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Abstract

The integration of multiple cores on a single chip leads to the concept of chip
multiprocessor. We have already witnessed multicore processors emerging with
increasing number of cores and complex on-chip interconnect in the past few
years. Network-on-Chip (NoC) architecture was proposed as a promising solution
for future multicore processors with hundreds or even thousands of cores. In this
regard, hardware/software co-design of NoC based multicore architectures are
presented in this dissertation.

Three dimensional (3D) integration has the potential to increase device den-
sity, providing higher efficiency compared with two dimensional (2D) integration.
Moreover, the combination of 3D integration and NoC architecture provides the
benefits of both. Here, 2D/3D multicore processors with integrated and split
core/cache architectures are analyzed based on non uniform cache architecture.
In addition, a 3D multicore design with on-chip dynamic random access memories
is also introduced to alleviate the memory bandwidth wall.

There are many hardware resources in a multicore processor, for example
caches and memory controllers. If the resources, e.g. memory controllers, are at-
tached to all nodes, the utilization of resources can be low, and therefore leading
to a poor system efficiency. One solution is to distribute a limited number of re-
sources. However, in this case, multiple requesters have to share a resource, lead-
ing to possible traffic contention. To alleviate the problem of performance degra-
dation by reduced amount of resources, intelligent placement of resources for a
mesh-based on-chip networks is introduced. Three hardware resources are used as
case studies, including through silicon vias, memory controllers and cores/caches.

Two operating system scheduling algorithms are presented in order to improve
performance and efficiency of multicore systems. We propose a minimal average
access time scheduler to reduce on-chip communication latencies for 2D multicore
processors. A greedy heuristic approximation scheduling algorithm is presented
for resource constrained 3D multicore processors. Current parallel applications
are designed and optimized for conventional bus or crossbar based multicore
architectures. Without the collaboration of software, the processing ability of
NoC based multicore systems can be limited. Three applications are analyzed for
the NoC platform, including H.264, FFT and two hierarchical N-Body methods.
Optimization suggestions are given both on hardware and software.
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Chapter 1

Introduction

The concept of multiprocessor has existed for several decades. Depending
on the memory organization, multiprocessor systems can be categorized in
two groups: shared memory and distributed memory. Distributed memory
systems are more complex to design and implement, therefore Symmetric
shared memory Multiprocessor Systems (SMP) are still used commonly. In
SMP systems, two or more processors are connected to a single shared main
memory and the memory has a symmetric relationship to all processors.
Earlier SMP systems often rely on multiple-processor/multiple-socket, that
is, each processor is mounted to a socket on a motherboard. To improve the
performance of processors, microelectronic engineers developed smaller and
faster transistors and gates, architectural engineers developed novel design
methods, e.g. pipeline, superscalar, out-of-order execution, instruction level
parallelism and so on. However, the constraints of chip clock frequency,
power consumption and heat dissipation have pushed the chip designers
to integrate multiple cores rather than to improve single-core performance.
The integration of multiple cores on a single processor chip leads to the
concept of Chip Multiprocessor (CMP). This is especially important for
embedded devices, since the power consumption and heat dissipation are
the most important factors in designing these devices. We have already
witnessed CMPs emerging with increasing number of cores and complex
on-chip interconnect in the past few years.

Portable embedded devices are very popular in the market of consumer
electronics. These devices include mobile phones, tablets, MP3/MP4 play-
ers, Global Positioning System (GPS) automotive assistants, digital cam-
eras, camcorders and so on. These devices are capable of processing geom-
etry, audio and video data, capturing image and video, and output high-
definition signals. More processing power is needed in these devices. For ex-
ample, the quality of images and videos are growing constantly, from Color
Graphics Adapter (CGA, 320×200) to High Definition (HD, 1280×720),
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Full HD (FHD, 1920×1080) and even Quad FHD (QFHD, 3840×2160).
High-definition videos that have HD or even FHD resolution can have an
uncompressed data-rate of 210 to 932 Mbps, and a compressed data-rate
of 25 to 100 Mbps. Other features are added to these devices as well, for
example, face recognition, machine learning, digital zooming, digital im-
age/video stabilization and other realtime post-processing of multimedia
contents. These tasks are highly parallel, and can benefit from multicore
processing in terms of both performance and efficiency. In recent years,
the processors of smart phones and tablet computers are emerging from
single-core to dual-core or even quad-core. For example, the NVIDIA Tegra
System-on-Chip (SoC) series CMP 1 are designed for embedded devices [78].
The newest Tegra 3 SoC contains five cores, including a quad-core ARM
Cortex A9 and a companion core for low-power processing. The processor
operates at 1.4 GHz for single-core, and 1.3 GHz for quad-core. There’s
also a twelve-core Graphics Processing Unit (GPU) on Tegra 3.

