven days’ exposure were included. The maximum follow-up for 

laboratory test results was one year in Studies II–IV. 

In case of several measurement values during follow-up the average of the values was used 

and the results are reported as mean values. In Study IV the blood haemoglobin data was 

collected also as the minimum values. In Study III the urinary glucose and ketone bodies 

were handled as positive or negative findings. If all the findings were negative the case was 

classified as negative, otherwise positive. For other parameters in Study III (see Table 4.4) 

in addition to average the minimum and maximum values were collected.  

In Study II the risk of being outside the reference target range was calculated based on 

the target values for laboratory determinations valid in Finland in 1999 (i.e. the mid-point 

of the study period): fP-Chol < 5.0 mmol/l; fP-Trigly < 2.0 mmol/l; fP-HDL-Chol > 1.0 

mmol/l for men, > 1.2 mmol/l for women; HDL-Chol/Chol-ratio > 0.25; fP-LDL-Chol < 

3.5 mmol/l; P-CK < 285 U/l for men, < 165 U/l for women; P-γGT < 90 U/l for men, < 

75 U/l for women; and P-ALAT < 60 U/l for men, < 45 U/l for women. (See definitions 

for abbreviations in Table 4.4.) The target range for fasting plasma glucose is 4–6 

mmol/l. This was used when estimating the minimum fP-Gluc values in Study III. 

4.2.2  Outpatients  

Exposure to lovastatin, simvastatin, and clopidogrel with or without concomitant 

interacting treatment was searched retrospectively in the Prescription register of Kela, 

the Social Insurance Institution of Finland (see chapter 4.1.2).  

In Study II all the prescriptions dispensed in the pharmacies that were reimbursed 

during a three-month study period (from April 1 to June 30, 2001) were included in the 

searches. The patients that purchased an interacting drug (see Table 4.2) within the 

same three-month period were considered to be exposed to concomitant use. The three-

month period was chosen because the maximum reimbursable amount per purchase is 

the supply for three months of treatment. The second quarter year was chosen because 

at the end of the year patients may hoard drugs to exploit the reached annual maximum 

of out-of-pocket cost after which the necessary medicines are free. Due to this 

phenomenon the use of the first quarter year usually underestimates and the last 

overestimates drug consumption. 

Clopidogrel became reimbursable in 2002. The outpatients of Study IV were identified 

by searching the prescriptions for clopidogrel and interacting drugs in years 2002–2004. 

The duration of clopidogrel treatment was calculated assuming a uniform 75 mg per day 

dosing, thus the number of the purchased tablets equaled the number of treatment days. 

A grace period of less than 14 days between two calculated clopidogrel treatment periods 

was allowed and the medication was considered to be continuous; otherwise a new 
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treatment period was considered to start after the gap. An interaction was assumed when 

the prescription of the potential interacting drug was purchased within the clopidogrel 

period. Patients with certain long-lasting diseases are entitled for a higher refund from 

prescription medicines. We collected the information on patients’ status for special 

reimbursement for diabetes mellitus, cardiac insufficiency, and hypertension. 

The clopidogrel treatment related complications, hospitalizations, and deaths due to 

thromboembolism and bleedings listed in Tables 4.5 and 4.6, were searched in the Finnish 

Care Register and Causes of Death register (chapters 4.1.3 and 4.1.4). In case the exact ICD-

10 or NCSP is not mentioned all the existing codes of the group are included (e.g. I20.0 refers 

to codes I20.0, I20.01, I20.02, I20.03, I20.08, and I20.09). Also the information of deaths for 

any reason was reviewed from the Causes of Death register to measure the overall mortality 

and to avoid overestimation of the lengths of the follow-up periods.  

Table 4.5 The ICD-10 codes used for data searches in the Finnish Care Register and Causes of 
Death register in Study IV (apps.who.int/ classifications/apps/icd/icd10online/) 
  

Complication ICD-10 

thrombosis  
unstable angina  I20.0  

acute myocardial infarction I21 
subsequent myocardial infarction  I22 

cerebral infarction  I63 
arterial embolism and thrombosis  I74 

haemorrhage  
iron deficiency anaemia  D50.0 

acute posthaemorrhagic anaemia  D62 
haemorrhagic condition, unspecified  D69.9 

conjunctival haemorrhage  H11.3  
hyphaema  H21.0 

choroidal haemorrhage and rupture  H31.3  
retinal haemorrhage  H35.6  

vitreous haemorrhage H43.1  
otorrhagia  H92.2  

haemopericardium as current complication following acute myocardial infarction I23.0  
subarachnoid haemorrhage  I60 
intracerebral haemorrhage  I61  

other non-traumatic intracranial haemorrhage  I62 
oesophageal varices with bleeding  I85.0  

haemothorax  J94.2  
gastric ulcer  K25  

duodenal ulcer  K26  
peptic ulcer, site unspecified  K27  

gastrojejunal ulcer  K28  
haemorrhage of anus and rectum  K62.5  

haemoperitoneum  K66.1  
melena  K92.1  

gastrointestinal haemorrhage, unspecified K92.2  
haemorrhage from respiratory passages  R04  

unspecified haematuria  R31  
haemorrhage, not elsewhere classified R58  

haemorrhage and haematoma complicating a procedure, not elsewhere classified T81.0 
unintentional cut, puncture, perforation, or haemorrhage during surgical and medical care Y60 
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Table 4.6 The NCSP codes used for data searches in the Finnish Care Register in Study IV 
(http://194.89.160.67/codeserver/distribution-action.do?action=find&type=1 &key=849) 
  

Reoperation NCSP 

coronary arteries  
angiography of heart and/or coronary arteries FN1AC 

endovascular dilatation of coronary arteries (PTCA) FN1AT 
extensive angiography of heart and/or coronary arteries FN1BC 

extensive endovascular dilatation of coronary (PTCA) arteries FN1BT 
very extensive angiography of heart and/or coronary arteries FN1CC 
connection to coronary artery from internal mammary artery FNA 

connection to coronary artery from gastroepiploic artery FNB 
aortocoronary venous bypass FNC 

aortocoronary bypass using prosthetic graft FND 
coronary bypass using free arterial graft FNE 

peripheral arteries  
reoperation for superficial haemorrhage in surgery of heart and major thoracic vessels FWD00 
reoperation for thrombosis or embolus in surgery of heart and major thoracic vessels FWG00 

cerebral artery PTA PA2AT 
cerebral artery extensive PTA PA2BT 

cerebral artery very extensive PTA PA2CT 
carotis artery PTA PA6AT 

carotis artery PTA with stent PA6BT 
carotis artery very extensive PTA PA6CT 

extensive carotis artery PTA with stent PA7XT 
very extensive dilatation of carotid artery with stent PA7YT 

thrombectomy or embolectomy of arteries of aortic arch and branches PAE 
thrombendarterectomy of arteries of aortic arch and branches PAF 

bypass from arteries of aortic arch and branches PAH 
insertion of endovascular graft into arteries of aortic arch and branches PAQ 

upper extremity artery PTA PB1AT 
extensive upper extremity artery PTA PB1BT 

thrombectomy or embolectomy of arteries of upper extremity PBE 
thrombendarterectomy of arteries of upper extremity PBF 

bypass from arteries of upper extremity PBH 
thrombectomy or embolectomy of visceral arteries PCE 

thrombendarterectomy of visceral arteries PCF 
bypass from suprarenal abdominal aorta and visceral arteries PCH 

insertion of endovascular graft into visceral arteries PCQ 
PTA of aorta PD1AT 

extensive PTA of aorta PD1BT 
implantaion of endoprothesis to aorta in conjunction to PTA PD1YT 

pelvic artery PTA PD3AT 
pelvic artery extensive PTA PD3BT 

thrombectomy or embolectomy of infrarenal abdominal aorta and iliac arteries PDE 
thrombendarterectomy of infrarenal abdominal aorta and iliac arteries PDF 

bypass from infrarenal abdominal aorta and iliac arteries PDH 
insertion of endovascular graft into infrarenal abdominal aorta and iliac arteries PDQ 

femoral artery PTA PE1AT 
femoral artery extensive PTA PE1BT 

thrombectomy or embolectomy of femoral artery and branches PEE 
thrombendarterectomy of femoral artery and branches PEF 

bypass from femoral artery and branches PEH 
insertion of endovascular graft into femoral artery and branches PEQ 

intravascular dilatation of arteries of knee, lower leg and ankle (PTA) PF1AT 
extensive PTA of arteries of knee, lower leg and ankle PF1BT 

thrombectomy or embolectomy of popliteal artery and arteries of lower leg and foot PFE 
bypass from femoral artery to infrapopliteal arteries and  

from popliteal artery to arteries of lower leg and foot PFH 
insertion of endovascular graft into popliteal artery or artery of lower leg PFQ 

percutaneous plastic repair of bypass from femoral or popliteal artery to infrapopliteal arteries PFU85 
PTA of arteries on several areas PG1BT 

abbreviations: PTCA, percutaneous transluminal coronary angioplasty; PTA, percutaneous transluminal 
angioplasty 
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 Rhadomyolysis cases in Finland during the seven year-time window of hospital-based 

research were inquired from the Finnish ADR register of Fimea (chapter 4.1.5). 

