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Le temps est une invention du mouvement

Celui qui ne bouge pas ne voit pas le temps passer

—Amélie Nothomb
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Introduction

On 21 July 1969 at 02:56 UTC the world watched in awe as Neil Armstrong
pronounced the words “That’s one small step for [a] man, one giant leap for
mankind” from a quarter of a million miles from Earth. For millennia humans
had marvelled at our home planet’s nocturnal companion from afar, and now
live images from its surface were being broadcast to over half a million viewers
worldwide. We had split the atom, unravelled the structure of DNA, and now
we had triumphantly set foot on a distant celestial body.

With the successful conclusion of the Apollo 17 mission in 1972 the last
person to date to have walked on the lunar soil, Eugene Cernan, returned safely
to Earth. Although all manned missions have been restricted to low Earth orbits
since, the actual utilization of space really took off afterwards. Indeed, more than
3000 man-made objects have successfully been launched into outer space; these
include spacecraft, space probes and telescopes, telecommunications satellites,
and of course the International Space Station.

The space programme has led up to the development of (micro)computers,
global telecommunications networks, worldwide geological and meteorological
observations, and advanced (counter-)surveillance operations. Notable spin-offs
also include joystick controllers, athletic shoes, novel water purification systems,
smoke detectors, fire-resistant materials, lighter air tanks for firefighters, liquid
crystal polymers, high-density batteries, laser angioplasty, and enriched baby
food, to name but a few. Important contributions to the structural analysis of
spacecraft and launch vehicles have, incidentally, been incorporated in modern
aircraft and automobile safety design.

Unlike most scientific fields that amalgamate from the tireless endeavours
of many a scholar who embarks on a noble quest in pursuit of knowledge,
spaceflight has been conceived mainly by visionary novelists, film directors,
and scientific revolutionaries. Indeed, probably the first documented refer-
ence to space travel goes back to Jules Verne’s 1865 novel De la Terre à la Lune,

ix
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which featured the Columbiad space gun, after which the Apollo 11 command
module Columbia was named. In 1901 H. G. Wells published a science fic-
tion novel entitled The First Men in the Moon, which inspired the silent film
Le Voyage dans la Lune by George Méliès, which premiered in 1902. In Issle-
dovanie mirovyh prostranstv reaktivnymi priborami (The Exploration of
Cosmic Space by Means of Reaction Devices), which appeared in 1903, Konstantin
Tsiolkovsky explored, inter alia, multi-stage rocket launchers to enable space-
flight, and concluded that the escape velocity could be achieved with rockets
fuelled by liquid hydrogen and liquid oxygen. The rocket equation is usually
attributed to him, although William Moore had already derived it back in 1813
in A Treatise on the Motion of Rockets; that fact has only been established fairly
recently [79] though. Important experimental and theoretical contributions to
rocketry and astronautics came in 1919 when Robert Goddard published A
Method of Reaching Extreme Altitudes, and in 1923 with Hermann Oberth’s book
Die Rakete zu den Planetenräumen. During the production of the film Frau im
Mond, which appeared in 1929, Hermann Oberth advised film director Fritz
Lang on all scientific matters; it revealed, among other things, the countdown at
launch. Nuclear propulsion systems were contemplated a year later by Robert
Esnault-Pelterie in L’Astronautique, who also speculated on the possibility of
interplanetary travel later on in his life.

With Wernher von Braun their bold ideas were realized, as the first successful
suborbital flight of the V-2 rocket took place in 1944. The Saturn V launch vehicle
that carried the crew of the Apollo 11 to the Moon was designed and constructed
under his active supervision too. Before that milestone in the history of humanity
transpired though, Sputnik entered the chronicles on 4 October 1957 as the first
artificial satellite to reach outer space. It was followed by Yuri Gagarin, the first
man in one full orbit around the Earth, on 12 April 1961.

From the conception through to the critical design review, actual construction,
qualification, and operation of a spacecraft it usually takes many years of diligent
labour. Consequently, it is of the utmost importance that at each stage of the
process each individual involved is fully aware of the design requirements. In
the initial phase the mission objectives, which are qualitative in nature, are
translated into quantitative mission requirements that form the basis for the
mission analysis that yields the design requirements. In all considerations it is
obvious that the payload is the main design driver. A detailed overview of space
systems engineering and case studies can be found in the book by Fortescue
et al. [49].
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Mission analysis, as well as both the on-board guidance and navigation sys-
tems, and the ground operations control centre, relies on the accurate simulation
of the motion of the craft in space and time. Since space missions are extremely
expensive and may take decades from design to decommissioning, it is essential
that the numerical integration algorithms that determine these trajectories are
accurate and stable over long periods of time. Geometric numerical integrators,
which have been around for about twenty years, have the desired characteristics.
Their use in space applications has been rather limited though, mainly because
of financial and scientific-philosophical reasons. In the first place, it can take up
to several years before software and the algorithms within are approved for use
in space, which means that it is a costly procedure. New algorithms only tend
to be introduced when it is absolutely necessary to do so, in accordance with
the adage “If it ain’t broke, don’t fix it”. In the second place, the literature on
numerical integration algorithms can roughly be divided into two categories,
namely applied and theoretical. The conventional path to space systems en-
gineering prefers the applied approach, as the mathematical intricacies that
pervade the more theoretically inclined studies quite often tend to elude the
more practical philosophy of engineers.

The present dissertation Numerics of Spacecraft Dynamics is a humble attempt
at opening up the field of geometric numerical integrators, and more specifically
variational integrators, to a wider audience. The contents of this thesis are based
on the following original research articles:

I C. Hellström, Creating Variational Integrators with a Computer Algebra Sys-
tem, Albanian Journal of Mathematics 4:4 (2010), pp. 105–122.

II C. Hellström & S. Mikkola, Explicit Algorithmic Regularization in the Few-
Body Problem for Velocity-Dependent Perturbations, Celestial Mechanics and
Dynamical Astronomy, 106:2 (2010), pp. 143–156.

III C. Hellström & S. Mikkola, Universal Formulation of Quasi-Keplerian Mo-
tion, and Its Applications, New Astronomy, 14:7 (2009), pp. 607–614.

IV C. Hellström & S. Mikkola, Satellite Attitude Dynamics and Estimation with
the Implicit Midpoint Method, New Astronomy, 14:5 (2009), pp. 467–477.

The main results of article I have also been presented at international conferences,
in particular:
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· C. Hellström, VarInt: Variational Integrator Design with Maple, ISSAC
2010, International Symposium on Symbolic and Algebraic Computation,
Munich, Germany, 25–28 July, 2010.

· C. Hellström, VarInt – Variational Integrators with Maple, ACA’10, Appli-
cations of Computer Algebra, Vlora, Albania, 24–27 June, 2010.

The first chapter serves as an expository discourse on dynamical systems
theory with a focus on geometric mechanics. It introduces and reviews basic
mathematical concepts in order to rephrase these on a higher level of abstrac-
tion, from which the differential-geometric scenery of the later chapters can be
appreciated more readily. In the second chapter a new method to generate and
analyse variational integrators to arbitrary order by means of a computer algebra
system is presented. It comprises article I, and it forms the bridge between
the theoretical ideas of Chapter 1 and the numerical analysis of prominent
space applications in both the chapters that follow it. Chapter 3 introduces the
fundamental equations of motion for artificial satellites in the sphere of influence
of the Earth; these dynamical equations are to be examined with numerical
integration algorithms in the final chapter. Details of the geometric structure of
the N-body problem, and in particular the Kepler–Coulomb problem, for which
N = 2, are described here too. In addition, an analytical (universal) solution
is provided for a class of perturbations to the Kepler–Coulomb problem that
preserve its integrability, namely the McIntosh–Cisneros–Zwanziger (MICZ)
problem, which has been originally derived in III. Both Chapter 3 and 4 consist
of the articles II, III and IV. These have been slightly adapted and extended to
increase cohesion and avoid unnecessary repetitions. In particular, Chapter 4
showcases a novel numerical integration algorithm, proposed in II, the algorith-
mically regularized auxiliary-velocity algorithm, or ARAVA for short, that is
specifically designed for orbital dynamics with dissipation. Examples of such
non-conservative dynamical systems are artificial satellites in low-altitude orbits,
such as the International Space Station, and spacecraft re-entering the Earth’s
atmosphere, for instance the now nearly defunct Space Shuttle. Furthermore,
the application of the so-called implicit midpoint method to problem of the
computation and estimation of the relative orientation of spacecraft in Earth
orbits that does not require quaternions is demonstrated, which has previously
been considered in IV.

A few notes on the notation and nomenclature used are in order here. In
what follows the summation convention is adopted everywhere except in places
where it is explicitly stated otherwise. Furthermore, all vector fields are assumed
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to be complete, which ensures the existence and uniqueness of (local) solutions
for all times, as assured by the Picard–Lindelöf theorem. For incomplete vector
fields the concept of a flow box can be introduced alternatively, but we shall
not dwell on such technicalities. Finally, all Lie groups and Lie algebras are
finite-dimensional, and are taken over the field of the reals R.
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1
Dynamics and Geometry

This introductory chapter serves as a review of dynamical systems and their
underlying geometric structures. The standard Lagrangian and Hamiltonian
formulations of classical mechanics are translated to a modern mathematical
framework based on differential geometry and group theory that is known as
geometric mechanics [1, 74, 106].

After an abstract and brief discussion of dynamical systems the Lagrangian
formalism of classical mechanics is presented in Section 1.2.1, which forms the
anacrusis to the Hamiltonian formulation of Section 1.2.2. In Chapter 2 we return
to the Lagrangian formalism as the natural setting for variational integrators,
though. Section 1.3 describes canonical transformations from a geometric point
of view, together with the Hamilton–Jacobi equation and integrability.

1.1 Dynamical Systems

In its most general form a dynamical system consists of a set X , a commutative
monoid1 T, and a map ϕt : T× X → X with t ∈ T such that ϕ0 = Id and
ϕs ◦ ϕt = ϕt ◦ ϕs = ϕt+s. Quite often the set X is called the state space or phase
space. The additive monoid T represents the notion of time. The requirement

1A monoid is a semi-group with an identity element; a group is an invertible monoid.

1



2 CHAPTER 1. DYNAMICS AND GEOMETRY

that T be a monoid ensures that dynamical systems can propagate in a specific
direction of time. Commutativity in conjunction with additivity implies that
time is relative. For time-reversible dynamical systems T is a group; motion
in both directions of time is well-defined. The map ϕt describes the evolution
over a time interval [0, t] ⊂ T, and it is sometimes referred to as the evolution
operator.

Examples of dynamical systems include continuous dynamical systems,
discrete dynamical systems, and cellular automata. For a cellular automaton
the state space X is a finite set, T = Z, and the evolution operator is the
evolution function. For continuous as well as discrete dynamical systems X
is a manifold. For the former class of dynamical systems T = R and ϕt is a
continuous function, whereas T = Z and ϕt is simply a function for the latter.
For both continuous and discrete dynamical systems the evolution operator
defines the continuous and discrete flows respectively. The continuous (discrete)
flow is generally defined implicitly by a set of differential (difference) equations.
In particular, for X = Rn and T = R, x(t) = ϕt(x0) is the solution of the
initial-value problem  dx(t)

dt
= f (x(t)),

x(0) = x0,
(1.1a)

where the vector field f ∈ C1(Rn, Rn) is (locally) Lipschitz continuous. In a
similar manner, the difference equation

xk+1 = f (xk), (1.1b)

with some initial x0 ∈ Rn, generates the discrete flow ϕk = f k = f ◦ f ◦ . . . ◦ f ,
where k ∈ Z. Henceforth we are concerned with discrete dynamical systems
mainly as discretizations of continuous dynamical systems in the context of
numerical simulations2.

For some (initial) x ∈ X , the set O(x) = {t ∈ T | ϕt(x)} is called the orbit
through x. An orbit is periodic if there exists a τ > 0, with τ ∈ T, such that
ϕτ(x) = x for a non-trivial O(x). The smallest τ satisfying the periodicity
relation is known as the period. For T = Z the designation cycle is to be
preferred.

2The study of (lattice) difference equations is an emergent field of its own; we refer the interested
reader to the forthcoming monograph Discrete Integrable Dynamics by Hietarinta, Joshi and Nijhoff,
which is based on a series of lecture notes by Hietarinta [69].
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A stationary point ξ ∈ X satisfies ϕt(ξ) = ξ for all t ∈ T. In continuous time
a stationary point is often called an equilibrium, whereas it is known as a fixed
point in discrete time.

Consider S ⊂ X . An invariant set is defined by the requirement that
ϕt(S) ⊂ S for all t. Hence, periodic orbits and stationary points are invariant
sets.

Let (X ,T, {ϕt}t∈T) be a continuous or discrete dynamical system. An orbit
O(x) is said to be homoclinic with respect to a stationary point ξ if it approaches
the stationary point asymptotically in both directions of time, that is if

lim
t→±∞

ϕt(x) = ξ.

The set Ws ≡ {x ∈ X | ϕt(x) = ξ as t→ ∞} is aptly called the stable manifold,
and Wu ≡ {x ∈ X | ϕt(x) = ξ as t→ −∞} is known as the unstable manifold.

Similarly, a heteroclinic orbit is defined as a path in the state space that
connects stationary points ξ1 6= ξ2, such that

lim
t→−∞

ϕt(x) = ξ1,

and

lim
t→+∞

ϕt(x) = ξ2.

A heteroclinic orbit is therefore contained in the stable manifold of ξ2 and the
unstable manifold of ξ1. A homoclinic orbit is obviously a heteroclinic orbit
with ξ1 = ξ2.

Two dynamical systems (X ,T, {ϕt}t∈T) and (X ,T, {ψt}t∈T) are topologi-
cally equivalent if there exists a homeomorphism h : X → X that maps orbits of
the former onto orbits of the latter whilst preserving the direction of time. For
continuous (discrete) dynamical systems defined by the differential (difference)
equations as in equation (1.1a) ((1.1b)) topological equivalence implies that the
respective vector fields (maps) f and g are h-conjugate, that is g = h ◦ f ◦ h−1.
In the continuous case h is of course a diffeomorphism.

1.2 Geometric Mechanics

Geometric mechanics pertains to the intrinsic mathematical structure of classical
dynamical systems by means of their symmetries and the herewith associated
invariants. We shall only consider continuous dynamical systems here. Their
discrete analogues are the topic of subsequent chapters.
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1.2.1 Lagrangian Mechanics

The configuration manifold Q of a free dynamical system can be parameterized
by the generalized coordinates qα of all components that constitute the system,
that is the number of degrees of freedom is equal to dimension of the configu-
ration manifold. Here the covariant index α runs from 1 to n = dim Q . If the
system is constrained holonomically, then the dimension of the configuration
manifold is reduced by the number of holonomic constraint equations.

At any point q in the configuration manifold we can introduce the generalized
velocity q̇, where the dot represents differentiation with respect to the time t ∈ R.
The generalized velocity is defined on the tangent space TqQ at each point of
the configuration manifold. For any smooth curve γ through q ∈ Q , the velocity
at q, that is the derivative of γ at q, is a vector that lies in the tangent space
TqQ . TqQ obviously is an n-dimensional vector space. Moreover, the tangent
bundle TQ is endowed with a natural structure of a 2n-dimensional manifold;
the tangent spaces ‘inherit’ the differential structure from the base manifold Q ,
as a coordinate chart for Q provides a local trivialization for TQ [75, pp. 84–89].

The total (velocity) phase space is obtained by taking Q and all its tangent
spaces TqQ as follows:

TQ =
⊔

q∈Q
TqQ ,

which is known as the tangent bundle. It is an example of a fibre bundle, or
more precisely a vector bundle, for there is a natural projection π : TQ → Q
with the property that its pre-image π−1 ({q}) ∼= TqQ for any q ∈ Q , known as
the fibre over q, is a vector space. Locally the tangent bundle is homeomorphic
to the Cartesian product Q × TqQ , which is the local trivialization. The entire
tangent bundle is said to be trivial if and only if it can be written globally as the
Cartesian product of two (topological) spaces. In general, the phase space is not
trivial.

A (cross-)section of a fibre bundle, in particular the tangent bundle, is a
continuous map X : U → TQ , where U is an open subset of Q , such that
π ◦ X = IdU , the identity on U. Rephrased in perhaps more familiar terms, a
section of the tangent bundle is a vector field on the configuration manifold.
Equivalently, a vector field is a derivation of the ring of smooth functions
C∞(Q , R).

The structure group of the tangent bundle is the Lie group of invertible linear
transformations GL (n, R). Indeed, consider the (open) neighbourhoods U i and
U j, such that U i ∩U j 6= ∅, and let q 7→ q and q′ 7→ q′ be their respective
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coordinate systems on Q . Any vector field v ∈ TpQ with p ∈ U i ∩U j can be
expressed locally as both

v = vα ∂

∂qα

∣∣∣∣
p

and v = v′α ∂

∂q′α

∣∣∣∣
p

.

These are clearly related by

v′β =
∂q′β

∂qα

∣∣∣∣
p

vα.

For there to be a transition between both local representations, the matrix
Gβ

α ≡ ∂q′β
/

∂qα must be non-singular, that is G ∈ GL (n, R).
Any time-dependent Lagrangian is a map L : TQ ×R→ R, and any time-

independent Lagrangian is a function L : TQ → R. The dynamics are encoded in
the famous Euler–Lagrange equations, which are a set of n first-order differential
equations on the tangent bundle3:

d
dt

∂L
∂q̇α
− ∂L

∂qα
= 0, (1.3a)

supplied with another set of n first-order differential equations, which relate the
points on the configuration manifold to their tangent spaces:

q̇α =
dqα

dt
. (1.3b)

Together these equations form a set of 2n first-order differential equations on
TQ ; on the configuration manifold Q the Euler–Lagrange equations are merely n
second-order differential equations. The 2n-dimensional structure of the tangent
bundle becomes more apparent if these differential equations are written in a
more concise form as

dζk

dt
= f k(ζ),

where ζ ∈ TQ with coordinates (q1, . . . , qn, q̇1, . . . , q̇n), and f k(ζ) is the kth
component of the vector field. The first n components reproduce equations
(1.3b) and the last n equations yield the Euler–Lagrange equations (1.3a). Please
note that both ζ and f are merely defined on some local chart; we have to specify
them on each chart of an atlas for the dynamical system under consideration to
be well-defined on the entire tangent manifold.

3In fact, q̈α is considered a coordinate function of T (TQ ) = T2Q .
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Stated as first-order differential equations on the tangent bundle, the Euler–
Lagrange equations have a solution that is continuous and unique, as asserted
by the Picard–Lindelöf theorem. This means that all trajectories on the tangent
bundle are separated from each other; there passes but one trajectory through
each point ζ = (q, q̇).

The formalism described above depends on a specific coordinate system on
charts of the tangent bundle, in which the diffeomorphism invariance of the
Euler–Lagrange equations (1.3) is not apparent at all. It is however possible
to rewrite the Euler–Lagrange equations without reference to any coordinate
system. To that end, we have to introduce the notions of the Lagrangian one-form
θL, which can be expressed locally as

θL =
∂L
∂q̇α

dqα, (1.4)

and the dynamical vector field

∆L = q̇α ∂

∂qα
+ q̈α ∂

∂q̇α
, (1.5)

where the components q̈α are to be written as functions of q and q̇. The
dynamical vector field is simply a special case of a general vector field on TQ ,

X(q, q̇) = Xα ∂

∂ζα

= Xα
q

∂

∂qα
+ Xα

q̇
∂

∂q̇α
, (1.6)

where both Xq and X q̇ are functions on the tangent bundle. A vector field on Q
is a section of the tangent bundle, TQ πQ−→ Q , which can be written as

X = Xα
q (q)

∂

∂qα
,

on a chart q ∈ Q , whereas a vector field on TQ is a slice through T (TQ ), where
T (TQ )

πTQ−−→ TQ , so that

X = Xα
q (q, q̇)

∂

∂qα
+ Xα

q̇ (q, q̇)
∂

∂q̇α
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in local coordinates (q, q̇) ∈ TQ , as in equation 1.6. In addition, we have the
projection TπQ , such that the (‘dual tangent rhombic’) diagram

T(TQ )
πTQ

��

TπQ

��

TQ

πQ ++

TQ

πQttQ

commutes. We shall often write π instead of πQ whenever it is clear.
Apart from the dynamical vector field there are three special vector fields that

we shall be concerned with in the sequel, namely (i) second-order vector fields
X with TπQ ◦ X = IdTQ , for which Xq = q̇ and X q̇ = X q̇(q, q̇) in equation (1.6);
(ii) vertical vector fields, for which Xq vanishes identically4; and (iii) vector fields
associated with point (coordinate) transformations, for which Xq = Xq(q) and
Xα

q̇ = ∇Xα
q · q̇. The dynamical vector field ∆L is an example of a second-order

vector field.
Before we can proceed, we have to introduce some mathematical nomen-

clature. The Lie derivative of a function f with respect to a vector field X is
denoted by LX f and it is defined by d f (X), where d is the exterior derivative;
the exterior derivative reduces to the total derivative when it acts on zero-forms,
which are simply functions. Equivalently, we may write the Lie derivative in
terms of the interior product5 as ιXd f , or the natural pairing between duals
〈d f , X〉. When applied to one-forms d f , LXd f = d(LX f ).

4In the classical notation, a vector field X as in equation (1.6) is written as a vector X =
(X1

q , . . . , Xn
q , X1

q̇ , . . . , Xn
q̇ ). The name ‘vertical’ vector field comes from the fact that these vectors are

projected naturally to the null vector, that is πQ (0, . . . , 0, X1
q̇ , . . . , Xn

q̇ ) = (0, . . . , 0) ∈ Q .
5Generally, the interior product ιX : Ωp(Q )→ Ωp−1(Q ) is a contraction of a differential p-form

and a vector field X ∈ Vec (Q ) [see e.g. 50, 56, 75, 129].
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Now consider the Lie derivative of the Lagrangian one-form with respect to
the dynamical vector field:

L∆L θL =
(

L∆L

∂L
∂q̇α

)
dqα +

∂L
∂q̇α

d(L∆L qα)

=
(

d
dt

∂L
∂q̇α

)
dqα +

∂L
∂q̇α

dq̇α

=
∂L
∂qα

dqα +
∂L
∂q̇α

dq̇α

= dL,

where we have employed Cartan’s (‘magic’) formula,

LX = ιXd + dιX , (1.7)

as well as the Euler–Lagrange equations (1.3). Hence, we can rewrite the Euler–
Lagrange equations in a coordinate-independent way as

ι∆L ωL = dL, (1.8)

where ωL = −dθL, the Lagrangian (symplectic) two-form. In coordinates,

ωL =
∂2L

∂q̇α∂qβ
dqα ∧ dqβ +

∂2L
∂q̇α∂q̇β

dq̇α ∧ dqβ.

The flow generated by the dynamical vector field ∆L is a Lagrangian symplecto-
morphism, that is Φ∗t ωL = ωL:

d
dt

Φ∗t ωL = Φ∗t L∆L ωL

= Φ∗t
(
ι∆L dωL + d(ι∆L ωL)

)
= Φ∗t

(
ι∆L d2θL + d2L

)
= 0,

as d2 = 0, and Φ0 = Id. Please observe that all mathematical structures in
equation (1.8) are intrinsic; although all these objects have been expressed in
local representations, these expressions hold on all charts, and therefore they
are valid globally.

Suppose that the Lagrangian L is invariant under a one-parameter group
of diffeomorphisms on TQ with respect to a complete vector field X. The



1.2. GEOMETRIC MECHANICS 9

infinitesimal transformation that X induces on L is traditionally written as
δL ≡ LX L, and we have that

LX L = ιXdL

= ιXL∆L θL

= ι[X,∆L ]θL + L∆L ιXθL,

in which the first term vanishes for vertical vector fields [see 105, pp. 112–113].
In the derivation we have used the Euler–Lagrange equations (1.8) and the
identity6 ι[X,Y] = LX ιY − ιYLX . We note that the commutator of any vector field
X that corresponds to point transformations and the dynamical vector field,
that is δ∆L ≡ [X, ∆L], yields a vertical vector field, as one can verify by direct
computation. Hence, we arrive at Noether’s theorem:

Theorem 1 (Noether). Let X be an infinitesimal generator of a one-parameter
group of diffeomorphisms {t ∈ R | ρt} that consists of point transformations. If a
Lagrangian L is infinitesimally invariant under ρε with ε > 0, then Γ ≡ ιXθL is a
constant of motion.

It is worth noting that Noether’s theorem can be restated in terms of
Lagrangian momentum maps [108]. We shall come to momentum maps in
due course when we address symplectic reduction in Section 1.2.3, where they
arise naturally in the Hamiltonian formalism.

1.2.2 Hamiltonian Mechanics

In the Lagrangian formulation of classical mechanics dynamical systems are
viewed as triples (TQ , R, {Φt}t∈R). An alternative yet formally more structured
approach to classical mechanics has been developed by Hamilton. The transition
from the formalism devised by Euler and Lagrange to the Hamiltonian formalism
is achieved by a Legendre transformation FL : TQ → T?Q ,

FL : (q, q̇) 7→
(

q,
∂L
∂q̇

(q, q̇)
)

. (1.9)

Technically, the Legendre transformation is a fibre derivative. It translates the
Lagrangian L (q, q̇, t) with the generalized coordinates q and the generalized ve-
locities q̇ as independent variables into the Hamiltonian function H = H(q, p, t),

6This result follows from the Leibnitz rule for differential forms, LX ιY = ιLXY + ιYLX , and the
fact that LXY = [X, Y] for all vector fields X and Y.
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where the generalized momenta are defined as

pα =
∂L
∂q̇α

. (1.10)

These generalized momenta are defined on the cotangent bundle T?Q . The
cotangent bundle can be constructed in a similar fashion as the tangent bundle
by attaching the cotangent spaces at each point q ∈ Q :

T?Q =
⊔

q∈Q
T?

qQ ,

The fibres of the cotangent manifold are the cotangent spaces, which are the
duals of the tangent spaces. They represent all allowed values of momentum at
each point of the configuration manifold. Smooth cross-sections of the cotangent
bundle are one-forms. Henceforward the canonical projection will be denoted
by π?.

In terms of the generalized coordinates and the new generalized momenta,
the Euler–Lagrange equations become

dpα

dt
=

∂L
∂qα

,

dqα

dt
= q̇α.

From the exact differential

dL =
∂L
∂qα

dqα +
∂L
∂q̇α

dq̇α +
∂L
∂t

dt,

the definition of the canonical momenta (1.10), the Euler–Lagrange equations
(1.3), and the identity pαdq̇α = d (pα q̇α)− q̇αdpα, we find that

d (pα q̇α − L) = − ṗαdqα + q̇αdpα − ∂L
∂t

dt. (1.11)

For the left-hand side to be the exact differential of some function that depends
on q, p, and t rather than q, q̇, and t, the generalized velocities have to be of the
form q̇α = q̇α (q, p, t). By inverting equation (1.10) we find the desired result,
which may then be substituted into the Lagrangian L = L (q, q̇ (q, p, t) , t). In-
vertibility of pα = pα (q, q̇, t) at any point q ∈ Q at all times is guaranteed if and
only if pα (q, q̇, t) does not pass through an extremum, so that det

(
∂pα/∂q̇β

) 6= 0
or that the so-called Hessian det

(
∂2L/∂q̇α q̇β

)
does not vanish. In that case the
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Lagrangian L is said to be hyperregular. Generally, a Lagrangian is called reg-
ular if the fibre derivative is a local isomorphism, whereas it is hyperregular if
the fibre derivative is a global isomorphism; for any hyperregular Lagrangian
(Hamiltonian) the map FL : TQ → T?Q (FH : T?Q → TQ ) is a diffeomorphism,
and FL = (FH)−1. Provided that the Hamiltonian is hyperregular, the gener-
alized momenta can be expressed as pα = pα (q, q̇, t). An additional Legendre
transformation yields the Euler–Lagrange equations, which establishes the equiv-
alence of both formalisms on the conditions that the Lagrangian L (q, q̇, t) and
the Hamiltonian H (q, p, t) are both hyperregular. In particular, we have the
following commutative diagram:

R

T?Q

H
66

FH //

π?
))

TQ

E
hh

L //

FL
oo

πuu

R.

Q

The Hamiltonian function itself is an expression of the total energy of a conser-
vative, autonomous dynamical system in terms of the canonical coordinates and
momenta. Its counterpart in terms of the generalized coordinates and velocities
is given by the energy function E = (FL)∗H.

On the premise of a non-singular Hessian matrix,

H (q, p, t) = pα q̇α (q, p, t)− L (q, q̇ (q, p, t) , t) (1.12)

is the Hamiltonian function. Its differential equals the left-hand side of equation
(1.11), as desired. Upon comparison of the coefficients in

dH =
∂H
∂qα

dqα +
∂H
∂pα

dpα +
∂H
∂t

dt

= − ṗαdqα + q̇αdpα − ∂L
∂t

dt,

we find, on the one hand, the celebrated Hamilton’s canonical equations,
q̇α =

∂H
∂pα

,

ṗα = − ∂H
∂qα

,
(1.13)
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and, on the other hand, the relation

∂H
∂t

= −∂L
∂t

. (1.14)

The solutions of Hamilton’s canonical equations yield local expressions for
the trajectories on the cotangent bundle. The cotangent bundle is the carrier
manifold for the dynamics, and it is also known as the phase space.

Henceforth we consider autonomous dynamical systems. Hamilton’s canoni-
cal equations (1.13) are 2n first-order differential equations on the cotangent
bundle. These equations can also be written as

η̇ = J∇H(η), (1.15)

where η ∈ T?Q of which the coordinates are (q, p), and

J =
(

0 I
−I 0

)
∈ Sp (2n, R).

Here Sp (2n, R) =
{

A ∈ GL (2n, R)
∣∣ ATJA = J

}
denotes the symplectic (ma-

trix) group, which in Cartan’s classification of finite-dimensional Lie groups is
written as Cn(R).

Yet another equivalent expression frequently found in the literature is

η̇ = {η, H(η)} , (1.16)

where the Poisson bracket {·, ·} can be written locally as

{ f , g} =
∂ f
∂qα

∂g
∂pα
− ∂ f

∂pα

∂g
∂qα

, (1.17)

for f , g ∈ C∞(T?Q , R). The Poisson bracket is related to the canonical symplectic
form ω:

{ f , g} = ω(X f , Xg) = d f (Xg) ≡ LXg f , (1.18)

which endows the cotangent bundle with a symplectic structure. Here X f and
Xg are the (Hamiltonian) vector fields associated with the functions f and g
respectively. Generally, a Hamiltonian dynamical system is a triple (M , ω, H),
where (M , ω) is a symplectic manifold.

The canonical symplectic form ω = (FH)∗ωL can be written locally as

ω = dqα ∧ dpα. (1.19)

In fact, the symplectic form of any symplectic manifold can be written in the
standard form (1.19), as asserted by Darboux’s theorem [28, 112]:
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Theorem 2 (Darboux). Let (M , ω) be a symplectic manifold, U ⊂ M an open
subset, and (x, y) coordinates on a chart of U. The symplectic form is

ω|U = dxα ∧ dyα.

In general, a symplectic structure ω is (i) bilinear, that is ω : V × V → R,
with V a finite-dimensional vector space; (ii) skew-symmetric, that is ω(v, w) =
−ω(w, v) for all v, w ∈ V; (iii) non-degenerate, which implies that ω(v, w) = 0 if
and only if v = 0 or w = 0; and (iv) closed, so that dω(v, w) = 0 for all v, w ∈ V.

The symplectic structure is fundamental to the dynamics; both the canonical
equations of motion and conserved quantities can be expressed in terms of it,
as we shall see below. The existence and uniqueness of the Hamiltonian vector
field7 XH is guaranteed by the fact that the symplectic form is non-degenerate.
It is defined by the relation

ιXH ω = dH, (1.20)

which is equivalent to XH = J∇H; similar relations hold for all vector fields on
the cotangent bundle. Equation (1.20) is the coordinate-independent form of
Hamilton’s canonical equations. However, in order to see the equivalence to the
conventional form of the canonical equations (1.13), we have to introduce the
(Hamiltonian) dynamical vector field, which is the counterpart of the Lagrangian
dynamical vector field: ∆ = (FL)∗∆L; it is a section of the bundle T (TM ) →
TM of a symplectic manifold M . In coordinates (q, p) the dynamical vector
field is

∆ = q̇α ∂

∂qα
+ ṗα

∂

∂pα
.

For XH = ∆ in equation (1.20) we retrieve Hamilton’s canonical equations (1.13).
In addition, the tautological form θ = (FH)∗θL can be written locally as

θ = pαdqα.

The symplectic two-form is obviously related to the tautological one-form by
ω = −dθ. In a similar manner as in the Lagrangian formalism, closedness of the
canonical symplectic form ω implies that the flow Φt generated by the dynamical
vector field is a symplectomorphism8. The condition that the symplectic form

7A vector field X on M that preserves ω is called a symplectic vector field, so that ιXω is closed.
A Hamiltonian vector field is a symplectic vector field for which ιXω is exact, that is ιXω = dH for
some H ∈ C∞(M , R).

8A symplectomorphism f of a symplectic manifold (M , ω) is a diffeomorphism f ∈ Diff (M )
that preserves the symplectic form: f ∗ω = ω.
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be skew-symmetric in its arguments implies that the energy, that is Hamiltonian
function, is conserved, for LXH H = ιXH dH = ιXH ιXH ω = ω(XH , XH) = 0.

By definition, symplectomorphisms preserve the symplectic form of a 2n-
dimensional symplectic manifold, as well as all its pth exterior powers, where
p ≤ n. These 2p-forms are known as Poincaré invariants. For p = n, we
have that the 2n-form ωn = ω ∧ . . . ∧ ω 6= 0. Hence, the (normalized) form
Ω = ωn/n! is a volume form, and it assigns an orientation to each fibre; it is
known as the Liouville measure or the symplectic volume. For Hamiltonian
dynamical systems this implies Liouville’s theorem:

Theorem 3 (Liouville). The phase space volume Ω is preserved under the flow Φt
generated by the Hamiltonian vector field XH for all t ∈ R.

Even though the discussion has been rather abstract, our efforts will be
rewarded. In numerical simulations the preservation of the symplectic structure
is crucial. The canonical symplectic form encodes many important characteristics
of the phase space, as it determines invariants, stability, spectral properties, such
as the location and nature of bifurcations, and the precise location of KAM tori,
which are essential to the study of chaos in dynamical systems. These facts will
be explored in depth in the next chapters.

1.2.3 Reduction

The connection between conserved quantities and symmetries of a dynamical
system, especially as expressed by Noether’s theorem, is formalized in the
concept of a momentum map9. Before we can appreciate the rich structure
of momentum maps and how these give rise to what is known as symplectic
reduction, we have to settle on some definitions and notation, as the literature
on the subject tends to be quite varied.

Let (M , ω) be a connected symplectic manifold, on which a Lie group G
acts smoothly. The action of the Lie group G on the manifold (M , ω) is a group
homomorphism of G into the group of diffeomorphisms of M :

ψ : G → Diff (M )

g 7→ ψg,

that is ψe = IdM and ψgh = ψg ◦ ψh for all g, h ∈ G. Our definition of a group
action is actually a left group action as opposed to a right group action; a left

9Some authors prefer the name ‘moment map’, which is in fact an incorrect translation of the
French term ‘application moment’, as given by Souriau [147].
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(right) group action acts on the manifold M by left (right) multiplication. Hence,
a right group action leads to an anti-homomorphism of G into Diff (M ). Since
we only consider left group actions, and thus need not distinguish between
either type of group action, we drop the designations ‘left’ and ‘right’ altogether.
If M is a vector space and ψg is a linear map, then the action of G on M is
simply a representation ψ : G → End (M ).

For any complete vector field X on M , the map t 7→ Φt = exp tX obviously
defines a smooth action of R on M ; it is nothing but the one-parameter group
of diffeomorphisms generated by X.