The fast developing Integrated Circuit (IC) manufacturing technology
has provided the industry with billions of transistors on a single chip [50].
At the same time, the number of Intellectual Property (IP) blocks inte-
grated on an Application-Specific IC (ASIC) has been increasing which
leads to an exponential rise in the complexity of their interaction. If
this trend holds, the traditional digital system design methods will en-
counter critical challenges and performance bottlenecks. One of the most
well known and critical problems is the communication bottleneck. Most
bus-based SoCs have the bus based communication architecture, such as
simple or hierarchical buses. In contrast with the increasing chip capac-
ity, bus based systems do not scale well with the system size in terms of
bandwidth, clock frequency and power consumption [28].

In small scale SoCs and CMPs, crossbar based architectures are ad-
vantageous since they have a simple topology and are easy to design and
implement. Besides, the latencies are usually fixed and messages can be
broadcasted. However, the scalability of crossbar is limited in large systems,
therefore it may not be suitable for these systems. of Figure 1.1a and 1.1b
respectively show the AMD Istanbul 6-Core architecture and Intel Nehalem
8-Core architecture.

In these architectures, the components (cores, caches and memory con-
trollers) share the transmission medium, but only one device can drive
the bus at a time. As the amount of components increases, bus based
communication architectures are no longer feasible since the intrinsic par-
asitic resistance and capacitance can be quite high in relatively longer bus
lines. Every additional core connected to the bus will increase this para-

1NVIDIA and Tegra are trademarks or registered trademarks of NVIDIA or its sub-
sidiaries. Other names and brands may be claimed as the property of others.
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sitic capacitance, which in turn increases the propagation delay and power
consumption. With the increases of the bus length and/or the number
of cores, the delay in bit transfer over the bus will reach an intolerable
number of clock cycles [40]. Moreover, energy inefficiency is another criti-
cal limitation in bus based systems because of data are transferred in the
broadcast manner. Therefore, it is claimed that bus based architectures
are only feasible in chips that integrate fewer than five processors [16, 68].
For example, crossbar interconnect is used in Intel Nehalem and Westmere
architectures. Each core has its own data path (around 1,000 wires) to the
central interconnect. This provides high bandwidth for a small number of
components. The latency grows as the number of components grows, e.g.
the latency to the last level cache with six cores is 22% higher than that
in four cores [112]. The crossbar has to be redesigned and it becomes more
complex. Another research show that high-radix crossbars are not feasible
due to the area overhead and the frequency limitations [88].

AMD Istanbul 6-Core

Core 1L1 CacheL2 Cache Core 2L1 CacheL2 Cache Core 3L1 CacheL2 CacheBus interconnection L3 CacheMemoryController Core 4L1 CacheL2 Cache Core 5L1 CacheL2 Cache Core 6L1 CacheL2 Cache
(a)

Intel Nehalem-EX 8-Core

Bus interconnection
Core1/L1/L2Core2/L1/L2
Core3/L1/L2Core4/L1/L2

Core5/L1/L2Core6/L1/L2
Core7/L1/L2Core8/L1/L2

L3 Slice1L3 Slice2
L3 Slice3L3 Slice4

L3 Slice5L3 Slice6
L3 Slice7L3 Slice8

(b)

Figure 1.1: AMD and Intel multicore processors.