4.3  Statistical analyses 

In the hospitalized patients, chi square was used to test between-group differences in 

sex distribution (Studies I–IV) as well as in ward distribution (Studies I–III). Age 

differences were tested with one way analysis of variance (ANOVA) or with Mann-

Whitney test (Studies II–IV and Study I, respectively). Differences in mean daily doses 

were tested with unpaired t-test (Study I) or with one way ANOVA (Studies II–III). In 

Study IV Kruskal-Wallis Test was used for testing the between-group differences in 

number of concomitant drugs other than affecting to CYP3A4 metabolism. In Studies 

II–III the results are given both for separate substrates (lovastatin and simvastatin or 

glibenclamide, glimepiride, and glipizide) and for pooled statin and sulphonylurea 

groups. 

In addition to univariate analyses, laboratory values were also compared between the 

groups with analysis of covariance (ANCOVA) after adjustment for age, sex, and mean 

dose (Study II); age, sex, mean dose, and ward (Study III); age, sex, and number of 

drugs increasing and inhibiting bleeding risk (Study IV). In Study III the above 

mentioned analyses were repeated with the data for CYP2C9 inhibitors considered 

clinically most relevant based on the literature (amiodarone, fluconazole, fluvoxamine, 

metronidazole, miconazole, sulphamethoxazole). Because of positively skewed 

distribution, triglyceride values were log-transformed before analysis in Study II. 

Logistic regression analysis was used for between-group comparison of the risk being 

outside the target range of the laboratory values (Study II).  

In the nationwide part of Study IV the patients were included in the control group until 

the purchase of the interaction medication to avoid immortal time bias. When once 

considered as an interaction case, the patient could not move back to the control group 

even the exposure for the interacting medication had ended. Between-group differences 

were tested with one way ANOVA for age and Cochran-Mantel-Haenszel for sex, 

diabetes mellitus, cardiac insufficiency, and hypertension. The maximum follow-up 

period was one year from the start of the interaction period. For control patients the 

follow-up was prolonged with the median of the lead time to the concomitant 

medication, which made the maximum 412 days. The first clopidogrel treatment 

periods were included in the survival analyses. The tested endpoints were overall 

mortality, thrombosis mortality, haemorrhage mortality, thrombosis complications, 

haemorrhage complications, combined thrombosis endpoints, and combined 

haemorrhage endpoints. They were analyzed separately by using Cox proportional 
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hazard with age, sex, diabetes mellitus, cardiac insufficiency, and hypertension as 

covariates in the model.  

Statistical analyses were performed with GraphPad Prism version 3.03 and SPSS 

version 13 in Studies I–II, and with SAS System for Windows version 9.1 in Studies 

II–IV. P-values less than 0.05 were considered statistically significant. 

4.4.  Ethics and approvals  

In general, all register data include information that is considered confidential 

according to the Finnish Constitution (the right to privacy). However, the Finnish 

legislation on data protection allows the use of administrative data for appropriate 

scientific, historical, and statistical research purposes. This legislation appoints 

enforcing authorities to make sure that individual rights are not violated when 

administrative data sources are exploited for research. Thus in order to obtain register 

data for research purposes an authorization from the register controller is needed. 

There is also a compulsory notification of the new created registers made by automatic 

data processing. Non-invasive studies do not need opinion from the ethics committee. 

The study protocols of Studies I–IV were approved by the top management of Turku 

University Hospital responsible for all hospital registers and by the Office of the Data 

Protection Ombudsman for which also the register notifications were made. The 

nationwide data was collected with the help and permission of Kela, National Research 

and Development Centre for Welfare and Health (current name National Institute for 

Health and Welfare), Statistics Finland, and National Agency for Medicines (current 

name Finnish Medicines Agency). 

No conflicts of interests have been expressed by the authors of the Studies I–IV. 
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5  RESULTS 

5.1  Incidences of potential DDIs and demographics of the study subjects  

In the hospital-based study population (described in Figure 4.1) CYP-mediated DDIs 

were seen in up to 23.5% (relating to glipizide) of the treatment periods (Table 5.1). In 

the patient level the incidence was highest in codeine users: 19.7%. Fibrates were used 

concomitantly with statins in 1.3% of the cases. (Table 5.1) 

The calculations of nationwide DDI frequencies were based on The Prescription 

Register (chapter 4.1.2) covering 97% of the reimbursed prescriptions among the 5.2 

million inhabitants (in 2004, www.stat.fi/index_en.html) in Finland. Among 19,655 

patients, there were 26,302 reimbursed clopidogrel treatment periods in open care 

during the years 2002 to 2004 in Finland. After exclusions (see the criteria in chapter 

4.2) 21,802 treatment periods remained, which were related to 19,654 patients (one 

patient died on the cohort entry day). The majority of these clopidogrel-treated patients 

had only one (76.0%) or two (17.3%) treatment periods; only 0.7% had five or more 

periods. Clopidogrel treatment was concomitant with CYP3A4 inhibitor use in 5.4% of 

the treatment periods, 0.9% with CYP3A4 inducer use, and 19.0% with atorvastatin 

(Table 5.1). During the three-month study period in Study II 72,024 and 19,632 

patients received reimbursed simvastatin and lovastatin, respectively. In 5.2% of all 

statin-treated patients simvastatin or lovastatin was used concomitantly with a 

CYP3A4 inhibitor, in 1.0% with a CYP3A4 inducer, and in 0.6% with a fibrate.  

During the study years the average treatment period was 5.6 days in the chosen wards 

at Turku University Hospital and 5.8 days according to the nationwide HILMO 

register. The most common interacting drugs in concomitant use with the study 

substrates were CYP2C9 inhibitors metronidazole and trimethoprim (the latter 

concerning sulphonylurea users in Study III only), CYP2D6 inhibitor 

hydroxychloroquine, CYP3A4 inhibitor diltiazem, and CYP3A4 inducer 

carbamazepine (Figures 5.1 a–d). Of the fibrates in Study II, bezafibrate was most 

commonly used with statins. 

All statistical significances in sex distributions showed that DDIs occurred more often 

in women than in men with an exception in atorvastatin groups in the clopidogrel study 

(Study IV). Patients in the interaction groups were mainly older than control patients, 

but atorvastatin and CYP3A4 inhibitor (outpatients) treated clopidogrel patients, fibrate 

treated statin patients, and CYP2D6 inhibitor treated tramadol patients were younger 

than the respective controls. There were no clinically relevant differences in doses 

between the interaction and control groups, although some statistically significant 

differences were seen. (Table 5.1) Clopidogrel treatment follows uniform dosing; after 

a loading dose all patients receive 75 mg once a day. 
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Figure 5.1 a The numbers and proportions of different CYP2C9 inhibitors in 
concomitant use with substrates in Studies I and III 
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Figure 5.1 b The numbers and proportions of different CYP2D6 inhibitors in 
concomitant use with substrates in Study I 
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Figure 5.1 c The numbers and proportions of different CYP3A4 inhibitors in 
concomitant use with substrates in Studies II and IV 
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Figure 5.1 d The numbers and proportions of different CYP3A4 inducers in 
concomitant use with substrates in Studies II and IV 
 

 

Based on the special reimbursement data, clopidogrel-treated patients in CYP3A4 

inhibitor group had more often diabetes mellitus and hypertension and patients in 

CYP3A4 inducer group cardiac insufficiency compared with controls. In the 

atorvastatin group clopidogrel-treated patients had more hypertension and less cardiac 

insufficiency diagnoses than the controls. In the inhospital patients the only significant 

between-group difference was that hypertension diagnoses were more common in 

CYP3A4 inhibitor group than in the control group according to archived patient files. 

(Table 5.2) At Turku University Hospital the main indication for clopidogrel treatment 

was percutaneous transluminal coronary angioplasty (PTCA); 77.4% of the cases were 

PTCA patients.  
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Table 5.2 The incidence of predisposing diseases in clopidogrel-treated patients in Study IV 
     
  CYP3A4 inhibitor CYP3A4 inducer atorvastatin control 

DM     
inpatients:     

n 6 1 20 90 
% 18.2 8.3 15.7 16.2 

outpatients:     
n 255  37 740 2578 
% 21.4 * 19.7 18.1 18.2 
 

CI     
inpatients:     

n 2 0 6 18 
% 6.1 0 4.7 3.2 

outpatients:     
n 118 25 258 1261 
% 9.9 13.3 * 6.3 ** 8.9 
 

HA     
inpatients:     

n 21 3 58 209 
% 63.6 * 25.0 45.7 37.7 

outpatients:     
n 537 73 1502 4932 
% 45.1 ** 38.8 36.8 * 34.8 

abbreviations: DM, diabetes mellitus; CI, cardiac insufficiency; HA, hypertension 
* P < 0.05 compared with control 
** P < 0.001 compared with control 
 

There were no between-group differences in the numbers of concomitant drugs 

increasing or decreasing bleeding risk (see Table 4.3) in clopidogrel-treated inpatients 

(Table 5.3). Acetylsalicylic acid was used less often in CYP3A4 inhibitor group than in 

the control group (54.5 vs. 84.3%, P < 0.001). The distributions of concomitant 

medications affecting in blood and blood forming organs, cardiovascular system, 

infections (systemic antiinfectives), musculo-skeletal system, nervous system, and 

respiratory system are presented in Table 5.3.   
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Table 5.3 Concomitant medication other than CYP3A4 inhibitors, CYP3A4 inducers, and 
atorvastatin in clopidogrel-treated patients in Study IV 
     