The derivative at the identity e of the map G → Diff (G) that sends each
element h ∈ G by conjugation with g ∈ G to g · h · g−1 is an invertible linear
map from the Lie algebra g = Lie (G) to itself, and we denote it by Adg : g→ g

for any g ∈ G. It is known as the adjoint action of G on g:

Ad : G → Diff (g) ⊂ Aut (g)

g 7→ Adg .

In particular,

Adg(ξ) =
d
dt

g · exp (tξ) · g−1
∣∣∣∣
t=0

.

What is more, we can define an action that is dual to the adjoint repre-
sentation, called the coadjoint action. For Adg the dual Ad∗g is determined
from 〈

Ad∗g Ξ, ξ
〉

=
〈
Ξ, Adg ξ

〉
,

where Ξ ∈ g∗, the dual of g, and ξ ∈ g. The map Ad∗ : G → Diff (g∗) sends g to
Ad∗g−1 . These definitions ensure that both the adjoint and coadjoint actions are
group homomorphisms.

The group action ψ associated with a Lie group G induces a vector field on
M ,

Xξ =
d
dt

ψexp (tξ)

∣∣∣∣
t=0

for any ξ ∈ g, which is known as the infinitesimal generator. It is a Lie algebra
homomorphism g→ Vec (M ) with ξ 7→ Xξ .

Of particular importance to momentum maps are symplectic and Hamiltonian
group actions. The action ψ is called symplectic if G acts by symplectomor-
phisms. In other words, ψ : G → Symp (M , ω) ⊂ Diff (M ). A symplectic action
is said to be Hamiltonian if the vector field generated by ψ is Hamiltonian,
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which means that there is function Hξ : M → R, such that ιXξ ω = dHξ , where
Xξ = XHξ is the vector field generated by ψ.

The answer to the question what symplectic group actions are Hamiltonian
leads us to the concept of a momentum map. An action ψ is Hamiltonian if
there exists a map µ : M → g∗, such that

dµξ = ιXξ ω, (1.21)

where µξ(m) = 〈µ(m), ξ〉, the component of µ along ξ ∈ g, and µ is equivariant10

with respect to both the group action and the coadjoint action, that is µ ◦ ψg =
Ad∗g−1 ◦µ. The quadruple (M , ω, G, µ) is said to be a Hamiltonian G-space, and
µ is called the momentum map.

We shall mainly be concerned with symplectic manifolds (T?Q , ω) that
are equipped with a tautological one-form θ that is related to the symplectic
two-form in the usual way. If G acts on Q , then G can be lifted11 naturally
to a symplectic action on (T?Q , ω), since the tautological one-form is invari-
ant [28, pp. 11–12] under the lifted action because the canonical projection is
G-equivariant; the cotangent lift is a group homomorphism from Diff (Q ) onto
Symp (T?Q , ω). This means that LXξ θ = 0 for all Xξ ∈ g. By Cartan’s formula
we obtain that d(ιXξ θ) = −ιXξ dθ = ιXξ ω, and thus that µξ = ιXξ θ.

We note that momentum maps are not unique, for they are determined up
to constant functions on M ; M is of course assumed to be connected. For µ

and ν momentum maps for the same group action this means that µξ − νξ is a
constant function on M for all ξ ∈ g, and that there is an element ξ ∈ g∗ such
that µ− ν = ξ. Equivariance of momentum maps determines the constant by
the coadjoint action of G on g∗ [68].

Suppose that there is a function f : M → R that is invariant under the action
of a group G: LXξ f = 0 for any ξ ∈ g. By definition, LXξ f = ιXξ d f , which
we can also write as ιXξ ιX f ω = −ιX f ιXξ ω because of the skew-symmetry of
the symplectic form. We can recognize equation (1.21) immediately, so that

10A map f : M → N that commutes with the action of a (connected) group G is said to be
equivariant when f ◦ ψg = χg ◦ f for all g ∈ G, where ψg : M →M and χg : N → N . If f : V →W
is a linear function between vector spaces, and ψ and χ are representations on V and W respectively,
then equivariance of the map f reduces to f being an intertwiner, or intertwining operator.

11For a diffeomorphism f : M → N , the tangent lift T f : TM → TN and its dual the cotangent
lift T? f−1 : T?M → T?N are bundle maps, that is they satisfy the relations f ◦ πM = πN ◦ T f
and f ◦ π?

M = π?
N ◦ T? f−1 respectively. The appearance of the inverse of f in the definition

of the cotangent lift is because the cotangent map T? f : T?N → T?M covers f−1; the tan-
gent map and tangent lift are synonymous. For a group action ψg : Q → Q the tangent
lift is simply defined as Tψg(q, q̇) =

(
ψg(q), Tqψg(q̇)

)
, and its cotangent lift is given by

T?ψg(q, p) =
(
ψg(q), T?

ψg(q)ψg−1 (p)
)
, where ψg−1 = (ψg)−1.
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ιX f ιXξ ω = ιX f dµξ = LX f µξ . Hence, µ is constant on all trajectories of the vector
field of f . The one-parameter group of diffeomorphisms {t ∈ R | exp (tX f )}
is a symmetry of the Hamiltonian G-space. In conclusion, we can phrase the
essence of momentum maps in the geometric version of Noether’s theorem:

Theorem 4 (Noether). Let (M , ω, G, µ) be a Hamiltonian G-space. If f : M →
R is a G-invariant function, then µ is constant on the integral curves of the flow
generated by X f .

A rather trivial example of a momentum map is the Hamiltonian H itself,
which is R-invariant. We can identify the dual R?∼= R through the standard
Euclidean inner product, and in particular µξ = H · ξ and Xξ = ξXH . We return
the construction of (non-trivial) momentum maps in Chapter 3.

In the context of geometric mechanics we mean by reduction a mathematical
procedure that allows us to remove redundant degrees of freedom, and thus
simplify the governing equations of motion because of symmetries present in
the dynamical system. It is well known that the number of degrees of freedom
reduces by the dimension of the symmetry that acts on a dynamical system,
whereas the dimension of the phase space reduces by twice that value. A
geometric formulation of that fact is contained in the Marsden–Weinstein–Meyer
theorem, the statement and appreciation of which require the introduction of a
few additional ideas.

The (group) orbit of a point m ∈ M associated with a group action ψ is
defined as OrbG (m) =

{
g ∈ G

∣∣ ψg(m)
} ⊆M , which is not to be confused with

the previous definition of an orbit, as given in Section 1.1. The isotropy group, or
stabilizer, of ψ at m is Gm =

{
g ∈ G

∣∣ ψg(m) = m
} ⊆ G. Similar definitions can

be given for the adjoint and coadjoint actions, where the orbits are over the Lie
algebra g and its dual g∗ respectively. An action is said to be (i) transitive, if there
is merely one orbit; (ii) effective, or faithful, if g 7→ ψg is injective; (iii) free if all
stabilizers are trivial; (iv) locally free if all stabilizers are discrete; and (v) proper if
all pre-images of compact sets are compact. Every free group action is naturally
faithful.

The orbit space M //G is the quotient M /∼, where ∼ denotes the orbit
equivalence relation, that is if m and n are on the same orbit, then m ∼ n. The
orbit space is equipped with the standard quotient topology, that is U ⊂M //G
is open if and only if σ−1(U) is open, where σ : M → M //G is the point-
orbit projection, which maps each m ∈ M to the orbit through m. If the
coadjoint action is trivial, then equivariance of the momentum map becomes
invariance under the group action. In particular, we find that the pre-image of
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the momentum map at the zero element µ−1(0) is invariant under G, because
0 ∈ g? is a fixed point of the coadjoint action. By virtue of equivariance of
the momentum map, µ−1(Ξ) is in fact invariant for all coadjoint orbits Ξ ∈ g∗
because OrbGΞ

(m) = OrbG (m) ∩ µ−1(Ξ). This means that if Ξ is a regular12

value of the momentum map µ, then µ−1(Ξ) is a submanifold of M . If the
coadjoint stabilizer GΞ acts freely and properly on µ−1(Ξ), then the quotient
µ−1(Ξ)/GΞ is a manifold too. Note that the coadjoint stabilizer GΞ always acts
locally freely on µ−1(Ξ) for any regular value Ξ. If, in addition, it acts properly
on µ−1(Ξ), then the quotient µ−1(Ξ)/GΞ is an orbifold rather than a manifold.

The reduction process is summarized in the famous Marsden–Weinstein–
Meyer theorem [107, 117]:

Theorem 5 (Marsden–Weinstein–Meyer). Let (M , ω, G, µ) be a Hamiltonian
G-space for a compact Lie group G, the coadjoint stabilizer of which GΞ acts freely and
properly on µ−1(Ξ). The orbit space M Ξ ≡ M //GΞ = µ−1(Ξ)/GΞ is a symplectic
manifold with a symplectic form given by i∗ω = σ∗ωΞ, where i : µ−1(Ξ) ↪→ M is
the inclusion map. Furthermore, σ : µ−1(Ξ) → M Ξ is a principal GΞ-bundle, and
dim M Ξ = dim M − 2 dim GΞ.

The symplectic manifold (M Ξ, ωΞ) is called the (symplectic) reduction of
(M , ω) at the level Ξ. If the Hamiltonian H : M → R of a Hamiltonian G-
space is invariant under the action of G, then the reduced Hamiltonian can
be calculated from HΞ ◦ σ = H ◦ i, which allows us to simplify (M , ω, H) to
(M Ξ, ωΞ, HΞ).

If the symmetry group of a Hamiltonian G-space is the product of compact
connected Lie groups, then it is possible to perform the Marsden–Weinstein–
Meyer reduction with respect to each factor. Specifically, if the group G =
G1 ×G2 × . . .×GK for some finite K ∈N, then obviously g = g1 ⊕ g2 ⊕ . . .⊕ gK
and g∗= g∗1 ⊕ g∗2 ⊕ . . . ⊕ g∗K. Let µi : M → g∗i be the momentum map with
respect to the ith factor, where i = 1, . . . , K. Equivariance of µ implies that µi
is invariant under Gj with i 6= j. This allows us to compute the symplectic
reduction one factor of the product at a time, a procedure that is known as
reduction in stages. More information on reduction in stages and orbit reductions
as opposed to point reductions can be found in the notes by Marsden et al. [109].

12A value Ξ is regular if and only if the symmetry algebra gm = Lie (Gm) is trivial for all
m ∈ µ−1(Ξ).
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1.3 Canonical Transformations

Yet another equivalent way of expressing the equations of motion in classical
mechanics is by means of the Hamilton–Jacobi equation, which has its own
merits, especially in respect of the connections between canonical transforma-
tions, integrability, and perturbation theory. In order to make the transition,
we have to recast the definition of a symplectomorphism slightly. To that
end, consider (M 1, ω1) and (M 2, ω2) to be two symplectic manifolds with
dim M 1 = dim M 2, and f : M 1 → M 2 a map between them. Usually we say
that f is a symplectomorphism whenever ω1 = f ∗ω2.

The product manifold (M 1 ×M 2, ω) has a symplectic form is given by
ω = π∗1 ω1 − π∗2 ω2, which is sometimes referred to as the twisted product
form13. Here πi : M 1 ×M 2 →M i denotes the projection onto M i for i = 1, 2.
Furthermore, define i f : Γf ↪→ M 1 ×M 2 to be the inclusion, where Γf =
{m ∈M 1 | (m, f (m))} the graph of f . We can see that π1 ◦ i f = π1|Γf , the
restriction of the projection onto the first manifold in the product by the graph
of the map f , and that π2 ◦ i f = f ◦ π1. Consequently,

i∗f ω = (π1|Γf
)∗ (ω1 − f ∗ω2) .

Since π1 ◦ i f is clearly injective, we see that f is a symplectomorphism if and
only if i∗f ω = 0. In that case, Γf ⊂ M 1 ×M 2 is said to be a Lagrangian14

submanifold [1].
Assume that we pick a one-form θ, such that locally we find the familiar

relation ω = −dθ. For instance, θ = π∗1 θ1 − π∗2 θ2, where ωi = −dθi, would do.
For any symplectic diffeomorphism f we see that i∗f dθ = di∗f θ = 0, which means
that i∗f θ must be closed. Locally we may write

i∗f θ = dS, (1.22)

for some S : Γf → R. The function S is known as the generating function. We
stress that the generating function depends on the choice of θ, and that it is only
defined on a local chart.

Suppose that (Q, P) and (q, p) are coordinates on M 1 = T?Q 1 and M 2 =
T?Q 2 respectively. The relation i∗f θ = dS leaves us with four options to choose

13In fact, ω = λ1π∗1 ω1 + λ2π∗2 ω2 is a symplectic form on M 1 ×M 2 for any λ1, λ2 ∈ R \ {0}.
14The symplectic complement of a linear subspace W ⊂ V, where (V, ω) is a (finite-dimensional)

symplectic vector space, is the subspace defined by Wω = {v ∈ V | ω(v, w) = 0 ∀w ∈W}. W is
called (i) symplectic if W ∩Wω = {0}, that is if ω|W×W is non-degenerate; (ii) isotropic if W ⊆ Wω ,
that is if ω|W×W = 0; (iii) co-isotropic if Wω ⊆W; and (iv) Lagrangian if W = Wω is isotropic, so that
dim W = 1

2 dim V.
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our set of independent coordinates from, namely (q, Q), (q, P), (p, Q), or (p, P);
these correspond to the four types of canonical transformations. The herewith
related choices for the tautological one-forms are (i) θ1 = Pα dQα and θ2 = pα dqα;
(ii) θ1 = −Qα dPα and θ2 = pα dqα; (iii) θ1 = Pα dQα and θ2 = −qα dpα; and
(iv) θ1 = −Qα dPα and θ2 = −qα dpα.

The core of the Hamilton–Jacobi approach is deceptively simple: seek a
canonical transformation that relates the original dynamical system to another
one with trivial integral curves. In other words, we want to find a symplecto-
morphism f , such that H ◦ f = E, a constant. Hence,

H
(

q,
∂S
∂q

)
= E, (1.23)

which is the time-independent Hamilton–Jacobi equation based on a canonical
transformation of the first type. The generating function in the autonomous case
is called Hamilton’s characteristic function15.

Time dependencies can be worked into the formalism as well by considering
contact manifolds that are diffeomorphic to T?Q ×R. In a nutshell, a contact
manifold is (2n + 1)-dimensional manifold with a closed two-form of maximal
rank 2n. We do not go into the details of contact geometry here, as we have no
need of it; we merely state the following result:

Theorem 6 (Cartan). If (M , ω) is a symplectic manifold and H : M × R →
R a time-dependent Hamiltonian function, then (M ×R, ω̃) is a contact manifold,
where ω̃ = π̃∗ω + dH ∧ dt and π̃ : M × R → M the projection onto the first
factor. Furthermore, the dynamical vector field ∆̃ is determined uniquely by the equation
ι∆̃ω̃ = 0 and the normalization ι∆̃dt = 1.

For a contact manifold there is a one-form θ̃ such that θ̃ ∧ (dθ̃)n is a volume
form and ω̃ = −dθ̃. In that case, the contact manifold is sometimes referred to
as an exact contact manifold. The inquisitive reader may consult the literature
for additional information [1, 28, 112].

1.3.1 Extended Phase Space

There is a way to incorporate time dependencies in the geometric formalism
described so far, which goes back to Poincaré, and it has recently been developed
further by Struckmeier [150, 151] in a more general context. The basic idea is
to treat time as an additional canonical coordinate, that is t(s) ≡ q0(s), where

15Sometimes W instead of S is used in the time-independent Hamilton–Jacobi equation.
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s is a superordinate evolution parameter of the dynamical system. As a result,
there is an associated canonical momentum p0, and the extended phase space is
T?Q̄ ≡ T?(Q ×R), which is 2(n + 1)-dimensional. In that way, we wish to
transfer the contact geometry of a t-dependent dynamical system to a symplectic
one, where all dynamical quantities are s-independent by construction. Please
note that in doing so we introduce an additional degree of freedom to our
dynamical system.

In complete analogy with the Hamiltonian function on the usual phase space,
we introduce a Hamiltonian function H̄ : T?Q̄ → R on the extended phase space.
In order to relate a time-dependent Hamiltonian H : T?Q ×R to its equivalent on
the extended phase space, we require that the contact form θ̃, as given in Cartan’s
theorem, forms the basis for a symplectic structure on the extended phase space,
which means that the extended phase space (T?Q̄ , ω̄) is the symplectization of
the contact manifold (T?Q ×R, ω̃). As such, we have to equate the contact
forms θ̃ = π̃∗θ − Hdt on T?Q ×R with ˜̄θ = ˜̄π∗ω + p0dq0 − H̄ds on T?Q̄ ×R,
where ˜̄π : T?Q̄ ×R→ T?Q is the projection onto the base phase space16. Since
t(s) = q0, we get that H̄ ds = (H + p0) dt. If we denote κ = dt/ds, then we have
the extended Hamiltonian

H̄ = κ(H + p0). (1.24)

For the dynamics to be equivalent on the extended phase space, we require—
without loss of generality—that the dynamics evolves on the hypersurface
defined by H̄ = 0, which suggests that p0 = −H (q(s), p(s), t(s)), the instan-
taneous value of the Hamiltonian. It is important to note that the extended
Hamiltonian does not vanish identically; the (2n + 1)-dimensional hypersurface
H̄ = 0 is the analogue of the (2n− 1)-dimensional hypersurface defined by the
relation H = E in the autonomous case.

To be precise, for any compact hypersurface H ⊆M , ω|H = −dθ′, where θ′
provides the contact structure for H [112, pp. 113–114]. In our case, M = T?Q̄
and H is the codimension-1 hypersurface onto which the t-dependent dynamics
is constrained. For the extended phase space to be a symplectization we require
the contact form θ′ be equal to the contact form θ̃. Indeed, ω̄|H̄=0 = −dθ̃.

With these definitions and relations we can express the extended symplectic
form ω̄ = dqα ∧ dpα as ω− dt ∧ dH(q(s), p(s), t(s)). The extended dynamical
vector field ∆̄ is obtained from the usual relation ι∆̄ω̄ = dH̄. Locally Hamilton’s

16The defining relations for the dynamical vector field on T?Q ×R can be transferred directly to
T?Q̄ ×R, namely ι ˜̄∆

˜̄ω = 0 and ι ˜̄∆ds = 1.
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canonical equations become 
dqα

ds
=

∂H̄
∂pα

,

dpα

ds
= − ∂H̄

∂qα
,

where now α runs from 0 to n. For α = 1, . . . , n, we obtain equations (1.13)
with s as the independent variable, whereas for α = 0, we retrieve the identity
dt/ds = κ together with the equation

dH
ds

(q(s), p(s), t(s)) = κ
∂H
∂t

(q(t), p(t), t) .

We draw attention to the fact that the aforementioned identity emphasizes that
time is indeed a canonical coordinate on the extended phase space.

Canonical transformations (q0, q, p0, p) 7→ (Q0, Q, P0, P) can be introduced
in an identical manner on the extended phase space. These extended canonical
transformations are able to generate transformations that link space and time
non-trivially, such as the famous Lorentz–Poincaré transformations [150]. In
order to have an absolute and globally defined rather than a relative notion
of time that is intrinsic to the extended phase space, the transformed time
must be independent of the canonical coordinates and momenta, that is Q0 6=
Q0(q, p). If in addition the transformed canonical coordinates and momenta
as well as the transformed time do not depend explicitly on the instantaneous
value of the Hamiltonian H(q(s), p(s), t(s)), then the extended phase space
T?(Q ×R) decomposes as T?Q × T?R. In that case, the extended canonical
transformations factorize as standard canonical transformations multiplied by
time reparameterizations. An example of such a time transformation is presented
in Chapter 4 when we take a look at the logarithmic Hamiltonian method.

1.3.2 Integrability

To close our cursory exposé of dynamics and its relation to (differential) ge-
ometry, we want to address the issue of integrability, as it leads us naturally to a
few ideas that we require later on. Integrability—more precisely, integrability in
the sense of Liouville—is closely related to separability of the Hamilton–Jacobi
equation (1.23) in the sense of Stäckel. We explore separability for the MICZ
problem in Appendix C, which is to be introduced in Chapter 3.

Consider a Hamiltonian dynamical system (M , ω, H) with Φt the flow gen-
erated by XH . As before, dim M = 2n. A function f : M → R lies in the
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involution of the Hamiltonian H, that is { f , H} = 0, if and only if f is constant
along integral curves of XH , which implies that f is a constant of motion. Indeed,

d
dt

( f ◦Φt) = Φ∗t LXH f

= Φ∗t ιXH d f

= Φ∗t ιXH ιX f ω

= Φ∗t ω(X f , XH)

= Φ∗t { f , H}
= 0.

We call a Hamiltonian dynamical system (completely) integrable when it pos-
sesses n = 1

2 dim M independent integrals of motion that are all pairwise in
involution.

For a completely integrable 2n-dimensional dynamical system (M , ω, H)
with n integrals of motion f = ( f1, . . . , fn), the level set f−1(c) for any regular
value c ∈ M is a Lagrangian submanifold17. We can see that the connected
components of the level set, denoted by Ic, are homogeneous spaces by noting
that Φ : Rn × Ic → Ic with Φ = Φ1

t1
◦ Φ2

t2
◦ . . . ◦ Φn

tn
defines a transitive group

action on that level set. Here Φi
ti

is the flow generated by X fi
. Hence, Ic ∼= G/G`,

where G = Rn and G` its stabilizer at ` ∈ Ic. Furthermore dim G` = 0, since
dim Ic = dim G = n. Therefore, G` is a discrete subgroup of G, and G`

∼= Zk for
some 0 ≤ k ≤ n.

With these preliminaries we are finally in a position to appreciate the modern
formulation of Liouville integrability, which is due to Arnold [5]:

Theorem 7 (Arnold–Liouville). Let (M , ω, H) be a completely integrable dy-
namical system, and f = ( f1, . . . , fn) its integrals of motion. If the vector fields X fi

for
i = 1, . . . , n are complete on the level set f−1(c) for any regular value c, then the con-
nected components of f−1(c) are diffeomorphic to Rk×Tn−k with 0 ≤ k ≤ n. In addi-
tion, the cotangent bundle of the compact component has coordinates φ = (φ1, . . . , φn),
and there are coordinates J = (J1, . . . , Jn), such that these form a Darboux chart (φ, J).

Here Tn = S1 × S1 × . . .× S1, with n factors, denotes the n-torus. The J are
known as the action coordinates, and the φ are called the angle coordinates.
It is obvious that complete integrability, as expressed by the Arnold–Liouville
theorem, limits the allowed topologies of M severely.

17Indeed, its dimension is exactly n, and its tangent bundle is isotropic.
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The standard manner in which the canonical transformation that achieves
the transition to action–angle coordinates is obtained is as follows. Let γα(c)
denote the homology cycle of the αth factor S1 of the n-torus for i = 1, . . . , n and
with c ∈M . We normalize the homology cycles such that the angle coordinates
are defined modulo 2π: ∮

γα(c)
dφα = 2π.

With a canonical transformation of the second type for (q, p) 7→ (φ, J) we know
that locally

pα =
∂S
∂qα

, φα =
∂S
∂Jα

.

This leads us to the relation

Jα =
1

2π

∮
γα(c)

pβ dqβ, (1.25)

where the integrand is the local representation of i∗(θ) with i : f−1(c) ↪→ M .
In principle, these relations establish the connection between (q, p) and (φ, J)
for completely integrable dynamical systems. The map A : (q, p) 7→ (φ, J) is a
local diffeomorphism by the Arnold–Liouville theorem, but since it is a (local)
bijection by construction, it turns out to be a global diffeomorphism. In fact,
invertibility of the canonical transformation together with the periodicity in the
angles allows us to write the original canonical variables as Fourier series in the
action–angle variables.

The values of the action coordinates label the tori, and the values of the angle
coordinate describe the actual dynamics on them. Because the tori are invariant
manifolds, the transformed Hamiltonian H ◦A −1 cannot depend on the angles
φ, so H(φ, J) = H(J). The equations of motion (1.13) can now be written as{

J̇α = 0,

φ̇α = −να(J).
(1.26)

Here να(J) denotes the frequency that determines the rate at which the αth
homology cycle is traversed; the period of the motion on the homology cycle
γα(c) is 2π/να. In conclusion, we see that the symplectic two-form is ω =
dφα ∧ dJα, and from the relation A∗XH = XH◦A −1 we obtain the dynamical
vector field ∆ = να∂/∂φα.
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2
Numerics

In the past couple of decades the field of numerical integration has seen two
important developments: automatic differentiation [61] and geometric numeri-
cal integration [24, 66, 96, 115]. For generic initial-value problems automatic
differentiation in combination with Taylor’s method removes the necessity of
calculating series expansions to arbitrary order either by hand or symbolically.
We can in principle achieve arbitrarily high precision, because the order of the
series expansions determines the order of the integrator, and not the time step
used to discretize the expressions, as is the case of schemes based on finite
differences. Thus, no truncation error is incurred.

For dynamical systems that can be formulated as Hamiltonian systems there
exist so-called geometric numerical integrators. These integrators respect the
fundamental geometric structure, that is to say they conserve the symplec-
tic two-form, which underlies the dynamical evolution of the system. It has
been common to design such geometric numerical integrators based on either
previous knowledge of classical numerical integration algorithms, such as the
(partitioned) Runge–Kutta methods, or (approximate) solutions to the Hamilton–
Jacobi equation for transformations near the identity. Details, examples, and
references can be found in the aforementioned books by Hairer et al. [66], and
Leimkuhler and Reich [96].

25
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There is, however, a different approach that bypasses many of the difficulties
inherent in the design of higher-order versions of these geometric numerical
integrators. It relies on the discretization of the action, from which one derives
the numerical algorithms in a straightforward manner [108]. These variational
integrators, as they are known throughout the literature, conserve the sym-
plectic structure of the phase flow automatically. Any continuous symmetries
present in the original system translate directly to the discretized version, and
thus all (equivariant) momentum maps, or conserved quantities, are preserved
infinitesimally.

So far, a general “plan to develop higher-order integrators based on [. . . ]
more accurate approximations to the action integral” [83] has been lacking,
mainly because the manual effort to produce and analyse these higher-order
variational integrators outweighs any apparent benefit. Inspired by the work of
Gander and Gruntz [52] and more recently Gander [51] to create and analyse
numerical algorithms, especially numerical integrators and quadrature rules, an
approach to design variational integrators systematically based on approxima-
tions to the discrete action by means of a computer algebra system is covered
here.

The fundamental concepts from discrete mechanics are reviewed briefly in
Section 2.1, before we comment on the application of standard quadrature rules
to variational integration in Section 2.2. The specifics of the quadrature formulas
integrated in VarInt can be found in Appendix A. For more details and the
source code of the Maple package named VarInt, please consult Appendix B.

2.1 Variational Integration

Consider an autonomous Lagrangian L : TQ → R. Here and henceforth we
assume that the generalized coordinates are at least C2 ([a, b] , R), where t ∈ [a, b].
The corresponding action functional reads

S [L] =
∫ b

a
L
(
q(t), q̇(t)

)
dt, (2.1)

from which the famous Euler–Lagrange equations are retrieved upon requiring
stationarity of the action functional for fixed endpoints, that is δS [L] = 0 with
δq(a) = δq(b) = 0.

Instead of deriving the Euler–Lagrange equations from the action and then
discretizing the equations of motion, a different approach is used in the case
of variational integrators. Here we discretize the action first by choosing an
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appropriate quadrature formula, and then we derive the discrete version of
the Euler–Lagrange equations, which are commonly known as the discrete
Euler–Lagrange equations. The resulting integration algorithms preserve the
differential-geometric structure of these dynamical systems automatically. More-
over, the order of the quadrature formula determines the order of the variational
integrator [138].

2.1.1 Numerical Integration

To obtain a one-step numerical integration algorithm, we introduce a sequence
of times tk = hk, for k = 0, . . . , N, at which the Lagrangian is to be evaluated.
Here h denotes a sufficiently small time step. Furthermore, qk ≈ q (tk) and
q̇k ≈ q̇ (tk) for k = 0, . . . , N. Consider the action between two consecutive points
in time, say tk and tk+1. Since for a generic dynamical system with a certain
Lagrangian we do not know the functional form of the solutions in advance, we
choose an interpolating function, usually a polynomial, in accordance with the
quadrature rule on the interval [tk, tk+1]. For a quadrature rule of arbitrary order
we evaluate the Lagrangian at (s + 1) ≥ 2 distinct nodes, so that each time step
is subdivided into s substeps ti

k for i = 0, . . . , s. Define t0
k = tk and ts

k = tk+1,
and let ti

k − ti−1
k = γih > 0 for i = 1, . . . , s, such that ∑s

i=1 γi = 1. The action
becomes a sum of the multi-point discrete Lagrangian Ld, which depends on
the time step h:

S [L] =
N−1

∑
k=0

∫ tk+1

tk

L
(
q(t), q̇(t)

)
dt

≈
N−1

∑
k=0

Ld
(
q0

k , q1
k , . . . , qs

k
)

=
N−1

∑
k=0

s

∑
i=1

Li
d
(
qi−1

k , qi
k
)
,

where Li
d : Q × Q → R; it relates the multi-point discrete Lagrangian to its

basic components defined on each segment of ‘length’ γih. For generic (non-
compositional) variational integrators these components depend on all qi

k for
i = 0, . . . , s; a ‘decomposition’ into the Li

d is to be understood in these instances
as a formal definition only. Notice that the discrete state space Q ×Q contains
the same amount of information as the tangent bundle of the configuration
manifold, for locally TQ ∼= Q ×Q .
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The variation of the discrete Lagrangian is

δS [Ld] ≈
N−1

∑
k=0

δLd
(
q0

k , q1
k , . . . , qs

k
)

=
N−1

∑
k=0

s

∑
i=0

∂L[k]
d

∂qi
k
· δqi

k

=
N−1

∑
k=0

(
∂L[k]

d
∂qk
· δqk +

s−1

∑
i=1

∂L[k]
d

∂qi
k
· δqi

k +
∂L[k]

d
∂qk+1

· δqk+1

)

=
N−1

∑
k=1

(
D0L[k]

d · δqk + DsL[k−1]
d · δqk

)
+

N−1

∑
k=0

s−1

∑
i=1

DiL
[k]
d · δqi

k,

where we have introduced L[k]
d as a shorthand for Ld

(
q0

k , q1
k , . . . , qs

k
)
, and where

Di denotes the derivative with respect to the argument carrying the substep
label i, that is DiL

[k]
d = ∂L[k]

d

/
∂qi

k. In the last line we have used the fact that
δq0 = δqN = 0, as the endpoints are assumed fixed. Stationarity of the discrete
action for arbitrary variations δqi

k yields the discrete Euler–Lagrange equations:

D0Ld
(
q0

k+1, q1
k+1, . . . , qs

k+1
)
+ DsLd

(
q0

k , q1
k , . . . , qs

k
)

= 0, (2.3a)

DiLd
(
q0

k , q1
k , . . . , qs

k
)

= 0, i = 1, . . . , s− 1. (2.3b)

These equations determine the one-step (flow) map of the variational integrator:(
q(tk), q̇(tk)

) 7→ (
q(tk+1), q̇(tk+1)

)
. These equations can also be written as

DiLi
d
(
qi−1

k , qi
k
)
+ DiLi+1

d

(
qi

k, qi+1
k
)

= 0

for each of the components i = 1, . . . , s. Please notice that for i = s the last term
on the left-hand side is D0L1

d
(
q0

k+1, q1
k+1

)
= D0L[k+1]

d by virtue of the identity
qi+s

k = qi
k+1.

It is common to write the one-step map in terms of the canonical coordinates
and momenta on the cotangent bundle. To do so, we need to find a discrete
analogue of the Legendre transformation1, as given by (1.9). The discretized form

1Alternatively, we can use the Hamilton–Pontryagin principle [166, 167]:

δ

[∫
(L(q, v) + 〈p, q̇− v〉) dt

]
= 0,

where (q, v, p) ∈ TQ⊕ T?Q is the Whitney sum of the tangent and cotangent bundles, which is
also known as the fibre product, and discretize the functional subsequently in complete analogy
with the discrete variational principle.
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of the Legendre transformation involves the endpoints of each time segment,
F±Li

d : Q ×Q → T?Q :

F+Li
d :
(
qi−1

k , qi
k
) 7→ (

qi
k, pi

k
)

=
(

qi
k, DiLi

d
(
qi−1

k , qi
k
))

,

F−Li
d :
(
qi−1

k , qi
k
) 7→ (

qi−1
k , pi−1

k
)

=
(

qi−1
k ,−Di−1Li

d
(
qi−1

k , qi
k
))

.

In fact, the discrete Euler–Lagrange equations (2.3) can be written as

F+Li
d
(
qi−1

k , qi
k
)

= F−Li+1
d

(
qi

k, qi+1
k
)
,

which implies that the canonical momenta are unique along any solution. Now
the one-step map, written in canonical coordinates and momenta, is

pi−1
k = −Di−1Li

d
(
qi−1

k , qi
k
)
,

pi
k = DiLi

d
(
qi−1

k , qi
k
)
,

for i = 1, . . . , s, or equivalently,

pk = −D0Ld
(
q0

k , q1
k , . . . , qs

k
)
, (2.6a)

pk+1 = DsLd
(
q0

k , q1
k , . . . , qs

k
)
, (2.6b)

DiLd
(
q0

k , q1
k , . . . , qs

k
)

= 0, i = 1, . . . , s− 1, (2.6c)

where the last set of (s− 1) equations seems ‘unaffected’ by the Legendre
transformation, and remains as in equation (2.3b). The reason for that is quite
intuitive yet profound: on each time interval an interpolatory function ap-
proximates the Lagrangian function, so that the discrete Lagrangian becomes
a piecewise smooth function. The momentum pi

k computed with the discrete
Legendre transformation F−Li+1

d requires the interpolation function on the time
segment [ti

k, ti+1
k ], or data ‘from the right’ of ti

k, whereas the same momentum
calculated from the transformation F+Li

d uses the interpolation function on
[ti−1

k , ti
k], or values ‘from the left’ of ti

k. Obviously, the intermediate momenta
(i = 1, . . . , s− 1) are identical, because the interpolating function used is the
same, so that its derivatives from the left and right coincide. In principle, the
momenta at the endpoints of each time interval need not be related at all, for the
interpolating function merely has to be equal in value in order to have a piece-
wise smooth discrete Lagrangian. However, the principle of stationary action
relates the approximate (discrete) Lagrangian function to the (approximated)
integral curves of the dynamical system, which in turn relates these momenta
by means of the discrete Euler–Lagrange equations. Therefore, the momenta are
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unique along any trajectory, and equations (2.3b) and (2.6c) are identical in both
representations.

All integrators obtained in this way are structure-preserving, that is to say
they preserve the symplectic structure of the flow. Indeed,

dL[k]
d =

s

∑
i=0

DiL
[k]
d · dqi

k

= D0L[k]
d · dqk + DsL[k]

d · dqk+1 +
s−1

∑
i=1

DiL
[k]
d · dqi

k

= D0L[k]
d · dqk − D0L[k+1]

d · dqk+1

= −pk · dqk + pk+1 · dqk+1,

from which it follows that dqk ∧dpk = dqk+1 ∧dpk+1. The (discrete) Lagrangian
flow conserves the (discrete) symplectic form as well as any momentum maps as-
sociated with (infinitesimal) invariances of the (discrete) action under symmetry
operations, as shown by Marsden and West [108]. Please recall from Chapter 1
that the momentum map is to be calculated from µ · ξ = ιXξ θ for any group G
that acts by the cotangent lift on T?Q . In local coordinates (q, p) ∈ T?Q we
have that µ · ξ =

〈
p, Xξ(q)

〉
, so that the Lagrangian momentum map µL can be

calculated from µL = (FL)∗µ:

µL · ξ =
〈

∂L
∂q̇

, Xξ(q)
〉

.