Due to the limited scalability of crossbar switches, academics and in-
dustries have moved to new approaches. Sun SPARC T3 applied a hier-
archical crossbar to alleviate the scaling problem. While IBM Power 7,
Intel Sandy Bridge, Nehalem-EX and Westmere-EX rely on a ring inter-
connect. Previous research have focused on the performance and efficiency
of crossbar/ring/mesh interconnects. For example, Cheolmin Park et al.
[81] presented a 1.2 TB/s ring interconnect implementation, providing on-
chip communication for 8 cores, 8-port parallel-access 24 MB cache, and 2
system interfaces. To improve performance and reduce power consumption,
hyper ring, hierarchical ring and hybrid ring have been proposed [20, 95].
Jesus Camacho Villanueva et al. [110] compared the performance differ-
ences between crossbar, ring and mesh interconnects. Results have shown
that in terms of the average execution time of 7 scientific applications, the
mesh network has reduced 19% compared with the ring, and 26% compared
with the crossbar.
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To address the aforementioned problems and to improve the system
performance, Network-on-Chip (NoC, or on-chip network) was proposed
as a promising solution in the field of SoCs and CMPs [28, 54, 16]. It en-
deavours to bring network communication methodologies into on-chip com-
munications. The design approach of NoC is to create a communication
infrastructure beforehand and then map the computational resources to it
via resource dependent interfaces. Processing Elements (PEs) in a NoC are
connected by routers and network links, and data are transferred in the
form of network packets. This modular approach also provides more effi-
cient communication by leveraging computer network principles. Designers
have to work with individual transistors, gates and other small components
several decades ago. Later on, they work with IP blocks, large components
such as Arithmetic Logic Units (ALUs) and hardware accelerators. In the
future, the design of processors can move to a even higher level of system
engineering. For example, the IP blocks are placed in optimal positions in
an on-chip network, accelerating the process of designing a new CMP.

On-chip network is a solution for solving the communication of device
modules for future CMPs and SoCs. However, as the die area grows, tra-
ditional Two Dimensional (2D) chip interconnection will result long global
wire lengths, which can cause high wire delays, high power consumptions
and low system performances [100]. Besides 2D chips usually have large
die size in multiprocessor implementations. AMD announced its twelve-
core x86 processor as two dies on a chip, each 346mm2 [6]. The chip is
manufactured from 2D Multi-Chip Module (MCM) technology. Needless
to say, the size of the die is an obstacle to the progress of IC manufac-
turing. To continue the progress of Moore’s law, Three Dimensional (3D)
integration is introduced. Multiple chip dies are stacked vertically, like
a multi-floor building. The communication between die layers are done
by pillars, like the elevators in a multi-floor building. 3D integration has
the potential to increase device density, providing shorter wire lengths and
faster on-chip communication compared with 2D integration. Chapter 3
studies two aspects of 2D/3D NoC: designing 2D/3D CMP with different
cache architecture, and 3D NoC with on-chip Dynamic Random Access
Memory (DRAM).

It is expected that future multicore processors based on NoC could
contain hundreds of even thousands of cores. There are many hardware
resources in such a chip, for example, cores, caches, routers, links, memory
controllers and so on. Each node can include all the necessary hardware
resources for best performance and availability. However, in terms of ef-
ficiency, this can be uneconomical because some resources can be wasted
due to low utilization. To solve this problem and improve system effi-
ciency, one method is to distribute a limited number of a certain resource.
Notwithstanding, in this case, multiple requesters have to share a resource,
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leading to possible traffic contention and/or performance bottleneck. Intel-
ligent placement of hardware resources in a mesh-based NoC is introduced
in Chapter 4. Optimal or sub-optimal placement of the resources is de-
termined, so that performance degradation caused by reduced amount of
resources is alleviated. For example, the manufacturing cost of the through
silicon via in a 3D chip is expensive. However, the communication be-
tween different layers in a 3D chip relies on these connections. An optimal
placement of reduced number of through silicon vias is critical. Other
hardware resources of different communication patterns, including memory
controllers and cores/caches, are studied in this dissertation as well.