  
CYP3A4  
inhibitor 

CYP3A4  
inducer 

atorvastatin 
 

control 
 

n of drugs increasing  
bleeding risk *     
mean ± SD 1.39 ± 0.86 1.17 ± 1.03 1.19 ± 0.64 1.16 ± 0.60 

range 0 - 4 0 - 3 0 - 4 0 - 4 
 

n of drugs decreasing  
bleeding risk *     
mean ± SD 0.12 ± 0.33 0.25 ± 0.45 0.14 ± 0.35 0.14 ± 0.34 

range 0 - 1 0 - 1 0 - 1 0 - 1 
 

acetylsalicylic acid     
mean ± SD 0.55 ±  0.51 † 0.75 ± 0.45 0.85 ± 0.36 0.84 ± 0.81 

range 0 - 1 0 - 1 0 - 1 0 - 1 
 

n of B-drugs     
mean ± SD 0.85 ± 0.62 1.00 ± 0.85 1.09 ± 0.51 1.03 ± 0.53 

range 0 - 2 0 - 3 0 - 3 0 - 4 
 

n of C-drugs     
mean ± SD 2.12 ± 1.60 † 2.17 ±  1.70 ** 2.35 ± 1.25 † 3.24 ± 1.36 

range 0 - 6  0 - 5 0 - 7 0 - 8 
 

n of J-drugs     
mean ± SD 0.27 ± 0.57 ** 0.08 ± 0.29 0.05 ± 0.28 ** 0.11 ± 0.34 

range 0 - 2 0 - 1 0 - 2 0 - 2 
 

n of M-drugs     
mean ± SD 0.33 ± 0.60 † 0.08 ± 0.29 0.06 ± 0.24 0.09 ± 0.30 

range 0 - 2 0 - 1 0 - 1 0 - 2 
 

n of N-drugs     
mean ± SD 0.61 ± 0.90 † 1.00 ± 1.21 ** 0.27 ± 0.65 0.25 ± 0.64 

range 0 - 3 0 - 3 0 - 4 0 - 4 
 

n of R-drugs     
mean ± SD 0.73 ± 1.13 † 0.08 ± 0.29 0.10 ± 0.42 0.15 ± 0.57 

range 0 - 4 0 - 1 0 - 3 0 - 5 
abbreviations: SD, standard deviation; B, blood and blood forming organs; C, cardiovascular 
system; J, antiinfectives for systemic use; M, musculo-skeletal system; N, nervous system; R, 
respiratory system  
* See Table 4.3 
** P < 0.05 compared with control 
† P < 0.001 compared with control 
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5.2  Influence of potential DDIs on efficacy and safety laboratory 

parameters 

Simvastatin and lovastatin users in all interaction groups had higher total fasting 

plasma cholesterol concentrations than the controls, P-value being significant when 

analyzing simvastatin and pooled statin groups (Table 5.4). In patients receiving 

CYP3A4 inhibitors or CYP3A4 inducers this difference was explained by significantly 

higher HDL cholesterol concentrations. No significant differences were then seen 

between these groups and the controls in the HDL cholesterol / total cholesterol ratio. 

Patients receiving fibrates had both lower HDL cholesterol concentration and lower 

HDL cholesterol / total cholesterol ratio than the controls. Mean fasting plasma LDL 

cholesterol concentrations were essentially similar in all study groups. In simvastatin 

and pooled statin groups the CYP3A4 inducer treated patients reached the statistical 

significance with LDL cholesterol values of 3.0 ± 0.9 mmol/l (mean  ±  SD) versus 

control values 2.8 ± 0.9 mmol/l (P = 0.010 and 0.009, respectively). Mean triglyceride 

concentrations were constantly higher in fibrate-treated patients than in controls 

receiving only simvastatin or lovastatin in Study II. Also CYP3A4 inhibitor receiving 

simvastatin patients had significantly different triglyceride concentrations from 

controls (1.8 ± 1.5 vs. 1.6 ± 0.9 mmol/l, respectively, P = 0.032). (Table 5.4) 

In Study II the risk (odds ratio, OR) for elevation of total cholesterol concentration 

above the target value (see chapter 4.2.1) was 2.3 (95% confidence interval [CI] 1.5–

3.3, P < 0.001) in patients receiving also CYP3A4 inducers and 2.1 (95% CI 1.2–3.7, P 

= 0.012) in patients receiving fibrates compared with the pooled control group. The 

HDL cholesterol concentration was more often within the target in patients in CYP3A4 

inducer group than in controls (OR 0.6, 95% CI 0.4–0.9, P = 0.014). The opposite was 

seen in fibrate users who had 3.8-fold risk (95% CI 2.2–6.6, P < 0.001) of being 

outside of the target range of HDL cholesterol compared with controls. HDL 

cholesterol / total cholesterol ratio was also more often outside the target in fibrate 

users (OR 6.7, 95% CI 3.1–14.5, P < 0.001). These patients had 13.5-fold risk (95% CI 

6.7–27.2, P < 0.001) of having triglyceride concentrations above the target value. A 

weaker (OR 2.0, 95% CI 1.1–3.6, P = 0.021) but statistically significant risk elevation 

was seen in LDL cholesterol in the fibrate group. 

In Study IV the mean fasting plasma concentrations of total cholesterol and LDL 

cholesterol were lower in atorvastatin group, and HDL cholesterol concentration as 

well as the HDL cholesterol / total cholesterol ratio were higher in CYP3A4 inhibitor 

and inducer groups compared with controls receiving clopidogrel only (Table 5.4). The 

potential interactions with atorvastatin, CYP3A4 inhibitors, or CYP3A4 inducers did 

not affect haematological laboratory parameters in clopidogrel-treated patients (Table 

5.5).  

 



T
a

b
le

 5
.4

 E
ffe

ct
 o

f p
ot

en
tia

l D
D

Is
 o

n 
lip

id
 v

al
ue

s 
in

 s
im

va
st

at
in

-, 
lo

va
st

at
in

-, 
an

d 
cl

op
id

og
re

l-t
re

at
ed

 p
at

ie
nt

s 
 

 
 

 
 

 
S

u
b

s
tr

a
te

 
a

n
d

 g
ro

u
p

 
fP

-C
h

o
l,

  
m

m
o

l/
l 

fP
-H

D
L

-C
h

o
l,

  
m

m
o

l/
l 

H
D

L
-C

h
o

l 
/ 
 

C
h

o
l-

ra
ti

o
, 

%
 

fP
-L

D
L

-C
h

o
l,

  
m

m
o

l/
l 

fP
-T

ri
g

ly
, 

 
m

m
o

l/
l 

 
m

e
a

n
 ±

 S
D

 
m

e
a

n
 ±

 S
D

 
m

e
a

n
 ±

 S
D

 
m

e
a

n
 ±

 S
D

 
m

e
a

n
 ±

 S
D

 

s
im

v
a

s
ta

ti
n

 
 

 
 

 
 

C
YP

3A
4 

in
hi

bi
to

rs
 

5.
0 

± 
1.

1 
* 

1.
33

 ±
 0

.4
3 

* 
27

 ±
 9

 
2.

9 
± 

0.
9 

1.
8 

± 
1.

5 
* 

C
YP

3A
4 

in
du

ce
rs

 
5.

2 
± 

1.
2 

**
 

1.
45

 ±
 0

.5
4 

**
 

28
 ±

 9
 

3.
0 

± 
0.

9 
* 

1.
6 

± 
0.

8 
fib

ra
te

s 
5.

5 
± 

1.
1 

**
 

1.
05

 ±
 0

.3
4 

**
 

20
 ±

 5
 *

* 
3.

0 
± 

0.
9 

3.
3 

± 
2.

6 
**

 
co

nt
ro

ls
 

4.
8 

± 
1.

0 
1.

25
 ±

 0
.3

5 
27

 ±
 8

 
2.

8 
± 

0.
9 

1.
6 

± 
0.

9 
lo

v
a

s
ta

ti
n

 
 

 
 

 
 

C
YP

3A
4 

in
hi

bi
to

rs
 

5.
1 

± 
0.

9 
1.

30
 ±

 0
.3

9 
26

 ±
 8

 
3.

1 
± 

0.
8 

1.
7 

± 
0.

8 
C

YP
3A

4 
in

du
ce

rs
 

5.
3 

± 
0.

9 
1.

35
 ±

 0
.4

6 
26

 ±
 9

 
3.

1 
± 

0.
7 

1.
7 

± 
0.

6 
fib

ra
te

s 
5.

2 
± 

0.
8 

1.
01

 ±
 0

.2
6 

20
 ±

 5
 

3.
0 

± 
0.

9 
2.

8 
± 

1.
3 

* 
co

nt
ro

ls
 

5.
0 

± 
1.

0 
1.

23
 ±

 0
.3

3 
25

 ±
 7

 
3.

0 
± 

0.
8 

1.
8 

± 
1.

0 
b

o
th

 s
ta

ti
n

s
 

 
 

 
 

 
C

YP
3A

4 
in

hi
bi

to
rs

 
5.

0 
± 

1.
1 

* 
1.