In the discrete framework we end up at each substep i = 1, . . . , s with

µi +
Ld
· ξ =

〈
DiLi

d
(
qi−1

k , qi
k
)
, Xξ

(
qi

k
)〉

,

µi−1−
Ld

· ξ =
〈
−Di−1Li

d
(
qi−1

k , qi
k
)
, Xξ

(
qi−1

k
)〉

.

Now suppose that Ld
(
q0

k , q1
k , . . . , qs

k
)

is invariant (for k = 0, . . . , N− 1) under the
lifted action of ψg : Q → Q for g = exp (tξ) with t ∈ R, which means that

s

∑
i=1

Li
d
(
ψg(qi−1

k ), ψg(qi
k)
)

=
s

∑
i=1

Li
d
(
qi−1

k , qi
k
)
.
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By taking the derivative with respect to t and evaluating at t = 0, we find that

0 =
s

∑
i=1

Di−1Li
d
(
qi−1

k , qi
k
) · Xξ

(
qi−1

k
)
+ DiLi

d
(
qi−1

k , qi
k
) · Xξ

(
qi

k
)

=
s

∑
i=1

(
−µi−1−

Ld
+ µi +

Ld

)
· ξ,

from which it follows that µ0−
Ld

= µs +
Ld

. All in all, we arrive at the discrete version
of Noether’s theorem:

Theorem 8 (Marsden–West). If the discrete Lagrangian Ld is (infinitesimally)
invariant under the one-parameter group of transformations {t ∈ R | exp (tξ)} for all
ξ ∈ g, then the associated discrete (Lagrangian) momentum map µLd is a constant of
motion.

Hence, variational integrators conserve the symplectic two-form and momen-
tum maps irrespective of the time step h. Obviously, the computed numerical
solutions are only accurate whenever the time step is sufficiently small, which
depends on the particulars of the problem under consideration. In addition, we
note that invariance of the Lagrangian L under the lifted action of a group G
does not necessarily imply (infinitesimal) invariance of its discrete counterpart
Ld [see e.g. 66, p. 211].

So far the description has been generic, in the sense that we do not have
any additional information available apart from the Lagrangian and an as yet
undefined quadrature rule to obtain numerical approximations. However, for
almost-integrable systems, where we indeed have additional knowledge, namely
the solutions of the integrable system themselves, we can insert that information
into the discrete action to obtain more accurate solutions, as described by Farr
[45].

2.1.2 Composition

For any one-step map Φ : R× T?Q → T?Q of order p, we define the adjoint
Φ∗ : R× T?Q → T?Q by

Φ∗h ◦Φ−h = Id, (2.8)

and it is of order p too. An integrator is called self-adjoint, or symmetric, if
Φ∗h = Φh. As a consequence, the order of any self-adjoint method is even.
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It is possible to construct higher-order integrators from lower-order ones by
composition in s stages. Consider a method Φh of order p and its adjoint Φ∗h ,
together with {i = 1, . . . , s | αi ∈ R} and {i = 1, . . . , s | βi ∈ R}, such that

s

∑
i=1

αi + βi = 1,

s

∑
i=1

α
p+1
i + (−1)pβ

p+1
i = 0.

The map Ψh = Φαsh ◦ Φ∗βsh ◦ . . . ◦ Φα1h ◦ Φ∗β1h is at least of order p + 1. For
αs−i+1 = βi, with i = 1, . . . , s, the composition is of course symmetric. In par-
ticular, the map Ψh = Φh/2 ◦Φ∗h/2 is symmetric, and it can be used to transform
a first-order algorithm into a symmetric, second-order one. Furthermore, for
any symmetric method Φh and {i = 1, . . . , s | γi ∈ R} satisfying

s

∑
i=1

γi = 1,

s

∑
i=1

γ
p+1
i = 0,

the symmetric composition

Ψh = Φγsh ◦Φγ2h ◦ . . . ◦Φγ1h, (2.11)

where γs−i+1 = γi for i = 1, . . . , s, is symmetric and of order at least p + 1.
Therefore, we can construct a higher-order (variational) integrator from a first-
order one.

There is a systematic way due to Yoshida [165] and Suzuki [152] to obtain
the composition coefficients for separable systems. The method relies on a
re-interpretation of the Lie derivative as an operator, as evinced suggestively in
equation (1.18) for functions on the phase space. We introduce an operator

LH = {·, H} ,

which is commonly referred to as the Liouvillian, or Liouville operator2; it is
to act on functions on the phase space, in particular canonical coordinates and

2The operatorial framework of classical mechanics can be viewed as a ‘reverse-engineered’
quantum-mechanical structure rooted in operators on Hilbert spaces, as formulated originally by
Koopman [90] and von Neumann [131]. From that perspective the Liouvillian is often written as
LH 7→ iLH , where the imaginary unit makes it a unitary operator. We can even retrofit classical
mechanics with some of the mathematical intricacies of quantum mechanics and quantum field
theory [39, 40, 57–59].
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momenta. With it equation (1.16) can be written as

η̇ = LHη,

which has the formal solution η(t) = exp (tLH)η(0). The exponential operator
is sometimes referred to as the (classical) propagator.

For separable dynamical systems the Hamiltonian is H(q, p) = T(p) + V(q),
so that the Liouvillian decomposes too: LH = LT + LV . The exponential of
the sum of Liouvillian operators can be written as a product of the individual
components of the Liouvillian with the Baker–Campbell–Hausdorff formula. The
truncation of the factorized propagator determines the order of the composition
algorithm. Obviously, we can decompose dynamical systems in many different
ways3 or we can arrange the terms in the operator product differently4. More
details and the values of the composition coefficients for different orders can be
found in Hairer et al. [66], pp. 150–158.

In creating higher-order integrators by means of composition, we have the
freedom to choose the number of stages, and to some extent we can ‘tune’ the
composition coefficients. The ‘optimality’ of these variables with respect to the
performance of the algorithm depends on the specifics of the problem under
consideration.

We have assumed the coefficients to be real, although there is in principle
nothing that prevents us from using complex time steps, as proposed by Cham-
bers [30]. It is important to note that composition methods use both forward
and backward time steps, to which we shall come in more detail in the next
subsection.

2.1.3 Quadrature or Composition?

At this point, the astute reader might have asked what the benefit is of variational
integrators based on higher-order quadrature formulas. Indeed, higher-order
variational integrators are generally implicit, whereas the concatenation of
explicit lower-order integrators remains explicit at all orders, so that in terms of
computational time the latter category would most likely outperform the former
one.

For conservative dynamical systems the use of variational integrators can
indeed be argued, though it should be noted that the variational formalism arises

3For instance, based on the different time scales of the individual components, or (non-)linearity
or (non-)integrability of the separate terms, to name but a few.

4A propagator decomposition with identical time steps is sometimes referred to as a Lie–Trotter
decomposition, whereas a symmetric product of operators is known as a Strang–Marchuk splitting.
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naturally throughout mathematical physics, and it can of course be extended; we
refer to Junge et al. [82], Kharevych et al. [86], Lew et al. [98, 99], and Marsden
and West [108] for a few possibilities. The main advantage and actual utility of
the variational construction of numerical integration algorithms lies in the fact
that non-conservative forces can easily be included in a consistent way. N-body
simulations in atomic and molecular physics, astrophysics, and chemistry are
excellent candidates for these non-conservative variational integrators, as these
simulations often become unstable under time reversal [46], so that higher-
order geometric numerical integrators based on the symmetric composition of
lower-order ones are not viable alternatives.

A force is a fibre-preserving map over the identity5 F : TQ → T?Q , which
reads F : (q, q̇) 7→ (

q, F(q, q̇)
)

in coordinates. In order to include these non-
conservative forces in the variational framework, we merely have to replace
Hamilton’s principle δS [L] = 0 by the so-called Lagrange–d’Alembert principle:

N−1

∑
k=0

[
δ
∫ tk+1

tk

L
(
q(t), q̇(t)

)
dt +

∫ tk+1

tk

F (q(t), q̇(t)) · δq(t) dt
]

= 0. (2.12)

As before, all integrals are approximated by a quadrature rule from t ∈ [tk, tk+1],
so that the Lagrange–d’Alembert principle becomes

N−1

∑
k=0

δ
s

∑
i=0

L
(

qint
(
ti
k
)
, q̇int

(
ti
k
))

︸ ︷︷ ︸
Ld

(
q0

k ,q1
k ,...,qs

k

)
+

s

∑
i=0

F
(

qint
(
ti
k
)
, q̇int

(
ti
k
)) · δqint

(
ti
k

)
︸ ︷︷ ︸

f i
k ·δqi

k= f i
k

(
q0

k ,q1
k ,...,qs

k

)
·δqi

k

 = 0,

(2.13)
where we have written the discrete Lagrangian in terms of the interpolatory
approximation of q(t) for t ∈ [tk, tk+1]: qint

(
ti
k
)

= qint
(
q0

k , . . . , qs
k; ti

k
)
. It is worth

5A diffeomorphism f : TQ → T?Q is called a fibre-preserving map over the identity, or bundle
map from TQ to T?Q over Q , if π? ◦ f = π, where π (π?) is the natural (canonical) projection,
which takes (co)tangent vectors to the points at which they are attached:

TQ

π
))

f
// T?Q

π?
uuQ .
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mentioning that

δqint
(
ti
k
)

=
s

∑
j=0

∂qint
(
ti
k
)

∂qj
k

· δqj
k,

and that generally qint
(
q0

k , . . . , qs
k; ti

k
) 6= qi

k. Therefore,

f i
k
(
q0

k , q1
k , . . . , qs

k
)

=
s

∑
j=0

F
(

qint
(
tj
k
)
, q̇int

(
tj
k
)) · ∂qint

(
tj
k
)

∂qi
k

.

In a manner similar to the derivation of the discrete Euler–Lagrange equations
(2.3), the forced discrete Euler–Lagrange equations can be shown to be

D0L[k+1]
d + f 0

k+1 + DsL[k]
d + f s

k = 0, (2.14a)

DiL
[k]
d + f i

k = 0, i = 1, . . . , s− 1. (2.14b)

Again, it is possible to write the forced discrete Euler–Lagrange equations in
terms of the canonical coordinates and momenta instead. To that end, we define
the left and right discrete forces F i±

d : Q ×Q → R respectively as F i−
d

(
qi−1

k , qi
k
)

and F i +
d

(
qi−1

k , qi
k
)
, and we find that f 0

k = F1−
d

(
q0

k , q1
k
)
, f s

k = Fs +
d

(
qs−1

k , qs
k
)
, and

f i
k = F i +

d

(
qi−1

k , qi
k
)
+ F i+1−

d

(
qi

k, qi+1
k
)

for i = 1, . . . , s− 1. These, in turn, imply
that∫ tk+1

tk

F
(
q(t), q̇(t)

) · δq(t) dt ≈
s

∑
i=1

[
F i−

d

(
qi−1

k , qi
k
) · δqi−1

k + F i +
d

(
qi−1

k , qi
k
) · δqi

k

]
.

Consequently, we find that the equations (2.14) can be written as

DiLi
d
(
qi−1

k , qi
k
)
+ F i +

d

(
qi−1

k , qi
k
)
+ DiLi+1

d

(
qi

k, qi+1
k
)
+ F i+1−

d

(
qi

k, qi+1
k
)

= 0

for i = 1, . . . , s.
The appropriate discrete Legendre transformations for forced dynamical

systems are

F f +Li
d :
(
qi−1

k , qi
k
) 7→ (

qi
k, pi

k
)

=
(

qi
k, DiLi

d
(
qi−1

k , qi
k
)
+ F i +

d

)
,

F f−Li
d :
(
qi−1

k , qi
k
) 7→ (

qi−1
k , pi−1

k
)

=
(

qi−1
k ,−Di−1Li

d
(
qi−1

k , qi
k
)− F i−

d

)
,

so that F f +Li
d
(
qi−1

k , qi
k
)

= F f−Li+1
d

(
qi

k, qi+1
k
)

with i = 1, . . . , s as before. Now
it is without any effort that we can derive the forced discrete Euler–Lagrange
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equations on the cotangent bundle:

pk = −D0Ld
(
q0

k , q1
k , . . . , qs

k
)− f 0

k , (2.16a)

pk+1 = DsLd
(
q0

k , q1
k , . . . , qs

k
)
+ f s

k, (2.16b)

DiLd
(
q0

k , q1
k , . . . , qs

k
)
+ f i

k = 0, i = 1, . . . , s− 1. (2.16c)

The functions f i
k can be computed with the VarInt, so that we can easily generate

higher-order variational integrators that include non-conservative forces in a
‘variational’ manner, that is in a way that respects the fundamental differential-
geometric properties of any dynamical system.

2.2 Quadrature Formulas

In principle any integration formula can be used to approximate the discrete
action, and thus generate a variational integrator, although some cautionary
remarks are in order. First, autonomous dynamical systems, which are the ones
considered here, are time-reversible, so in order to create variational integrators
that respect this discrete symmetry, it is necessary to consider quadrature formu-
las that are ‘symmetric’, which means that the placement of the (interpolation)
nodes must be symmetrical with respect to the midpoint of each time interval.
This rules out the use of open Newton–Cotes and Radau integration formulas,
for instance. Second, it is difficult to imagine how quadrature rules based on
non-polynomial interpolation should be implemented for generic dynamical sys-
tems. Numerical integration based on rational functions [53], for example, either
require the location of the poles in advance, or the integration weights cannot be
computed explicitly for generic integrands. In the discrete formalism described
so far the former requires the knowledge of contingent singularities of the
(discrete) Lagrangian as functions of time, whereas the latter implies that these
quadrature rules would have only limited applicability, if at all. Third, numerical
integration methods that involve the derivatives of the integrand with respect to
the independent variable, that is Turán [54, pp. 42–43] and Birkhoff quadrature
formulas [103, Chap. 10], can be used as well, but they call for the time deriva-
tives of the Lagrangian along the (numerical) solutions; it is essentially possible
to compute these using either finite differences or automatic differentiation
techniques, although that may be difficult and problem-dependent in practice.

Here we only consider time-independent Lagrangians. Time-dependent
dynamical systems can be analysed similarly in the extended phase space
formalism of Section 1.3.1. The Maple codes can be adapted rather easily to
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accommodate non-autonomous Lagrangians, though we do not dwell on the
details.

We wish to mention some notational issues. Because only autonomous
dynamical systems are considered, it suffices to define the one-step discrete
action on the interval [0, h], where h > 0 is the time step. Hence, to make the
notation somewhat more manageable in Maple, we have removed the ‘step index’
k = 0, . . . , N from all variables, as in actual implementations of these variational
algorithms the step index is redundant, in the sense that it is translated to a
function that returns the updated values of all variables. However, all variables
still carry one index, namely the ‘substep index’ i = 0, . . . , s. Henceforth we
write the number of nodes as n = s + 1.

In order to transform any basic quadrature rule to an approximation of
the action functional, it is important to notice that the independent variable
is time, and that the coordinates and their derivatives with respect to time
are approximated by polynomials of order (n− 1). It is possible to design
variational integrators based on non-polynomially fitted quadrature rules with
the auxiliary module CreateVarInt. An example is given at the end of Section 2.3.
Nevertheless, the order of any variational integrator is determined entirely by
the order of the approximation of the discrete action.

2.3 Examples

The symplectic partitioned Runge–Kutta methods form a well-known class of
variational integrators for conservative dynamical systems. For non-conservative
systems probably the best studied example is the symplectic Newmark algo-
rithm, as described in Kane et al. [83]. Beyond these the number of variational
integrators is limited, mainly because the manual effort to generate these (higher-
order) variational integrators is substantial.

VarInt is a library that enables anyone with a Maple distribution to create
and analyse new variational integrators with ease. The module VarInt has four
main procedures: VarInt, CreateVarInt, ExtractAlgorithm, and IntegrateSystem,
which provides basic functionality for the prompt numerical analysis of one-
dimensional problems. VarInt computes the (forced) discrete Euler–Lagrange
equations. In order to obtain an actual recipe that allows us to compute the
discrete flow efficiently, we have to manipulate the expressions returned by
VarInt, which depends highly on the functional form of the Lagrangian, and is
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hence best done interactively. For separable Lagrangians

L(q, q̇) = T(q̇)−V(q), (2.17)

with T : TQ → R a quadratic kinetic energy function and V : Q → R the
potential energy, an ancillary procedure ExtractAlgorithm is included in VarInt.
It aids in the extraction of such a one-step map, even for dynamical systems
with generic non-conservative forces. It greatly enhances the development of
variational integrators for non-conservative forces up to arbitrary order, which
has only been touched upon scantily thus far.

The module CreateVarInt is similar in design as VarInt with the significant
difference that the approximation to the discrete action can be supplied manually
by specifying the nodes, the weights of the numerical integration formula,
and the interpolation procedure, which is polynomial by default. CreateVarInt
therefore extends VarInt by allowing new quadrature rules to be defined and the
creation of non-polynomially fitted variational integration algorithms.

To see the full scope of VarInt, we shall first look at simple problems.
Consider a two-point Newton–Cotes approximation of the action and a non-
conservative Rayleigh force. We can obtain the discrete Euler–Lagrange equa-
tions with VarInt as follows:

1 > r e s t a r t ; #c l e a r memory
2 > with ( Va r I n t ) : #load Va r I n t
3 > dEL1:= Va r I n t (2 , L , F , NewtonCotes , p , q , h ) ; #ob t a i n dEL equa t i o n s . �

Since we have not yet specified the functional forms of the Lagrangian and
the Rayleigh force, the expressions Maple returns are fully implicit. To obtain
a more applicable representation of the two-point variational Newton–Cotes
integrator, we define a separable Lagrangian (2.17), and extract the algorithm:

4 > L:=(q ,Dq)−>1/2∗M∗Dq^2−V(q ) : #d e f i n e Lag rang i an
5 > dEL2:= Va r I n t (2 , L , F , NewtonCotes , p , q , h ) : #ob t a i n dEL equa t i o n s
6 > Ex t r a c tA l go r i t hm (dEL2 , p , q ,V, F ) ; #ob t a i n a l g o r i t hm . �

Here M is the mass. In the case of vectorial coordinates and momenta, M has to
be interpreted as the mass matrix. The one-step map (q0, p0) 7→ (q1, p1) reads

q1 = q0 + h
p0
M
− h2

2M

[
∇V(q0)− F

(
q0,

q1 − q0
h

)]
,

p1 = p0 −
h
2

[
∇V(q0) +∇V(q1)− F

(
q0,

q1 − q0
h

)
− F

(
q1,

q1 − q0
h

)]
,
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The algorithm is implicit for generic F. For conservative dynamical systems the
algorithm reduces to the the famous second-order Störmer–Verlet6 algorithm,
which is sometimes referred to as the leapfrog:

q1 = q0 + h
p0
M
− h2

2M
∇V(q0), (2.19a)

p1 = p0 −
h
2

[∇V(q0) +∇V(q1)] . (2.19b)

It is clearly explicit. It can be obtained in the active Maple worksheet in several
ways:

7 > e v a l (%,F=0); #a l t e r n a t i v e 1
8 > F:=(q ,Dq)−>0: #a l t e r n a t i v e 2
9 > dEL3:= Va r I n t (2 , L , F , NewtonCotes , p , q , h ) ; #a l t e r n a t i v e 2 ( cont ’ d )

10 > Ex t r a c tA l go r i t hm (dEL3 , p , q ,V, F ) ; #a l t e r n a t i v e 2 ( cont ’ d )
11 > dEL4:= Va r I n t (2 , L , 0 , NewtonCotes , p , q , h ) ; #a l t e r n a t i v e 3
12 > Ex t r a c tA l go r i t hm (dEL3 , p , q ,V, F ) ; #a l t e r n a t i v e 3 ( cont ’ d ) . �

As it happens, the Newton–Cotes, Romberg, Gauss–Lobatto, and Clenshaw–
Curtis quadrature rules with two nodes are identical, so that their variational
integrators are the same.

Incidentally, for three node points the Newton–Cotes, Gauss–Lobatto, and
Clenshaw–Curtis quadrature formulas coincide; the integration rule is simply
Simpson’s formula. The Maple code

13 > dEL5:= Va r I n t (3 , L , 0 , GaussLobatto , p , q , h ) ; #ob t a i n dEL equa t i o n s
14 > Ex t r a c tA l go r i t hm (dEL5 , p , q ,V, F ) ; #ob t a i n a l g o r i t hm �

results in the fourth-order algorithm for conservative dynamical systems re-
ported by Farr and Bertschinger [46]:

q1 = q0 +
h
2

p0
M
− h2

24M
[2∇V(q0) +∇V(q1)] , (2.20a)

q2 = q0 + h
p0
M
− h2

6M
[∇V(q0) + 2∇V(q1)] , (2.20b)

p2 = p0 −
h
6

[∇V(q0) + 4∇V(q1) +∇V(q2)] . (2.20c)

Equation (2.20a) has to be solved iteratively for generic (non-linear) potentials.
Equations (2.20b) and (2.20c) are clearly explicit.

6Strictly speaking, the name ‘Störmer’ is written ‘Størmer’ in Norwegian, but we adhere to the
established orthography to avoid unnecessary confusion.



40 CHAPTER 2. NUMERICS

For four nodes these three families of quadrature rules lead to different
variational integrators. The variational Newton–Cotes integrator, which is based
on Simpson’s 3

8 rule, is easily found to be

q1 = q0 +
h
3

p0
M
− h2

648M
[27∇V(q0) + 14∇V(q1)− 5∇V(q2)] ,

q2 = q0 +
2h
3

p0
M
− h2

324M
[27∇V(q0) + 38∇V(q1) + 7∇V(q2)] ,

q3 = q0 + h
p0
M
− h2

8M
[∇V(q0) + 2∇V(q1) +∇V(q2)] ,

p3 = p0 −
h
8

[∇V(q0) + 3∇V(q1) + 3∇V(q2) +∇V(q3)] .

Similarly, the variational Clenshaw–Curtis integrator with four nodes is

q1 = q0 +
3h
14

p0
M
− h2

13440M
[320∇V(q0) + 259∇V(q1)− 21∇V(q2)] ,

q2 = q0 +
6h
7

p0
M
− h2

13440M
[1280∇V(q0) + 3339∇V(q1) + 259∇V(q2)] ,

q3 = q0 +
15h
14

p0
M
− h2

84M
[10∇V(q0) + 28∇V(q1) + 7∇V(q2)] ,

p3 = p0 −
h

18
[2∇V(q0) + 7∇V(q1) + 7∇V(q2) + 2∇V(q3)] .

The variational integrators that derive from the Gauss–Lobatto quadrature rules
correspond to the well-known Lobatto IIIA/IIIB algorithms, and their forms can
be found in the literature.

All variational Gauss–Legendre integrators are equal to the Gauss collocation
methods. As an example, the Gauss–Legendre variational integrator with two
nodes is easily found to be

q1 = q0 + h
p0
m
− h2

12m
[
c−∇V

(
q+
)
+ c+∇V

(
q−
)]

, (2.23a)

p1 = p0 −
h
2
[∇V

(
q+
)
+∇V

(
q−
)]

, (2.23b)

where we have defined q± = 1
2 (q0 + q1) ± 1

6

√
3 (q0 − q1), and c± = 3±√3.

The Gauss–Legendre and the Chebyshev quadrature formulas with two nodes
happen to coincide, so that their variational integrators (2.23) are identical.

Last, we take a look at the CreateVarInt module. The syntax is slightly
different from VarInt, as one can see below:
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15 > D i g i t s :=16: #nume r i c a l p r e c i s i o n
16 > x :=0.5904158239150231: #p o s i t i v e node
17 > w:=0.9964248649058515: #we ight
18 > etc :=L , 0 , p , q , h : #sho r thand
19 > Crea t eVa r I n t ( −1. .1 , [ − x , x ] , [ w,w] , e t c ) : #ob t a i n dEL equa t i o n s
20 > Ex t r a c tA l go r i t hm (%,p , q ,V ) ; #ob t a i n a l g o r i t hm . �

The first argument is the range over which the nodes are defined, so that
the nodes, supplied as a list as the second argument to CreateVarInt, can be
transformed appropriately. The third argument is the list of weights associated
with these nodes. The fourth through to the eighth argument are the Lagrangian
function, the Rayleigh function, and the labels for the canonical momenta,
canonical coordinates and the time step, respectively. The ninth argument
is optional, and it is not shown here; it takes the handle of an interpolation
procedure, which must have the same syntax as the built-in procedures for data
interpolation, as specified in the documentation of the CurveFitting package. If
the ninth argument is omitted, the standard polynomial interpolation procedure
PolynomialInterpolation (also known as interp) is used internally.

For instance, consider a custom yet naive implementation of polynomial
interpolation:

21 > Poly := proc ( xdata , ydata , z ) #custom i n t e r p o l a t i o n
22 l o c a l c , n , Eqs , Var , Fun ;
23 n:=nops ( xdata ) :
24 Fun:=x−>add ( c [ k ]∗ x^(k−1) , k =1. . n ) :
25 Eqs :={ seq ( Fun ( xdata [m])= ydata [m] ,m=1. . n ) } :
26 Var :={ seq ( c [m] ,m=1. . n ) } :
27 a s s i g n ( s o l v e ( Eqs , Var ) ) :
28 c o l l e c t ( f a c t o r ( Fun ( z ) ) , z ) ;
29 end proc :
30 > etc :=L , 0 , p , q , h , Po ly ; #sho r thand
31 > Crea t eVa r I n t ( − 1 . . 1 , [ − 1 , 1 ] , [ 1 , 1 ] , e t c ) : #ob t a i n dEL equa t i o n s
32 > Ex t r a c tA l go r i t hm (%,p , q ,V ) ; #ob t a i n a l g o r i t hm . �

The code obviously yields the Störmer–Verlet algorithm (2.19). The values for
the nodes and weights shown on lines 16 and 17 are such that the underlying
quadrature rule integrates any linear combinations of the set {e±νx, x e±νx}
with ν = 1 exactly on the interval [−1, 1]. Recently, non-polynomially fitted
quadrature rules have moved increasingly to the centre of attention [16, 18, 77],
especially exponentially fitted ones for numerical integration algorithms for
ordinary differential equations [17]. The idea is to translate the philosophy
behind Gaussian integration formulas, that is that they integrate polynomials ex-
actly, to non-polynomial functions, in particular exponentials and trigonometric
functions, based on the formalism developed by Ixaru [76]. That leads to a set



42 CHAPTER 2. NUMERICS

of non-linear conditions, from which the nodes and weights can be computed
(numerically). Unfortunately, the nodes and corresponding weights for these
exponentially fitted quadrature rules are not determined uniquely.

The optional argument enables us to provide alternative interpolation rou-
tines, which can be practical both as a diagnostic tool and as an interface to
create new variational integrators that are designed for specific dynamical sys-
tems. Quadrature rules based on rational interpolation [7], for instance, might
be of use in the simulations of dynamical systems with singularities, such as
N-body problems in astrophysics and molecular dynamics.

2.4 Numerical Performance

To illustrate the performance of some of the variational integrators that we
can generate with VarInt, we look at a simple test case. Consider a particle
with unit mass in one dimension moving under the influence of the potential
V(q) = q2 (q2 − 1

)
. The corresponding Lagrangian is

L(q, q̇) =
1
2

q̇2 −V(q).

In addition, let there be a dissipative force F(q, q̇) = −εq̇, where ε ≥ 0.
We first look at the case for which ε = 0, that is the conservative case.

The maximum relative energy errors for several variational integrators with
h = 0.25 over a time span of 1000 units are shown in Table 2.1, where we have
set q (0) = 1 and q̇ (0) = 0 initially. It is clear that these variational integrators
do not conserve the energy exactly, but the errors remain bounded at all times.

n = 2 n = 3 n = 4
Gauss–Legendre 8.70888744 · 10−2 5.52211493 · 10−4 1.01220402 · 10−5

Gauss–Lobatto 1.17754867 · 10−1 2.33293558 · 10−3 2.68473932 · 10−5

Fejér (1st) 8.22761193 · 10−2 9.56875975 · 10−4 1.47025385 · 10−4

Fejér (2nd) 8.82216383 · 10−2 4.55277144 · 10−4 2.73505976 · 10−4

Fejér (3nd) 8.83051038 · 10−2 2.58435463 · 10−3 2.76487029 · 10−4

Fejér (4th) 8.82075954 · 10−2 2.59877552 · 10−3 2.76757734 · 10−4

Chebyshev 8.70888744 · 10−2 4.55277144 · 10−4 8.14513001 · 10−6

Table 2.1: Maximum relative energy errors for the quartic oscillator.
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For the numerical demonstration of the quartic oscillator with dissipation
we choose ε = 10−2. The dissipation causes the particle to settle down in one of
the minima of the potential, located at q = ± 1

2

√
2, so that the final energy of the

particle is E = − 1
4 . Initially q (0) = 0 and q (0) = 1

10 . As a benchmark we have
used the high-fidelity Maple dsolve[taylorseries] integrator.

The absolute energy errors are shown in Figure 2.1 for a selection of vari-
ational integrators with four nodes. It is clear that for this particular problem
Fejér’s first rule gives the best variational integrator in terms of accuracy. All vari-
ational integrators shown converge to the correct solution, as anticipated. These
algorithms exhibit the correct energy behaviour, that is they do not dissipate
artificially, as non-variational integrators typically do [83].
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Figure 2.1: Absolute energy errors of some variational integrators with four nodes for
the quartic oscillator with dissipation.
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Astrodynamics

The centrepiece of celestial mechanics and astrodynamics, which deals with
the dynamics of spacecraft and artificial satellites under the influence of celes-
tial bodies, is the Newtonian N-body problem. It describes the gravitational
interaction between N ≥ 2 particles. Here we shall finally savour the fruits of
our labours, and cast the N-body problem in a geometric form in Section 3.1
to apply the Marsden–Weinstein–Meyer reduction from Chapter 1 to it. Since
we shall mainly be concerned with space applications, and since there is a
preponderance of man-made satellites and spacecraft in orbits around the Earth,
we shall, as customary in space flight mechanics, restrict our attention mainly to
the N-body problem with N = 2, or the Kepler–Coulomb problem. For some
recent developments in astrodynamics, such as low-energy transfers that rely on
the exploitation of invariant manifolds [89] and weak stability boundaries [15]
in the three-body problem and beyond, we refer to the literature.

Orbital mechanics is based on the Kepler–Coulomb problem, which we de-
scribe in Section 3.2. The Hamilton–Jacobi equation for the Kepler–Coulomb
problem is known to be separable in four coordinate systems only: spheri-
cal, parabolic, elliptic and spheroconical [35]. Adding a generic perturbation
generally destroys the integrability and symmetry of the original system. How-
ever, McIntosh and Cisneros [113], and Zwanziger [168], who focussed solely

45
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on its quantum-mechanical implications, discovered that the added potential
of a self-dual Dirac (magnetic) monopole preserves the symmetries of the
Kepler–Coulomb problem, and hence that it remains integrable. The McIntosh–
Cisneros–Zwanziger (MICZ) problem has been solved formally by Bates [13]
using Souriau’s regularization technique [35, Chap. 5]. Although Bates’ sol-
ution is simple and elegant, it lacks a clear physical interpretation; third-order
derivatives of the coordinates with respect to the (reparameterized) time are
required.

We review the classical MICZ problem from a universal variable point of view,
as outlined previously by Caballero and Elipe [27]. We address its relevance
to astrodynamics in the next chapter. In Section 3.2.1 we briefly review the
symmetries of the classical MICZ problem in relation to the Kepler–Coulomb
problem. The similarities between these systems enable us to write down an
analytical solution that is valid for any type of orbit, as shown in Section 3.2.2.
Following Deprit [41], the MICZ problem is commonly denominated in the
astrodynamical literature quasi-Keplerian for reasons that will become apparent
below. Section 3.2.3 comprises a discussion of the quasi-Keplerian orbital
elements and Delaunay variables, from which other orbital representations
may be obtained. We have endeavoured to keep the discussion as general as
possible, so that our results can be applied to related physical systems, such as
for example Rydberg atoms in the presence of magnetic monopoles.

The Kepler–Coulomb problem and its relative the MICZ problem are both
highly stylized; they describe the classical interaction of point masses. In actual
applications the shape, and mass distributions of the primaries about which
spacecraft orbit affect the motion too. Orbital perturbations that are most
prominent in the sphere of influence of the Earth are presented in Section 3.2.5.

An integral part of the on-board guidance and navigation software of any
spacecraft or artificial satellite is the attitude and orbit control system (AOCS). It
controls the orbital parameters and relative orientation of the craft. In practical
applications of artificial satellites the instantaneous position and velocity in orbit
and the relative orientation, or attitude, with respect to the Earth’s frame of refer-
ence are equally important; the relative orientation of a craft in orbit is essential
to the operational status of the craft, with regard to its thermal equilibrium, and
the alignment of solar arrays and propulsion modules for instance, and also to
the mission itself, especially with regard to telecommunication devices and the
use of scientific equipment. The attitude of a satellite is determined by its orbit,
shape, and mass distribution. The attitude dynamics and its geometric struc-
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ture are discussed in Section 3.3, whereupon we introduce the gravity-gradient
torque in Section 3.3.5.

3.1 N-Body Problem

Let (qi, pi) denote the coordinates on the ith copy T?R3 ∼= R6 of the entire
phase space M =

(
T?R3) N ∼= R6N of the ith particle with mass mi, where

i = 1, . . . , N. The N-body Hamiltonian is

H =
N

∑
i=1

1
2mi
‖pi‖2 − G ∑

i<j

mimj

‖qi − qj‖
, (3.1)

where G is Newton’s gravitational constant, and ‖·‖2 = 〈·, ·〉 denotes the stan-
dard Euclidean (`2) norm. The Hamiltonian is clearly invariant under the lifted
action1 of the three-dimensional Euclidean group E (3, R) = R3 o O (3, R); it
acts on any R3 factor by ((a, A), q) 7→ Aq + a for all (a, A) ∈ E (3, R) and
q ∈ R3. The subgroup that preserves the orientation of all Euclidean isome-
tries is called the special Euclidean group SE (3, R) = R3 o SO (3, R), where
O (3, R) ∼= SO (3, R)×Z2.

Before we can reduce the phase space for the N-body problem, we have
to take a closer look at the momentum maps associated with the individual
(connected) components of the E (3, R) symmetry, namely the induced R3 and
SO (3, R) actions. The infinitesimal generator of the lifted R3 action is

Xξ = ξα ∂

∂qα
,

which we can also write as Xξ = (ξ, 0). We obtain from equation (1.21) that

∂µξ

∂pα
= ξα,

∂µξ

∂qα
= 0.

These equations lead us to the conclusion that µξ = p · ξ, which means that the
sought-after momentum map µ : R3 × (R3)? → (R3)? is (q, p) 7→ p, the (linear)
momentum. We can easily convince ourselves that the N-body momentum map
is the total momentum of the system.

1The lifted action E (3, R)×T?R3 7→ T?R3 is given by ((a, A), (q, p)) 7→ (Aq + a, pA>). Indeed,
consider a finite-dimensional base manifold Q with coordinates q, and a map f : Q → Q . If
(q, q̇) and (q′, q̇′) are tangent-lifted coordinates, and (q, p) and (q, p′) represent cotangent-lifted
coordinates, then q̇′ = D f (q)q̇ and p′ = p(D f (q))−1 as long as (q′, p′) = (T? f )−1(q, p).
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To obtain the momentum map for the lifted action of SO (3, R), we note
that we may identify so(3) with R3 by what is sometimes referred to in the
literature as the hat (̂) map. As the Lie algebra of the matrix Lie group SO (3, R),
so(n) =

{
A ∈ GL (n, R)

∣∣ A + A> = 0
}

, so that the linear isomorphism2 is

R3 → Te SO (3, R)

a = (a1, a2, a3) 7→ A ≡ â =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 ∈ so(3),

with the Lie bracket [·, ·], the commutator, replaced by the exterior product of
vectors in R3, that is a ∧ b 7→

[
â, b̂
]

= [A, B] = AB− BA. Here obviously the

group identity e = I. The standard inner product is given by a · b = − 1
2 Tr AB,

the Killing form, which defines a metric on so(3), so that the identification is in
fact an isometry. As before, we have R?∼= R via the inner product. All in all, we
end up with so(3)?∼= R3.