The application support for NoC architecture is very important. The
hardware performance may be limited without optimized software system.
For example, in H.264 data parallel coding, video stream data are dis-
tributed to processors. Multiple video stream data can be processed si-
multaneously in data parallel coding. However, data dependencies among
coding threads can be a major bottleneck of H.264 coding. Hence, by reduc-
ing the number of inter-processor communication or improve the efficiency
of the communication, we can achieve better scalability of data parallel
processing in a NoC. Chapter 5 studies several applications optimized for
NoC architecture, including data parallel H.264 coding, hierarchical N-
Body methods, fast Fourier transform and so on.

The scheduling of processes and threads is more and more important
for multicore systems [36]. It is demonstrated that in an eight-core AMD
Bulldozer system, the performance can improve up to 20 % with proper
scheduling [113]. For even larger scale systems such as hundred-core chips,
it is obvious that scheduling of multi-threaded tasks to achieve better or
even near optimal efficiency is crucial in the future. For example, in terms
of power saving, since dynamic and static power are important factors of
a chip, hardware-software cooperated strategy is crucial. For a NoC-based
CMP, power/clock gating can be applied to unused components to save
both dynamic and static power, dynamic voltage and frequency scaling can
be applied to individual routers and links to save power. Two scheduling
algorithms designed for 2D/3D NoC architectures are proposed in Chapter
6.

1.1 Dissertation Organization

The dissertation is divided into seven chapters. Chapter 2 gives an overview
of the on-chip networks, including two dimensional and three dimensional
networks. The simulation platform used in this dissertation is also intro-
duced, including the hardware configuration and workload. Several exam-
ple outputs are demonstrated. The different designs of cache architecture
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in 2D/3D NoCs are presented in Chapter 3. A 3D NoC design with on-
chip dynamic random access memory is also illustrated in this Chapter.
In Chapter 4, the optimal placement of resources in a mesh network is in-
troduced. To reduce computation complexity, this dissertation proposes a
divide and conquer method. Three cases of resource placements, namely
through silicon via, memory controller and core/cache are used to study the
effectiveness of this method. Chapter 5 presents several studies of appli-
cation implementation for the NoC platform. Advices on platform specific
optimization are given. The scheduling of threads/processes in a NoC en-
vironment is discussed in Chapter 6. Two schedulers, focused for 2D and
3D NoCs are proposed. Chapter 7 concludes the dissertation.

1.2 Dissertation Contributions

The main contributions of this dissertation are:

1. Different cache and memory designs in 2D/3D NoC architectures are
analyzed in [119] and [123]. The split core/cache architecture for 3D
NoCs is proposed and analyzed to reduce latency and improve per-
formance. Experimental results show significantly reduced average
network latency and average link utilization in the split core/cache
design compared with the conventional integrated core/cache design
in 2D NoCs. Furthermore, we introduce a novel 3D NoC architecture
with on-chip dynamic random access memory, in which different lay-
ers are dedicated to different functionalities such as processors, cache
or memory. Memory bandwidth is significantly improved in this ar-
chitecture.

2. The problem of resource placement in a Network-on-Chip architecture
is considered in [120], [122], [127] and [121]. In on-chip network sys-
tem, there are many hardware resources, e.g. cores, caches, routers,
links, memory controllers and so on. It might be not economical
to equip each node with a hardware resource. To improve system
efficiency, one solution is to distribute a limited number of a certain
resource. Multiple requesters have to share a resource, leading to pos-
sible traffic contention and/or performance bottleneck. To alleviate
the problem of performance degradation by reduced resources, intelli-
gent placement of resources is introduced. Three hardware resources
are used as case studies: TSV, memory controller and core/cache.

3. The adaptation of applications in a NoC environment is studied [124,
131]. Without the collaboration of software application, the hard-
ware performance of the NoC could be limited. Several applications
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originally designed for traditional system architectures are analyzed,
including data parallel H.264 coding, hierarchical N-Body methods
and fast Fourier transform. The analysis are based on low-level com-
munication patterns. Optimization suggestions are given for NoC
architectures.