32
 ±

 0
.4

2 
* 

27
 ±

 9
 

2.
9 

± 
0.

8 
1.

8 
± 

1.
3 

C
YP

3A
4 

in
du

ce
rs

 
5.

2 
± 

1.
1 

**
 

1.
43

 ±
 0

.5
2 

**
 

28
 ±

 9
 

3.
0 

± 
0.

9 
* 

1.
6 

± 
0.

8 
fib

ra
te

s 
5.

4 
± 

1.
1 

* 
1.

04
 ±

 0
.3

2 
**

 
20

 ±
 5

 *
* 

3.
0 

± 
0.

9 
3.

2 
± 

2.
4 

**
 

co
nt

ro
ls

 
4.

8 
± 

1.
0 

1.
25

 ±
 0

.3
5 

27
 ±

 7
 

2.
8 

± 
0.

9 
1.

6 
± 

0.
9 

c
lo

p
id

o
g

re
l 

 
 

 
 

 
C

YP
3A

4 
in

hi
bi

to
r 

4.
8 

± 
0.

8 
1.

58
 ±

 0
.6

2 
**

 
32

 ±
 1

1 
* 

2.
7 

± 
0.

7 
1.

2 
± 

0.
4 

C
YP

3A
4 

in
du

ce
r 

5.
0 

± 
0.

5 
1.

84
 ±

 0
.5

9 
* 

36
 ±

 6
 

3.
0 

± 
0.

3 
0.

8 
± 

0.
2 

at
or

va
st

at
in

 
4.

1 
± 

1.
2 

* 
1.

09
 ±

 0
.3

4 
28

 ±
 8

 
2.

3 
± 

0.
9 

* 
1.

6 
± 

1.
2 

co
nt

ro
ls

 
4.

6 
± 

0.
9 

1.
13

 ±
 0

.3
1 

26
 ±

 8
 

2.
7 

± 
0.

8 
1.

5 
± 

0.
9 

ab
br

ev
ia

tio
ns

: 
f, 

fa
st

in
g;

 P
, 

pl
as

m
a;

 C
ho

l, 
to

ta
l 

ch
ol

es
te

ro
l; 

H
D

L-
C

ho
l, 

hi
gh

-d
en

si
ty

 l
ip

op
ro

te
in

 c
ho

le
st

er
ol

; 
LD

L-
C

ho
l, 

lo
w

-d
en

si
ty

 l
ip

op
ro

te
in

 
ch

ol
es

te
ro

l; 
Tr

ig
ly

, t
rig

ly
ce

rid
es

; S
D

, s
ta

nd
ar

d 
de

vi
at

io
n 

* 
P

 <
 0

.0
5 

co
m

pa
re

d 
w

ith
 c

on
tro

ls
 in

 A
N

C
O

V
A

 m
ul

tiv
ar

ia
te

 a
na

ly
si

s 
(s

ee
 c

ha
pt

er
 4

.3
 fo

r m
or

e 
de

ta
ils

) 
 

**
 P

 <
 0

.0
01

 c
om

pa
re

d 
w

ith
 c

on
tro

ls
 in

 A
N

C
O

V
A

 m
ul

tiv
ar

ia
te

 a
na

ly
si

s 
(s

ee
 c

ha
pt

er
 4

.3
 fo

r m
or

e 
de

ta
ils

) 
 

Results  70



Results 71 

Table 5.5 Effect of potential DDIs on haematological laboratory parameters in clopidogrel-treated 
patients 
     
  CYP3A4 inhibitor CYP3A4 inducer atorvastatin control 

B-HCT, proportion     
mean ± SD 0.36 ± 0.04 0.36 ± 0.04 0.37 ± 0.04 0.37 ± 0.04 

 
B-Hb, g/l     

mean ± SD 124 ± 15 123 ± 12 126 ± 15 126 ± 14 
 

B-Hb-min, g/l     
mean ± SD 117 ± 19 113 ± 21 119 ± 21 120 ± 18 

 
fB-Leuc, E9/l     
mean ± SD 7.9 ± 2.7 7.8 ± 3.9 7.8 ± 2.5 7.5 ± 2.0 

 
B-Eryt, E12/l     
mean ± SD 4.05 ± 0.51 3.88 ± 0.37 4.07 ± 0.49 4.06 ± 0.49 

 
E-MCH, pg     
mean ± SD 31 ± 2 32 ± 2 31 ± 2 31 ± 2 

 
E-MCV, fl     

mean ± SD 90 ± 6 93 ± 4 90 ± 4 91 ± 6 
 

B-Trom, E9/l     
mean ± SD 268 ± 110 257 ± 81 227 ± 68 228 ± 78 

abbreviations: B, blood; HCT, haematocrit; SD, standard deviation; Hb, haemoglobin; f, fasting; 
Leuc, leucocytes; Eryt, erythrocytes; E, erythrocyte; MCH, mean corpuscular haemoglobin; MCV, 
mean corpuscular volume; Trom, thrombocyte 
 

In sulphonylurea-treated patients both mean and maximum fasting plasma glucose 

concentrations were significantly lower during the interaction periods compared with 

control periods. The minimum fasting plasma glucose values were statistically 

significantly more often under 4 mmol/l (lower limit of the target range 4–6 mmol/l) in 

patients with potential interactions compared with controls. The maximum values of 

glycosylated haemoglobin were statistically significantly lower and minimum values 

higher in CYP2C9 inhibitor group compared with controls but no difference was found 

in means. Only marginal differences were seen in plasma potassium and sodium 

concentrations. The proportions of periods with glucose or ketone bodies in the urine 

were significantly lower in CYP2C9 inhibitor users. (Table 5.6) 

The results remained similar when only the CYP2C9 inhibitors whose interaction potential 

was considered best documented (see Table 4.2) were included in the analyses. The 

difference between the patients in the interaction group and controls became statistically 

strengthened in minimum fasting plasma glucose values under 4 mmol/l. (Table 5.6) When 

all CYP2C9 inhibitors were pooled together but the three sulphonylureas analysed 

separately the results remained essentially similar. However, statistical significance was not 

always reached due to the reduced number of treatment periods. 
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Table 5.6 Effects of potential DDIs with CYP2C9 inhibitors and pooled sulphonylureas on 
laboratory parameters indicating glucose homeostasis 
    

 
all CYP2C9 
inhibitors  

well established  
CYP2C9 inhibitors † 

controls 
 

fP-Gluc, mmol/l    
mean ± SD 8.5 ± 3.4 * 8.5 ± 3.4 * 9.1 ± 2.5 
min ± SD 6.8 ± 3.2 6.5 ± 3.2 6.8 ± 2.6 
max ± SD 10.7 ± 4.9 ** 11.0 ± 5.1 ** 12.2 ± 4.3 

 
min fP-Gluc    

n (%) of values    
> 4 mmol/l (%) 421 (87.2) * 281 (84.6) ** 2415 (91.1) 
< 4 mmol/l (%) 62 (12.8) * 51 (15.4) ** 237 (8.9) 

3 – < 4 mmol/l (%) ‡ 40 (8.3) 32 (9.7) 167 (6.3) 
2 – < 3 mmol/l (%) ‡ 20 (4.1) 17 (5.1) 60 (2.2) 

< 2 mmol/l (%) ‡ 2 (0.4) 2 (0.6) 10 (0.4) 
 

B-GHb-A1C, %    
mean ± SD 7.8 ± 1.8 7.8 ± 2.0 8.0 ± 1.4 
min ± SD 7.4 ± 1.7 * 7.5 ± 1.9 * 7.1 ± 1.4 
max ± SD 8.4 ± 2.2 ** 8.2 ± 2.3 ** 9.2 ± 2.0 

 
P-K, mmol/l    
mean ± SD 4.0 ± 0.5 * 4.0 ± 0.4 ** 4.1 ± 0.3 
min ± SD 3.7 ± 0.6 * 3.6 ± 0.6 3.6 ± 0.4 
max ± SD 4.4 ± 0.6 ** 4.4 ± 0.6 ** 4.6 ± 0.6 

 
P-Na, mmol/l    
mean ± SD 138.9 ± 4.0 ** 138.9 ± 4.2 * 139.4 ± 2.8 
min ± SD 136.4 ± 4.9 * 136.1 ± 5.2 136.0 ± 4.4 
max ± SD 140.9 ± 6.0 ** 141.1 ± 6.9 ** 142.5 ± 3.7 

 
U-Gluc    

n of measurements with 
positive finding (%) 105 (34.3) ** 58 (34.3) ** 1338 (55.6) 

n of measurements with 
negative finding (%) 201 (65.7) ** 111 (65.7) ** 1068 (44.4) 

 
U-Keto    

n of measurements with 
positive finding (%) 63 (20.6) * 30 (17.8) * 780 (32.4) 

n of measurements with 
negative finding (%) 243 (79.4) * 139 (82.2) * 1626 (67.6) 

abbreviations: f, fasting; P, plasma Gluc, glucose; B, blood; GHb-A1C, glycosylated haemoglobin; K, 
potassium; Na sodium; U-Gluc, urinary glucose bodies; U-Keto, urinary ketone bodies  
* P < 0.05 compared with controls in ANCOVA multivariate analysis (see chapter 4.3 for more details) 
** P < 0.001 compared with controls in ANCOVA multivariate analysis (see chapter 4.3 for more details) 
† See Table 4.2    
‡ Not statistically tested   
 