As before, we compute the infinitesimal generator to be

Xξ = (ξq, ξ p) = (ω ∧ q, ω ∧ p)

for ξ = ω̂ ∈ so(3). Consequently,

∂µξ

∂p
= ξq,

∂µξ

∂q
= −ξ p,

which can be solved by µξ = ξq · p = (ω ∧ q) · p = (q ∧ p) · ω. The angular
momentum L ≡ q ∧ p is the momentum map, and the total angular momentum
is the desired momentum map for the whole N-body system.

We can now turn our attention to the symplectic reduction of the N-body
problem, which corresponds to the conventional physicists’ transformation to the
centre-of-mass coordinates. The Marsden–Weinstein–Meyer theorem formalizes
the reductive aspects of this well-known transformation. We take as the phase
space the collision-free manifold

N ≡
{(

(q1, p1), . . . , (qN , pN)
) ∈ (T?R3

)
N
∣∣∣ qi 6= qj for i 6= j

}
.

2The isomorphism becomes even more apparent when we look at the algebraic structure of
so(n):

[
ei , ej

]
= ε

k
ij ek for the basis elements ei with i = 1, . . . , dim

(
so(n)

)
= 1

2 n(n− 1). Here ε
k

ij
denotes the permutation symbol.
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It is equipped with the standard N-body symplectic form

ω =
N

∑
i=1

dqi ∧ dpi.

We could start out with the entire phase space
(
T?R3) N , but we would end

up with an orbifold rather than a manifold. The downside of our collision-free
construction is that the initial and reduced manifolds will not be closed; the
corresponding (reduced) Hamiltonian vector field is incomplete.

For convenience let R ≡ (R3)N . We fix a P ∈ R ?∼= R , such that ∑N
i=1 pi = P.

For any level P the space µ−1(P)/R3 identifies all points that differ by an overall
translation of all the canonical coordinates of the N particles at a constant total
momentum P. A possible set of coordinates on the reduced base manifold
is given by the relative coordinates ri j = qi − qj for i < j, and we have that
dim (N //R3) = 6N − 6. Different sets of coordinates, such as the well-known
Jacobi coordinates, can of course be used instead.

Please observe that the connected component SE (3, R) does not act freely
on N , as the dimension of its stabilizer Gn for n = (q, p) ∈ N , defined by the
elements (a, A) ∈ SE (3, R), such that{

Aq + a = q,
Ap = p,

is at least one if and only if the N particles are collinear, or at syzygy, and the
momenta all lie on a line through the origin that is parallel to the line connecting
the particles. For the action of the whole group E (3, R) the requirements for
a non-trivial stabilizer are that the qi lie in a plane W and that the pi are
constrained to the plane W0 through the origin with W0 ‖ W. In particular,
N-body configurations with a net angular momentum L ∈ R ? equal to zero are
enclosed within. Please note that for N = 2, the use of the collision-free phase
space already precludes the situation with net zero angular momentum.

If, however, we restrict our attention to the open (dense) submanifold of N
with a trivial stabilizer, then we may still apply the Marsden–Weinstein–Meyer
theorem [68]. Since the coadjoint isotropy group is G0 = O (3, R), the reduced
phase space has a dimension of 6N − 12 for N ≥ 3. The coordinates ri j on
N 1 ≡ N //R3 now become ‖ri j‖2 on N 2 ≡ N 1//O (3, R). There are (N

2 ) such
coordinates, so that for N ≥ 5 these are not all independent.

For a non-zero total angular momentum L ∈ R ?, GL = SO (2, R) ∼= S1, since
only rotations in the plane perpendicular to L leave the total angular momentum
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invariant. Consequently, we wind up with a (6N − 10)-dimensional reduced
phase space for N ≥ 2. Coordinates on N 2 are known as shape coordinates. The
computation of suitable shape coordinates for the N-body problem with N ≥ 3
is actually quite intricate [see e.g. 102]. Additional thoughts on the reduction of
the N-body problem can be found in the article by Lin and Marsden [101].

3.2 Kepler–Coulomb Problem

For N = 2 we have the option of taking the origin of our coordinate system
to coincide with centre of mass of the two bodies, for which naturally P = 0.
We neglect the mass of the satellite particle because M ≡ m1 + m2 � m2 for
any astrodynamical purposes, so that the centre of mass coincides with the
frame of reference of the primary, that is the particle with the largest mass. The
corresponding Kepler–Coulomb Hamiltonian H : N 1 → R is

H(q, p) =
1
2
‖p‖2 − k

‖q‖ , (3.2)

in which we have absorbed all constants in k ∈ R. We can actually compute the
local shape coordinates on N 2 rather easily: the quotient map σ : N 1 → N 2 is
given by (q, p) 7→ (r, θ) = (‖q‖, p · q/‖q‖). Hence, we see that N 2 ∼= R+×R ={
(r, θ) ∈ R2

∣∣ r > 0
}

. The Marsden–Weinstein–Meyer theorem prescribes the
relations i∗ω = σ∗ωL and HL ◦ σ = H ◦ i with i : µ−1(L) ↪→ N 1, which enable us
to see that ωL = dr ∧ dθ and that the fully reduced Hamiltonian HL : N 2 → R

is

HL(r, θ) =
r2θ2 + ‖L‖2

2r2 − k
r

.

The Kepler–Coulomb problem (3.2) has, in addition to the linear and angular
momenta, a different integral of motion, namely the Laplace–Runge–Lenz vector
R = p ∧ L − kq/q, for which we have that L · R = 0; the Kepler–Coulomb
problem is said to be maximally super-integrable. To understand the symmetry
associated with this remarkable quantity, we compute the Poisson brackets:{

Lα, Lβ

}
= ε

γ
αβ Lγ,

{
Lα, Rβ

}
= ε

γ
αβ Rγ,

{
Rα, Rβ

}
= −2Hε

γ
αβ Lγ.

These equations show that there are three (algebraically) distinct domains: two
open regions H < 0 and H > 0, and their common boundary H = 0. The
open regions correspond to the elliptic (bounded) and hyperbolic (unbounded)
types of motion, whereas the boundary represents all parabolic motions. For
H > 0 we can scale the Laplace–Runge–Lenz vector by a factor 2H to obtain an
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o(3, 1) (Lorentz) algebra, and for H < 0 we may scale that very vector by −2H
so we are left with an o(4) algebra. Since we are mainly concerned with the
ramifications for bounded orbits, we shall consider the case H < 0 from here on.

We define the scaled Laplace–Runge–Lenz vector as

R =
1√
2|H|

(
p ∧ L− k

q
q

)
, (3.3)

which we shall now simply refer to as the Laplace–Runge–Lenz vector. To see
the structure of the o(4) algebra more clearly, we define A± = 1

2
(

L± R
)
, and

calculate the Poisson brackets to be{
A+

α , A+
β

}
= ε

γ
αβ A+

γ ,
{

A−α , A−β
}

= ε
γ

αβ A−γ ,
{

A+
α , A−β

}
= 0,

with ‖A+‖ = ‖A−‖. It shows that o(4) ∼= o(3)⊕ o(3), for which its connected
component is so(4). The momentum map associated with the diagonal SO (4, R)
action is [37, p. 57]

µ : N 1 → so(4)?

(q, p) 7→ (A++ A−, A+− A−) = (L, R).
(3.4)

The origin of an SO (4, R) symmetry group in a three-dimensional dynamical
system might seem quite obscure at first sight. The Kepler–Coulomb problem
in three-dimensional Euclidean space is related to the (constrained) harmonic
oscillator in four dimensions by the Kustaanheimo–Stiefel transformation [92],
or the Duru–Kleinert transformation [43], as it is known in the context of atomic
path integrals. The transformation linearizes and regularizes the equations of
motion; it is a generalization of the Euler and Levi-Cività transformations in
one and two spatial dimensions respectively. Moreover, Moser [128] has shown
that the flow of the n-dimensional (regularized) Kepler–Coulomb problem is
equivalent to the geodesic flow of Riemannian spaces of constant curvature,
the n-spheres Sn; these spaces are topologically equivalent to the fixed-energy
surfaces of the Kepler–Coulomb problem3. Moser’s construction involves a
stereographic projection S3 → R3 that is extended to the cotangent bundle
of the three-sphere T?S3; all collision states are mapped to the north pole of

3More generally, the phase space of the regularized n-dimensional Kepler–Coulomb problem
is symplectomorphic to a minimal coadjoint orbit of SO (2, n + 1), the double cover of the con-
formal group of the Minkowski space in n + 1 dimensions. The equivalence of the Moser and
Kustaanheimo–Stiefel transformations are the consequence of the accidental (double cover) ho-
momorphism SU (2, 2) → SO (2, 4) [91]. More details on the conformal structure can be found in
Cordani [35], Chap. 6, and Guillemin and Sternberg [62], Chap. 3.
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the three-sphere. Stated differently, the SO (4, R) symmetry arises because the
Kepler–Coulomb problem in three dimensions is equivalent to a free particle in
four dimensions that is constrained to move on the three-sphere, which has an
obvious SO (4, R) symmetry.

Moser’s mathematical construction had already been studied before in a
quantum-mechanical setting by Fock [48] and Bargmann [10]. The cases with
H ≥ 0 have been covered by Belbruno [14]. The answer to the question whether
there are any geodesic-equivalent flows for the N-body problem with N ≥ 3
is negative unless the total angular momentum is zero and the Hamiltonian is
strictly positive [111].

3.2.1 McIntosh–Cisneros–Zwanziger Problem

The Hamiltonian of the McIntosh–Cisneros–Zwanziger (MICZ) system is

H(q, p) =
1
2
‖p‖2 − k

‖q‖ +
λ2

2‖q‖2 , (3.5)

where k ∈ R. We shall occasionally write p = ‖p‖ and q = ‖q‖ whenever
appropriate. The monopole potential is actually derived from a vector potential4

A, such that the magnetic field B = ∇∧ A = λq/‖q‖3 for q ∈ R3 \ {0}. This in
turn means that in going from the Kepler–Coulomb to the MICZ problem, the
canonical momenta are transformed via a minimal substitution: p 7→ p− A. The
parameter λ can be viewed as a deformation parameter; for λ = 0 we recover
the well-known Kepler–Coulomb problem. The associated one-parameter family
of differential equations is Hamiltonian at each value of λ, as shown by Bates
[13]. These Hamiltonian deformations are distinct for different values of the
deformation parameter. We require that λ2 ∈ R in order to allow for both
positive and negative (real) values.

The phase space of the classical MICZ problem M = T?
(
R3 \ {0}) is en-

dowed with the Poisson structure{
qα, qβ

}
= 0,

{
qα, pβ

}
= δα

β,{
pα, pβ

}
= λεαβγqγ/‖q‖3,

4The original vector potential for Dirac’s magnetic monopole [see e.g. 56, p. 165] for q =
(q1, q2, q3) is

A =
λ

q
1

q3 − q

(
−q2, q1, 0

)
up to a gauge function. The field strength is calculated from F = dA, where A = 〈A, dq〉: F =
λ/‖q‖3 (q1 dq2 ∧ dq3 + q2 dq3 ∧ dq1 + q3 dq1 ∧ dq2). Observe that dF = 4πλδ(q) dq1 ∧ dq2 ∧ dq3.
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and the herewith related canonical two-form

ω = dqα ∧ dpα +
λ

2‖q‖3 εαβγqαdqβ ∧ dqγ. (3.6)

The first term in equation (3.6) is simply the symplectic two-form of the Kepler–
Coulomb system. The additional dynamics due to the monopole potential is
incorporated in the second term. Physically, λ is the magnetic ‘charge’ of the
monopole. Mathematically, the deformation parameter can be interpreted as the
De Rham cohomology class of the symplectic form5.

Since the Hamiltonian function is independent of time it is a conserved
quantity. A simple calculation reveals that because of rotational invariance,

L = q ∧ p− λ
q
q

(3.7)

is conserved as well. In analogy with the Kepler–Coulomb problem there is an
additional conserved quantity:

R =
1√
2|H|

(
p ∧ L− k

q
q

)
, (3.8)

which corresponds to the Laplace–Runge–Lenz vector (3.3), where now obvi-
ously L from equation (3.7) has to be substituted. Under the Poisson bracket the
Laplace–Runge–Lenz vector yields the so(4) algebra for H < 0, that is, the Lie
algebra of the four-dimensional rotation group, and so(3, 1) for H > 0, which
is the Lie algebra of the conformal group in four-dimensions. These are the
same symmetries of the Kepler–Coulomb problem. In fact, L · q/q = −λ, which
shows that the solutions to Hamilton’s equations for the equation (3.5) are conic
sections, where the opening angle ϑ = arccos λ/L. Similarly we have that

q · (p ∧ L
)

=
√

2|H| (q · R)− q

= L2 − λ2,

so that the motion lies in the plane.

5In fact, the symplectic form and the field strength lie in the same De Rham cohomology class
[ω] = [F] with H2

dR (M , R) ∼= R, since the first term in equation (3.6) is closed, and hence exact. The
presence of a magnetic monopole is indicated by the fact that symplectic form ω (3.6) is not closed
everywhere: dω 6= 0; it is closed almost everywhere.
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3.2.2 Universal Solution

Because the motion is planar, it is convenient to use polar coordinates q = (r, θ)
in the orbital plane:

H =
1
2

(
p2

r +
p2

θ

r2

)
− k

r
+

λ2

2r2 . (3.9)

In polar coordinates Hamilton’s equations for the Hamiltonian (3.9) simply read ṙ = pr, ṗr =
p2

θ + λ2

r3 − k
r2 ,

θ̇ =
pθ

r2 , ṗθ = 0.
(3.10)

It is customary to reparameterize the time t with a so-called Sundman
transformation

dt = rds. (3.11)

Let the prime (′) denote the derivative with respect to the independent (universal)
variable s, that is, f ′(s) = d f (s)/ds = r ḟ (t) for any f ∈ C1 (R, R) by virtue of
the chain rule and the transformation (3.11). Therefore, we find that

r′′ = (rpr)′

= r
d (rpr)

dt

= r

(
p2

r +
p2

θ + λ2

r2 − k
r

)
. (3.12)

Since the Hamiltonian is constant, we have the identity

2H0 −
(

p2
r +

p2
θ + λ2

r2 − 2k
r

)
= 0,

where H0 is the initial (numerical) value of the Hamiltonian. Now we can add
this expression to the bracketed expression of the equation (3.12) and obtain

r′′ = 2H0r + k.

Hence, we arrive at the set of differential equations:
r′′ = 2H0r + k,
θ′ = pθ/r,
t′ = r,

(3.13)

which are to be supplied with initial conditions. The deformation parameter
λ does not appear explicitly in these equations; it only resides in the value H0.
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Let r0, r′0 and r′′0 denote the initial values of r, r′ = q · p and r′′ = 2H0r + k
respectively. The system (3.13) is then easily solved in terms of Stumpff functions
by 

r(s) = r0 + r′0s c1
(−2H0s2)+ r′′0 s2 c2

(−2H0s2),
θ(s) = pθξ(s),
t(s) = t0 + r0s + r′0s2 c2

(−2H0s2)+ r′′0 s3 c3
(−2H0s2), (3.14)

where we have defined

ξ(s) =
∫ s

0

dϕ

r(ϕ)
. (3.15)

Using the universal Stumpff functions and the definition β = −2H0, the solution
to r(s) and t(s) may be written more concisely as

r(s) = r0 + r′0 U1 (s; β) + r′′0 U2 (s; β), (3.16a)

t(s) = t0 + r0s + r′0 U2 (s; β) + r′′0 U3 (s; β), (3.16b)

where we set t0 = 0 and the solution for the angle θ(s) is as before. The actual
integration of equation (3.15), and therefore the solution of the polar angle as a
function of the universal variable, which is completely absent in the discussion of
Caballero and Elipe [27] yet necessary in order to convert the results to different
coordinate systems, is straightforward if we rewrite the expression for r(s) in
terms of trigonometric functions with equations (D.2) and subsequently use the
substitution s = tan 1

2
√−2H0 ϕ or ϕ = 2 arctan s/

√−2H0. In order to retain
universality of the solution, we use the functions defined in Appendix D to
obtain after some manipulations that

ξ(s) =
s at1

[
(p2

θ + λ2)s2 tg2
1

(
− 1

2 H0s2
)]

r0 + 1
2 r′0s tg1

(
− 1

2 H0s2
) (3.16c)

We note that these solutions are indeed ‘universal’, for they are well-defined
irrespective of the sign of H0, that is to say for any type of orbit.

3.2.3 Orbital Elements

In many practical situations we often encounter elliptic orbits, for which H0 < 0.
In these instances we require a formulation in terms of Keplerian, or orbital,
elements to gain more insight into the geometry of the problem.
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Because the deformation parameter does not appear explicitly in the equa-
tions of motion and thus their solutions except for the angle, the orbital elements
can be found from the Keplerian case (λ = 0) by bearing in mind that now we
need to use the quasi-Keplerian energy H0, which includes the contribution
from the inverse-square potential, instead of the Keplerian orbital energy. All in
all, the semi-major axis a, eccentricity e, the mean anomaly M , and the eccentric
anomaly E can be defined in the usual way, that is

a = − k
2H0

,

e2 =
(

1− r
a

)2
+

(r′)2

ak
,

M = nt,

E − e sin E = M ,

where the last equation is Kepler’s equation. The mean motion is denoted by
n =
√

k/a3, which is related to the orbital period T by T = 2π/n. The eccentric
anomaly is related to the true anomaly ν by

cos ν =
cos E − e

1− e cos E
.

As usual, the distance can be expressed as r = a (1− e cos E ). Specifically we
have that k = GM with G Newton’s gravitational constant and M is the mass
of the primary; the mass of the artificial satellite is presumed to be negligible.
The inclination of the orbit i is of course the angle between the orbital angular
momentum L and the axis from the South Pole through the centre of the Earth
in the direction of the North Pole, the polar axis. The argument of the perigee ω

and the longitude of the ascending node Ω, or node for short, can be defined
similarly using the geocentric-equatorial coordinate system, which can be found
in the standard references on astrodynamics, such as Bate et al. [12], Danby [38],
and Vallado [157]; the (angular) orbital elements are drawn in Figure 3.1 in the
geocentric-equatorial coordinate system. These remarkable similarities enable
us to translate Kepler’s laws to the MICZ case.

There seems to be no formal difference at all in the definitions of the classical
orbital elements; we merely have to substitute the numerical value of the MICZ
Hamiltonian for the initial conditions. The polar angle θ, however, differs from
its Keplerian counterpart. In order to understand the difference more clearly, let
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ω

Ω

i

ν

q1

q2

q3

Figure 3.1: Graphical representation of the orbital elements in the geocentric-equatorial
coordinate system. The q1 axis points towards the vernal equinox at a particular epoch
(à), the q2 axis lies 90° east in the equatorial plane, and the q3 axis passes through the
North Pole. As an aside, we note that the vernal equinox occurs at the ascending node of
the Sun; it does not coincide exactly with the intersection of the ecliptic and the equator
since the ecliptic describes the mean path of the Sun.
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us introduce the canonical transformation pθ 7→ pψ =
√

p2
θ + λ2, of which

S (q, p) = rpr + ψpψ (3.18)

is the generating function, such that

q =
∂S
∂p

, p =
∂S
∂q

,

with q = (r, ψ) and p =
(

pr, pψ

)
. Here ψ represents the transformed polar

angle induced by the transformation. For λ = 0 the canonical transformation is
obviously the trivial one. Note that p2

ψ = L2, as one may verify from equation
(3.7).

From the expression of the generating function (3.18) and the equation for ψ

we find that

ψ =
pθ√

p2
θ + λ2

. (3.19)

Consequently, the true anomaly ν, which is often used rather than the mean
anomaly M , is related to the polar angle θ by

θ = ψν. (3.20)

We note that this relation can be derived from the definition of the true anomaly
in terms of the eccentricity and the eccentric anomaly as well, but we refrain
from doing so here.

Before turning our attention to the canonical Delaunay variables, it is useful
to look at the action–angle coordinates in polar coordinates still. The MICZ
problem seems but a variation, or better, an extension, of its Keplerian original,
yet there is a subtle difference. We start from the time-independent Hamilton–
Jacobi equation (1.23). In polar coordinates it reads

1
2

[(
∂Sr

∂r

)2
+

1
r2

(
∂Sθ

∂r

)2
]

+ V(r) = E

for any central force problem, that is for any potential V = V(r). Here we
have split Hamilton’s characteristic function S = Sr + Sθ . Multiplication by 2r2
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separates the r and θ parts, so that their respective characteristic functions can
be integrated to give

Sr(r) =
∫ r

0

√
2 (E−V(ρ))− `2

ρ2 dρ,

Sθ(θ) = `θ,

where ` = pθ =
√

L2 − λ2 is the (constant) angular momentum.
The action variables are then calculated from equation (1.25):

Jα =
1

2π

∮
pα dqα,

where the integration is over all possible values of qα for fixed energies E; no
summation is implied in the integrand. Notice that pα = ∂S/∂qα. In particular,
we have that

Jr = −
√

J2
θ + λ2 + k

√
− 1

2E

and

Jθ = `

for the MICZ potential, where now E = H0. The Hamiltonian becomes in terms
of these action variables

H(J) = − k2

2
(

Jr +
√

J2
θ + λ2

)2 . (3.21)

By plugging these results into Hamilton’s characteristic function we obtain the
angle variables φα by differentiation, more precisely,

φα =
∂S(J)

∂Jα
.

It is, however, more interesting at this point to look at the frequencies ν

associated with the generalized coordinates,

να = φ̇α =
∂H(J)

∂Jα
,
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or more specifically their ratio:

νr

νθ
=
√

`2 + λ2

`
. (3.22)

It is obvious that for λ = 0 the frequencies are commensurate. For λ 6= 0 the
frequencies are generally not commensurate, corresponding to bounded yet
non-closed orbits. Hence, the motion on the two-torus T2 is not periodic but
quasi-periodic for the MICZ problem, as it is a completely integrable system.
The Kepler–Coulomb problem is special in the sense that its orbits are indeed
periodic, that is closed on T2. For ` > 0 the motion is even degenerate, which is
indicative of the conservation of the Laplace–Runge–Lenz vector. The motion in
the phase space translates to precessing orbits in reality. The ‘failure’ of closure
of the orbits can be measured by

|δθ| = 2π

(
νr

νθ
− 1
)

= π
λ2

`2 +O
(

λ4
)

. (3.23)

3.2.4 Action–Angle Coordinates

In order to arrive at the Delaunay elements, it is necessary to go to spherical
coordinates. In spherical coordinates q = (r, θ, φ) the Hamiltonian of the MICZ
problem is

H =
1
2

(
p2

r +
p2

θ + λ2

r2 +
p2

φ

r2 sin2 θ

)
− k

r
. (3.24)

The aforementioned canonical transformation pθ 7→ pψ =
√

p2
θ + λ2 has a

generating function
S (q, p) = rpr + ψpψ + φpφ (3.25)

that transforms the Hamiltonian effortlessly into

H =
1
2

(
p2

r +
p2

ψ

r2 +
p2

φ

r2 sin2 θ

)
− k

r
, (3.26)

which, again, is nothing but the Keplerian Hamiltonian in spherical coordinates.
The corresponding Hamilton–Jacobi equation remains separable; in Appendix
C we show that the classical MICZ Hamiltonian (3.5) is separable in spherical
and spheroconical coordinates only. It is then straightforward to derive the
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action–angle coordinates on T3, the three-torus; see for example Cordani [35],
Sec. 3.2, or Chang and Marsden [31] for a geometric derivation. The result for
the well-known Delaunay variables is

l = M , L =
√

ka,

g = ω, G =
√

ka (1− e2),

h = Ω, H = cos i
√

ka (1− e2).

We note that here, as well as in the case of the orbital elements, (i) both the
argument of perigee ω and the node Ω are not defined for equatorial orbits
(i = 0); and (ii) the argument of perigee ω remains undefined for circular
orbits (e = 0). Evidently, different orbital representations, such as for instance
the singularity-free modified equinoctial coordinates or the related canonical
Poincaré variables, can be derived from the classical orbital elements and the
Delaunay elements without much ado [see e.g. 71].

3.2.5 Perturbations

The orbital motion of an artificial satellite in a low-altitude orbit around the
Earth can be attributed to several forces. The primary contribution is due
to the Newtonian gravitational attraction, which assumes the Earth and the
satellite to be spherically symmetric bodies. The fact that the Earth is in fact not
spherically symmetric is demonstrated clearly in Figure 3.2, where the geoid,
the gravitational equipotential surface of the Earth, is superimposed in colour
on the actual surface of the Earth. It can be modelled by a position-dependent
perturbative force, which is derived from the so-called geopotential

V(r) = − k
r

{
1 +

∞

∑
l=2

l

∑
m=0

( r⊕
r

)l
Pl,m(sin θ) [Cl,m cos mφ + Sl,m sin mφ]

}
.

Here, r = (r, θ, φ) are the spherical coordinates of the artificial satellite in a
geocentric frame of reference, r⊕ is the mean equatorial radius of the Earth,
and Pl,m = (−1)mPm

l (x) denote the associated Legendre functions of degree
l and order m at x ∈ R with −1 ≤ x ≤ 1. It is assumed that the centre of
mass coincides with the centre of the Earth, which is certainly a very reasonable
approximation for artificial satellites. The coefficients Cl,m and Sl,m have been
determined from measurements up to high degrees and orders [see e.g. 139].
In the astrodynamical literature we often find the definition Jl = −Cl,0 for the
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zonal harmonics, that is terms having m = 0. Sectorial harmonics occur at
values l = m, and tesseral harmonics if l 6= m, and l 6= 0 and m 6= 0.

Figure 3.2: Approximate geoid as calculated from the data of the Earth Gravitational
Model EGM2008 [139], and the topography of the Earth’s surface. The elevation runs from
−407 m below to 8, 752 m above mean sea level [156]. The geoid height is the distance
above the reference ellipsoid of the Earth, the World Geodetic System WGS 84 [132]
ellipsoid, which is also used for the Global Positioning System (GPS). The geoid height
ranges from about −105 m (blue) to about 85 m (red). Coastlines are shown in white.

These spherical harmonics are the (angular) eigenfunctions of Laplace’s
equation in spherical coordinates, in which we expand the Earth’s gravitational
field. Formally, the convergence of the infinite sum depends on the values of all
coefficients Cl,m and Sl,m. These coefficients are however obviously not known
up to arbitrary order and degree. In practice we truncate the infinite sum, so
that convergence is not an issue anymore.
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Apart from the J2 term in the geopotential, which is due to the oblateness of
the Earth, atmospheric drag affects the orbital motion of artificial satellites near
the Earth most. Rayleigh’s formula for the drag force is often used as a model
for the atmospheric drag of artificial satellites:

FD = − 1
2 CD Aρu2û. (3.27)

The drag coefficient CD measures the resistance of the satellite; it depends on
the precise geometry of the satellite. The (local) density of the atmosphere is
indicated by ρ, which is generally very difficult to determine, for it depends
on many factors. A is the orthographic projection of the satellite on the plane
perpendicular to the orbital motion, that is the cross-sectional area, which
obviously depends on the attitude of the satellite. The unit velocity of the satellite
relative to the atmosphere is denoted by û = u/‖u‖, where u = v−ω⊕ ∧ r with
ω⊕ the angular velocity of the Earth.

A simplistic yet useful approximation for the atmospheric density as a
function of the altitude hsat is given by the barometric formula:

ρ = ρ0 exp (−βhsat),

where ρ0 is the density of the air at the surface of the Earth, and β is called the
barometric coefficient, which is in principle different for each layer of the Earth’s
atmosphere. For a comprehensive overview of effects on the local density of the
atmosphere we refer to Vallado [157] and references therein.

Third-body perturbations, solar radiation pressure, tidal effects, and the
Earth’s albedo and infrared radiation all contribute to a lesser extent to the
orbital motion of low-altitude satellites. We shall ignore these perturbations
henceforth.

Spacecraft entering the Earth’s atmosphere from orbit move at hypersonic
speeds, which causes enormous aerodynamic heating. Space capsules, such
as the ones used in for example the Apollo missions, often have blunt shapes
to create shock layers, which dissipate most of the excess of energy to the
surrounding air. Space Shuttle orbiters and similar spacecraft require thermal
protection systems to guard their interiors from the intense heat. In both cases
the flight path and attitude control of the craft are crucial to the success of the
re-entry of the craft. In the case of winged spacecraft there is, in addition to
the drag force, the lift force perpendicular to the relative velocity between the
spacecraft and the atmosphere due to the specific shape of the wings of the
spacecraft (aerofoil). Its magnitude is given by

FL = 1
2 CLSρu2, (3.28)
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where CL is the lift coefficient of the craft at a certain angle of attack, and S is
the planform area of the craft. Generally, both CD and CL depend on the angle
of attack, the Reynolds number and the Mach number, but for our purposes it
suffices to assume both coefficients to be constant.

3.3 Rigid Body Motion

We shall now focus on the attitude dynamics of spacecraft. In Section 3.3.1
Euler’s equations are presented, from which the torque-free motion of a rigid
body is derived in Section 3.3.2. An analytical solution in terms of Jacobi’s
elliptic functions is given; it constitutes the benchmark for the numerical sol-
utions obtained with the implicit midpoint method, to be discussed in depth
in Chapter 4. The geometric structure of the torque-free rigid body motion is
reviewed briefly in Section 3.3.4.

3.3.1 Euler’s Equations

In order to describe the motion of a satellite completely, we specify two com-
plementary frames of reference. First, a non-inertial frame that co-orbits with
the satellite, which we call the body frame B, determines the relative orientation
with respect to its pivot, the origin of the frame. In it, all coordinates on the
body are fixed, so that B is not adequate to describe the time evolution. Second,
an inertial frame, the space frame S , accounts fully for the dynamics. Its origin
is chosen to coincide with the centre of the Earth.

In B the moment of inertia tensor I is symmetric and time-independent, so
that there is an orthogonal transformation that diagonalizes it. The coordinate
system in which I = diag (I1, I2, I3) is known as the principal-axes system. In
addition, we assume that I1 > I2 > I3. For ω = (ω1, ω2, ω3) ∈ B, the angular
velocity vector and the instantaneous rate of rotation of the satellite are encoded
in Euler’s equations [see e.g. 81]:

N = ω ∧ (Iω) + Iω̇, (3.29)

where N = (N1, N2, N3) is the torque applied to the satellite. Henceforth the
dependence of the angular velocity on time is understood.
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3.3.2 The Euler–Poinsot Problem

In the case of torque-free motion the components of equation (3.29) read
I1ω̇1 = (I2 − I3)ω2ω3,
I2ω̇2 = (I3 − I1)ω3ω1,
I3ω̇3 = (I1 − I2)ω1ω2,

(3.30)

which are to be supplied with initial conditions for ω. This system of first-order
non-linear differential equations is known as the Euler–Poinsot problem. Let
us write L = Iω for the angular momentum in the body frame. In terms of the
body angular momentum the square of the angular momentum is L2 ≡ ‖L‖2 =
(Iω) · (Iω), and the kinetic energy is T = 1

2 L · (I−1L) are constants of motion.
Euler’s equations (3.30) are known to have an analytical solution in terms of

the Jacobian elliptic functions sn (u | m), cn (u | m) and dn (u | m), where u ∈ R

is the argument, and the parameter lies in the range 0 < m < 1. The solution
reads 

ω1(t) = α cn (p(t− t0) | m),
ω2(t) = −β sn (p(t− t0) | m),
ω3(t) = γdn (p(t− t0) | m),

(3.31)

where we opt to set t0 = 0, so that necessarily ω2(0) = 0. The remaining five
parameters are given by, for instance,

α2 =
L2 − 2I3T
I1(I1 − I3)

,

β2 =
L2 − 2I3T
I2(I2 − I3)

,

γ2 =
2I1T − L2

I3(I1 − I3)
,

p2 =
(I2 − I3)(2I1T − L2)

I1 I2 I3
,

m2 =
(I1 − I2)(L2 − 2I3T)
(I2 − I3)(2I1T − L2)

,

(3.32)

with I1 > L2/2T > I3, in which we have incorporated the initial conditions by
using the constants of motion L2 and T at any convenient time, say t = 0. For
an alternate definition of the parameters in terms of the initial conditions see for
example Armitage and Eberlein [4], pp. 339–342.

The form of the solution depends on the magnitude of L2/2T in relation
to the components of I. If I2 > L2/2T > I3 then 0 < m < 1, which lies in the
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principal range of the elliptic parameter. However, for I1 > L2/2T > I2 we have
that m > 1, in which case we may use the following identities [2, p. 573] to scale
the parameter inside the principal range:

√
m sn (u | m) = sn

(√
mu | m−1

)
,

cn (u | m) = dn
(√

mu | m−1
)

,

dn (u | m) = cn
(√

mu | m−1
)

.

Finally, for I2 = L2/2T, corresponding to the situation in which m = 1, the
solution simplifies slightly, as sn (u | 1) = tanh u, cn (u | 1) = dn (u | 1) =
sech u and β2 reduces to 4T2/L2.

We note that the signs assigned to the individual components of the angular
velocity vector are arbitrary in the sense that the only requirement is that the
product αβγ < 0. We have chosen the negative sign in the second component
because I3 − I2 < 0 on the right-hand side of the middle equation in (3.30).

3.3.3 Body and Space Coordinates

So far we have only looked at the rotational motion in the B. In order to find
the attitude with respect to the space frame, it is necessary to transform the
coordinates in the body frame to the space frame. Let e(1), e(2), e(3) denote the
unit vectors along the principal axes in the stationary frame S . First, let us
assume that there are no external forces that act on the body and that the origin
of B remains stationary relative to S , in which instance there are no external
torques either. Then we may choose the coordinate systems B and S to coincide
at t = 0, so that the matrix

M =


...

...
...

e(1) e(2) e(3)

...
...

...

 . (3.33)

transforms the coordinates from the body frame to the space frame. The column
entries are calculated from

ė(i) = −ω ∧ e(i), i = 1, 2, 3, (3.34)

which states that the body, along with its principal axes, rotates relative to the
space frame with angular velocity ω. The direction cosine matrix M ∈ SO (3, R),
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so that it has three degrees of freedom. In the literature we often see the matrix
defined in terms of Euler (roll, pitch and yaw) angles or quaternions; see for
instance Hairer et al. [66], and Marsden and Ratiu [106] for more details, or
Arribas et al. [6], who use quaternions to derive the Hamiltonian formalism
for rigid bodies with external torques. From Euler’s equations (3.30) and the
kinematic equations for the principal axes (3.34) the attitude dynamics can be
computed. Notice that the motion is constrained to the sphere S2 with radius
‖LS‖, since LS is conserved in S in the absence of external torques due to the
fact that N ≡ L̇S = 0. The subscript S indicates that the quantity is represented
in the space coordinates. In the body system the body angular momentum is
generally not conserved; it is only conserved provided that ω and L are parallel.

Now we presume that the body coordinate system is moving relative to the
frame frozen in space with velocity v(t) = ẋ(t) as a consequence of external
forces. The torque induced by the external force affects the rotational motion
within B, whereas the force itself alters the motion of the body coordinate system
as a whole. Furthermore, we demand that the rotational motion decouples from
the translational motion. Henceforth e(1) points towards the orbital motion, e(2)

in the direction opposite to the normal of the orbital plane, and e(3) towards the
centre of the Earth, as shown schematically in Figure 3.3. The body coordinate
system defined in this particular way is right-handed. The radial unit vector in
the space frame and e(3) are anti-parallel, and so are the angular momentum
vector in the space frame and e(2). The equations for the principal axes in S
then read

ė(i) = −ω ∧ e(i) + v(i), i = 1, 2, 3, (3.35)

in which v(i) describes the rate of change due to the translational motion of
the ith principal axis in the inert frame of reference S . In the case of a satellite
moving with angular velocity Ω in orbit around the Earth we have that the
velocity v(i) = −Ω ∧ e(i).

The transformation from the body frame to the space frame is now accom-
plished by an orientation-preserving map of the Euclidean space, that is a
translation x(t) ∈ R3 of the body frame with respect to the space frame and a
rotation M ∈ SO (3, R) of the body frame relative to its reference position:

r 7→ M(t)r + x(t) (3.36)

for r ∈ B.
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Figure 3.3: Graphical representation of the body and space coordinate systems B and S .

3.3.4 Reprise of the Euler–Poinsot Problem

Euler’s equations (3.30) are actually the result of a reduction process from a
Hamiltonian dynamical system constrained to the Lie group SO (3, R) [106], and
they describe what is known as a Lie–Poisson dynamical system. We do not
wish to go into the full details of Lie–Poisson mechanics but merely state that it
formalizes the by now familiar Hamiltonian formulation of classical mechanics.
In fact, Lie–Poisson mechanics can even be generalized further by what is known
as Nambu mechanics [130], but we shall have no need of such an abstraction.

The key difference between Hamiltonian and Lie–Poisson dynamical systems
is the carrier space of the dynamics; Poisson manifolds appear as a natural
generalization of symplectic manifolds. In short, a Poisson manifold is a smooth
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manifold P that is equipped with a Poisson structure, that is a Lie algebra of
C∞(P , R) under the Poisson bracket. In other words, P has an anti-symmetric
bilinear map {·, ·} : C∞(P , R)× C∞(P , R)→ C∞(P , R) that satisfies the Jacobi
identity and is a derivation on the ring C∞(P , R) for its first argument. It is
obvious that the Poisson bracket from equation (1.16) is such a Poisson bracket
on the function space C∞(T?Q , R). Any symplectic manifold is therefore a
Poisson manifold.

We can take a shortcut by looking at Hamilton’s canonical equations as
expressed in equation (1.15): η̇ = J∇H(η), where η ∈ M , a 2n-dimensional
symplectic manifold (M , ω) with ω = 1

2 dη∧ Jdη. If we replace the symplectic
matrix J with a coordinate dependent skew-symmetric matrix J(η), then we end
up with an example of Lie–Poisson system on a Poisson manifold, for which

η̇ = J(η)∇H(η), (3.37)

as we shall see below.
Indeed, for any Lie algebra g its dual g? defines a Poisson structure with

respect to the Lie–Poisson bracket

{ f , g}±(Ξ) = ±
〈

Ξ,
[

δ f
δΞ

,
δg
δΞ

]〉
. (3.38)

Here Ξ ∈ g?, f , g ∈ C∞(g?, R), and δ f /δΞ ∈ g denotes the functional derivative
of f at Ξ. Recall that the adjoint representation of g is a linear map ad: g →
End (g), ξ 7→ adξ , which is defined as adξ (η) = [ξ, η], the Lie bracket, for all
ξ, η ∈ g. Let dim g be r, and e1, . . . , er denote a basis for g. In this basis the
Lie bracket becomes

[
ei, ej

]
= ck

ijek, where the ck
ij are known as the structure

constants. We write e1, . . . , er for the corresponding dual basis elements of g?.
Now we are able write the Lie–Poisson bracket (3.38) as

{ f , g}±(Ξ) = ±ck
ijΞk

δ f
δΞi

δg
δΞj

, (3.39)

where Ξ = Ξiei. Lie–Poisson brackets result from canonical Poisson brackets on
the phase space T?G related to a certain Lie group G. In fact, any Lie–Poisson
bracket can be obtained from a Poisson bracket by reduction via a momentum
map [106].

In finite dimensions we can identify g ∼= Rn and g? ∼= Rn, so that δ/δΞ is
∂/∂η = ∇, and the above construction boils down to the Lie–Poisson bracket

{ f , g}± (η) = ± 〈∇ f (η), J(η)∇g(η)〉 , (3.40)
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where J(η) is a skew-symmetric matrix, which is a consequence of the fact
that the Lie bracket [·, ·] is anti-symmetric in its arguments. J(η) is sometimes
referred to as the structure matrix.

A numerical integrator is called a Lie–Poisson integrator if its discrete flow is
a Poisson map, which depends of course on the structure matrix in question. An
algorithm can only be a Lie–Poisson integrator for a specific class of structure
matrices. Lower-order Lie–Poisson integrators can generally not be combined to
form higher-order methods as in the case of symplectic integrators. For a review
of Lie–Poisson integrators we refer the reader to Karasözen [84] and references
therein. Before we proceed with the discussion of the Lie–Poisson structure of
the Euler–Poinsot problem, we note that Lie–Poisson dynamical systems have a
variational structure too. For more details on variational Lie–Poisson integration
algorithms we refer to the literature [22, 29, 104].

We shall now demonstrate that the Euler–Poinsot problem (3.30) can be
brought into a Lie–Poisson form (3.37). The Lie group that leaves the angular-
momentum sphere invariant is G = SO (3, R). As before, we may identify so(3)
with R3, and a natural pairing between so(3)? and so(3) is then given by the
inner product. All in all, the relevant Lie–Poisson bracket with respect to L
becomes

{ f , g}± (L) = ±L · (∇ f (L) ∧∇g(L)
)
,

so that the time evolution of any real scalar function f is given by ḟ = { f , H }±
with H : G → R the Lie–Poisson Hamiltonian. For Euler’s equations the
Lie–Poisson bracket carries a minus sign, as we show below.

Let us define the Lagrangian L = 1
2 L · L, which is one-half of the space

angular momentum, and the (free) Hamiltonian by H = 1
2 L · (I−1L). Euler’s

equations (3.30) can be written as

L̇ = −∇L ∧∇H . (3.41)

Alternatively, by taking the inner product with L we find that

L̇ = −L · (∇L ∧∇H
)

= 0,

which indeed confirms that the correct Lie–Poisson bracket bears a minus sign
for the Euler–Poinsot problem. Furthermore, it shows that in addition to the
trivial Casimir H , L is a Casimir function too. Similarly, we write for the
Euler–Poinsot problem

d
dt

 L1
L2
L3

 =

 0 −L3 L2
L3 0 −L1
−L2 L1 0

 L1/I1
L2/I2
L3/I3

 . (3.42)
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Any Poisson manifold can be foliated by a collection of symplectic submani-
folds, or leaves as they are called in this context; these leaves are the coadjoint
orbits [106]. On these leaves any Casimir function C, for which {C, f }±= 0 for
any f , is constant. The symplectic leaves are therefore spheres with radius ‖L‖
centred at the origin.

3.3.5 Gravity-Gradient Torque

The gravitational force of the Earth applied to the centre of mass of the satellite
does not exert a torque. The gravitational force does, however, create a torque
around the centre of mass of the satellite, since the force is generally not uniform
over the dimensions of the craft. This torque is known as the gravity-gradient
torque and it is especially important in the attitude dynamics for low-altitude
orbits. Here we tacitly assume the Earth to be spherical, so that the non-
uniformity of the gravitational force over the satellite is not the result of local
variations in the Earth’s gravitational field but entirely due to the fact that the
various parts of the satellite can be at slightly different distances from the centre
of the Earth. Such irregularities in the geopotential can of course be taken into
account as well, but for our present discussion they are negligible.

Let k be the gravitational parameter of the Earth, m the mass of the satellite,
rCM the position vector from the Earth’s core to the centre of mass of the satellite,
and rsat the position vector from the centre of mass of the satellite to a point on
the satellite. Furthermore, we define r = rCM + rsat. Please recall that the radial
unit vector r/‖r‖ is opposite to e(3). The gravitational force on a point on the
satellite with an infinitesimal mass element dm at r is

dF = − kr dm
‖r‖3

= − k dm (rCM + rsat)
‖rCM + rsat‖3 . (3.43)

The gravity-gradient torque about the centre of mass of the satellite thus becomes

N =
∫

rsat ∧ dF

= −k
∫ rsat ∧ rCM

‖rCM + rsat‖3 dm.
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Since clearly ‖rCM‖ � rsat, we expand the denominator in the integrand up to
second order in ‖rsat/rCM‖2:

1
‖rCM + rsat‖3 '

1
r3

CM

[
1− 3

rsat · rCM

r2
CM

]
,

where rCM = ‖rCM‖. Because
∫

rsat dm = 0, we end up with

N = − 3k
r5

CM
rCM ∧

∫
rsat (rsat · rCM) dm.

After some simple manipulations and the introduction of the moment of inertia
tensor I =

∫ (
r2

sat1− rsatrsat
)

dm, in which 1 is the identity tensor, rsat = ‖rsat‖
and rsatrsat is the dyadic product, we are left with the required expression for
the gravity-gradient torque about the centre of mass of the satellite:

N =
3k

r5
CM

rCM ∧ (IrCM)

=
3k

r3
CM

e(3) ∧
(
Ie(3)

)
. (3.44)

For satellites in circular orbits Ω = −ne(2), where n =
√

k/r3
CM is the mean

motion. The attitude dynamics follows from Euler’s equations in the orbital
body system 

I1ω̇1 − (I2 − I3)ω2ω3 = −3n2(I2 − I3)e(3)
2 e(3)

3 ,

I2ω̇2 − (I3 − I1)ω1ω3 = −3n2(I3 − I1)e(3)
1 e(3)

3 ,

I3ω̇3 − (I1 − I2)ω1ω2 = −3n2(I1 − I2)e(3)
1 e(3)

2 ,

(3.45)

or with i = 1, 2, 3,

Iiω̇i =
3

∑
j,k=1

εijk
[

Ij

(
ωjωk − 3n2e(3)

j e(3)
k

)]
, (3.46)

for short, as well as the equations for the principal axes in the inertial frame of
reference 

ė(1) = −ω ∧ e(1) + ne(3),
ė(2) = −ω ∧ e(2),
ė(3) = −ω ∧ e(3) − ne(1).

(3.47)

We note that for elliptical orbits the mean motion does not represent the instan-
taneous angular rate of the satellite in orbit.
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Realizing that e(1) = e(2) ∧ e(3), we can reduce the coupled system (3.47) by
dropping the differential equation for e(1):{

ė(2) = −ω ∧ e(2),

ė(3) = −
[
ω + ne(2)

]
∧ e(3).

(3.48)

Once e(2) and e(3) are known, e(1) can easily be computed from the exterior
product. From a numerical point of view it is important to note that the inner
products

e(i) · e(j) =

{
1, i = j

0, i 6= j
(3.49)

are integrals of motion for equations (3.48) but not for (3.47). We can easily
verify that the time derivatives of the geometric products (3.49) are generally
non-zero for the system (3.47), whereas the expressions are identically zero for
the reduced equations. This means that the reduced equations are numerically
stable, and they are to be preferred; the orthogonality of the attitude matrix is
preserved by the reduced system only.

Due to the gravity-gradient torque the kinetic energy and the square of the
angular momentum are not conserved anymore:

Ṫ = −3n2
3

∑
i,j,k=1

εijkωi Ije
(3)
j e(3)

k ,

L̇2 = −6n2
3

∑
i,j,k=1

εijk Iiωi Ije
(3)
j e(3)

k .

We have the following Jacobian integral of motion

E = 1
2 ω · (Iω) + ne(2) · (Iω) + 3

2 n2e(3) · (Ie(3)), (3.50)

for circular orbits instead. It represents the energy in a co-rotating frame, where
the second term is nothing but the second component of the angular momentum
L2, that is the component perpendicular to the orbital plane, multiplied by the
mean motion.

We end our presentation of astrodynamics by mentioning that the non-linear
system (3.45) and (3.47) is not of the form (3.37), and hence does not constitute
a Lie–Poisson system.
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4
Applications and Algorithms

Now that we have established and explored the differential-geometric structure
of the equations of motion of artificial satellites and spacecraft in the previous
chapters, it is time to turn our attention and efforts to applications and the
algorithms to solve these numerically. We shall pursue three main lines in this
chapter.

First, we describe three prominent applications in celestial mechanics and
astrodynamics of quasi-Keplerian motion, for which we have derived the univer-
sal solution in Chapter 3: the relativistic precession of the apsides, the numerical
integration of perturbed Kepler–Coulomb problems with a generalized leapfrog,
and the averaged motion of Earth-orbiting satellites with the J2 perturbation.

Second, a new algorithm is presented for the numerical integration of second-
order ordinary differential equations with perturbations that depend on the first
derivative of the dependent variables with respect to the independent variable;
it is especially designed for few-body problems with velocity-dependent pertur-
bations. The algorithm can be used within extrapolation methods for enhanced
accuracy, and it is fully explicit, which makes it a competitive alternative to
standard discretization methods.

Third, we describe the application of the implicit midpoint integrator to
the problem of attitude dynamics for low-altitude satellites without the use of

75
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quaternions. Initially, we consider the satellite to rotate without external torques
applied to it. We compare the numerical solution with the exact solution in terms
of Jacobi’s elliptic functions, as given in Chapter 3. Afterwards we include the
gravity-gradient torque, in which case the implicit midpoint integrator proves
to be a fast, simple and accurate method. Higher-order versions of the implicit
midpoint scheme are compared to Gauss–Legendre Runge–Kutta methods in
terms of accuracy and CPU time. Finally, we investigate the performance of a
parameter-adaptive Kalman filter based on the implicit midpoint integrator for
the determination of the principal moments of inertia through observations.

4.1 Quasi-Keplerian Motion

The MICZ problem provides a template for several problems in physics that
range from the motion of charged particles around (hypothetical) magnetic
monopoles to the precession of planets due to general-relativistic corrections
to Newtonian gravity. In Sections 4.1.1 through to 4.1.3 we describe three such
applications of quasi-Keplerian motion from the realms of celestial mechanics
and astrodynamics.

4.1.1 General-Relativistic Precession

The observation that an inverse-square potential gives rise to precession of
the orbit is a well-established fact. In fact, the perihelion precession of the
planet Mercury was one of three tests put forward by Einstein to examine
the validity of the general theory of relativity experimentally, apart from the
predicted deflection of light by the Sun due to the curvature of space-time near
massive bodies, and the gravitational redshift of electromagnetic waves. The
precession of the apsides of any satellite in its broadest sense, can be attributed
to lowest-order by an inverse-square potential added to the Newtonian one [144,
Sec. 11.9]:

V(q) = −GM
‖q‖

(
1− 3GM

c2‖q‖
)

, (4.1)

which obviously corresponds to the MICZ potential if we take k = GM and
λ2 = −6G2M2/c2. With these identifications the relativistic precession of the
periapsis can be approximated by the quasi-Keplerian motion. The precession
angle can be calculated to lowest order from equation (3.23):

|δθ| = 6πGM
c2a(1− e2)

, (4.2)
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where we have used that L2 = `2 + λ2 = ak(1− e2). Indeed, equation (4.2)
is to lowest order in perfect agreement with the general-relativistic expres-
sion [124, p. 1110], since aK = a +O (λ2) and e2

K = e2 +O (λ2). The subscripts
K distinguish the classical Keplerian definitions from the ones defined in Sec-
tion 3.2.3. The fact that the quasi-Keplerian motion mimics the lowest-order
general-relativistic contribution to Newtonian gravity enables us to use the
solution described in Section 3.2.2.

4.1.2 Numerics in the Extended Phase Space

Consider a Hamiltonian H that consists of a Keplerian part K and a coordinate-
dependent perturbation R, that is,

H(q, p) =
1
2
‖p‖2 − k

‖q‖ − R(q)

≡ K− R. (4.3)

Since a generic perturbation generally destroys the integrability of the Kepler–
Coulomb Hamiltonian, one could solve Hamilton’s equations numerically with
the Störmer–Verlet algorithm (2.19) for instance, which implements the natural
separation of the Hamiltonian (4.3) into K and R automatically:

qk+1/2 = qn +
h
2

∂H
∂p

(pk, qk)

= qk +
h
2

pk, (4.4a)

pk+1 = pk − h
∂H
∂q

(pk, qk+1/2)

= pk + h

[
k

qk+1/2

q3
n+1/2

+
∂R
∂q

(qk+1/2)

]
(4.4b)

qk+1 = qk+1/2 +
h
2

∂H
∂p

(pk+1, qk+1/2)

= qk+1/2 +
h
2

pk+1. (4.4c)

The coordinates and momenta are calculated at steps k = 0, . . . , N − 1 with a
time step h. In the generalized leapfrog scheme the Keplerian part and the
perturbation are to be split completely, which means that they are integrated sep-
arately. Because the perturbation is independent of the momenta by assumption,
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it only affects the momentum updates; initially the coordinates and momenta are
both advanced half an integration step according to the unperturbed Keplerian
solution, then the full contribution to the momenta due to the perturbation is
added, whereupon the coordinates and momenta are updated once more over
half a step.

Whether a particular Hamiltonian system can easily be integrated numeri-
cally depends on the characteristics of the problem under consideration. Apt
choices for so-called time transformations are sometimes known to aid compu-
tations. In fact, there is a class of time transformations that preserve the inte-
grability of the Keplerian part, which is transformed into a MICZ Hamiltonian,
as suggested first by Mikkola [118]. The idea is to move to the extended phase
space of Section 1.3.1.

Let the time depend on some parameter s, so t = t(s), or more generally

dt = g(q̄, p̄)ds,

where q̄ = (q0, q) and p̄ = (p0, p). The choice of a particular time step function
g is crucial to the success of the integrator. For instance, it is known that the
so-called logarithmic Hamiltonian produces the exact (regularized) trajectories
for the Kepler–Coulomb problem [122, 123, 140]:

Theorem 9 (Preto–Tremaine–Mikkola–Tanikawa). For a separable Hamiltonian
function H = T(p) + V(q), let the time step function be

g(q, p̄) =
f
(
TB(p̄)

)− f
(−V(q)

)
TB(p̄) + V(q)

,

where f : R → R is a smooth function, and TB(p̄) ≡ T(p) + p0. If H = K and
f = ln, then the Störmer–Verlet algorithm (4.4) for the extended Hamiltonian H̄ =
g(H + p0) ∼ ln

(‖p‖2 + 2p0
)
+ ln ‖q‖ conserves the diagonal SO (4, R) momentum

map (3.4) infinitesimally.

We shall now assume that g = g(q, t), which signifies that it is a function of
the generalized coordinates of the extended phase space, as time is considered
a coordinate. Such a time step function amounts to an extended Hamiltonian
H̄ = g(q, t)(K + p0)− g(q, t)R ≡ K̄− R̄, as is clear from equation (1.24). Since
R̄ = R̄(q, t), any time step function can easily be integrated numerically, as it
only contributes to the momentum updates. It is therefore essential to find an
appropriate time step function for K̄.
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In order to return to the physical-time phase space, we can use the inverse
time transformation g−1. However, since KB ≡ K + p0 is constant over one time
step, say K̄ = ε, we find that

K′B = g−1(K̄− ε)

= KB − ε/g

= K + p0 − ε/g. (4.5)

Specifically, for the time step function [118]

g(q) =
‖q‖2

C0 + C1‖q‖+ C2‖q‖2 , (4.6)

where Ci ∈ R for i = 0, 1, 2, we find that

K′B =
1
2
‖p‖2 − k− C1ε

‖q‖ − C2ε

‖q‖2 − C0ε + p0. (4.7)

The constant terms can be dropped without altering the dynamics. All in all, we
are left with an MICZ Hamiltonian, where k 7→ k−C1ε and λ2 7→ −2C2ε, which
is integrable, so that one may use the generalized leapfrog algorithm to compute
any momentum-independent perturbations to the exact solution efficiently. The
values of the parameters C0, C1 and C2 can be tuned for optimal performance,
that is to say computational time and/or accuracy.

4.1.3 Physical Geodesy

Because the Earth is not spherically symmetric, low-altitude spacecraft in orbit
around the Earth experience an asymmetric force that causes both secular and
periodic changes in the orbital elements. The main contribution is the so-called
J2 term, which is due to the oblateness of the Earth and of the order 10−3. By
averaging over one full orbit we can eliminate periodic effects, and study the
secular contributions, which for the J2 term cause apsidal rotation, that is a
rotation of the orbit itself in the orbital plane, a steady change in the mean
anomaly, and nodal regression. The latter can be understood intuitively: the
additional attraction of the equatorial bulge due to the flattening of the Earth
at the poles pulls the spacecraft towards the equatorial plane, thereby inducing
a net torque about the line of nodes, which tends to draw the orbital plane
towards the equator. The change in angular momentum is parallel to the torque,
so that the precession is parallel to the line of nodes and perpendicular to the
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angular momentum vector. The line of nodes rotates opposite to the motion of
the craft, hence the name nodal regression.

The averaged potential of the J2 perturbation is

R̄ = − kJ2

8a

( r⊕
a

)2 3 cos 2i + 1
(1− e2)3/2 , (4.8)

where r⊕ is the mean equatorial radius of the Earth, k = GM⊕ the standard
gravitational parameter with M⊕ the mass of the Earth, and where the orbital
elements are all Keplerian. For more details we refer to Kaula [85], p. 39 or
Vallado [157], p. 604. The rates of change for the secular variations of the orbital
elements can be calculated from Lagrange’s planetary equations

ċk = −
6

∑
n=1
{ck, cn} ∂R

∂cn
,

where k runs from 1 to 6, {ck} is an appropriate set of orbital parameters, and R
is an arbitrary perturbation potential. For R = R̄ we find that the secular rates
of change for ω, Ω and M = M0 + nt are [157, pp. 606–610]

ω̇ =
3nJ2r2⊕

8p2 (5 cos 2i + 3) , (4.9a)

Ω̇ = −3nJ2r2⊕
2p2 cos i, (4.9b)

Ṁ0 =
3nJ2r2⊕

√
1− e2

8p2 (3 cos 2i + 1) , (4.9c)

respectively. Here we set n2a3 = k and p = a(1− e2).
We shall now show that a modified quasi-Keplerian potential can be used to

model the averaged J2 effects. First, we have seen that the 1/‖q‖2 term in the
potential of the MICZ problem gives rise to a precession of the apsides in the
orbital plane, which has a rate of ω̇. Second, a variation in the effective mass δk
induces a change in the mean motion n and thus mean anomaly M :

M + δM =

√
k + δk

a3 t

= nt
(

1 +
δk
2k

)
+O

(
(δk)2

)
.

Therefore, 2k ˙M0 = nδk. Third, a rotation around the axis from the South Pole
to the North Pole, the polar axis, corresponds to a rotation of the line of nodes.
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The component of the angular momentum along the axis of rotation L3 remains
constant. Moreover, it lies in the involution of any Hamiltonian with a central
force potential H(q, p) = 1

2‖p‖2 + V(‖q‖), that is for which {H, L3} = 0, so
that it is possible to include a contribution proportional to the polar angular
momentum, which accounts for the rotation of the line of nodes.

All in all, the perturbation can be modelled by a potential of the form

V = − k + δk
r

+
λ2

2r2 + αL3, (4.10)

which upon inspection of equations (4.9) shows that

δk = 2k ˙M0/n

=
3kJ2r2⊕

4a2(1− e2)3/2 (3 cos 2i + 1) , (4.11a)

λ2 = 2kω̇p/n

=
3kJ2r2⊕

4a(1− e2)
(5 cos 2i + 3) , (4.11b)

α = Ω̇

=
3
√

kJ2r2⊕
2a7/2(1− e2)2 cos i (4.11c)

For any given set of initial conditions these are merely numerical values that
characterize the orbit. We emphasize, again, that these are Keplerian orbital
elements, though we do not append any subscripts K to minimize the number
of subscripts. This demonstrates that the two-body problem with an averaged
perturbation due to the oblateness of the Earth is equivalent to the MICZ
problem combined with an infinitesimal rotation around the polar axis. The
fact that the constructed Hamiltonian is separable enables us to compute the
secular motion of the J2 problem efficiently: first, we use the exact solution
of the quasi-Keplerian motion by calculating the quasi-Keplerian motion, and
subsequently we rotate the solution around the z-axis. Because the polar angular
momentum lies in the involution of H, the order of these operations is irrelevant.

4.2 Numerics of Orbital Dynamics

The extrapolation method by Gragg [60], and Bulirsch and Stoer [25] is for a
large class of ordinary differential equations among the most efficient high-
precision integrators available. In astrodynamics and celestial mechanics we
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are mainly concerned with generic perturbations to N-body systems, such as
for instance velocity-dependent forces. In addition to the computational diffi-
culties associated with these perturbations, singular forces appear due to the
gravitational attraction of the bodies, which vary with the inverse square of
the distance between these bodies. Accurate and efficient integration of the
equations of motion is important, especially during close encounters, where
the relative energies of the bodies are high, or in the design of trajectories
for spacecraft and artificial satellites, where margins for errors are generally
small. Algorithmic regularization, as expressed in Theorem 9, eliminates the
computational complications due to the singularity in the forces. However, it
relies on the Störmer–Verlet algorithm (2.19), which is intended for conservative
dynamical systems only. The implicit and generalized midpoint methods have
been shown to be successful, though computationally expensive for strongly per-
turbed problems [67, 120, 121]; for velocity-dependent Rayleigh forces virtually
all variational integrators are implicit.

We propose a time-reversible algorithmic regularization scheme that remains
explicit even for velocity-dependent forces. The method suggested here is to be
part of an extrapolation method, such as the Gragg–Bulirsch–Stoer (GBS) method,
in order to attain high accuracy. In Section 4.2.1 we describe the basic algorithm,
which we have dubbed the auxiliary-velocity algorithm (AVA). The algorithmic
regularization procedure is then adapted to the AVA in Section 4.2.2, where
we consider it in the context of the two-body problem. Section 4.2.3 discloses
the extension of the algorithmically regularized auxiliary-velocity algorithm
(ARAVA) to the N-body problem. Here we also discuss its performance in several
illustrative cases from astrodynamics and celestial mechanics: atmospheric
friction for low-altitude artificial satellites, the two-dimensional atmospheric
re-entry problem, and black-hole binaries. In the latter case we modify the basic
ARAVA slightly to incorporate the spin of the primary black hole. We conclude
by summarizing the main results, and comparing our results to previous studies
on the subject.

4.2.1 Auxiliary-Velocity Algorithm

Inspired by Newton’s second law of motion we consider the autonomous initial-
value problem 

ẍ = f (x, ẋ) ,
x(0) = x0,
ẋ(0) = ẋ0,

(4.12)
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where the single (double) overdot indicates the first (second) derivative with
respect to time t, x ∈ Rn, ẋ ∈ Rn, and f : Rn ×Rn → Rn is assumed to be
sufficiently smooth, specifically Lipschitz continuous. The second-order ordinary
differential equation describing the time evolution of the initial-value problem is
explicit, which allows us to write it as a coupled system of first-order ordinary
differential equations by defining ẋ = v:

{
ẋ = v,
v̇ = f (x, v) ,

(4.13)

with appropriate initial conditions for x(0) and v(0). By writing z = (x, v) and
g(z) = (v, f (x, v)) we arrive at the equivalent first-order system ż = g(z).

The leapfrog is a standard choice for the numerical integration of initial-
value problems, either on its own or within the Gragg–Bulirsch–Stoer (GBS)
extrapolation algorithm for second-order ordinary differential equations, as it is
explicit, time-reversible, and of second order in the step size h: the asymptotic
expansion of its global discretization error contains only terms with even powers
of the step size. Since v appears in the vector field, it is however not possible to
construct such an explicit leapfrog algorithm for the first-order system (4.13) or
its second-order equivalent (4.12). Instead, the implicit midpoint method, which
we shall describe below from equation (4.28) onward in more detail, has been
suggested [119]:

xk+ 1
2

= xk +
h
2

vk, (4.14a)

vk+1 = vk + h f
(

xk+ 1
2
, 1

2 (vk + vk+1)
)

, (4.14b)

xk+1 = xk+ 1
2
+

h
2

vk+1. (4.14c)

For a generic non-linear vector field the value vk+1 has to be solved numerically
with iterative procedures. For highly non-linear and/or computationally expens-
ive vector fields the updates in the velocities are obviously the bottleneck in the
performance of the numerical integration of the initial-value problem.

At the core of the auxiliary-velocity algorithm lies the extended space of
variables consisting of the position x, the velocity v, and the auxiliary velocity
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w. The integration with the AVA from time tk to time tk+1 proceeds as follows:

xk+ 1
2

= xk +
h
2

vk, (4.15a)

wk+ 1
2

= wk +
h
2

f
(

xk+ 1
2
, vk

)
, (4.15b)

vk+1 = vk + h f
(

xk+ 1
2
, wk+ 1

2

)
, (4.15c)

wk+1 = wk+ 1
2
+

h
2

f
(

xk+ 1
2
, vk+1

)
, (4.15d)

xk+1 = xk+ 1
2
+

h
2

vk+1, (4.15e)

where initially we set v0 = w0. In the extended space of variables the algorithm
is explicit and time-reversible, or symmetric. Notice that the (implicit) velocity
update for the implicit midpoint (4.14b) has been replaced by a construction
resembling the basic leapfrog in the auxiliary-velocity algorithm (4.15b)–(4.15d);
the intermediate auxiliary velocity agrees to first order in the step size with the
mean velocity over one step.

Let Φh denote the one-step map of a generic symmetric integrator of order
p, that is zk+1 = zk + Φh(zk). In the case of the AVA we have that z = (x, v, w).
We can of course increase the accuracy of any symmetric integrator by at least
one order by taking the composition of s iterations of the basic integrator with
modified step sizes as in equation (2.11). The resulting higher-order integrator is
a symmetric integrator too. Therefore, we can increase the order of the AVA by
taking several copies of the AVA with different step sizes. It is important to note
that for odd p there are no real solutions to the equations for the coefficients, so
that we have to take either p even, or consider complex time steps.

As an example, the coefficients for the symmetric fourth-order integrator
obtained from concatenation of three steps of a second-order symmetric algo-
rithm are γ1 = 1

6 (4 + 2 3
√

2 + 3
√

4), γ2 = − 1
3 (1 + 3

√
2)2, and γ3 = γ1, as found by

Yoshida [165]. A list of values for the coefficients of a symmetric sixth-order
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algorithm, which we shall use below, is given by

γ1 = 0.78451361047755726381949763,

γ2 = 0.23557321335935813368479318,

γ3 = −1.17767998417887100694641568,

γ4 = 1.31518632068391121888424973,

γ5 = −1.17767998417887100694641568,

γ6 = 0.23557321335935813368479318,

γ7 = 0.78451361047755726381949763,

Clearly the cost of the increase of the order is the number of stages: a
fourth-order composition algorithm requires at least three stages, a sixth-order
integrator at least seven stages, and so on. The ‘optimal’ values of the γs have
been calculated for different problems under different optimality criteria, such
as for example accuracy, the number of force evaluations, and CPU time. These
and related considerations are collected in Hairer et al. [66], Chap. 5.

The Gragg–Bulirsch–Stoer (GBS) extrapolation method [25, 60] is often used
for high-precision numerical integration of initial-value problems. In a nutshell,
the GBS extrapolation method consists of a numerical integrator, and an interpo-
lation as well as an extrapolation procedure. The numerical integrator computes
a finite sequence of approximations to the initial-value problem at different step
sizes: z(hi). An interpolation algorithm is applied to the sequence of approxi-
mations, such that interpolating function ẑ(hi) is equal to z(hi). By means of an
extrapolation procedure this interpolating function is calculated for the limiting
case of zero step size, that is to say the exact solution z(0) = limh→0 z(h) is
approximated by ẑ(0).

The standard implementation of the GBS method requires the discretization
method to have an asymptotic expansion of the global error that proceeds with
even powers of the step size, as for each additional Richardson extrapolation the
accuracy is increased by two orders in the step size instead of merely one. A
sufficient condition is that the finite-difference scheme is time-reversible. Since
both the implicit midpoint method and the leapfrog, including the auxiliary-
velocity algorithm, are second-order symmetric integrators, they may be used
inside the GBS extrapolation method1. The GBS extrapolation method requires

1We call attention to the fact that in general the extrapolation procedure does not preserve the
differential-geometric structure. As a matter of fact, if a numerical algorithm is both symmetric and
symplectic, and of order 2p, p ≥ 1, then polynomial extrapolation methods can be constructed that
conserve the symplectic form up to order 4p + 1, as shown by Blanes et al. [19].
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smooth vector fields, which can be achieved by the Sundman transformation
considered in the next section.

Before we continue with the algorithmic regularization procedure, we note
that for conservative dynamical systems variational integrators are to be pre-
ferred in long-term simulations, as they preserve both the symplectic structure
and any momentum maps associated with symmetry actions. We have shown
in Chapter 2 that non-conservative forces can be added easily in the discrete
variational formalism. Nevertheless, these integrators are not as efficient inside
the GBS extrapolation algorithm as the one we propose, since they are gener-
ally implicit. We emphasize that for conservative dynamical systems the AVA
reduces to the basic Störmer–Verlet algorithm, which is indeed symplectic. Even
so, the AVA is principally designed to be an efficient alternative to existing
integrators for non-conservative dynamical systems, and it is ideally suited
inside the GBS extrapolation algorithm.

4.2.2 Algorithmic Regularization

Here we apply the algorithmic regularization procedure for the two-body prob-
lem, as described by Preto and Tremaine [140], and Mikkola and Tanikawa
[122, 123], to the auxiliary-velocity algorithm. The reduced equations of motion
(per unit of mass) for the perturbed two-body problem read

r̈ = − kr
r3 + εa (t, r, v) , (4.16)

where k is the gravitational parameter, r = ‖r‖, the relative position of the
two bodies, v is the relative velocity, ε is the perturbation parameter, and a
is a general perturbing acceleration. For the sake of generality we allow for
the possibility that the acceleration depends on time. The advantage of the
algorithmic regularization procedure is that it produces the exact trajectory with
an O(h2) error in the time for ε = 0; close approaches are regularized, and
thus the algorithm is not merely an adaptive step size algorithm [65, 72], or an
algorithm with variable time steps and regularization built-in [94].

Before proceeding we introduce some definitions to facilitate the algorithmic
regularization of the auxiliary-velocity algorithm. Define the kinetic energy T =
T(v) = 1

2 v2, the negative value of the two-body potential energy U = U(r) =
k/r, which is commonly known as the force function, the Keplerian binding
energy B = U − T, and the Newtonian two-body acceleration A(r) = ∇U(r).
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The algorithmic regularization is accomplished by the time transformation

ds = U(r)dt, (4.17)

which yields the derivatives with respect to the reparameterized time s, denoted
by the prime,

r′ = v/TB, (4.18a)

v′ = [A(r) + εa (t, r, v)] /U, (4.18b)

w′ = [A(r) + εa (t, r, w)] /U. (4.18c)

Here TB ≡ T + B = U along the orbit. The distinction between TB and U in the
transformed equations of motion is to ensure separability of the unperturbed
problem, that is for ε = 0, as in that case the right-hand side of equation
(4.18a) can only depend on v, and the right-hand sides of equations (4.18b)
and (4.18c) can only depend r. The equation for the auxiliary velocity (4.18c)
is clearly identical to the equation for the ordinary velocity (4.18b) but with v
replaced by w everywhere. The transformation affects the binding energy as
well for it depends implicitly on time through both r and v. Hence, B transforms
accordingly,

B′ = −εv · a (t, r, v) /U.

Finally, we mention the scaling of the time step h under the transformation
(4.17): h̄ = h/TB = h/U with h̄ the ‘time-transformed’ step size used in the
regularized numerical computations.

On the whole, we can write the update maps concisely as X(h) and V(h),
where

X(h) : rk 7→ rk+1,

V(h) : vk 7→ vk+1.

In particular, we have for the auxiliary-velocity algorithm that the map X(h) is
to be implemented as

X(h) :


TB = 1

2 v2 + B,
h̄ = h/TB,
t 7→ t + h̄,
r 7→ r + h̄v,

(4.19a)
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and V(h) as

V(h) :



U = k/r,
h̄ = h/U,

w 7→ w + 1
2 h̄ [A(r) + εa (t, r, v)] ,

v 7→ v + h̄ [A(r) + εa (t, r, w)] ,
B 7→ B− εh̄w · a (t, r, w) ,
w 7→ w + 1

2 h̄ [A(r) + εa (t, r, v)] .