Mean plasma CK activity was lower in patients receiving simvastatin or lovastatin 

concomitantly with CYP3A4 inhibitors compared with controls (the difference was 

statistically significant when analyzing simvastatin and pooled statin groups). γGT 
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values were significantly higher in all statin groups receiving CYP3A4 inducers 

compared with respective controls. Similarly, in sulphonylurea-treated patients the 

mean γGT activities were higher than in controls (P being > 0.05 in glimepiride group) 

as well as the minimum values, but there were no differences in maximum plasma γGT 

values. (Table 5.7) 

There were no between-group differences in mean ALAT activities in simvastatin- and 

lovastatin-treated patients but patients in glibenclamide and pooled sulphonylurea 

groups had higher mean and minimum ALAT values, and glibenclamide-treated 

patients had also higher maximum ALAT activities compared with the respective 

controls. (Table 5.7) 

Again, when comparing the results of the pooled sulphonylurea group between all 

CYP2C9 inhibitors and well-established CYP2C9 inhibitors they were essentially 

similar. Maximum ALAT values reached the statistical significance in the established 

CYP2C9 inhibitor group only. (Table 5.7) 

In pooled statin analyses in Study II the odds ratio (OR) for mean CK above the target 

value (see chapter 4.2.1) was 2.0 (95% CI 1.0–4.0, P = 0.045) in patients receiving 

fibrates compared with controls. Mean plasma γGT values were more often above the 

target in patients in CYP3A4 inhibitor and CYP3A4 inducer groups (OR 1.4, 95% CI 

1.0–2.0, P = 0.048; OR 4.6, 95% CI 3.1–6.8, P < 0.001, respectively). ALAT values 

above the target range were seen more often in patients in CYP3A4 inhibitor group 

than in control patients (OR 1.6, 95% CI 1.1–2.2, P = 0.010). 
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5.3  Endpoints in clopidogrel-, and lovastatin- and simvastatin-treated 

patients 

In the nationwide setting in Study IV the overall mortality in clopidogrel-treated 

patients was 5.11%. The risk of death was increased by all tested confounding factors: 

age, male sex, diabetes mellitus, cardiac insufficiency, and hypertension.  

Based on the survival analysis the hazard ratio (HR) of overall mortality was 

statistically significantly higher in CYP3A4 inducer group and smaller in atorvastatin 

group (HR 2.29, P < 0.001 and HR 0.74, P = 0.003, respectively) compared with 

controls. No significant differences were seen in thrombosis or haemorrhage 

mortalities. When these complications were estimated as hospitalizations, the HR of 

thrombosis events was significantly under one in CYP3A4 inhibitor group and above 

one in atorvastatin group, in haemorrhage endpoints the HR was significantly lower in 

CYP3A4 inhibitor and atorvastatin groups compared with the control group. The 

figures were similar for combined endpoints of hospitalizations and deaths. (Table 5.8) 

During the first clopidogrel treatment periods (n = 19,654) the frequency of coronary 

artery reoperations (see Table 4.6) ranged from 0 to 14: in CYP3A4 inhibitor group 0–

7, CYP3A4 inducer group 0–6, atorvastatin 0–8, and controls group 0–14. There was a 

significant P in Cochran Mantel-Haenszel statistics between CYP3A4 inhibitor and 

control groups. The median of reoperation number was 0 in all groups. The peripheral 

reoperations (see Table 4.6) ranged from 0 to 1 in CYP3A4 inhibitor and CYP3A4 

inducer groups, 0–2 in atorvastatin group, and 0–3 in controls in Study IV. The median 

was 0 for all study groups. The distribution was statistically significant in CYP3A4 

inhibitor and atorvastatin groups compared with control distribution (P < 0.001 for 

both).  

During all the seven study years included in the hospital setting in Study II there were 

only 6 reported rhabdomyolysis cases in Finland. One patient used lovastatin and five 

simvastatin; one of the cases was caused by simvastatin alone, without any interacting 

medication. Three of the cases were associated with doubling the simvastatin dose 

from 40 to 80 mg per day. None of the rhabdomyolysis cases was fatal and all patients 

recovered. (www.laakelaitos.fi/instancedata/prime_product_julkaisu/laakelaitos/embeds/ 

english_Publications_Tabu_tabu52002_eng.pdf and Palva E, personal communication, 

2005) 
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Table 5.8 Results of survival analyses in Study IV 
     

  
CYP3A4 
inhibitor 

CYP3A4 
inducer atorvastatin control 

overall mortality 
events 63 22 116 804 

follow-up, years 1157 176 4026 16171 
risk / 1000 years 54.5 125 28.8 49.7 

HR 1.3 2.29 ** 0.74 * reference 
95% CI 1.00 - 1.69 1.50 - 3.50 0.61 - 0.91  

 

thrombosis mortality 
events 28 4 60 354 

follow-up, years 1157 176 4026 16171 
risk / 1000 years 24.2 22.7 14.9 21.9 

HR 1.41 0.99 0.94 reference 
95% CI 0.95 - 2.09 0.37 - 2.65 0.71 - 1.24  

 

haemorrhage mortality 
events 4 1 8 28 

follow-up, years 1157 176 4026 16171 
risk / 1000 years 3.5 5.7 2 1.7 

HR 2.62 3.34 1.52 reference 
95% CI 0.91 - 7.59 0.45 - 24.73 0.68 - 3.38  

 

thrombosis 
complication 

events 221 59 1717 4430 
follow-up, years 1089 162 3589 14978 
risk / 1000 years 202.9 364.2 478.4 295.8 

HR 0.62 ** 1.13 1.66 ** reference 
95% CI 0.53 - 0.72 0.86 - 1.50 1.56 - 1.77  

 

haemorrhage 
complication 

events 21 4 75 689 
follow-up, years 1089 162 3589 14978 
risk / 1000 years 19.3 24.7 20.9 46 

HR 0.31 ** 0.54 0.50 ** reference 
95% CI 0.18 - 0.52 0.20 - 1.44 0.39 - 0.66  

 

combined thrombosis 
endpoints † 

events 248 63 1766 4753 
follow-up, years 1089 162 3589 14978 
risk / 1000 years 227.7 388.9 492.1 317.3 

HR 0.67 ** 1.14 1.61 ** reference 
95% CI 0.58 - 0.77 0.87 - 1.49 1.51 - 1.71  

 

combined haemorrhage 
endpoints † 

events 25 5 82 714 
follow-up, years 1089 162 3589 14978 
risk / 1000 years 23 30.9 22.8 47.7 

HR 0.39 ** 0.66 0.55 ** reference 
95% CI 0.24 - 0.62 0.27 - 1.60 0.43 - 0.70   

abbreviations: HR, hazard ratio; CI, confidence interval   
* P < 0.05 compared with controls in ANCOVA multivariate analysis (see chapter 4.3 for more details) 
** P < 0.001 compared with controls in ANCOVA multivariate analysis (see chapter 4.3 for more details) 
† combined endpoints include both deaths and hospitalizations 
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6  DISCUSSION 

6.1  Methodological considerations 

DDIs, especially pharmacokinetic DDIs, are traditionally studied with randomized 

controlled clinical trials whereas pharmacoepidemiological methods have been applied 

only in a limited amount. Polypharmacy and adverse drug reactions have been studied 

often with interviews and questionnaires making the data susceptible for recall bias. 

The advantage of observational studies is the setting of routine medical practice. 

However, register studies always include the bias source of human interface in data 

entry. The valid and comprehensive registers on drug use make Finland a good 

platform for pharmacoepidemiological studies. Turku University Hospital has been a 

forerunner in collecting electronic patient databases, especially drug and laboratory 

data. A problem associated with the hospital patient registers was the lack of exact 

starting and ending dates of the treatment of patients with long-term medication. 

In the present studies all patients on whom information was available were included. 

Thus, the subjects included in the study and control groups were heterogeneous and 

adjustments with respect to confounders were performed only afterwards. An 

alternative approach would have been to select cohorts using algorithms making them 

more comparable with each other and applying prior sample size estimation. Studies II 

and III could have been conducted following the case-crossover design where the 

laboratory parameters of individual patients during exposure and non-exposure phases 

would have presented the cases and controls. The validity of the results could have 

been further strengthened by performing sensitivity analyses. 

Due to the selection procedure, the study subjects could have been at different risk for 

clinical endpoints. The indication of medication remained unclear in many cases. This 

is, however, a typical drawback in most register-based studies. Other than CYP-related 

medication was taken into account only in hospitalized patients in Study II. Thus, other 

drugs may have contributed to the clinical endpoints. However, the study populations 

were not general patient populations but ones with well-defined conditions such as 

dyslipidemia, diabetes, or thromboembolic disease, which is supposed to reduce the 

variability between study and control groups.   

The information on the drug concentrations in plasma was not available but only 

established CYP inhibitors and inducers were included in the studies (see Table 2.7). 