(4.19b)

Notice that the unperturbed Keplerian acceleration A(r) is evaluated only once in
each iteration, whereas the perturbation is computed three times. Furthermore, if
the perturbation separates into a velocity-dependent and a velocity-independent
part, then, again, the part that does not depend on the velocity is to be evaluated
only once.

Let Y(h) be the composition X(h/2) ◦V(h) ◦X(h/2), that is one full iteration
of the regularized auxiliary-velocity algorithm with step size h. The numerical
integration of the perturbed two-body problem (4.16) from time tk to tk+m =
tk + mh with m ∈N is simply a sequence of m subsequent leapfrog iterations,
that is

[Y(h)]k = Y(h) ◦ . . . ◦ Y(h)

= X(h/2) ◦ [V(h) ◦ X(h)]k−1 ◦ V(h)X(h/2)

= X(h/2)V(h) ◦ [X(h) ◦ V(h)]k−1 X(h/2).

Here we have simplified the expression by using the relation X(h/2) ◦X(h/2) =
X(h). Henceforth we shall refer to the algorithmically regularized auxiliary-
velocity algorithm, defined by the map (4.19), by its acronym: ARAVA.

4.2.3 Applications

It is obvious that the basic AVA (4.15) is valid for any ordinary differential
equation in which the vector field depends on functions of the dependent
variable and their derivatives with respect to the independent variable. The
regularized two-body version of Section 4.2.2 is designed for the two-body
problem, but here we extend that result to the general N-body problem, where
N ≥ 2. These results are obviously valid for both the gravitational N-body
problem and its counterpart in classical molecular dynamics. Furthermore, we
discuss the application of the ARAVA to several practical problems, such as
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the motion of artificial satellites in low Earth orbits, the atmospheric re-entry
problem, and the dynamics of satellites near black holes.

The utility of the ARAVA is of course not limited to these demonstrative cases.
Realistic physical systems with perturbations that depend on the derivatives of
the dependent variable with respect to the independent variable are abundant.
Typically, the dependent variable is the position, and the independent one is
time, such as in our examples and for instance the motion of dust particles [see
e.g. 137]. For planetary landing vehicles and rockets, the mass is a dependent
(time-varying) variable too. Its derivative with respect to time, the mass (flow)
rate, multiplied by the relative exhaust velocity gives the thrust. Its inclusion in
the ARAVA formalism requires it to be written as part of an augmented velocity
vector, as described in the section on the dynamics of black-hole binaries. In
that case the ARAVA can be used to compute the desired trajectory numerically,
once an (optimal) control law has been determined. For a discussion of the
one-dimensional lunar soft-lander problem, where the optimal control law
simply consists of switching the thruster on at full throttle until touchdown,
upon fulfilment of the control criterion, we refer to Meditch [116] and Kirk [88],
pp. 427–428.

N-Body Formulation

The two-body ARAVA translates directly to its more general N-body version. As
usual, let ri j = ri − r j denote the relative distance between the bodies labelled i
and j with i 6= j. We define the total kinetic energy as

T =
1
2

N

∑
i=1

mi‖vi‖2 =
1
2

V̄2, (4.20)

where we have introduced the shorthand notation V̄ = (
√

m1v1, . . . ,
√

mNvN).
Similarly, we define R = (r1, . . . , rN) and V = Ṙ = (v1, . . . , vN). The N-body
force function is simply

U =
1
2 ∑

i 6=j

Gmimj

ri j
, (4.21)

where G is Newton’s gravitational constant, and mi is the mass of the ith body.
As before, the N-body binding energy B = U− T. The factor of one-half appears
in order to avoid double-counting of contributions to the gravitational potential.
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Again, the time transformation for the algorithmic regularization is

ds = Udt, (4.22)

where now U depends on all the relative coordinates of the N bodies. The total
specific force on each body is the sum of the resultant gravitational acceleration
due to the attraction of (N − 1) bodies, and a velocity-dependent acceleration:

F i = −
N

∑
j=1
i 6=j

Gmj

r2
i j

ri j

ri j
+ εa (t, R, vi)

≡ Gi(R) + εa (t, R, vi) (4.23)

for all bodies i = 1, . . . , N. Furthermore, we define G(R) = (G1, . . . , GN) and
the specific N-body perturbing force as

P (t, R, V) = (a (t, R, v1) , . . . , a (t, R, vN))

The coordinate and velocity update maps for the ARAVA then become

X(h) :


TB = 1

2 V̄2 + B,
h̄ = h/TB,
t 7→ t + h̄,

R 7→ R + h̄V ,

(4.24a)

and

V(h) :



U =
1
2 ∑

i 6=j

Gmimj

ri j
,

h̄ = h/U,
W 7→ W + 1

2 h̄ [G(R) + εP (t, R, V)] ,
V 7→ V + h̄ [G(R) + εP (t, R, W)] ,
B 7→ B− εh̄W · P (t, R, W) ,

W 7→ W + 1
2 h̄ [G(R) + εP (t, R, V)] ,

(4.24b)

respectively. Again, at t = 0 we set V(0) = W(0), which clearly generalizes
the basic two-body formulation from Section 4.2.2. We note that for ε = 0 the
N-body ARAVA and the integrator described by Mikkola and Tanikawa [122]
coincide.

We have ascertained the correctness of our implementation of the ARAVA for
an arbitrary number of bodies through randomized trial runs. For all numerical
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Figure 4.1: On the left, a visualization of the numerical computation with ARAVA of the
trajectories of the five bodies from their initial positions, indicated by the squares. On the
right, the performance of the ARAVA in the five-body problem: the relative errors in the
total energy (top) and total angular momentum (bottom) as a function of the time for
the standard second-order algorithm (blue) and the sixth-order symmetric composition
method (red).

computations we have set G = 1 for convenience. In each run we have chosen
the N masses at random from the unit interval, which physically means that all
masses are defined in proportion to the largest mass. The N bodies have then
been positioned at random within a sphere of an arbitrary radius r0 with random
initial velocities. The results of such a run for N = 5 with close encounters are
shown in Figure 4.1 for an integration step size of h = 0.1. In the left panel of
Figure 4.1 the numerically calculated trajectories of the five bodies from their
initial positions are drawn; the right panels show the accuracy of the second-
(blue) and sixth-order (red) ARAVA in terms of the relative errors in the total
energy and total angular momentum.
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Artificial Satellites in Low Earth Orbits

For our next numerical simulation we have injected a medium-sized satellite
with a mass m = 500 kg, drag coefficient CD = 2.2, and cross-sectional area
A = 2.5 m2 into a nearly circular equatorial orbit with a 7024 km semi-major
axis, which corresponds to an altitude of approximately 650 km. The eccentricity
of the orbit is e = 0.04 and the inclination is i = 1◦. At the surface of the Earth
we take the standard atmospheric density ρ0 = 1.3 kg m−3, and at an altitude of
650 km we choose a nominal density of 10−13 kg m−3, which yields a barometric
coefficient β = 4.7 · 10−2 km−1.

Since the drag force is a non-conservative (dissipative) force, the work exerted
by the drag force along the orbit of a the satellite is a strictly monotonic increasing
function of time, which causes the total energy of the satellite to decrease as
time passes. The energy decrease is responsible for the reduction of the size
and eccentricity of the orbit, which leads to a downward spiralling motion of
the satellite towards the Earth. Therefore, the change in the total energy of the
satellite is a good measure of the effect of the perturbation on the orbit and the
numerical accuracy, especially since the ARAVA preserves the total two-body
energy up to round-off errors in the absence of any perturbations.

We have compared the AVA and ARAVA to an Adams–Bashforth–Moulton
(ABM) algorithm with an absolute tolerance of 10−10 and a relative tolerance
of 10−8, which serves as a benchmark. Numerous numerical experiments with
different numbers of harmonics in the geopotential (up to 36) indicate that both
the AVA and ARAVA demonstrate the correct behaviour, that is the energy
decreases steadily with approximately the right amount. There is however some
artificial dissipation due to the fact that the inclusion of non-conservative forces
in the AVA and ARAVA does not respect the differential-geometric structure of
the dynamical system, in other words the algorithms are not variational anymore
for non-conservative forces. In Figure 4.2 we have drawn the relative energy
errors for the AVA and ARAVA (h = 1 min), and the classical Runge–Kutta
method (h = 2 min) for a 12× 12 geopotential. It is clear that the standard
Runge–Kutta method suffers from the same problems with regards to the energy
behaviour, as already noted by Marsden and West [108] for a different dynamical
system. For computations over longer periods of time a variational integrator
might actually be preferred, although that generally comes at the price of being
implicit.

Important to note is that a quarter of all vector field evaluations are due
to the coordinate-dependent acceleration (geopotential) for the ARAVA, which
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Figure 4.2: Relative energy errors for the second-order ARAVA (red) and AVA (blue)
with h = 60 s and the fourth-order classical Runge–Kutta method (black) with h = 120 s.

uses only one such an evaluation per time step. Higher order terms in the
geopotential thus affect only one-quarter of all the vector field evaluations for
the ARAVA, whereas they affect all vector field evaluations of most standard
integrators, such as those of the Runge–Kutta family and multi-step methods.
Hence, the inclusion of higher order terms in the geopotential increases the
overhead significantly more for algorithms different from the ARAVA. As an
example, the ARAVA is already faster than the standard Runge–Kutta algorithm
for a relatively modest 2× 2 geopotential at the same accuracy. Interestingly, for
a generic geopotential the ARAVA outperforms the AVA with exactly the same
step size on average by 5–10% measured in CPU time.
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Spacecraft Re-Entry

We shall now consider the two-dimensional re-entry problem [42, Chap. 2],
that is we neglect any cross-track deviations. Furthermore, we assume the
atmosphere to be stationary during the re-entry phase, which means that the
rotation of the Earth and any winds are ignored: v = u. Recently, Mititelu [125]
obtained analytical solutions for the planar atmospheric re-entry problem under
similar simplifying assumptions. Though the solution obtained can be valuable
in the actual design and quick re-evaluation of the relevant flight parameters,
the solution is highly non-trivial yet limited in its scope. Instead of focussing on
the theoretical framework, we concentrate on the performance of the numerical
integrator, which can easily be adapted to more realistic scenarios, such as
the three-dimensional atmospheric entry problem. A brief description of the
three-dimensional re-entry problem with attitude control can be found in for
instance Stengel [148], pp. 265–270.

For our numerical demonstration we have taken a craft with mass m =
60000 kg flying at Mach 25 at an altitude of 120 km with an initial flight-path
angle of −7◦. Furthermore, we have set FL/FD = 9.5, and β = 0.12 km−1. We
note that the lift-to-drag ratio is in fact rather large, so we can expect several
clearly visible skip regions, where the spacecraft rebounds from the atmos-
phere to decelerate the craft; we might expect numerical difficulties associated
with perturbations that exceed the gravitational attraction by several orders of
magnitude.

We have used the sixth-order ARAVA with a step size h = 0.1 s. The altitude
during re-entry is shown in Figure 4.3, where it is clear that the lift causes
the craft to bounce off the atmosphere several times during the re-entry. The
difference between the solution of the ARAVA and a high-fidelity ABM algorithm
with an absolute error tolerance of 10−14 and a relative error tolerance of 10−12

is plotted in Figure 4.4. During the final (approach) phase of the re-entry, the
error tends to grow as a result of the accumulation of truncation and round-off
errors, which tend to create fluctuations in the perturbation. Since the local
density at an altitude of 20 km is roughly 0.1 kg m−3, these fluctuations are more
easily amplified, whereas they tend to be suppressed during the initial (critical)
phase of the re-entry, where the density of the atmosphere is only a fraction
of that value. Notice, however, that the overall altitude error still remains well
below 1 m for most of the time during the re-entry.
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Figure 4.3: Altitude versus time for the planar atmospheric re-entry problem: several
skip regions are clearly visible, where the lift temporarily dominates the gravitational
attraction.

Black-Hole Binaries

Instead of the standard implementation of the GBS extrapolation method with
its modified midpoint integrator, a generalized midpoint based on the leapfrog
algorithm, specifically designed for second-order differential equations has pre-
viously been suggested for the numerical study of the motion of stars around
black holes [120, 121]. Here we discuss the application of the ARAVA in conjunc-
tion with the GBS extrapolation scheme with rational polynomial interpolation
and Richardson extrapolation, and demonstrate that it is a highly competitive
alternative.

Let x be the relative separation vector between the (primary) black hole with
mass m1 and a satellite with mass m2 in its vicinity, v its derivative with respect
to time, and s the spin vector of the primary. The general-relativistic force per
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Figure 4.4: An estimation of the absolute error in the numerical computation of the
altitude with a sixth-order ARAVA for h = 0.1 s.

unit mass in the parameterized post-Newtonian formalism is given by [87, 146]

a = a0 + c−2a2 + c−3a3 + c−4a4 + c−5a5, (4.25)

where a0 is the Newtonian contribution, and c denotes the speed of light in
vacuum. The post-Newtonian acceleration a2 = a2 (x, v) is the main (PPN1)
contribution, a3 = a3 (x, v, s) describes the spin–orbit interaction [11], and
a4 = a4 (x, v, s) can be decomposed into a (PPN2) term that depends only on
x and v, and a quadrupole term that depends on all three variables, as it is
induced by the rotation of the black hole [164]. Finally, a5 = a5 (x, v) is the
radiative contribution, which is generally referred to as the PPN2.5 term. All in
all, the equations of motion can be written concisely as

ẋ = v,
v̇ = a (x, v, s) ,
ṡ = b (x, v, s) .

(4.26)

The first-order differential equation for the spin, ṡ = b (x, v, s), accounts for the
rigid rotation of the black hole. Herein the spin of the satellite is assumed to be
negligible, that is m1 � m2.
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In order to be able to use the ARAVA as discretization scheme within the
GBS extrapolation method, we have to rewrite the equations of motion for the
black-hole binary system (4.26) as{

ẋ = v,
v̇aug = aaug

(
x, vaug

)
,

(4.27)

where we have introduced the augmented ‘velocity’ vector vaug = (v, s), and
aaug

(
x, vaug

)
=
(
a
(

x, vaug
)

, b
(

x, vaug
))

the augmented vector field. Associated
with the augmented generalized velocity is the augmented auxiliary variable
waug = (w, σ), where σ is the auxiliary spin. It is clear from equations (4.27)
that the coordinate update map for the ARAVA remains unaltered, whereas the
velocity update map now includes both the velocity and the spin.
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Figure 4.5: Accuracy of the GBS extrapolation algorithm with the ARAVA (red) and
generalized midpoint method (blue) for the black-hole binary system.

We have compared the performance of the generalized midpoint method
of Mikkola and Merritt [120, 121] with the ARAVA in Figures 4.5 and 4.6. In
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Figure 4.5 the relative error in the total energy is displayed as a function of
time. For the numerical computations we have taken m1 = 0.96, m2 = 0.04,
x(0) = (0.50, 0.25, 1.00), v(0) = (0.20,−1.00, 0.45) and s(0) = (0.0, 0.0, 0.6). The
accuracy for the ARAVA is comparable to that of the generalized midpoint
method. Figure 4.6 shows the relative CPU times of the ARAVA with respect
to the generalized midpoint method as a function of the inverse perturbation
parameter, c2.

For relatively strong perturbations (ε ≥ 10−5) the GBS extrapolation method
combined with the ARAVA is approximately twice as fast as the same extrapola-
tion algorithm with the generalized midpoint method. Moderate perturbations
(ε ≈ 10−6) tip the balance in favour of the GBS extrapolation method with the
generalized midpoint method instead of the ARAVA. Previous studies [120]
suggest that for weak perturbations (ε ≤ 10−6), the implicit midpoint method
has a slight computational advantage over the generalized midpoint method
and thus the ARAVA, as the implicit midpoint method requires approximately
three or less iterations, and thus three or less vector field evaluations per step to
solve the augmented velocity update, whereas the ARAVA always requires one
evaluation per step for the unperturbed (Newtonian) augmented acceleration,
and three evaluations per step for the perturbed (post-Newtonian) augmented
acceleration.

4.3 Numerics of Attitude Dynamics

To close, we now take a look at the attitude dynamics of artificial satellites and
spacecraft in low-altitude orbits around the Earth. Most geometrically oriented
studies have mainly focussed on the numerical integration of Euler’s equations
for the torque-free rigid body [8, 100, 114, 142], as it is a prototype of a Lie–
Poisson system. Numerical Lie–Poisson integration dates back twenty years
to the works of Ge and Marsden [55], and Channell and Scovel [32]. Standard
approaches to the numerical integration of the Hamiltonian equations for torque-
free rigid bodies include constraint algorithms, such as RATTLE and SHAKE,
the discrete Moser–Veselov algorithm, and splitting methods; an overview can be
found in the book by Hairer et al. [66]. Some work has been done on rigid bodies
with control and internal torques as well [44, 73, 141]. Touma and Wisdom [155]
studied the motion of mutually interacting rigid bodies in the Serret–Andoyer
formalism [20, 63] with their eyes on planetary systems. Similarly, Lee et al. [93]
looked at the full-body problem and numerical Lie–Poisson integration. The
(time-transformed) implicit midpoint integrator was used by Palmer et al. [136]
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Figure 4.6: Average computation times of the ARAVA relative to generalized midpoint
for different values of c2, the inverse of the perturbation parameter.

in a similar context, although their approach relied fully on quaternions, and
they did not look at attitude estimation.

We shall come to the numerical aspects of the implicit midpoint method
relevant to the problem at hand in Sections 4.3.1 to 4.3.3. Aspects of attitude
estimation with the implicit midpoint method are to be found in Section 4.4.

4.3.1 The Implicit Midpoint Method

For the numerical integration of the autonomous differential equations ẋ = f (x)
the implicit midpoint method with step size h can be used:

xk+1 = xk + h f
(

xk+1 + xk
2

)
, (4.28)
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which is equivalent to

x̄ = xk +
h
2

f (x̄) , (4.29)

where x̄ is the mean value: 2x̄ = xk + xk+1. For non-linear vector functions f
one can seldom solve x̄ explicitly from equation (4.29), in which cases one has
to take refuge to numerical methods, such as for example iterative schemes. It is
a variational integrator, and it can in fact be computed with VarInt using the
CreateVarInt module:

1 > r e s t a r t ; #c l e a r memory
2 > with ( Va r I n t ) : #load Va r I n t
3 > etc :=1 ,L , F , p , q , h : #sho r thand
4 > Crea t eVa r I n t ( − 1 . . 1 , [ − 1 , 0 ] , [ 0 , 2 ] , e t c ) ; #a l t e r n a t i v e 1
5 > Crea t eVa r I n t ( − 1 . . 1 , [ 0 , 1 ] , [ 2 , 0 ] , e t c ) ; #a l t e r n a t i v e 2 . �

The implicit midpoint method is an almost Lie–Poisson integrator, as it
conserves the Lie–Poisson structure up to second order in the step size h [8]. Lie–
Poisson integrators can be constructed for any Hamiltonian H : P → R that can
be split into several components, H (η) = ∑K

k=1 Hk(ηk) with K = dim P . The
individual vector fields XHk

= J(η)∇Hk(ηk) can be integrated separately. Any
symplectic integrator with the discrete flow Φ (h) becomes an explicit first-order
Lie–Poisson integrator with respect to the step size h for the composition of the
discrete flows of the individual components Φ1(h) ◦ . . . ◦ΦK(h). A reversible
second-order Lie–Poisson integrator is given by the symmetric composition
Φ1(h/2) ◦ . . . ◦ΦK(h) ◦ . . . ◦Φ1(h/2), as shown by McLachlan [114] and Reich
[142] independently. For Euler’s equations (3.41) we have already seen that
Hk = 1

2 L2
k/Ik, so that Lk is constant for each k:

i = 1 : L̇1 = 0, L̇2 = L1L3/I1, L̇3 = −L1L2/I1,
i = 2 : L̇1 = −L2L3/I2, L̇2 = 0, L̇3 = L1L2/I2,
i = 3 : L̇1 = L2L3/I3, L̇2 = −L1L3/I3, L̇3 = 0,

where J(L) is as in equation (3.42). Similar equations hold for each of the
principal axes (3.34), where now the Hamiltonian function of the ith principal
axis is H

(i)
k = 1

2

(
e(i)

k

)2
for i = 1, 2, 3, and the structure matrix is J(−ω).

For the Euler–Poinsot problem the angular velocity is constrained to the
intersection of the kinetic-energy surface and the angular-momentum surface. In
angular momentum space these constitute an ellipsoid and a sphere respectively,
whereas in angular velocity space they are both ellipsoids. In Figure 4.7 we have
drawn the exact solution in terms of Jacobi’s elliptic functions (see Section 3.3.2)
for I = diag (2, 1, 2

3 ) kg m2 and ω(0) = (0.4535, 0, 0.891) rad s−1 in black. The
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elliptic functions have been computed to quad precision with the arithmetic-
geometric mean method, described in Abramowitz and Stegun [2], p. 577. From
the plot it is clear that the angular velocity stays on the intersection of the kinetic
energy surface and the angular momentum surface, which proves the validity
and accuracy of the method. The kinetic energy and the square of the angular
momentum are conserved exactly by construction. We have double-checked
these results with a 64th-order numerical Taylor series comparison with the
aid of the computer algebra system Maple and the freely available TAYLOR
package [80] with extended precision; all results are in agreement to within
machine (double) precision.

The results for the second-order implicit midpoint method (4.36) with step
size h = 0.1 s are shown in Figure 4.7 as well. The implicit midpoint method
conserves exactly the kinetic energy and angular momentum, and therefore
reproduces the exact trajectory. Furthermore, the orthogonality of the matrix
(3.33) is preserved throughout.
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Figure 4.7: Exact and numerical solutions to equations (3.30) with I1 = 2, I2 = 1,
I3 = 2

3 kg m2 and ω(0) = (0.4535, 0, 0.891) rad s−1. Both the analytical and numerical
trajectory in angular velocity space (black) remain on the intersection of the kinetic energy
surface and the angular momentum surface. The projections of the trajectories onto the
(ω1, ω2)-plane (grey) are also displayed. The units of all axes are radians per second.

The phase error of the implicit midpoint method along the solution can be
corrected for, as argued by Palmer et al. [136]. In the absence of external torques
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the true time step τ is related to the integrator time step h by

τ =
3

∏
i=1

ω̄i
ωi

h. (4.30)

Notice that the product is ill-defined whenever at least one component of
the angular velocity becomes smaller than the computational precision. This
problem is partially balanced by the fact that ω̄ is roughly equal to ω for
small enough step sizes. One generally expects these corrections to be minimal.
Moreover, if only one of the factors in the triple product changes its sign, then the
time increment does so too, which could temporarily lead to a slight backward
motion in time.

We have plotted the time scaling factor χ ≡ ∏3
i=1 ω̄i/ωi as a function of

the iteration number in the integration in Figure 4.8. We have used the same
initial conditions as before, and an integrator step size of h = 0.5 s. The graph
is generic in the sense that for all initial values the overall shape of the curve
remains similar, although the positions and heights of the peaks may vary. The
dashed line represents the actual average over all values of χ, whereas the dotted
line is the mean for the restricted values 0 ≤ χ ≤ 2. As is clear from the graph,
χ remains close to its mean of unity but ‘diverges’ at multiple instances in both
the positive and negative direction. This leads to precipitous shifts forwards
and backwards in time. The time transformation (4.30) is therefore impractical
for our purposes, and we discard it henceforth.

4.3.2 Higher-Order Methods

Instead of a mere second-order implicit midpoint method, where xk 7→ xk+1 =
ΦIM

h (xk) according to equation (4.28), we often require a higher-order integrator.
Since the implicit midpoint method is a symplectic and time-reversible algorithm,
higher-order methods can be constructed rather easily by the concatenation
of several implicit midpoint methods with different time steps, as we have
already seen before. In fact, the composition of several implicit midpoint
methods yields the so-called diagonally implicit Runge–Kutta methods, for
which aij = 0 for i < j, as in equation (4.31) below. Any symplectic diagonally
implicit Runge–Kutta method with bi 6= 0 is equivalent to the composition
ΦIM

bsh ◦ . . . ◦ΦIM
b2h ◦ΦIM

b1h [66, p. 148]. This composition is symmetric as well.
Alternatively, higher-order Runge–Kutta integrators that conserve quadratic

invariants may be used. Here there are two options: either one can use the
Gauss–Legendre methods, which are all implicit and of order 2s, so that one
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Figure 4.8: Evolution of the time scaling factor in the time-transformed implicit midpoint
scheme. On the horizontal axes we have taken the integration step number, which is
related to the time by equation (4.30). The dashed line is the mean value for all calculated
values of the time scaling factor. The dotted line represents the average value of the time
scaling function, where ‘divergent’ values larger than two and smaller than zero have
been discarded.

obviously needs s > 1, or one can construct higher-order methods by exploiting
the W-transformation [66, p. 235].

The implicit midpoint rule is a second-order case of the more general implicit
s-stage Runge–Kutta methods:

ki = f

(
tk + cih, xk + h

s

∑
j=1

aijkj

)
,

xk+1 = xk + h
s

∑
i=1

biki.

(4.31)
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For the implicit midpoint rule a11 = c1 = 1/2 and b1 = 1. It is well known that
Runge–Kutta methods conserve quadratic invariants if these are symplectic, in
other words if their coefficients satisfy biaij + bjaji = bibj for i, j = 1, . . . , s [66,
p. 192].

The coefficients of s-stage Runge–Kutta methods are often written conve-
niently in Butcher tables:

c1 a11 . . . a1s
. . . . . . . . .
cs as1 . . . ass

b1 . . . bs

.

The implicit midpoint method is a one-stage Gauss–Legendre method of second
order. The Hammer–Hollingsworth method is a two-stage fourth-order Runge–
Kutta Gauss–Legendre algorithm, and its Butcher table reads:

1
2 − 1

2
√

3
1
4

1
4 − 1

2
√

3
1
2 + 1

2
√

3
1
4 + 1

2
√

3
1
4

1
2

1
2

. (4.32)

The sixth-order Runge–Kutta Gauss–Legendre method is characterized by

1
2 −

√
3

2
√

5
5

36
2
9 − 1√

15
5

36 − 1
6
√

5
1
2

5
36 +

√
15

24
2
9

5
36 −

√
15

24
1
2 +

√
3

2
√

5
5

36 + 1
6
√

5
2
9 + 1√

15
5

36
5

18
4
9

5
18

.
(4.33)

For an overview of the coefficients for the Gauss–Legendre methods up to tenth
order we refer to the pioneering work of Butcher [26]. All these algorithms
preserve the orthogonality of the attitude matrix M.

4.3.3 Attitude Propagation

Before moving on to the issues related to attitude estimation, we pause to recast
equation (3.46) into a slightly more manageable form:

ω̇ = α(ω) + β
(
e(3)), (4.34)

where the components of the vector functions on the right-hand side are defined
as

αi(ϕ) =
3

∑
j,k=1

εijk Ij ϕj ϕk/Ii,



4.4. NUMERICS OF ATTITUDE ESTIMATION 105

and βi(ϕ) = −3n2αi(ϕ). A one-step propagation with the implicit midpoint
method for the systems (4.34) and (3.48) can now be written as

ω̄ = ωk +
h
2

[
α (ω̄) + β

(
ē(3)
)]

,

ē(2) = e(2)
k −

h
2

ω̄ ∧ ē(2),

ē(3) = e(3)
k −

h
2

[
ω̄ + nē(2)

]
∧ ē(3),

(4.35)

from which we solve the mean values ω̄, ē(2), and ē(3) numerically, and after
which the updated values are found from the expressions ωk+1 = 2ω̄ − ωk,
e(2)

k+1 = 2ē(2) − e(2)
k , and similarly for e(3). The equations for ē(2) and ē(3)

can be solved explicitly once ω̄ is known, for they are linear. The equation
for ω̄, however, cannot be solved analytically. Here one’s only recourse are
numerical techniques. Numerical experiments with equations (4.35) have shown
that fixed-point iterations are to be preferred to methods based on Newton–
Raphson iteration, since the decomposition of the Jacobian matrix requires more
computational effort than direct fixed-point iterations.

Even so, we can rewrite equations (4.35) in such a way that the iterative sol-
utions can be found with less computational operations by scaling the variables
by the factor h/2. We define

ϑ =
h
2

ω, δ =
h
2

e(2), ε =
h
2

e(3),

so that 
ϑ̄ = ϑk +

[
α
(
ϑ̄
)
+ β (ε̄)

]
,

δ̄ = δk − ϑ̄ ∧ δ̄,
ε̄ = εk −

[
ϑ̄ + nδ̄

] ∧ ε̄.
(4.36)

4.4 Numerics of Attitude Estimation

We shall now describe how the attitude of a satellite can be estimated from
observations with an extended Kalman filter [148, 157]. Because the equations
of motion are highly non-linear, a linearized Kalman filter is not appropriate;
several numerical experiments have established that the estimated solution
diverges within seconds after the initialization, so that either one has to restart
the estimator time and again, or one has to look at alternatives, such as the
extended Kalman filter, which lends itself perfectly for parameter-adaptive
filtering as well.
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4.4.1 Extended Kalman Filter

Since we are dealing with a continuous, non-linear dynamical system and
sampled observations, we use a standard, hybrid formulation that reflects
the continuous/discrete duality. The state of the dynamical system and the
covariance are propagated numerically with the implicit midpoint integrator,
whereas their updates are calculated using a discrete-time approach. Let x
denote the state of the n-dimensional dynamical system, which is governed by{

ẋ(t) = f (x(t), t)
x(0) = x0

(4.37)

and relates to the m-dimensional observational data through the observation
equations:

z(t) = h (x(t), t) + n(t).

Here we have assumed that the noise n(t) is additive, which means that it
decouples from the observations themselves. Kalman filters are known to be
optimal estimators for Gaussian noise, whereas for non-Gaussian noise they
are only suboptimal. For a more general setting that includes random input
and control variables we refer to the aforementioned literature and references
therein.

The observation function h determines which variables are experimentally
accessible, and how the output relates to the observations z. The dimension of h
is in principle not related to the dimension of the dynamical system at all.

In extended Kalman filters the error propagation is assumed to be linear.
Hence, in accordance with common nomenclature, let F(t) be the Jacobian
matrix of f (t) and H(t) the linearization of the observation function h(t) with
respect to the state x around some reference solution. The observation matrix
H(t) accounts for the conversion between the state outputs and the observations.
For a generic initial-value problem (4.37), where x ∈ Rn and f is a differentiable
vector field, the linearized equation about any solution, which may be the trivial
solution without loss of generality, is dẋ(t) = F(t)dx(t). The Jacobian matrix is
to be evaluated on the reference solution. The error state-transition matrix can
be calculated by solving the initial-value problem and{

Φ̇(t, t0) = F(t)Φ(t, t0)
Φ(t0, t0) = I

(4.38)

simultaneously. The state-transition matrix is simply the Jacobian matrix for the
transformation x(t0) 7→ x(t), which are related through the flow. In particular,
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Φ(t, t0) propagates the initial differential state dx(t0) to dx(t) = Φ(t, t0)dx(t0).
The set {t ∈ R | Φ(t, t0)} is a one-parameter group of diffeomorphisms of Rn,
as it inherits its properties from the exact, non-linear flow through the process of
linearization. As is clear from the system (4.38), whenever the Jacobian matrix is
independent of time,

Φ(t, t0) = exp [F(t− t0)]. (4.39)

Let Q denote the process noise matrix, and R the measurement residual
matrix. The best estimates of the state and covariance matrix P are calculated
from [148, 157]

x−k = ΦN
h

(
x+

k−1, t
)

P−k = Φk−1P+
k−1ΦT

k−1 + Qk−1

Kk = P−k Hk

[
HkP−k HT

k + Rk

]−1

x+
k = x−k + Kk

[
zk −Hkx−k

]
P+

k = P−k −KkHkP−k ,

(4.40)

where the superscript minus (plus) signs represent the values prior to (after) the
observations, and where we have suppressed the dependencies of all variables
and matrices on time. The first equation propagates the state with a numerical
integrator with step size h from the previous to the current observation time in N
iterations. Convergence of the filter depends on the integrator step size; ideally,
N ≥ 1, so that the step size is smaller than the time between observations. The
second equation advances the covariance matrix with the error state-transition
matrix Φ. The third equation computes the Kalman gain matrix, which is then
used in the fourth and fifth equations to compute the new estimations of the state
vector and covariance matrix. The most time-consuming steps in the estimation
process are the state and covariance predictions with the numerical integrator;
these are the most critical as well, since any error in the propagation affects the
quality of the estimation, and hence the convergence. At each estimation, that is
for all times of the observations, both the error state-transition matrix and the
observation matrix have to be recalculated.

In our case of interest the vector fields do not depend on time explicitly, and
hence neither does the Jacobian matrix. This means that we can approximate
the error state-transition matrix by its truncated Taylor series from equation
(4.39) at each moment in the estimation process. For the Jacobian matrix we
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need the partial derivatives of the vector field f with respect to the state vector
x =

(
ω, e(2), e(3)

)
. The non-zero components of the partial derivatives are

∂ωi
∂ωj

=
3

∑
k,l=1

εikl Ik

(
δ

j
kωl + δ

j
l ωk

)
/Ii,

∂ωi

∂e(3)
j

= −3n2
3

∑
k,l=1

εikl Ik

(
δ

j
ke(3)

l + δ
j
l e

(3)
k

)
/Ii,

∂e(2)
i

∂ωj
=

3

∑
k,l=1

εiklδ
j
ke(2)

l ,

∂e(2)
i

∂e(2)
j

=
3

∑
k,l=1

εiklωkδ
j
l ,

∂e(3)
i

∂ωj
=

3

∑
k,l=1

εiklδ
j
ke(3)

l ,

∂e(3)
i

∂e(2)
j

= n
3

∑
k,l=1

εiklδ
j
ke(3)

l ,

∂e(3)
i

∂e(3)
j

=
3

∑
k,l=1

εikl
[
ωk + ne(2)

k

]
δ

j
l .

(4.41)

The method described above is adequate when observations yield the instan-
taneous orientation of the principal axes with respect to some initial reference
frame. These measurements, which are referred to as absolute measurements
as they are based on the actual position of the spacecraft in orbit, come from
attitude sensors, such as star, Sun or Earth sensors, and magnetometers. If,
for instance, one measures the angular velocity and two of the three princi-
pal axes, then the observation matrix H becomes the identity matrix, which
remains constant throughout the estimation procedure. Relative measurements
with for example gyroscopes can often achieve a higher accuracy, although the
observation matrix becomes more complicated.

Alternatively, we may calculate the state update estimates with the implicit
midpoint method directly, that is, without the error state-transition matrix,
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which is customary in basic differential correction algorithms:
dϑ̄ = dϑk +

[
dα
(
ϑ̄
)
+ dβ (ε̄)

]
dδ̄ = dδk − dϑ̄ ∧ δ̄− ϑ̄ ∧ dδ̄

dε̄ = dεk −
[
dϑ̄ + ndδ̄

] ∧ ε̄− [ϑ̄ + nδ̄
] ∧ dε̄,

(4.42)

where

dαi(ϕ) =
3

∑
j,k=1

εijk Ij
(

ϕkdϕj + ϕjdϕk
)

/Ii, (4.43)

and dβi(ϕ) = −3n2dαi(ϕ). The final values for the differentials are then to be
computed from these mean values as before. These linearized equations (4.42)
can be solved either exactly or by simultaneous iteration with equations (4.36).

We now consider the attitude dynamics with the gravity-gradient torque.
For our computations we have used I = diag (160, 142, 36) kg m2, r = 1.1r⊕,
where r⊕ is the mean Earth radius, and ω(0) = (0.1978, 0, 12, 0.26) rad s−1,
which corresponds to a medium-sized satellite in a low Earth orbit with an
approximate altitude of 640 km. For the initial orientation of the principal axes
we have taken a set of Cartesian unit vectors for simplicity. We have calculated
the solutions with the implicit midpoint method with h = 0.25 s, the TAYLOR
package with quad precision, and Maple’s built-in numerical Taylor series
method (dsolve[taylorseries]) of order 64, of which the latter served as a point of
reference for the accuracy. Interestingly, the TAYLOR integrator fails to preserve
the orthogonality of the attitude matrix M. The implicit midpoint method
preserves orthogonality, as expected, and produces the correct solutions to
within O(h2), although there is the expected systematic error in the phase. These
are translated to a secular and periodic contribution, as visible in Figure 4.9,
where we have drawn the differences at discrete times between the ‘exact’ and
the numerical solution of the implicit midpoint algorithm (with h = 0.01 s) in
the angular velocity space ∆ω on the left, and its projection onto the (∆ω1, ∆ω2)-
plane on the right. The difference ‘spirals’ outwards from the origin to create
a saddle-shaped cloud. It is this outward motion that gives rise to the secular
contribution to the absolute error. The periodic part is due to the fact that the
motion in angular velocity space is quasi-periodic.

Integrations with time steps smaller than one-tenth of a second have not
shown to improve the accuracy significantly, which peaks at approximately
O (10−6). For larger step sizes higher-order versions are recommended, as they
reduce the error substantially. In all computations shown the co-orbiting energy
(3.50) is conserved to within machine precision.
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Figure 4.9: Difference in the angular velocity between the solution obtained from the
64th-order numerical Taylor series method and the implicit midpoint method with step
size h = 0.01 s (left), and its projection onto the (∆ω1, ∆ω2)-plane (right). The differences
are in units of radians per second.

As mentioned, higher-order Runge–Kutta Gauss–Legendre methods can be
used instead. These behave similarly to the higher-order symmetric compositions
of the implicit midpoint method in regard to accuracy. In order to compare
the computational performance of the implicit midpoint compositions and the
Gauss–Legendre methods of orders four and six, we have drawn the relative
CPU time overhead with respect to the second-order implicit midpoint method
for different time steps in Figure 4.10. All computations were carried out on
an Linux laptop with an Intelr Pentiumr M 1.4 GHz processor with 512 MB
RAM. The fourth- and sixth-order compositions of the implicit midpoint method,
and the fourth- and sixth-order Gauss–Legendre methods are denoted by IM-4
and IM-6, and GL-4 and GL-6, respectively. A CPU time overhead p ≥ 0
means that the computation takes approximately p + 1 times longer than the
computation with the second order implicit midpoint method, which has p = 0.
The mean values for the CPU time overhead of the implicit midpoint methods
of orders four and six, and the Gauss–Legendre methods of orders four and
six are 1.52, 1.80, 3.01 and 3.24, respectively. Therefore, the implicit midpoint
method of orders four and six outperform their Gauss–Legendre counterparts
by approximately 10% computation time. Since we have found no differences in
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accuracy, we recommend the use of the implicit midpoint integrator based on
its computational performance.
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Figure 4.10: Normalized CPU time overheads relative to the second-order implicit
midpoint method as a function of the step size.

For the estimation of the attitude we have chosen a second-order implicit
midpoint scheme to be used in the extended Kalman filter. The observational
data are based on a high-accuracy computation with Maple, to which normally
distributed noise has been added to model measurement bias and uncertainties
in the process of observation. The initial conditions for the Maple calculations
have been set to ω(0) = (0.2006,−0.012, 0.025) rad s−1, and, again, unit vectors
for the principal axes. Furthermore, we have used that I = diag (98, 82, 44) kg m2

and r = 1.2r⊕. The variance of the noise for the angular velocity components has
been set to σ2

ω = 0.05 rad2 s−2, which amount to an accuracy of approximately
three degrees per second, and for the principal axes σ2

e = 0.25 m2. The time
between consecutive observations is one second, and we use two intermediate
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integration steps, that is h = 0.5 s. The simulated data consist of the angular
velocity vector, and the orientation of the second and third principal axes with
regards to their initial placement. In Figure 4.11 we have plotted the attitude
estimation errors in degrees, these are the differences between the exact and
estimated values. Here the estimated attitude matrix has been converted to
conventional roll, pitch and yaw angles using an e(3)-e(2)-e(1) rotation sequence.
The graphs show that the attitude estimation errors are bounded to within a
few degrees of their near-zero averages. Even for long simulations the extended
Kalman filter does not diverge. Strictly speaking, it does not converge either—the
covariance matrix does not become zero—, but at least its errors stay bounded;
the standard deviations of these errors lie inside the measurement uncertainties.

These estimation errors can be reduced by increasing the number of obser-
vations. We have found that an improvement of approximately one degree can
be achieved by using observations that are merely 0.1 seconds apart. More
integration steps have not shown to have a profound effect on the performance.

4.4.2 Parameter-Adaptive Extended Kalman Filter

The extended Kalman filter described above is appropriate for the estimation
of the attitude of a low Earth-orbiting satellite. The performance of the filter
depends on the exact knowledge of the mean motion and the principal moments
of inertia. Either one has to determine these separately, or one can estimate these
parameters simultaneously. Actual convergence of these so-called parameter-
adaptive filters depends on many factors: the number of uncertain parameters,
their magnitudes of uncertainty, the functional dependence of the observables
on the uncertain parameters, the quality of output measurements, and the actual
knowledge of system inputs [148, p. 393].

The aforementioned filter can be transformed into a parameter-adaptive filter
by augmenting it with the parameters as follows. The state vector is enlarged by
the p parameters: x̃ = (x, p), so that the equations of motion become

d
dt

x̃ = f̃ (x̃, t) ,

where the (n + p)-dimensional augmented vector field f̃ accounts for the dy-
namics as well as the time evolution of the parameters. For constant parameters,
such as in the case of the mean motion or principal moments of inertia, the
appropriate augmented vector field is f̃ = ( f , 0). If these parameters cannot be
observed directly, then the observation matrix for the augmented system simply
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Figure 4.11: Evolution of the errors in the Euler angles. The dashed lines are the mean
values of the estimation errors, and the dotted lines show the standard deviation of the
estimation errors.
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becomes H̃ =
(

H 0k×p

)
, which is obviously an m× (n + p) matrix, as it maps

the new (n + p)-dimensional state vector x̃ to the observational variables z.
In the case of constant parameters, the Jacobian matrix becomes

F̃(t) =
(

F(t) ∂ f /∂p
0p×n 0p×p

)
,

where F(t) = ∂ f /∂x is the n× n Jacobian matrix of the dynamical system. The
n× p matrix ∂ f /∂p denotes the Jacobian matrix of the dynamical vector field
with respect to the parameters. For p = (I1, I2, I3) we find that the components

∂ fi
∂pj

=
3

∑
k,l=1

εikl
(

ωkωl − 3n2e(3)
k e(3)

l

) (
δ

j
k − Ik/Iiδ

j
i

)
/Ii, (4.44)

if i = 1, 2, 3, and 0 otherwise, for the reduced equations of motion (3.45) and
(3.48) with x =

(
ω, e(2), e(3)

)
.

The error-state transition matrix is (n + p)× (n + p)-dimensional, as it propa-
gates both the original differential state vector and the errors in the parame-
ters. Similarly, the covariance matrix and the process noise matrix become
(n + p)× (n + p)-dimensional, the Kalman gain is an (n + p)×m matrix, and
the measurement residual matrix remains (m×m)-dimensional. The combined
parameter–state estimate is computed as in equations (4.40) but with all but
the observation vector and the measurement residual matrix replaced by their
augmented analogues.

We note that if the parameters are not constants, and hence they satisfy
non-trivial dynamical equations, then obviously the bottom right p× p matrix
is non-zero, and may become time-dependent.

We have examined the performance of the parameter-adaptive estimation
with the implicit midpoint integrator. In our simulations we have estimated
the attitude as before with additional estimation of the principal moments of
inertia. We have taken the previous simulated observations and assumed for the
parameter estimates I = diag (100, 81.5, 42) kg m2.

As one can see from Figure 4.12, the parameter estimation is not accurate: the
parameters have not converged to their actual values. In fact, there is a residual
in the trace of the error covariance matrix, which indicates that at the end of
the simulation the estimates have not converged perfectly. Incidentally, the
accuracy of the attitude matrix is affected marginally by the parallel parameter
estimation; their errors still remain within a few degrees. Neither decreasing the
integration step size, nor increasing the order of the integrator or the number of
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observations improves the quality of the parameter estimation. More accurate
initial estimates for the moments of inertia indeed decrease the errors of the
final estimates, yet they do not yield the desired values. We therefore suspect
that the non-linear dependence of the observables on the principal moments of
inertia is the main contributor to the failure of the parameter estimation, in line
with observations by Crassidis et al. [36].
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Figure 4.12: Errors in the estimation of the principal moments of inertia.





Conclusion and Outlook

As man liberated himself from the bounds of the Earth, he sent forth ever more
sophisticated machines to explore the vast void around him. At the core of such
a spacecraft or artificial satellite lies complex software that controls and guides
it through the heavens on its way to knowledge. In order for such a grand
voyage to succeed it is of the essence that the numerics inside that determines
the position in space and through time as well as the orientation of the craft with
respect to the Earth is accurate, fast, and reliable; without the correct location in
space and time the spacecraft cannot fulfil its mission, and without the correct
orientation it is unable to relay its findings back to the space operations centre.

Numerical algorithms to calculate the orbital and attitude motion of a sat-
ellite that satisfy the requirements mentioned before are geometric numerical
integrators. These geometric numerical algorithms can be considered from a
variational point of view. We have examined these variational integrators in
depth in the treatise at issue in the context of spacecraft dynamics. A quartet of
contributions may be identified.

First, it is a well-established fact that simulations of (non-linear) dynamical
systems, both with non-conservative forces and without, benefit greatly from
the preservation of their geometric structures, especially over long time spans as
compared to the characteristic time scales of the systems at hand. Variational in-
tegrators, and more generally geometric numerical integrators, are ideally suited
for such simulations. The discrete variational formalism is both mathematically
natural and computationally practical, as demonstrated by VarInt, a library
developed for the computer algebra system Maple, with which it is possible
to explore and design variational integrators for Lagrangian/Hamiltonian dy-
namical systems systematically and to arbitrary order. Some of these variational
integrators correspond to well-known classes of geometric numerical algorithms,
such as the symplectic partitioned Runge–Kutta methods, notably the Gauss
collocation and Lobatto IIIA/IIIB methods. Few variational integrators have
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previously been reported that lie outside of the standard classification, although
the discrete variational formalism is certainly not restricted to it. With the aid of
VarInt one can venture beyond the geometric numerical algorithms one usually
encounters. The computed discrete flow maps can be either general, and serve
as templates for generic problems, as demonstrated by numerous examples,
or optimized for a specific problem thanks to the symbolic capabilities of a
computer algebra system. In addition, we have shown that the performance of
these variational integrators depends highly on the particulars of the quadrature
formula used to approximate the action functional.

Secondy, to the attitude dynamics and estimation problem we have applied
the implicit midpoint method, also a variational integrator, in a new way, namely
one that does not require the use of quaternions. In the case of the torque-free
motion, the standard implicit midpoint method reproduces the correct solution
up to a slight error in the phase. In more realistic scenarios, where the gravity-
gradient torque has to be included for satellites in low Earth orbits, the implicit
midpoint method has proven to be in remarkable agreement with the ‘exact’ sol-
ution obtained by a high-order numerical Taylor series method with Maple. We
have argued that higher-order methods formed by the symmetric compositions
of the implicit midpoint method are to be preferred to higher-order Gauss–
Legendre methods, as the accuracy is comparable but the former surmounts
the latter by 10% in computation time. Given the ease of implementation of
the implicit midpoint method of arbitrary order, we believe that the implicit
midpoint integrator is an attractive method for the study of the gravity-gradient
attitude dynamics; its implementation for non-circular orbits is straightforward,
although the expressions become more involved.

The implicit midpoint integrator has also proven to be a good choice for
the estimation of the attitude with an extended Kalman filter. The errors of the
relative rotation angles are bounded to within a few degrees and lie within the
measurement errors. Extended Kalman filters, however, do not provide a solid
framework for the combined estimation of attitude and the principal moments
of inertia for low Earth-orbiting satellites; convergence to the correct values
of the moments of inertia cannot be guaranteed. Our results indicate that the
functional dependence of all (output) variables on the moments of inertia is the
reason for its failure to determine both the attitude and the parameters correctly.

Third, we have proposed a novel numerical integrator, the algorithmically
regularized auxiliary-velocity algorithm, or ARAVA for short, that is both fast
and accurate, either on its own or in combination with the Gragg–Bulirsch–
Stoer extrapolation method whenever higher accuracy is required. Its main
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advantage lies in the fact that is remains explicit, even for velocity-dependent
perturbations, yet it requires only one evaluation of the unperturbed force per
step, which can reduce the computational time considerably. Both in terms
of computational time and accuracy it is on par with conventional algorithms.
Because of its symmetry higher-order integrators can easily be constructed by
the symmetric composition of the basic second-order algorithm. The algorithm
does not require the storage of values from previous iterations because of its
resemblance to the standard leapfrog algorithm, which makes it suitable for
problems in which memory requirements are more stringent. The algorithm is
based on the logarithmic Hamiltonian method, which is exact for the Kepler–
Coulomb problem and regularizes the motion, in contrast to many adaptive
algorithms in the extended phase space for the N-body problem.

Inside the Gragg–Bulirsch–Stoer extrapolation method the algorithmically
regularized auxiliary-velocity algorithm is at least as accurate as standard
discretization methods for second-order differential equations with velocity-
dependent perturbations, such as the implicit and generalized midpoint methods.
At best, the algorithm cuts the computational expense in half compared to the
generalized midpoint method. For relatively strong perturbations the proposed
method is more efficient than the generalized midpoint method, which may be
preferred for weakly perturbed systems, where the regularized auxiliary-velocity
algorithm loses its advantage. We emphasize, however, that the performance of
our algorithm within the Gragg–Bulirsch–Stoer extrapolation scheme depends
on the specifics of the implementation, such as for instance the actual step size
control and whether one uses rational or polynomial interpolation. Neverthe-
less, the algorithmically regularized auxiliary-velocity algorithm seems to be a
promising numerical integrator.

Fourth, an analytical solution to the McIntosh–Cisneros–Zwanziger problem,
an integrable deformation of the Kepler–Coulomb problem, for any orbit type
has been derived. The solution extends and completes the one by Caballero and
Elipe [27], for which we have suggested several potentially interesting space
applications.

Finally, we suggest some prospective research opportunities based on the
contents of this doctoral dissertation. With the development of the library
VarInt the number of variational integrators available is considerable. Extensive
numerical analysis is required to understand each of these families of variational
integrators, and to establish their prime applications together with of course
their limitations.
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The computer algebra aided design of variation integrators with VarInt can
be made to encompass a wider range of problems that exhibit a variational
structure. Possible extensions include (i) Turán–Birkhoff quadrature formu-
las; (ii) quadrature rules that are exact for non-polynomial integrands, which
might have advantages for N-body problems in molecular physics and celestial
mechanics, where the singular terms in the discrete Lagrangian might benefit
from approximations in terms of rational functions instead of polynomials;
(iii) variational force-gradient algorithms [135]; (iv) prolongation-collocation
variational integrators [97]; (v) time-reversible splitting techniques in order to
accommodate the design of variational integrators for dynamical systems with
multiple time scales [78, 95]; (vi) Lie–Poisson and Nambu dynamical systems;
(vii) the asynchronous (and multi-symplectic [23, 126]) formalism(s) for partial
differential equations; and (viii) an interface for the discrete mechanics and
optimal control (dmoc) programme [134], which differs fundamentally from the
standard optimal-control framework, as studied by Chyba et al. [33] in a geomet-
ric setting. We note that Turán–Birkhoff quadrature formulas as discretizations
of the action functional yield derivatives of the force with respect to time, which
are usually deemed unphysical. A possible avenue of investigation, however,
is the creation of hybrid variational/automatic differentiation (vad) algorithms,
where the underlying algorithms are variational, but where the derivatives of
the forces are computed with an automatic differentiation procedure. Thus, the
benefits of variational integrators can be maintained while at the same time the
power of automatic differentiation is utilized. Conservative forces can in fact
be computed from the Lagrangian or Hamiltonian with automatic differentia-
tion too. On the level of numerical software library design, such a technique
could provide a clean and simple user interface, where only the Lagrangian
or Hamiltonian, the initial values, and the integration step size are required to
initiate the numerical computations.

Turning our attention to space applications once more, we can pose the
intriguing question whether there are any higher-order variational integrators
in the extended phase space that are exact for the Kepler–Coulomb problem,
based on for example the Gauss–Lobatto or Clenshaw–Curtis quadrature rules.
Additionally, the enquiry into the existence of exact numerical integrators for
integrable problems in astrodynamics [see e.g. 110], such as for instance the
motion of a particle in the gravitational field of two fixed centres, which may
serve as a basis for the J2 [159–161] (and J3 [162, 163]) dynamics of spacecraft
in Earth orbits, or any non-spherically symmetric primary as a matter of fact,
could be well worth pursuing.
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An efficient geometric attitude–orbit propagator and estimator is of great
practical interest. Geometric (Bayesian) estimation offers some clear advan-
tages [158]. Since the full dynamics of any spacecraft in orbit around the Earth
has both slow (secular and (quasi-)periodic) and fast ((quasi-)periodic) compo-
nents, advanced splitting techniques might have to be developed and employed
to exploit the various time scales of the dynamical system. Many other ap-
plications may be considered as well, such as for instance the development of
geometric numerical integration algorithms for the relative motion of a collection
of spacecraft, which is of some importance to conceived future formation flight
missions.

Ultimately, the differential geometry of dynamical systems offers a vantage
point, from which the field of geometric numerical integration becomes clearer.
With the computer algebra aided design of variational integrators it is hoped
that the field becomes more accessible, in order that many more may come to
enjoy the prolific landscape.
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Quadrature Rules

Here we describe the symmetric quadrature formulas supported by the library
VarInt in detail; more information on the Maple codes is available in Appendix
B. Sections A.1 and A.2 introduce equidistant numerical integration methods,
especially the closed Newton–Cotes quadrature rules, and an adaptation of
Romberg’s method to variational integration. Gaussian quadrature rules can
be found in Section A.3, which includes the Gauss–Legendre, Fejér, Clenshaw–
Curtis, and Gauss–Lobatto formulas. In Section A.4 Chebyshev’s equal-weight
formula is discussed briefly. We conclude with the tanh-sinh, or double expo-
nential, quadrature formula in Section A.5.

A.1 Newton–Cotes Quadrature

The closed Newton–Cotes quadrature formulas approximate definite integrals
by approximating the integrand f : R → R with an interpolating polynomial
evaluated at the node points xk = a + kh, where k = 0, . . . , n, and the step size
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h = (b− a)/(n− 1):

∫ b

a
f (x) dx ≈

∫ b

a

{ s

∑
k=0

f (xk)πk(x)
}

dx

=
s

∑
k=0

f (xk)
∫ b

a
πk(x) dx︸ ︷︷ ︸

wk

.

Here {πk(x)} is a polynomial basis, and wk are known as the weights; these
weights are usually calculated by integration of Lagrange polynomials, although
one is in principle free to select any polynomial basis for the interpolation.

A.2 Romberg Quadrature

Another family of classical integration formulas with equidistant nodes is the
one due to Romberg. Romberg quadrature distinguishes itself from Newton–
Cotes quadrature in that it always uses the same basic two-point approximation,
the composite trapezium rule, yet recursively by inserting nodes at the centres
of all (sub)intervals. The essence of Romberg quadrature is that a Richardson
extrapolation procedure [143] is applied to the composite trapezium rule to
obtain higher-order approximations to the integral under evaluation.

It is important to note that the composite trapezium rule leads to a continuous
approximation of the integrand, yet its derivative with respect to the independent
variable is discontinuous at each node. Hence, the naive implementation of
Romberg quadrature seems impossible to generate variational integrators, as we
require that q ∈ C1([tk, tk+1] , R) for k = 0, . . . , N − 1. Nevertheless, we can still
use a ‘modified’ trapezium rule and Richardson extrapolation in conjunction
with a sufficiently smooth interpolating function, at the cost of losing the
adaptivity of the algorithm. Again, the composite trapezium rule is used as a
basic approximation, though now the interpolating function is not piecewise
linear but rather it is chosen such that both q and q̇ are well-defined at each
node.

A.3 Gauss Quadrature

A class of n-point quadrature rules that integrate up to (2n− 1)st-degree poly-
nomials exactly by evaluating a weighted sum of function values are the Gaus-
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sian ones: ∫ b

a
f (x)ω(x) dx =

n

∑
k=1

wk f (xk) + Rn, (A.1)

where the ‘optimal’ values for the weights wk depend on the placement of the
nodes xk along the interval [a, b]. The integrand is assumed to be sufficiently
smooth, specifically it is a C2n([−1, 1] , R) function. Rn denotes the remainder
for a Gaussian integration formula with n nodes [149, pp. 180–181],

Rn =
f (2n)(ξ)
(2n)!

∫ b

a
ω(x)φ2

n(x) dx,

where a < ξ < b, and φn(x) is the related nth degree orthogonal polynomial.
As usual, ω(x) denotes a positive weight function appearing in the integrand.
In the case of interest for variational integrators the nodes are placed sym-
metrically over a finite interval, for which [−1, 1] is commonly used. For an
integral over an arbitrary but finite interval [a, b] the linear transformation
x 7→ 1

2 (b− a) x + 1
2 (a + b) can be used. An overview of the various quadra-

ture formulas of the Gauss family can be found in Abramowitz and Stegun
[2], Chap. 25. Here we discuss the quadrature rules based on the Legendre,
Chebyshev and Lobatto nodes. The nodes for the Gauss–Radau quadrature
formulas are not distributed symmetrically across the interval of integration, so
that they cannot be used for the design of variational integrators for autonomous
dynamical systems.

A.3.1 Gauss–Legendre Quadrature

In Gauss–Legendre quadrature formulas the weight function ω(x) = 1, which
is known as the Legendre weight function. The nodes xk with k = 1, . . . , n for
the n-point Gauss–Legendre quadrature formulas are the zeros of the Legendre
polynomials Pn(x). The corresponding weights are given by

wk =
2

1− x2
k

1

[P′n(xk)]
2 , (A.2)

where the prime indicates the derivative with respect to the argument. It is
important to note that the zeros of the Legendre polynomials come in pairs, so
that the quadrature rule is symmetric about the origin. Furthermore, the zeros
lie in the interval (−1, 1), that is they do not include the endpoints.

The fact that the endpoints of the integration interval do not appear explicitly
in the quadrature formula means that it is necessary to ‘include’ the endpoints
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by means of extrapolation; the values of the coordinates and their derivatives
are indeed specified at one such a point for initial-value problems. The idea
is to interpolate the coordinates with an (n− 1)st degree polynomial through
the interior points (i = 1, . . . , s− 1), as before, and extrapolate to the endpoints
of the integration interval (i = 0 and i = s). It is then possible to express the
first (i = 1) and last (i = s− 1) of the interior points in terms of the remaining
interior points and the endpoints. In that way, the endpoints can be included in
accordance with the quadrature nodes. Although polynomial extrapolation is
notorious for being very inaccurate outside the interval of the interpolation, we
assume that the time step h is sufficiently small to overcome the issues associated
herewith.

A.3.2 Fejér Quadrature

The formulas due to Fejér [47] are based on Chebyshev polynomials of the
first and second kind; they are the analogues of the classical Gauss–Chebyshev
quadratures rules, which are defined with respect to non-trivial weight functions.
The nodes for the integration rules based on the Chebyshev polynomials of the
first and second kind are

x(1)
k = cos θ

(1)
k , θ

(1)
k =

2k− 1
n

π

2
, (A.3)

and

x(2)
k = cos θ

(2)
k , θ

(2)
k =

k
n + 1

π, (A.4)

respectively. The weights are

w(1)
k =

2
n

1− 2
bn/2c
∑
j=1

cos
(

2jθ(1)
k

)
4j2 − 1

 , (A.5)

and

w(2)
k =

4 sin θ
(2)
k

n + 1

b(n+1)/2c
∑
j=1

sin
(
(2j− 1) θ

(2)
k

)
2j− 1

, (A.6)

where θ
(1)
k and θ

(2)
k are as before.
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Alternatively, the zeros of the nth-degree Chebyshev polynomial of the third
kind Vn(x) can be used,

x(3)
k = cos θ

(3)
k , θ

(3)
k =

2k− 1
2n + 1

π, (A.7)

as well as those of the nth-degree Chebyshev polynomial of the fourth kind
Wn(x),

x(4)
k = cos θ

(4)
k , θ

(4)
k =

2k
2n + 1

π. (A.8)

The corresponding weights are

w(3)
k =

4 sin θ
(3)
k

n + 1
2

b(n+1)/2c
∑
j=1

sin
(
(2j− 1) θ

(3)
k

)
2j− 1

, (A.9)

and

w(4)
k =

4 sin θ
(4)
k

n + 1
2

b(n+1)/2c
∑
j=1

sin
(
(2j− 1) θ

(4)
k

)
2j− 1

, (A.10)

respectively, as shown by Notaris [133].
Related to Fejér quadrature formulas is the one by Clenshaw and Curtis [34],

which is nothing but Fejér’s second rule with the nodes −1 and 1 added. Define

θk =
k− 1
n− 1

π, k = 1, . . . , n.

The Clenshaw–Curtis nodes are then simply xk = cos θk, and the associated
weights are given by

wk =
ck
n

[
1− 2

b(n+1)/2c
∑ ∗
j=1

cos 2jθk
4j2 − 1

]
, (A.11)

where ck = 2− δ0,k mod n, and ∑ ∗ signifies that the last term in the sum should
be halved.
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A.3.3 Gauss–Lobatto Quadrature

Additional Gaussian integration formulas that include both endpoints are the
Gauss–Lobatto ones:

∫ −1

−1
f (x) dx ≈ 2

n (n− 1)
[ f (−1) + f (1)] +

n−1

∑
k=2

wk f (xk). (A.12)

The interior nodes are the zeros of the derivative of the Legendre polynomials,
that is they satisfy P′n−1(x) = 0, and the interior weights can be calculated to be

wk =
2

n (n− 1)
1

[Pn−1(xk)]
2 . (A.13)

A.4 Chebyshev Quadrature

Somewhat related to the quadrature formulas of the Gaussian type is the equal-
weight integration formula by Chebyshev:

∫ −1

−1
f (x) dx ≈ 2

n

n

∑
k=1

f (xk). (A.14)

The nodes are the solutions to the equation Gn(x) = 0, where Gn(x) is the
polynomial part [70] of

Fn(x) = xn exp
[

n
2

∫ 1

−1
ln
(

1− t
x

)
dt
]

. (A.15)

The integral inside the exponential can be calculated easily:

∫ 1

−1
ln
(

1− t
x

)
dt = −2 + (1 + x) ln

(
1 +

1
x

)
+ (1− x) ln

(
1− 1

x

)
.

The zeros of Gn(x) are known to be real only for n ≤ 7 and n = 9. Hence, the
use of Chebyshev quadrature is restricted to these values.

A.5 Takahasi–Mori Quadrature

For the numerical computation of integrals over infinite intervals (−∞, ∞) the
composite trapezium rule is noted for its excellent performance in terms of
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accuracy and efficiency compared to quadrature formulas with the same density
of sampling points [153]. For any analytical function g that vanishes at infinity∫ ∞

−∞
g(x) dx ≈ υ

∞

∑
k=−∞

g (kυ),

where in practice the infinite sum itself converges often quite rapidly. We can
take advantage of the performance of the trapezium rule by applying a variable
transformation x 7→ ϕ(t) to integrals over finite intervals:∫ 1

−1
f (x) dx =

∫ ∞

−∞
f (ϕ(t)) ϕ′(t) dt

≈ υ
∞

∑
k=−∞

f (kυ) ϕ′ (kυ).

The method proposed by Schwartz [145] involves the transformation ϕ(t) =
tanh t, for which the resulting quadrature formula has an asymptotic error of

O
(

exp
[
−c
√

M
])

with υ = π/
√

M [64], where M denotes the number of func-
tion evaluations, and c ∈ R depends on the integrand and the particular variable
transformation. For ϕ(t) = erf t the error is O

(
exp

[
−c 3√M2

])
asymptotically.

More details on these and other variable transformations can be found in the
review article by Mori [127]. In fact, for all functions f ∈ Hp (D), 1 < p ≤ ∞,
the Hardy spaces on the unit disc D = {z ∈ C | |z| < 1}, Andersson [3] has
shown that the bound on the asymptotic error of any quadrature formula is
O
(

M1−1/(2p) exp
[
−c
√

M
])

.
The double exponential quadrature formula dates back to the work by

Takahasi and Mori [154], who improved on the transformation method by
Schwartz. Their integration rule accelerates the convergence of one-dimensional
integrals by introducing a suitable variable transformation that results in the
double exponential decay of the integrand: ϕ(t) = tanh

(
π
2 sinh t

)
. Rather than

looking at functions that belong to the Hardy classes Hp (D) with p > 1, we can
focus on the more modest class of integrable functions over (−1, 1), possibly
with algebraic or logarithmic singularities at the endpoints ±1, and a finite
number of singularities outside the interval of integration. The asymptotic error
of the quadrature formula behaves as O (exp [−cM/ ln M]); the constant c is
related to the location of the singularities of the integrand after the application
of the variable transformation. The optimal value of υ is

υ =
2
M

ln 2dM,
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where d is the distance between the real axis and the nearest singularity of the
integrand after the variable transformation has been applied; the transformed
integrand is thus regular in the strip |=(z)| < d. In case the original function
f (z) with z ∈ C has only a singularity at z = ∞, we easily compute that d = π

2 .
At the optimal step υ the nodes in the interval (−1, 1) tend to cluster near the
boundaries, especially for small M.

The Takahasi–Mori, or tanh-sinh, formula,∫ 1

−1
f (x) dx ≈ υ

π

2

n

∑
k=−n

f
(

tanh
(π

2
sinh kυ

)) cosh kυ

cosh2 (π
2 sinh kυ

) , (A.16)

has been shown to be fast and accurate in high-precision experimental mathemat-
ics [9]; in practice we often choose υ adaptively. Recently, Borwein and Ye [21]
have shown that the Takahasi–Mori quadrature formula converges quadratically
for all integrands f ∈ H2 (D) in the limit of M→ ∞.

All these transformed quadrature formulas based on the trapezium rule have
exponential decay of the asymptotic error, which basically means that halving
the step size roughly doubles the number of correct digits. Note, however,
that the quadrature formulas are not exact for polynomials, in contrast to the
Gaussian quadrature formulas.
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Maple Codes

The package VarInt is a library for Maple with which variational integrators
can be designed and analysed. The code has been split into its three main
components for convenience: VarInt, ExtractAlgorithm and IntegrateSystem. VarInt
has been created with Maple 11, and it is compatible with all modern Maple
releases. An up-to-date version of VarInt, including installation instructions,
documentation, and an interactive Maple help library with examples, can be
obtained from the author or from the Maplesoft Application Centre.