Furthermore, in many cases the pharmacokinetic consequences of the studied 

interactions have been reported in literature. Therefore, it is reasonable to assume that 

drug exposure to study substrates was affected by the interacting medications in the 

patients. Some changes in the definitions of interacting drugs took place during the 
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studies. Phenytoin was included as a CYP2C9 inhibitor in Study I but in Study III 

phenytoin users were excluded from the study due to its uncertain CYP2C9 inhibitory 

profile together with strong inducing effect on CYP3A4. To strengthen the results the 

data was reanalyzed with the most potent CYP2C9 inhibitors in Study III and 

atorvastatin was analyzed separately from CYP3A4 inhibitors in Study IV.  

6.2  Studied drug-drug interactions 

6.2.1  Prodrugs losartan, codeine, and tramadol 

The harm resulting from DDIs inhibiting prodrug activation is not caused by increased 

toxicity but rather, by lack of efficacy. In hospitalized patients potential interaction 

occurred in more than 20% of the treatment periods. The findings suggest that 

inhibition of prodrug activation is an unrecognised source of irrational drug therapy 

even if lack of efficacy in the pharmacological treatment of hypertension or pain is a 

well acknowledged clinical problem (Flor et al. 1992, Mancia and Grassi 1999). 

The efficacy of antihypertensive or analgesic effects was not measured in this study, 

but earlier evidence shows that low CYP2C9 activity reduces the antihypertensive 

effects of losartan (Munafo et al. 1992, Gradman et al. 1999, Sekino et al. 2003) and 

that reduced CYP2D6 activity diminishes the efficacy of codeine and tramadol in the 

treatment of pain (Sindrup et al. 1990, Sindrup et al. 1996, Poulsen et al. 1996a, 

Laugesen et al. 2005). Also the abuse of codeine is reported to be reduced during 

CYP2D6 inhibitor use (Fernandes et al. 2002).  

Of 1273 tramadol interaction periods clomipramine, fluoxetine, or paroxetine was the 

CYP2D6 inhibitor in 174 cases. These drugs inhibit serotonin re-uptake and their 

concomitant use with tramadol may cause serotonin syndrome (Egberts et al. 1997, 

Lange-Asschenfeldt et al. 2002). The use of selective MAO-A inhibitor moclobemide 

together with tramadol is contraindicated for the same reason but nevertheless, there 

were 30 treatment periods where moclobemide and tramadol were combined during the 

six-year observation period. 

The role of celecoxib as a CYP2D6 inhibitor is not the best-known of the included 

interacting drugs and there are no publications on its effects on codeine or tramadol 

pharmacokinetics. Celecoxib is often combined in analgesic treatment with codeine 

and tramadol, and therefore, further research on celecoxib interactions is warranted. In 

a Norwegian survey 25% of CYP2D6 substrate treatment periods were concomitant 

with celecoxib use, codeine being the most common substrate (Molden and Braathen 

2005). 
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Concern about the costs of medical care in general and pharmaceuticals especially is 

common in all developed countries (Schulman et al. 2005). One hospital admission due 

to an adverse drug event is associated with costs of $16,000 in the US (Jha et al. 2001). 

The cost estimate of the ineffective therapy with prodrugs in Study I was made by 

calculating the waste of futile drugs in US dollars. Even without assessing the costs of 

potential consequent supplemental hospitalizations and other treatment the forfeited 

amount of money was strikingly large. (The subject is not reported elsewhere in this 

thesis summation but only in Study I publication.) Further studies with a 

comprehensive approach are needed to uncover all economic consequences of the 

interactions. 

6.2.2  Simvastatin and lovastatin 

The strongest CYP3A4 inhibitors increase the concentrations of lovastatin, simvastatin, 

and their active metabolites 10 to 20-fold (Neuvonen and Jalava 1996, Kivisto et al. 

1998, Neuvonen et al. 1998). Strong CYP3A4 inducers have been shown to decrease 

simvastatin exposure by more than 75% and the same would be expected for lovastatin 

(Kyrklund et al. 2000, Ucar et al. 2004). Combined statin-fibrate use increases the risk 

of rhabdomyolysis compared with statin monotheropy; the worst scenario has been seen 

with cerivastatin combined with fibrate (Graham et al. 2004). Due to numerous 

rhabdomyolysis events cerivastatin was withdrawn from the market in 2002 (Charatan 

2001, SoRelle 2001). 

In the hospital setting in Study II 8.8% of all statin treatment periods with simvastatin 

or lovastatin were concomitant with CYP3A4 inhibitor medication, 3.9% with 

CYP3A4 inducer medication, and 1.3% treatment periods with fibrate. During the 

three-month survey in the nationwide setting 6338 patients (6.9%) on simvastatin or 

lovastatin were potentially exposed to a drug interaction with CYP3A4 inhibitor, 

CYP3A4 inducer, or fibrate. A statin-fibrate combination was seen in 581 cases 

(0.6%). However, only six rhabdomyolysis cases were reported in the whole of Finland 

during the seven years covering the time window of the hospital-based survey (Tokola 

et al. 2002) suggesting that clinical consequences with potential fatal outcome are very 

rare, which is consistent with other publications (Pedersen et al. 2005, Brown 2008). It 

is, however, important to remember that ADR reporting requires that physicians 

consistently take the time to file ADRs; even the most serious ADRs may be left 

unregistered. The incidence of rhabdomyolysis in patients using statins other than 

cerivastatin was 3.4 in 100,000 person-years the fatality being 10% (Law and Rudnicka 

2006). The incidence was higher when analyzing only CYP3A4-metabolized statins 

(simvastatin, lovastatin, and atorvastatin), which refers to risk increment by potential 

DDIs. 
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In the Scandinavian Simvastatin Survival Study (4S) it has been reported that 

simvastatin reduced total cholesterol and LDL cholesterol 25% and 35%, respectively, 

and increased HDL cholesterol 8% over 5.4-year (median) follow-up (Scandinavian 

Simvastatin Survival Study Group 1994). In the present study total cholesterol was 

somewhat higher in all interaction groups when compared with controls. In patients 

either in CYP3A4 inhibitor group or CYP3A4 inducer group this difference was 

explained by higher HDL cholesterol values, whereas LDL cholesterol concentrations 

were similar and HDL cholesterol / total cholesterol ratio remained unaffected. Thus, 

even strong pharmacokinetic interactions potentially leading to marked decrease in 

simvastatin and lovastatin exposure seem to have a relatively small effect on the 

efficacy of statin treatment. In fact the use of CYP3A4-inducing agents per se is 

associated with higher HDL concentrations (Luoma et al. 1980, Nikolaos et al. 2004). 

However, there is one isolated case report suggesting that CYP3A4 induction could 

decrease the cholesterol lowering effect of simvastatin (Murphy and Dominiczak 

1999). In the present study the most commonly used CYP3A4 inhibitor was diltiazem, 

which has been reported to increase simvastatin and lovastatin concentrations about 

3.5-fold (Azie et al. 1998, Mousa et al. 2000, Watanabe et al. 2004). Despite potential 

increase in exposure to statins their lipid-lowering effect was not enhanced. 

In an earlier study investigating the occurrence of myopathy during simvastatin 

treatment with its relationship to CYP3A4 inhibitor use the overall incidence of 

myopathy during simvastatin treatment was found to be 0.025% only. Proportional 

concomitant use ratio for myopathy was 9.1 for CYP3A4 inhibitor users and the 

association was higher for the cyclosporine group (23.6) but no association for 

increased risk to myopathy with calcium channel blockers diltiazem and verapamil was 

noted compared with controls using simvastatin only. (Gruer et al. 1999) In Study II 

cyclosporine used together with a statin did not cause more plasma CK, γGT, or ALAT 

alterations than other CYP3A4 inhibitors. In general, mean CK activities were lower 

and γGT activities higher in CYP3A4 inhibitor users compared with controls while no 

statistically significant difference was seen in ALAT values. In CYP3A4 inducer users 

a significant difference was seen only in higher γGT values. Mean statin doses in the 

present study were relatively low, and on the other hand, the therapeutic indexes of 

statins are quite wide. Thus, our results support the previous discussion that 

simvastatin and lovastatin can probably be used rather safely with CYP3A4 inhibitors 

if the statin doses are low and the patients are monitored carefully (Neuvonen et al. 

2006). 

Combined use of statins and fibrates was associated with significantly increased 

plasma CK activity indicating muscular toxicity. Also the statin doses were higher in 

fibrate groups. In hospitalized patients, on whom the laboratory values were collected, 

the fibrates used together with simvastatin or lovastatin were bezafibrate (n = 42), 

gemfibrozil (n = 23), and clofibrate (n = 4). When comparing bezafibrate with 
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gemfibrozil the mean CK values were almost three-fold higher in gemfibrozil-treated 

patients. Previously it has been demonstrated that gemfibrozil, but not bezafibrate, 

increases concentrations of active acid forms of simvastatin and lovastatin in plasma 

(Backman et al. 2000, Kyrklund et al. 2001). The increased CK activities may thus 

have, at least partly, a pharmacokinetic origin. The present results support also the 

previous information about 10 times greater incidence of rhabdomyolysis in patients 

receiving gemfibrozil with statins (other than cerivastatin) compared with statin mono-

treatment (Law and Rudnicka 2006). 

The present data indicate that co-administration of simvastatin and lovastatin with 

strong to moderate inhibitors and inducers of CYP3A4 enzyme as well as fibrates is 

common both in hospitalized patients and outpatients. Statins are not used optimally 

because the overall persistence of their use is low particularly among elderly patients 

(Linnarsson 1993, Benner et al. 2002, Perreault et al. 2005a, Perreault et al. 2005b). 