The module VarInt (Code I) consists of the main procedure to compute
variational integrators based on built-in quadrature formulas, and a submodule
named CreateVarInt (lines 103–148), which provides an interface for user-defined
quadrature formulas and interpolation procedures. For separable Lagrangians
L (q, q̇) = T(q̇)−V(q), where T and V are the (quadratic) kinetic and potential
energies, respectively, the module ExtractAlgorithm (Code II) can be used to
obtain both explicit and implicit expressions of variational algorithms from the
discrete Euler–Lagrange equations; the algorithm extraction module works for
both conservative and non-conservative dynamical systems. In addition, it is
possible to analyse the variational integrators numerically for one-dimensional
dynamical systems with IntegrateSystem (Code III).
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Code I: Maple Code for the VarInt module.
1 Va r I n t :=module ( )
2 expo r t ModuleApply , Ex t r a c tA lgo r i t hm , I n t eg r a t eSy s t em , C r e a t eVa r I n t ;
3 op t i on package ;
4 d e s c r i p t i o n " V a r i a t i o n a l I n t e g r a t o r Des ign wi th Maple" ;
5 l o c a l l i n k S o r t , condSolve , computePQ , dEu le rLagrange ,
6 ex t rac tWe ight , e x t r a c tP a r t s , t r apez i umRu l e ;
7
8 l i n k S o r t := proc (L : : l i s t ,M: : l i s t )
9 d e s c r i p t i o n " s o r t a l i s t a l g e b r a i c a l l y i n non−de s c end i ng o r d e r "

10 "and s o r t a l i n k e d l i s t w i th i t s pe rmuta t i on c y c l e " ;
11 l o c a l k ,Map ;
12
13 Map:=map( a t t r i b u t e s , s o r t ( ( [ seq ] )
14 ( s e t a t t r i b u t e ( e v a l f (L [ k ] ) , [ L [ k ] ,M[ k ] ] ) , k =1. . nops (L ) ) , ‘ < ‘ ) ) :
15
16 r e t u r n [ seq ( op (1 , op ( k ,Map) ) , k =1. . nops (Map ) ) ] ,
17 [ seq ( op (2 , op ( k ,Map) ) , k =1. . nops (Map ) ) ] ;
18 end proc :
19
20 condSo lve := proc (Eqn : : equat ion , Var : : name , Val : : po s i n t , Con : : p o s i n t )
21 d e s c r i p t i o n " s o l v e an equa t i on a l g e b r a i c a l l y o r n ume r i c a l l y " ;
22
23 i f Val<=Con then
24 r e t u r n s o l v e (Eqn , Var ) ;
25 e l s e
26 r e t u r n f s o l v e (Eqn , Var , f u l l d i g i t s ) ;
27 end i f :
28 end proc :
29
30 computePQ:= proc ( t L i s t : : l i s t , p : : symbol , q : : symbol , h : : symbol ,
31 I n t e r p : : p r o c edu r e := i n t e r p )
32 d e s c r i p t i o n " e x t r a p o l a t e and s u b s t i t u t e i n t e r v a l b ounda r i e s " ;
33 l o c a l k , n , s , t ,Q, qL i s t ,DQ, DqList , ipQ ;
34
35 n:=nops ( t L i s t ) :
36 ipQ:=t−>subs ( s=t , f a c t o r ( I n t e r p ( t L i s t , [ seq ( q [ k ] , k =1. . n ) ] , s ) ) ) :
37 Q:= subs ({ seq ( q [ k]=q [ k−1] , k =1. . n ) , q [ n+1]=q [ n−1]} ,
38 f a c t o r ( subs ( s o l v e ({ q [0]= ipQ (0 ) , q [ n+1]=ipQ (h )} ,
39 {q [ 1 ] , q [ n ] } ) , ipQ ( t ) ) ) ) :
40 DQ:= f a c t o r ( d i f f (Q, t ) ) :
41 q L i s t :=[ seq ( s i m p l i f y ( subs ( t=t L i s t [ k ] ,Q) ) , k =1. . n ) ] :
42 DqLi s t :=[ seq ( s i m p l i f y ( subs ( t=t L i s t [ k ] ,DQ) ) , k =1. . n ) ] :
43
44 qL i s t , DqL i s t ;
45 end proc :
46
47 dEu l e rLag range := proc ( n : : po s i n t , dS : : anyth ing , dF : : l i s t , p : : symbol , q : : symbol )
48 d e s c r i p t i o n " c a l c u l a t e the d i s c r e t e Eu le r−Lagrange equa t i o n s " ;
49 l o c a l dEL ;
50
51 dEL [ 1 ] := p[0]=− c onv e r t ( d i f f ( dS , q [ 0 ] ) ,D)−dF [ 1 ] :
52 seq ( a s s i g n ( dEL [ k+1] ,0= c onv e r t ( d i f f ( dS , q [ k ] ) ,D))+dF [ k+1] , k =1. . n−2):
53 dEL [ n ] :=p [ n−1]= c onv e r t ( d i f f ( dS , q [ n−1]) ,D)+dF [ n ] :
54
55 r e t u r n [ seq ( expand ( s i m p l i f y ( dEL [ k ] ) ) , k =1. . n ) ] ;
56 end proc :
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57 t r apez i umRu l e := proc ( n : : po s i n t , L : : symbol , p : : symbol , q : : symbol , h : : symbol )
58 d e s c r i p t i o n " approx imate an a c t i o n wi th the t rapez ium r u l e " ;
59 l o c a l k , t L i s t , qL i s t , DqList , dS ;
60
61 t L i s t :=[ seq ( k∗h/(n−1) , k =0. . n−1) ] :
62 qL i s t , DqL i s t :=computePQ( t L i s t , p , q , h ) :
63 dS:= expand ( h /(2∗ ( n−1))∗(L ( q L i s t [ 1 ] , DqL i s t [1 ] )+
64 L( q L i s t [ n ] , DqL i s t [ n ])+
65 2∗( add (L ( q L i s t [ k ] , DqL i s t [ k ] ) , k =2. . n−1 ) ) ) ) ;
66 end proc :
67
68 e x t r a c tWe i gh t := proc ( Expr : : anyth ing , Fun : : symbol , Var : : name)
69 d e s c r i p t i o n " e x t r a c t a we ight from a quad ra tu r e fo rmu la " ;
70 l o c a l Term ;
71
72 Term:= i n d e t s ( Expr , And( sp e c f unc ( anyth ing , Fun ) ,
73 pa t f unc ( i d e n t i c a l ( Var ) , any th i ng ) ) ) :
74
75 i f Term = {} then
76 r e t u r n 0 ;
77 e l i f nops (Term) = 1 then
78 r e t u r n c o e f f ( Expr , Term [ ] ) ;
79 e l s e
80 e r r o r "More than one term i n the quad r a tu r e fo rmu la "
81 "matches the v a r i a b l e " ,
82 Fun ( Var , any th i ng ) ;
83 end i f :
84 end proc :
85
86 e x t r a c t P a r t s := proc ( n : : po s i n t , Expr : : anyth ing , Fun : : symbol , Var : : name )
87 d e s c r i p t i o n " e x t r a c t equa l−t ime p o r t i o n s from a quad ra tu r e fo rmu la " ;
88 l o c a l i , j , Terms ;
89
90 Terms :=[ seq ( [ i n d e t s ( Expr , And( sp e c f unc ( anyth ing , Fun ) ,
91 pa t f unc ( i d e n t i c a l ( Var [ i ] ) , any th i ng ) ) ) [ ] ] ,
92 i =0. . n−1) ] :
93
94 i f Terms = [ ] then
95 r e t u r n 0 ;
96 e l s e
97 r e t u r n [ seq ( expand ( add ( c o e f f ( Expr , op ( j , op ( i , Terms ) ) )∗
98 op ( j , op ( i , Terms ) ) ,
99 j =1. . nops ( op ( i , Terms ) ) ) ) , i =1. . nops ( Terms ) ) ] ;

100 end i f :
101 end proc :
102
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103 Cr e a t eVa r I n t :=module ( )
104 d e s c r i p t i o n " c r e a t e v a r i a t i o n a l i n t e g r a t o r s based on use r−d e f i n e d "
105 "nodes , we i gh t s and the i n t e r p o l a t i o n f u n c t i o n " ;
106 l o c a l a , b , k , n , minL , maxL , nLst , wLst , t L i s t , qL i s t , DqList ,
107 dS , dF , ModuleApply ;
108
109 ModuleApply := proc ( r : : range , n L i s t : : l i s t , wL i s t : : l i s t ,
110 L : : symbol , F : : anyth ing , p : : symbol , q : : symbol , h : : symbol ,
111 i P r o c : : p r o c edu r e := i n t e r p )
112 a:=op (1 , r ) :
113 b:=op (2 , r ) :
114 n:=nops ( n L i s t ) :
115
116 minL:= e v a l f ( min ( n L i s t [ ] ) ) :
117 maxL:= e v a l f (max( n L i s t [ ] ) ) :
118
119 i f minL < a and maxL > b then
120 p r i n t ( " E r r o r [ Va r I n t : C r e a t eVa r I n t ] : node l i s t out o f bounds " ) ;
121 r e t u r n ;
122 e l i f minL < a then
123 p r i n t ( " E r r o r [ Va r I n t : C r e a t eVa r I n t ] : l owe s t node " , minL ,
124 " l i e s be low the s p e c i f i e d l owe r bound , " , a ) ;
125 r e t u r n ;
126 e l i f maxL > b then
127 p r i n t ( " E r r o r [ Va r I n t : C r e a t eVa r I n t ] : h i g h e s t node " , maxL ,
128 " exceed s the s p e c i f i e d upper bound " , b ) ;
129 r e t u r n ;
130 end i f :
131
132 i f not n = nops ( wL i s t ) then
133 p r i n t ( " E r r o r [ Va r I n t : C r e a t eVa r I n t ] : number o f e l ement s i n "
134 " the node l i s t does not match the number o f e l ement s "
135 " i n the we ight l i s t " ) ;
136 r e t u r n ;
137 end i f :
138
139 nLst , wLst := l i n k S o r t ( nL i s t , wL i s t ) :
140 t L i s t :=[ seq ( h /(2∗ ( a−b ) )∗ ( a+b−2∗nLst [ k ])+h/2 , k =1. . n ) ] :
141 qL i s t , DqL i s t :=computePQ( t L i s t , p , q , h , iP r o c ) :
142 dS:=h/2∗ expand ( add ( wLst [ k ]∗ L( q L i s t [ k ] , DqL i s t [ k ] ) , k =1. . n ) ) :
143 dF :=[ seq ( expand ( h/2∗ add ( wLst [ k ]∗F( q L i s t [ k ] , DqL i s t [ k ] ) ∗
144 f a c t o r ( d i f f ( q L i s t [ k ] , q [ l −1 ] ) ) , k =1. . n ) ) , l =1. . n ) ] :
145
146 dEu l e rLag range (n , dS , dF , p , q , h ) ;
147 end proc :
148 end module :
149
150 ModuleApply := proc ( n : : po s i n t , L : : symbol , F : : anyth ing , Quad : : name ,
151 p : : symbol , q : : symbol , h : : symbol )
152 d e s c r i p t i o n "compute a v a r i a t i o n a l i n t e g r a t o r based on "
153 " b u i l t − i n quad r a tu r e r u l e s " ;
154 l o c a l i , j , k , l ,m, s , t , x , y , z , nL i s t , t L i s t , wLis t , qL i s t , DqList ,
155 dS , dF , Method , preMult , cF , cG , tempL , rTab , d e l t a , t h e t a ;
156
157 Method:={NewtonCotes , Romberg , Chebyshev , GaussLegendre ,
158 GaussLobatto , Fe j e r1 , Fe j e r2 , Fe j e r3 , Fe j e r4 ,
159 ClenshawCur t i s , Takahas iMor i } ;
160
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161 i f not Quad i n Method then
162 p r i n t ( " E r r o r [ Va r I n t : Quadrature ] : quad r a tu r e " ,Quad , " i n v a l i d " ) ;
163 p r i n t ( " P l e a s e s e l e c t one o f the f o l l o w i n g : " ) ;
164 p r i n t ( NewtonCotes , " c l o s e d Newton−Cotes quad r a tu r e " ) ;
165 p r i n t ( Romberg , " Romberg quad ra tu r e " ) ;
166 p r i n t ( Chebyshev , " Chebyshev quad r a tu r e " ) ;
167 p r i n t ( GaussLegendre , " Gauss−Legendre quad ra tu r e " ) ;
168 p r i n t ( GaussLobatto , " Gauss−Lobatto quad r a tu r e " ) ;
169 p r i n t ( Fe j e r1 , " F e j e r (1 s t k i nd ) quad ra tu r e " ) ;
170 p r i n t ( Fe j e r2 , " F e j e r (2 nd k ind ) quad r a tu r e " ) ;
171 p r i n t ( Fe j e r3 , " Fe j e r−No t a r i s (3 rd k ind ) quad r a tu r e " ) ;
172 p r i n t ( Fe j e r4 , " Fe j e r−No t a r i s (4 th k ind ) quad r a tu r e " ) ;
173 p r i n t ( C l enshawCur t i s , " Clenshaw−Cu r t i s quad r a tu r e " ) ;
174 p r i n t ( Takahas iMor i , " Takahas i−Mori ( doub l e e x p o n e n t i a l ) quad r a tu r e " ) ;
175 r e t u r n ;
176 end i f :
177
178 i f Quad i n Method and n<2 then
179 p r i n t ( " E r r o r [ Va r I n t : Nodes ] : number o f nodes f o r " ,Quad ,
180 " must be at l e a s t 2" ) ;
181 r e t u r n ;
182 end i f :
183
184 i f Quad=Romberg and not t ype ( l o g (n−1)/ l o g ( 2 ) , nonneg in t ) then
185 p r i n t ( " E r r o r [ Va r I n t : Nodes ] : number o f nodes f o r " ,Quad ,
186 " must be 2 , 3 , 5 , 9 , 17 , 33 , . . . = 1 + 2^N, "
187 " wi th N an i n t e g e r " ) ;
188 r e t u r n ;
189 end i f :
190
191 i f Quad=Takahas iMor i and ( n<3 or t ype (n , even ) ) then
192 p r i n t ( " E r r o r [ Va r I n t : Nodes ] : number o f nodes f o r " ,Quad ,
193 " must be an odd i n t e g e r g r e a t e r than or equa l to 3" ) ;
194 r e t u r n ;
195 end i f :
196
197 i f Quad i n Method minus {NewtonCotes , Romberg} then
198 i f Quad=GaussLegendre then
199 n L i s t :=[ condSo lve ( o r t h opo l y [P ] ( n , t )=0 , t , n , 4 ) ] :
200 wL i s t :=[ seq (2/((1− n L i s t [ k ]^2)∗
201 subs ( s=nL i s t [ k ] , d i f f ( o r t h opo l y [P ] ( n , s ) , s ) )^2) , k =1. . n ) ] :
202 preMult :=1:
203 e l i f Quad=GaussLobatto then
204 n L i s t :=[−1 , condSo lve ( d i f f ( o r t h opo l y [P ] ( n−1, t ) , t )=0 , t , n , 4 ) , 1 ] :
205 wL i s t :=[2/( n∗(n−1)) ,
206 seq (2/( n∗(n−1)∗ o r t h opo l y [P ] ( n−1, n L i s t [ k ] )^2 ) , k =2. . n−1) ,
207 2/( n∗(n− 1 ) ) ] :
208 preMult :=1:
209 e l i f Quad=Fe j e r 1 then
210 t h e t a :=k−>(2∗k−1)∗Pi /(2∗n ) :
211 n L i s t :=[ seq ( cos ( t h e t a ( k ) ) , k =1. . n ) ] :
212 wL i s t :=[ seq (2/n∗(1−2∗add ( cos (2∗ l ∗ t h e t a ( k ) )/ (4∗ l ^2−1) ,
213 l =1. . f l o o r ( n /2 ) ) ) , k =1. . n ) ] :
214 preMult :=1:
215 e l i f Quad=Fe j e r 2 then
216 t h e t a :=k−>k∗Pi /( n+1):
217 n L i s t :=[ seq ( cos ( t h e t a ( k ) ) , k =1. . n ) ] :
218 wL i s t :=[ seq (4∗ s i n ( t h e t a ( k ) ) / ( n+1)∗
219 add ( s i n ( (2∗ l −1)∗ t h e t a ( k ) )/ (2∗ l −1) ,
220 l =1. . f l o o r ( n/2+1/2)) , k =1. . n ) ] :
221 preMult :=1:
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222 e l i f Quad=Fe j e r 3 then
223 t h e t a :=k−>(2∗k−1)∗Pi /(2∗n+1):
224 n L i s t :=[ seq ( cos ( t h e t a ( k ) ) , k =1. . n ) ] :
225 wL i s t :=[ seq (4∗ s i n ( t h e t a ( k ) ) / ( n+1/2)∗
226 add ( s i n ( (2∗ l −1)∗ t h e t a ( k ) )/ (2∗ l −1) ,
227 l =1. . f l o o r ( n/2+1/2)) , k =1. . n ) ] :
228 preMult :=1:
229 e l i f Quad=Fe j e r 4 then
230 t h e t a :=k−>2∗k∗Pi /(2∗n+1):
231 n L i s t :=[ seq ( cos ( t h e t a ( k ) ) , k =1. . n ) ] :
232 wL i s t :=[ seq (4∗ s i n ( t h e t a ( k ) ) / ( n+1/2)∗
233 add ( s i n ( (2∗ l −1)∗ t h e t a ( k ) )/ (2∗ l −1) ,
234 l =1. . f l o o r ( n/2+1/2)) , k =1. . n ) ] :
235 preMult :=1:
236 e l i f Quad=C l en shawCur t i s then
237 d e l t a :=( i , j )−> t a b l e ( symmetr ic , i d e n t i t y ) [ i , j ] :
238 t h e t a :=k−>k∗Pi /(n−1):
239 n L i s t :=[ seq ( cos ( t h e t a ( k ) ) , k =0. . n−1) ] :
240 wL i s t :=[ seq ((2− d e l t a ( 0 , ‘mod ‘ ( k , n−1)))∗
241 (1−2∗(add ( cos (2∗ l ∗ t h e t a ( k ) )∗
242 (1−1/2∗ d e l t a ( l , f l o o r ( (1/2)∗ n−1/2)))/(4∗ l ^2−1) ,
243 l =1. . f l o o r ( n /2 −1/2))))/(n−1) , k =0. . n−1) ] :
244 preMult :=1:
245 e l i f Quad=Chebyshev then
246 cF :=( l , z)−>c onv e r t ( s e r i e s ( exp ( l /2∗(−2+ l n (1−z )∗(1−1/ z)+
247 l n (1+z )∗(1+1/ z ) ) ) , z=0, l +2) , polynom ) :
248 cG:=(m, x)−> f a c t o r ( subs ( y=1/x , x^m∗cF (m, y ) ) ) :
249 n L i s t :=[ condSo lve ( cG(n , t )=0 , t , n , 3 ) ] :
250 wL i s t :=[ seq (1/n , k =1. . n ) ] :
251 preMult :=1:
252 e l i f Quad=Takahas iMor i then
253 m:=n/2−1/2:
254 l := e v a l f (2∗ l n ( Pi ∗n )/n ) :
255 n L i s t :=[ seq ( e v a l f ( tanh ( Pi /2∗ s i n h ( k∗ l ) ) ) , k=−m. . m) ] :
256 wL i s t :=[ seq ( e v a l f ( Pi /2∗ cosh ( k∗ l )/ cosh ( Pi /2∗ s i n h ( k∗ l ) )^2) , k=−m. .m) ] :
257 preMult := l :
258 end i f :
259
260 nL i s t , wL i s t := l i n k S o r t ( nL i s t , wL i s t ) :
261 t L i s t :=[ seq ( h/2∗ n L i s t [ k]+h/2 , k =1. . n ) ] :
262 qL i s t , DqL i s t :=computePQ( t L i s t , p , q , h ) :
263 dS:=h/2∗ expand ( add ( wL i s t [ k ]∗ preMult ∗L( q L i s t [ k ] , DqL i s t [ k ] ) , k =1. . n ) ) :
264 dF :=[ seq ( expand ( h/2∗ add ( wL i s t [ k ]∗ preMult ∗F( q L i s t [ k ] , DqL i s t [ k ] ) ∗
265 f a c t o r ( d i f f ( q L i s t [ k ] , q [ l −1 ] ) ) , k =1. . n ) ) , l =1. . n ) ] :
266 e l i f Quad=NewtonCotes then
267 t L i s t :=[ seq ( k∗h/(n−1) , k =0. . n−1) ] :
268 qL i s t , DqL i s t :=computePQ( t L i s t , p , q , h ) :
269 dS:= expand ( i n t ( i n t e r p ( t L i s t ,
270 [ seq ( tempL ( q L i s t [ k ] , DqL i s t [ k ] ) , k =1. . n ) ] , t ) ,
271 t =0. . h ) ) :
272 wL i s t :=[ seq ( e x t r a c tWe i gh t (dS , tempL , q [ k ] ) , k =0. . n−1) ] :
273 dS:= expand ( e v a l ( dS , tempL=L ) ) :
274 dF :=[ seq ( expand ( wL i s t [ k ]∗F( q L i s t [ k ] , DqL i s t [ k ] ) ) , k =1. . n ) ] :
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275 e l i f Quad=Romberg then
276 t L i s t :=[ seq ( k∗h/(n−1) , k =0. . n−1) ] :
277 qL i s t , DqL i s t :=computePQ( t L i s t , p , q , h ) :
278
279 m:= log (n−1)/ l o g ( 2 ) :
280
281 f o r i from 0 to m do
282 rTab [ 0 , i ] := subs ({ seq ( q [ k]=q [ k∗2^(m− i ) ] , k=1..2^ i )} ,
283 t r apez i umRu l e (1+2^ i , tempL , p , q , h ) ) :
284 end do :
285
286 f o r j to m do
287 f o r i from j to m do
288 rTab [ j , i ] :=(4^ j ∗ rTab [ j −1, i ]− rTab [ j −1, i −1])/(4^ j −1):
289 end do :
290 end do :
291
292 dS:= expand ( e v a l ( rTab [m,m] , tempL=L ) ) :
293 dF:= e v a l ( e x t r a c t P a r t s (n , rTab [m,m] , tempL , q ) , tempL=F ) :
294 end i f :
295
296 r e t u r n dEu l e rLag range (n , dS , dF , p , q , h ) ;
297
298 end proc :
299 end module :

Code II: Maple Code for the ExtractAlgorithm module.
1 Ex t r a c tA l go r i t hm :=module ( )
2 d e s c r i p t i o n " e x t r a c t the one−s t e p map from the d i s c r e t e "
3 " Eu le r−Lagrange equa t i o n s f o r s e p a r a b l e Lag r ang i an s " ;
4 l o c a l i , k , n , dSum , extA lg , mCurry , e x t r a c tVa r , plugEqn , recSub , ModuleApply ;
5
6 mCurry := proc ( p )
7 d e s c r i p t i o n " mod i f i e d c u r r y p rocedu r e " ;
8
9 subs ( [ ’_p’=p , ’_pX’=_rest ] ,()−>_p(_pX, a r g s ) ) ;

10 end proc :
11
12 e x t r a c tVa r := proc (Eqn : : equat ion , Var : : name , VFun : : symbol , FFun : : any th i ng )
13 d e s c r i p t i o n " e x t r a c t v a r i a b l e from ( i m p l i c i t ) equa t i on " ;
14 l o c a l lhsVFun , lhsFFun , l h sCo e f f , tmpEqn ;
15
16 tmpEqn:= expand ( i s o l a t e (Eqn , Var ) ) :
17 lhsVFun := s e l e c t ( has , l h s ( tmpEqn ) , VFun ) :
18 i f lhsVFun=NULL then
19 lhsVFun :=0:
20 end i f :
21 i f FFun=0 then
22 lhsFFun :=0:
23 e l s e
24 lhsFFun := s e l e c t ( has , l h s ( tmpEqn ) , FFun ) :
25 i f lhsFFun=NULL then
26 lhsFFun :=0:
27 end i f :
28 end i f :
29 l h s C o e f f := f r o n t e nd ( c o e f f , [ l h s ( tmpEqn ) , Var ] ) :
30 r e t u r n expand ( s i m p l i f y ( ( tmpEqn−lhsVFun−lhsFFun )/ l h s C o e f f ) ) ;
31 end proc :
32
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33 plugEqn := proc ( Expr : : equat ion , Eqns )
34 d e s c r i p t i o n " s u b s t i t u t e an equa t i on i n t o the r h s o f an e x p r e s s i o n " ;
35
36 l h s ( Expr)=expand ( s i m p l i f y ( f r o n t e nd ( mCurry ( subs , { Eqns } ) , [ r h s ( Expr ) ] ) ) ) ;
37 end proc :
38
39 recSub := proc ( Expr : : equat ion , Eqns )
40 d e s c r i p t i o n " s u b s t i t u t e a sequence o f e qua t i o n s r e c u r s i v e l y " ;
41 l o c a l n ;
42
43 n:=nops ( Eqns ) ;
44 i f n = 1 then
45 r e t u r n plugEqn ( Expr , Eqns [ n ] ) ;
46 e l s e
47 r e t u r n recSub ( plugEqn ( Expr , Eqns [ n ] ) , Eqns [ 1 . . n−1 ] ) ;
48 end i f :
49 end proc :
50
51 ModuleApply := proc ( dEL : : l i s t , p : : symbol , q : : symbol ,V : : symbol , F : : any th i ng :=0)
52 n:=nops ( dEL ) :
53 ex tA lg [ n ] := expand ( add ( dEL [ k ] , k =2. . n)−dEL [1]+p [ 0 ] ) :
54 ex tA lg [ n−1]:= e x t r a c tVa r ( dEL [ n−1] , q [ n−1] ,V , F ) :
55
56 i f n=3 then
57 ex tA lg [ n−2]:= e x t r a c tVa r ( plugEqn (dEL [ n−2] , e x tA l g [ n−1]) , q [ n−2] ,V , F ) :
58 e l i f n>=4 then
59 dSum:=[ seq ( add ( dEL [ k ] , k =1. . i ) , i =1. . n−2) ] :
60
61 f o r i from n−2 by −1 to 1 do
62 ex tA lg [ i ] := e x t r a c tVa r ( recSub (dSum [ i ] ,
63 [ seq ( e x tA lg [ k ] , k=i +1. . n−1) ] ) , q [ i ] ,V , F ) :
64 end do :
65 end i f :
66
67 f o r i from 2 by 1 to n do
68 ex tA lg [ i ] := recSub ( ex tA lg [ i ] , [ seq ( e x tA lg [ k ] , k =1. . i − 1 ) ] ) :
69 end do :
70
71 [ seq ( e x tA lg [ k ] , k = 1 . . n ) ] ;
72 end proc :
73 end module :
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Code III: Maple Code for the IntegrateSystem module.
1 I n t e g r a t eS y s t em :=module ( )
2 d e s c r i p t i o n " n ume r i c a l l y i n t e g r a t e w i th a v a r i a t i o n a l i n t e g r a t o r " ;
3 l o c a l pL i s t , qL i s t , t L i s t , e L i s t , stepMap , ModuleApply ;
4
5 stepMap := proc ( iPQ : : l i s t , nPQ : : l i s t , dMap : : s e t )
6 l o c a l k , n , tempP , tempQ ;
7
8 n:=nops (dMap)−1:
9 a s s i g n ( f s o l v e ( subs ({ tempP [0]= op (1 , iPQ ) ,

10 tempQ[0]= op (2 , iPQ )} ,
11 subs ({nPQ[1]= tempP ,nPQ[2]=tempQ} ,dMap ) ) ,
12 {tempP [ n ] , seq ( tempQ [ k ] , k =1. . n )} , f u l l d i g i t s ) ) ;
13
14 r e t u r n tempP [ n ] , tempQ [ n ] ;
15 end proc :
16
17 ModuleApply := proc (DEL : : l i s t , namePQ : : l i s t , i n i tPQ : : l i s t ,
18 tSpan : : l i s t , tS t ep : : equat ion , E : : p r o c edu r e )
19 l o c a l k ,N, i n i t E , dEL , dELstep ;
20
21 N:= c e i l ( ( op (2 , tSpan)−op (1 , tSpan ) )/ r h s ( tS tep ) ) :
22 p L i s t := t a b l e ([0=op (1 , i n i tPQ ) ] ) :
23 q L i s t := t a b l e ([0=op (2 , i n i tPQ ) ] ) :
24 i n i t E :=E( op (1 , i n i tPQ ) , op (2 , i n i tPQ ) ) :
25 e L i s t := t a b l e ([0= i n i t E ] ) :
26 t L i s t :=[ seq ( op (1 , tSpan)+k∗ r h s ( tS tep ) , k =0. .N ) ] :
27 dEL:={ seq (DEL [ k ] , k =1. . nops (DEL ) ) } :
28 dELstep := subs ( tStep , dEL ) :
29
30 f o r k to N do
31 p L i s t [ k ] , q L i s t [ k ] := stepMap ( [ p L i s t [ k−1] , q L i s t [ k−1 ] ] , namePQ , dELstep ) :
32 e L i s t [ k ] :=E( p L i s t [ k ] , q L i s t [ k ] ) :
33 end do :
34
35 r e t u r n t L i s t , [ seq ( p L i s t [ k ] , k =0. .N) ] ,
36 [ seq ( q L i s t [ k ] , k =0. .N) ] ,
37 [ seq ( e L i s t [ k ] , k =0. .N ) ] :
38 end proc :
39 end module :
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C
Integrability of the MICZ Problem

The introduction of an additional term that varies with the inverse of the square
of the distance destroys the separability of the Hamilton–Jacobi equation for
the Kepler–Coulomb problem, as we show below. Since for λ = 0 in equation
(3.5) we have the Kepler–Coulomb problem, which is separable in spherical,
parabolic, elliptic and spheroconical coordinates, the MICZ problem can be
separable in these four coordinate systems at most.

The answer to the question whether an autonomous, orthogonal Hamiltonian

H(q, p) = gα(q)p2
α + V(q) (C.1)

admits a separable solution in a particular natural orthogonal coordinate system
is contained in Stäckel’s theorem [35, p. 162]:

Theorem 10 (Stäckel). The Hamilton–Jacobi equation for the Hamiltonian (C.1)
is separable if and only if there is a matrix S(q), the Stäckel matrix, such that the kth
row is a function of qk only, and if there is a vector v, the Stäckel vector, such that the
kth element is only a function of qk. The Stäckel matrix and vector satisfy

gα(q)Sαβ = δ1β, gα(q)vα = V(q). (C.2)

Here g(q) is the diagonal of the metric tensor, or equivalently, each compo-
nent is the square of the individual scale factor. Observe that any additional
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coordinate-dependent terms to the potential do not alter the Stäckel matrix S(q).
Hence, it suffices to check whether there exists a Stäckel vector that, when each
of its elements multiplied by the corresponding metric factor in the associated
canonical momentum term, and added together, gives back the potential.

C.1 Spherical Coordinates

We have already indicated in Section 3.2.4 that the Hamilton–Jacobi equation
for the MICZ problem remains separable in spherical coordinates through
the canonical transformation that relates the MICZ problem with the Kepler–
Coulomb problem. For completeness we prove the separability in spherical
coordinates again, but now with Stäckel’s theorem.

The transition from Cartesian (x, y, z) to spherical coordinates (r, θ, φ) is
achieved by the substitution

x = r sin θ cos φ,
y = r sin θ sin φ,
z = r cos θ,

(C.3)

where the Euclidean distance ρ =
√

x2 + y2 + z2 = r. Here r > 0, 0 ≤ θ ≤ π,
and 0 ≤ φ < 2π. The diagonal of the metric tensor is known to be

g =
(

1,
1
r2 ,

1
r2 sin2 θ

)
, (C.4)

and the potential is

V(r) = − k
r

+
λ2

2r2 .

Nevertheless, consider a potential that depends only on the distance, that is
to say, V = V(r). Hence, the components of the Stäckel vector for θ and φ are
zero. It is then easy to see that v = (V(r), 0, 0) is the desired Stäckel vector,
which concludes the proof of separability of the MICZ problem in spherical
coordinates.

C.2 Parabolic Coordinates

Parabolic coordinates (σ, τ, φ) are related to Cartesian ones through
x = στ cos φ,
y = στ sin φ,
z = 1

2 (σ2 − τ2),
(C.5)
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with ρ = 1
2 (σ2 + τ2), σ ≥ 0, τ ≥ 0 and 0 ≤ φ < 2π. The diagonal of the metric

tensor reads

g =
(

1
σ2 + τ2 ,

1
σ2 + τ2 ,

1
σ2τ2

)
. (C.6)

The MICZ potential becomes in parabolic coordinates

V(σ, τ) = − 2k
σ2 + τ2 +

2λ2

(σ2 + τ2)2 (C.7)

Now suppose that there is a Stäckel vector v = (v1(σ), v2(τ), 0). The potential
and the scale factors are all symmetric in σ and τ, so without loss of generality
v1(σ) = f (σ) and v2(τ) = f (τ) for some yet to be determined function f .
Necessarily,

f (σ) + f (τ)
σ2 + τ2 = − 2k

σ2 + τ2 +
2λ2

(σ2 + τ2)2 . (C.8)

Equivalently,

( f (σ) + f (τ))
(

σ2 + τ2
)

= −2k
(

σ2 + τ2
)

+ 2λ2, (C.9)

from which it follows that

f (σ) = − f (τ)− 2k +
2λ2

σ2 + τ2 , (C.10)

which for λ 6= 0 depends on both σ and τ, and hence contradicts our assumption
that there exists a Stäckel vector. Please observe that for λ = 0, in which case
the equation for the unknown function f is f (σ) = − f (τ)− 2k, the constant
function f (σ) = f (τ) = −k satisfies the condition (C.10). We conclude that the
MICZ Hamiltonian for non-zero λ is not separable in parabolic coordinates.

Alternatively, observe that in general both g(q) and the potential V(q) are
infinitely differentiable, so that the components of the Stäckel vector must be
infinitely differentiable too. Taking derivatives with respect to the coordinates
q is therefore well-defined. In particular, take the derivative of equation (C.9)
with respect to σ and τ, removing the unknown function f entirely, to arrive at

0 =
16στλ2

(σ2 + τ2)3 . (C.11)

This equality must be satisfied for arbitrary σ and τ, which proves that the MICZ
Hamiltonian is not separable in parabolic coordinates for λ 6= 0, as it contradicts
our assumption that there exists a Stäckel vector for any value of λ.
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C.3 Elliptic Coordinates

Elliptic coordinates (ζ, χ, φ) are defined by
x =

√
(ζ2 − 1)(1− χ2) cos φ,

y =
√

(ζ2 − 1)(1− χ2) sin φ,
z = ζχ + 1,

(C.12)

with ρ = ζ + χ. Here we have that ζ ≥ 1, −1 ≤ χ ≤ 1 and 0 ≤ φ < 2π. Now we
have that

g =
(

ζ2 − 1
ζ2 + χ2 ,

1− χ2

ζ2 + χ2 ,
1

(ζ2 − 1)(1− χ2)

)
. (C.13)

The MICZ potential becomes in parabolic coordinates

V(ζ, χ) = − k
ζ + χ

+
λ2

2(ζ + χ)2 (C.14)

Again, we assume that there is a Stäckel vector v = (v1(ζ), v2(χ), 0). By
antisymmetry in ζ and χ we can write v1(ζ) = f (ζ) and v2(χ) = − f (χ). The
Stäckel condition yields

f (ζ)(ζ2 − 1)− f (χ)(χ2 − 1) = − (ζ − χ)
(
2k(ζ + χ)− λ2)

2(ζ + χ)
(C.15)

In complete analogy with the proof for parabolic coordinates we can remove the
dependency on the unknown function by differentiating with respect to both ζ

and χ once, which leads to the expression

0 =
(ζ − χ)λ2

(ζ + χ)2 . (C.16)

Generally, ζ 6= χ, so that λ must be equal to zero for the equality to hold. Thus,
for λ 6= 0 there does not exist a Stäckel vector in elliptic coordinates.

C.4 Spheroconical Coordinates

Spheroconical coordinates, or conical coordinates, (r, µ, ν) are given by
x = r

b

√
(b2 + µ2)(b2 − ν2),

y = r
ab µν,

z = r
a

√
(a2 − µ2)(a2 + ν2),

(C.17)
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where the parameters a and b satisfy a2 + b2 = 1. Furthermore, µ2 ≤ a2 and
ν2 ≤ b2. The Euclidean distance is obviously ρ = r. The components of g are

gr = 1, (C.18a)

gµ =
(b2 + µ2)(a2 − µ2)

r2(µ2 + ν2)
(C.18b)

gν =
(b2 − ν2)(a2 + ν2)

r2(µ2 + ν2)
, (C.18c)

respectively. It is then obvious that any potential of the form V = V(r) leads to
a separable Hamiltonian in both spherical and spheroconical coordinates.
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Stumpff Functions

Here we summarize some basic facts about the Stumpff functions, which we
have used throughout our discussion. The Stumpff functions are defined for all
z ∈ C and n ∈N by the series [38, 157]:

cn (z) =
∞

∑
k=0

(−1)kzk

(n + 2k)!
. (D.1)

Their derivatives with respect to the argument z can be expressed as

d
dz

cn (z) =
1
2

(n cn+2 (z)− cn+1 (z)) ,

or

2z
d
dz

cn+1 (z) = cn (z)− (n + 1) cn+1 (z).

Stumpff functions can be related to one another through the following recurrence
relations:

z cn+2 (z) =
1
n!
− cn (z),

z ((n + 1) cn+3 (z)− cn+2 (z)) = cn (z)− (n + 1) cn+1 (z).
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Specifically, we have for the first values of n that

c0 (z2) = cos z, (D.2a)

c1 (z2) =
sin z

z
, (D.2b)

c2 (z2) =
1− cos z

z2 , (D.2c)

and

c3 (z2) =
z− sin z

z3 . (D.2d)

The universal, or associated, Stumpff functions are defined as

Un (z; α) = zn cn (αz2). (D.3)

It is now easy to verify that these universal Stumpff functions satisfy the differ-
ential equations

d2

dz2 Un+2 (z; α) =
zn

n!
− α Un+2 (z; α),

d
dz

Un+1 (z; α) = Un (z; α),

and the recurrence relation

Un (z; α) =
zn

n!
− α Un+2 (z; α),

which follows directly from the definitions and the recurrence relations of the
Stumpff functions cn (z). The integral along any rectifiable curve γ ⊂ C, that is,
an arc with finite length, is particularly simple:∫

γ
Un (z; α) dz = Un+1 (z; α) + c, (D.4)

with c ∈ C an integration constant.
Somewhat related to the Stumpff functions is the function

tg1(z2) =
c1(z2)
c0(z2)

=
tan z

z
, (D.5)
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which is well-defined for z → 0. The tg2n+1(z) are related to one another by
tg2n+1(z) = 1/(2n + 1) + z tg2n+3(z) for n ∈N, from which it follows that

tg2n+1(z) =


∞

∑
k=1

(−1)k−122k(22k − 1)B2kzk−1

(2k)!
, n = 0,

∞

∑
k=1

(−1)k+n−122k(22k − 1)B2kzk−n−1

(2k)!
−

n

∑
k=1

zk−n−1

(2k− 1)
, n > 1,

where Bk denote the Bernoulli numbers. The first term in the Laurent series is
the term z−n tg1(z). The second term can be rewritten in terms of the generalized
hypergeometric function pFq

(
a1, . . . , ap; b1, . . . , bq; z

)
[2, Chap. 15]:

n

∑
k=1

zk−n−1

(2k + 1)
= zn− 1

2 at1 (−z)− 2F1
(
1, 1

2 + n; 3
2 + n; z

)
2n + 1

,

where 2F1
(
1, 1

2 ; 3
2 ; z
)

= at1 (−z). Here we have already introduced the first of
the collection of functions

at2n+1(z) ≡
∞

∑
k=0

(−1)k+n zk

2(k + n) + 1

=
1
2
(−1)nΦ

(−z, 1, n + 1
2
)
, (D.6)

for n ∈N and |z| ≤ 1. Here Φ denotes the Lerch transcendent:

Φ (z, s, a) ≡
∞

∑
k=0

zk

(a + k)s ,

which is valid for |z| < 1 and −a 6∈ N. These functions obey the recurrence
relation at2n+1(z) = 1/n− z at2n+3(z). Of particular interest is the first of these
functions, namely

at1(z2) =
arctan z

z
. (D.7)
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