Patients with other cardiovascular risk factors such as diabetes and hypertension are the 

ones most likely to be persistent with statins (Perreault et al. 2005b). Also in Finnish 

patient material it has been seen that patients with at least one prescription for another 

cardiovascular medication are the most likely to continue statin therapy at least four 

years (Helin-Salmivaara et al. 2008). On the other hand, lower persistence is seen in 

patients who use the greatest number of prescribing physicians and pharmacies 

(Perreault et al. 2005a, Perreault et al. 2005b). 

6.2.3  Sulphonylureas 

The use of sulphonylureas carries a high risk of hypoglycaemia even with low doses 

(Holstein et al. 2003) and severe sulphonylurea-associated hypoglycaemia has a fatal 

outcome in up to 10% of the cases (Holstein and Egberts 2003). Of all glibenclamide, 

glimepiride, or glipizide treatment periods in Study III 19.7% were concomitant with 

CYP2C9 inhibitor use concerning 16.1% of sulpohonylurea-treated patients. The mean 

and maximum fasting plasma glucose concentrations and maximum glycosylated 

haemoglobin were lower during the interaction periods compared with control periods. 

Long-term sulphonylurea treatment decreases basal and postprandial plasma glucose 

levels by up to 3–5 mmol/l and glycosylated haemoglobin (GHb-A1C) by 20% (Graal 

and Wolffenbuttel 1999). Glibenclamide is considered to be the most problematic, in 

terms of hypoglycaemia, of the three substrates because of its active metabolites 

(Melander et al. 1998) and its ability to enhance target tissue insulin action (Kolterman 

1992), but in the present study the glimepiride group had the lowest fasting plasma 

glucose levels and the glipizide group the lowest GHb-A1C proportions. This may be 

due to glibenclamide prescriptions to more serious or long-term (with secondary 

failure) type 2 diabetes mellitus cases. Also glucose or ketone bodies in urine were 

seen with decreased frequency during the interaction periods compared with controls. 
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Unfortunately, hypoglycaemic episodes were not recorded systematically in the 

electronic hospital database. The minimum fasting plasma glucose values were, 

however, significantly more often under the target in CYP2C9 inhibitor group than in 

the control group.  

The risk of hypoglycaemia increases in relation to drug concentration, but in 

continuous exposure there is no simple relationship between the drug concentration 

and insulin or glucose concentrations in plasma. High doses may paradoxically cause 

lack of efficacy. The prescribed maximum daily doses are then considered to be often 

too high. The highest doses may also reduce β-cell function. (Stenman et al. 1993, 

Melander et al. 1998) 

Systemic infections may affect glucose balance (McGuinness 2005), and within the 

group of CYP2C9 inhibitors 85% represented azole antifungals, sulphamethoxazole, 

and trimethoprim. The cases and controls were not adjusted for presence or absence of 

infections neither by using specific diagnostic codes nor the use of other antibiotics not 

affecting the CYP2C9 activity. However, systemic infections usually increase glucose 

concentration (McGuinness 2005) and then the results would rather underestimate than 

overestimate the effect of CYP2C9 inhibiting antimicrobial use on sulphonylurea 

effects.  

Hypoglycaemia is the most important adverse effect of sulphonylureas but other toxic 

reactions, for example hyponatraemia, elevation of liver enzyme activities, and 

hepatocellular or cholestatic jaundice, have been described in some patients (Davis 

2006). Mean and minimum plasma alanine amino transferase and gamma-glutamyl 

transferase activities were higher during the interaction periods compared with 

controls. This may refer to subclinical manifestations of sulphonylurea adverse effects. 

6.2.4  Clopidogrel 

Previous clopidogrel interaction studies have been based on the in vitro finding that 

atorvastatin inhibits clopidogrel metabolism by more than 90% (Clarke and Waskell 

2003). However, neither atorvastatin nor pravastatin (independent from CYP 

metabolism) have been shown to influence clopidogrel-induced inhibition of platelet 

activation (Mitsios et al. 2004). Again, no differences have been seen in six-month 

mortality or morbidity in clopidogrel-treated patients with acute coronary syndrome 

when comparing concomitant use with CYP3A4-metabolized statins and non-CYP3A4 

statins (Mukherjee et al. 2005). In similar patient material atorvastatin reduced primary 

endpoints (death from any cause, myocardial infarction, documented unstable angina 

requiring rehospitalization, revascularization with either percutaneous coronary 

intervention or coronary artery bypass grafting, or stroke) in clopidogrel-treated 

patients compared with pravastatin at two-year follow-up but no differences in 

bleeding endpoints were seen (Lotfi et al. 2008). However, as an inactive prodrug 
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clopidogrel needs to be converted to an active hydroxy metabolite form. The activation 

was first believed to be transformed by CYP3A (Clarke and Waskell 2003), which was 

the basis for the study plan in Study IV, but more recently CYP2C19 has also been 

found to play an important role (discussed more in detail later). 

Due to the uncertain profile of atorvastatin in CYP3A4 inhibition and due to its 

potential to affect the measured endpoints per se, atorvastatin was studied as an 

independent interaction group in Study IV. In this study atorvastatin constituted the 

largest interaction study group (19.0% of the treatment periods in outpatients and 

17.5% in the inpatient setting). 

In the one-year follow-up atorvastatin use reduced and CYP3A4 inducer increased the 

overall mortality significantly compared with controls, although the inducer group was 

quite small, the hazard ratios (HR) being 0.74 and 2.29, respectively. The indications 

(epilepsy, bipolar disorders, and severe infections) of CYP3A4 inducer use may affect 

the high mortality in the group in question. Generally age, male sex, diabetes mellitus, 

cardiac insufficiency, and hypertension increased the risk of mortality. All the 

predisposing factors are so called life-style related diseases, like the indication for 

clopidogrel use. 

In the hospital setting the fasting plasma concentrations of total cholesterol and low-

density lipoprotein cholesterol were lower in the atorvastatin group compared with the 

control group. The number (mean) of other drugs affecting the cardiovascular system 

was lower in all interaction groups compared with controls but the number of statins 

(other than atorvastatin) was not taken into account. In the atorvastatin group the 

exposure to statin can be assumed to be 100% but in other study groups the exposure to 

statins may vary. High-density lipoprotein cholesterol concentration as well as the 

HDL cholesterol / total cholesterol ratio were higher in CYP3A4 inhibitor and inducer 

groups compared with the control group. The interacting drugs in these study groups 

are not associated with alterations in cholesterol levels but the use of CYP3A4 

inducing agents in general has been connected with higher HDL concentrations 

(Luoma et al. 1980, Nikolaos et al. 2004). No laboratory values that could indicate 

myotoxicity (e.g. creatine kinase) were studied. However, there is one published case 

report about a stable heart transplant patient who developed rhabdomyolysis by the 

addition of clopidogrel to the existing regimen of cyclosporine and atorvastatin 

tolerated for longer than three years (Burton et al. 2007).  

Acetylsalicylic acid has not been shown to modify the clopidogrel-mediated inhibition 

of ADP-induced platelet aggregation nor the prolongation of bleeding time induced by 

clopidogrel intake. However, clopidogrel may potentiate the effect of acetylsalicylic 

acid on collagen-induced platelet aggregation. A pharmacodynamic interaction 

between these two drugs is possible leading to increased risk of bleeding. 

(www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/ 
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human/000174/WC500042189.pdf) In the inhospital material acetylsalicylic acid was 

used by 54.5% (P < 0.001 compared with control) of patients in CYP3A4 inhibitor 

group, 75.0% in CYP3A4 inducer group, 85.0% in the atorvastatin group, and 84.3% 

in the control group. In this type of situation, where the proportion of acetylsalicylic 

acid use was significantly lower in CYP3A4 inhibitor group, would rather emphasise 

the thrombosis endpoints in the present study population, but the opposite was seen 

and acetylsalicylic acid use as a bias source is of minor concern. 

Atorvastatin was the most prevalent potentially interacting drug in the present study. 

After simvastatin it is the most commonly used statin in Finland (Finnish Statistics on 

Medicine 2002: www.fimea.fi). On the other hand, the therapeutic indications of 

clopidogrel have been extended to ST segment elevation acute myocardial infarction in 

combination with acetylsalicylic acid in medically treated patients eligible for 

thrombolytic therapy (www.ema.europa.eu/docs/en_GB/document_library/EPAR_-

_Product_Information/human/000174/WC500042189.pdf), which increases also the 

concomitant use of statins and clopidogrel. In patients with acute coronary syndromes 

decreased long-term mortality and mortality + stroke as a combined endpoint have 

been seen in patients using clopidogrel concomitantly with atorvastatin compared with 

atorvastatin alone, but this difference was statistically significant only in univariate 

analysis (Wienbergen et al. 2003). In the second analysis with these endpoints 

atorvastatin did not differ from other statins (simvastatin, pravastatin, cerivastatin, 

lovastatin, and fluvastatin as one group).  

According to the present study concomitant use of CYP3A4 inducers with clopidogrel 

was associated with increased overall mortality, but whether this was due to increased 

bioactivation of clopidogrel and thereby increased rate of bleedings could not be 

assessed. Concomitant administration of atorvastatin with clopidogrel may moderately 

attenuate the antithrombotic effect of clopidogrel, but the combination significantly 

reduced the overall mortality. While there was no difference in mortality between 

CYP3A4 inhibitor and control groups, the role of atorvastatin as CYP3A4 inhibitor is 

debatable. The positive results in co-treatment with a statin may relate to its lipid 

lowering effects. This also correlates with the previous study results showing that the 

consequences of atorvastatin use do not differ from non-CYP3A4 statins in 

clopidogrel-treated patients (Mukherjee et al. 2005, Lotfi et al. 2008).  

The role of CYP2C19 in clopidogrel metabolism has been studied in healthy volunteers 

(Hulot et al. 2006, Brandt et al. 2007, Umemura et al. 2008) and in patients (Sibbing et 

al. 2009, Shuldiner et al. 2009, Collet et al. 2009) and it has been established that 

CYP2C19*2 (loss-of-function polymorphism) is associated with increased platelet 

aggregation. The most recent CYP2C19 genotype finding in clopidogrel treated 

patients shows that there is a significant association with CYP2C19*17 and increased 

bleeding risk (Sibbing et al. 2010). A CYP2C19-mediated drug-drug interaction was 

first published by Gilard et al. in a letter where the association of diminished 
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clopidogrel activation by omeprazole was reported (Gilard et al. 2006). In contrast to 

this, pantoprazole or esomeprazole use was not associated with impaired response to 

clopidogrel (Siller-Matula et al. 2009). These studies were published later than the data 

collection of Study IV had been started and no CYP2C19-mediated interactions were 

taken into account in the study plan.  

Based on the finding that CYP3A4 inhibitor use prevents thrombosis complications it 

would be reasonable to assume that the inhibition of CYP3A4 pathway would divert 

clopidogrel metabolism to the CYP2C19 direction. However, recently it has been 

defined in vitro that the formation of 2-oxo-clopidogrel is mediated by CYP2C19, 

CYP1A2, and CYP2B6 (in the order of contribution ratio) whereas the active 

metabolite, R-130964, is formed by CYP3A4, CYP2B6, CYP2C19, and CYP2C9 

(Kazui et al. 2010). In the present study hospitalizations due to haemorrhages were less 

frequent both in the CYP3A4 inhibitor and atorvastatin groups when compared with 

the controls. Considering the roughly 40% contribution ratio of CYP3A4 in the second 

step of clopidogrel bioactivation (Kazui et al. 2010) these findings may reflect 

inhibition of CYP3A4 activity. However, in the CYP3A4 inhibitor group also 

thrombotic complications leading to hospitalizations were less common than in the 

control group. This may reveal selection of subjects with a smaller risk among those 

experiencing non-fatal thrombosis events, for both overall mortality and mortality due 

to thrombosis were higher in the CYP3A4 inhibitor group, the difference reaching 

almost statistical significance compared with controls.   

As to the possible difference between the proton pump inhibitors (PPIs) in concomitant 

use with clopidogrel (Siller-Matula et al. 2009), a large study in 16,690 patients was 

published very recently on this topic (Kreutz et al. 2010). This study shows that the HR 

of major cardiovascular adverse events during a 12-month follow-up period after stent 

placement was 1.51 (95% CI 1.39–1.64, P < 0.001) in patients receiving PPIs with 

clopidogrel compared with clopidogrel alone, but the risk was similar between 

different PPIs (omeprazole, esomeprazole, pantoprazole, and lansoprazole). 

6.3  Importance of drug-drug interactions and solutions to their 

avoidance 

Patients often experience adverse effects from their medication and may stop the 

treatment prematurely. It has been estimated that the adherence of prescribed 

medication is only 50%, and for some type of medications even less, for example for 

antibiotics less than 40% (McDonald et al. 2002). DDIs represent a major clinical 

concern for health care professionals and patients. DDIs are estimated to cause 8% of 

all ADRs (Kelly 2001) and 26% of all hospitalizations (McDonnell and Jacobs 2002). 

The length of a hospital stay is associated with increased risk for DDIs (Moura et al. 
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2009). However, polypharmacy is found to be the main reason for DDIs. A potential 

DDI among patients receiving five or more drugs has been shown to be five-fold 

compared with patients taking less than five drugs (Moura et al. 2009).  

Aging is a risk factor for both ADRs and polypharmacy (Egger et al. 2007) but in the 

present studies mean age was often higher in control groups than in interaction groups. 

Interaction patients receiving codeine or tramadol (Study I), statins with fibrates (Study 

II) or clopidogrel with atorvastatin (Study IV) were younger than respective controls. 

One method to avoid DDIs is to choose another drug group member, which does not 

have similar interaction potential with patient’s other medication. To remember all the 

interaction is, however, impossible for the clinicians. Even at the molecular structure 

level predicting interactions is difficult. Quinine, for example, is a levorotary 

diastereomer of quinidine but is not as potent CYP2D6 inhibitor as quinidine 

(Parkinson and Ogilvie 2008). In addition to this, patients often use over-the-counter 

(OTC) drug or herbal medicines that are not mentioned in the prescription situation. 

Patients believe that because herbal medicines are natural they are totally safe. It is 

reported that 15% of patients receiving conventional pharmacotherapy also take herbal 

products and, among these, potential adverse herb-drug interactions have been 

observed in 40% (Izzo and Ernst 2009).  

It has been suggested that properly designed computer-based decision-support system 

would increase the awareness of clinically significant interactions and improve the 

quality of drug treatment (Linnarsson 1993). At Turku University Hospital there was 

no computerized DDI warning system integrated with the hospital data processing 

systems during the study periods. A year after the electronic medication database (see 

chapter 4.1.1) had been introduced it was reported that 6.8% of patients in internal 

medicine wards had one or several drug combinations potentially leading to serious 

clinical consequences (Gronroos et al. 1997). In the present results on metabolic CYP-

related DDIs the prevalence was up to 20% and the risk for an interaction was higher 

expressly in internal medicine wards.  

To control DDIs prescribing physicians can, for example, change the risky drug to 

another member of the same group, adjust the dosing, or monitor the patient by 

following the clinical status or by therapeutic drug monitoring. It has been reported that 

appropriate actions to avoid or handle DDIs and DDI-related ADRs are performed mainly 

when the actions could be regarded as routine checks relating to one drug or to a 

disease treated with that drug but not specifically from the DDI perspective 

(Linnarsson 1993). According to present data no clinically significant differences were 

seen in dosing between the interaction groups and controls. 
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7  CONCLUSIONS 

On average one fifth of the inpatients receiving prodrugs losartan, codeine, and tramadol 

were exposed to potential CYP-mediated drug-drug interactions. DDIs inhibiting prodrug 

activation thus present a common source of irrational prescribing which may as an 

unrecognized phenomenon pose poor clinical efficacy of the prodrugs. 

Sulphonylurea-treated inpatients were exposed to a potential CYP2C9-mediated 

interaction in 19% of the cases, mostly with antimicrobial agents. The mean and 

maximum fasting plasma glucose concentrations and maximum glycosylated 

haemoglobin were lower during the interaction periods compared with control periods. 

Clinically significant CYP2C9-mediated DDIs are thus commonly seen in hospitalized 

patients receiving glibenclamide, glimepiride, or glipizide.  

Of simvastatin- or lovastatin-receiving outpatients and inpatients 6.2% and 12%, 

respectively, were exposed to potential DDIs with CYP3A4 inhibitors or CYP3A4 

inducers. In clopidogrel-treated patients the potential CYP3A4-mediated DDIs were 

more common in open care than in hospital setting, prevalences being 7.0% and 6.2%, 

respectively. Based on laboratory data the DDIs between simvastatin and lovastatin 

together with CYP3A4 inhibitors and CYP3A4 inducers had much less clinical 

relevance that could have been hypothesized by their strong pharmacokinetic 

interactions. In low doses the use of simvastatin and lovastatin may then be safe with 

CYP3A4 inhibitors, especially the moderate ones. In clopidogrel-treated patients HDL 

cholesterol concentrations were higher in CYP3A4 inhibitor and CYP3A4 inducer 

users compared with controls. Overall mortality was more prevailing in the CYP3A4 

inducer group than in the control group. Concomitant use of CYP3A4 inhibitor with 

clopidogrel did not affect mortality rates but non-fatal thrombosis and haemorrhage 

complications were rarer in this group than in the control group. 

Concomitant use of fibrates was seen in 0.6–1.3% of simvastatin- and lovastatin-treated 

patients. Atorvastatin was used concomitantly with clopidogrel in 17% and 21% of 

inpatients and outpatients, respectively. DDIs between simvastatin and lovastatin with 

fibrates, with gemfibrozil in particular, carry a notable clinical impact by increasing the risk 

of muscular toxicity. This was seen in elevated creatine kinase activities in plasma. 

Thrombosis events were more common in clopidogrel-treated patients receiving also 

atorvastatin but total cholesterol and LDL cholesterol concentrations were significantly 

lower and overall mortality rarer in this group compared with the control group.  

In summary, cytochrome P450-mediated drug-drug interactions are common among 

widely used drugs. They are difficult to recognize and may therefore inflict 

unforeseeable problems in everyday clinical work. Educational and other preventative 

methods are needed to decrease the extent of irrational drug prescribing. 
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