4. The Operating System scheduling is one of the most important de-
sign issues for future CMP systems. Two scheduling algorithms for
2D and 3D NoC architectures are presented [130, 129, 126]. A mini-
mal average accessing time scheduling algorithm for 2D NoC is pro-
posed to reduce on-chip communication latencies and improve per-
formance. The impact of memory access and inter process commu-
nication in scheduling are analyzed. Another scheduling algorithm,
namely greedy heuristic approximation scheduling algorithm, is pro-
posed for 3D NoCs. The limitation of through silicon via is considered
in this algorithm.
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Chapter 2

Background

Over the last forty years, the IC technology has provided the ability of
integrating increasing number of elements in planar form. Driven by the
need of implementing a large number of elements on a single chip, the IC
technology has gone through the process of Programmable Logic Devices
(PLD) and General-Purpose Logic (GPL) devices, Field Programmable
Gate Arrays (FPGA), ASIC, and eventually to System-on-Chip (SoC).

In the early 1960’s, the GPL devices were the first implementation for-
mat used in the semiconductor industry. Soon after that, scientist devel-
oped the first memory devices and then the first microprocessor on chip
in 1971. The successful combination of GPL devices, memories and mi-
croprocessors has formed the heart of digital systems and a revolutionary
milestone known as embedded systems. In late 1970s, the Micro Controller
Unit (MCU) was developed. The idea of a MCU is to integrate a whole
microprocessor system on a single chip. Since then, the hardware imple-
mentation of digital systems has followed the development from PLDs to
FPGAs and ASICs. In 1990s, the introduction of IP blocks and virtual
components brought in a new implementation format called system-on-chip
where a single chip contained mostly reusable IP based logic blocks. As the
scale increased, normal bus-based SoC has encountered several severe chal-
lenges such as deep submicron effect, global synchronization problem, power
and thermal management, verification and productivity gap [28, 54, 16]. In
order to solve these problems, the architecture of Network-on-Chip (NoC)
was proposed in the SoC community at the beginning of the 21st century.

2.1 Network-on-Chip

During the last decade, NoC has been proved to be an promising solution for
the concerns in SoC and embedded systems in terms of data parallelization
[65]. Being able to integrate a large number of components on a single
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chip, NoC serves as an ideal on-chip platform for multicore systems. A
component can be a cache bank, a processor core or even an FPGA block
[28, 54, 16]. Data packets are produced or consumed by a component at
a given time. Idle components can be turned off to save energy. The
parallelization is achieved by the simultaneous operation of the PEs.

Figure 2.1 shows a mesh-based NoC with 16 nodes/tiles (N). Each
PE contains a Network Interface (NI) and a core with private L1 cache
(Core/L1) and shared L2 cache (L2). The Router (R) includes a Routing
Computation Unit (RCU), a Virtual Channel Allocator (VCA), a Switch
Allocator (SA), a Crossbar Switch (CS), several Virtual Channels (VC)
and input buffers. The communication among PEs is achieved via the
transmission of network packets. This modular approach also provides effi-
cient communication and high bandwidth. Moreover, in a NoC, since there
is no bus arbitration needed, more transactions can occur simultaneously
and thus the latency of the packets is reduced and the throughput of the
system is increased. As the links in NoC are based on point-to-point mech-
anism, the communication among cores can be pipelined to further improve
the system performance. Apparently, compared with traditional bus-based
CMP designs, NoCs have advantages since it can be scaled easier. Notice
that when using “network” in this dissertation, we refer to mesh network
by default.

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

N12 (0,3) N13 (1,3) N14 (2,3) N15 (3,3)
N8 (0,2) N9 (1,2) N10 (2,2) N11 (3,2)
N4 (0,1) N5 (1,1) N6 (2,1) N7 (3,1)
N0 (0,0) N1 (1,0) N2 (2,0) N3 (3,0)

NI
Core/

L1

L2

CS

RCU VCA SAVC 1VC n…Port 0
…VC 1VC n…Port n

Port 0
Port n

Figure 2.1: An example of 4x4 NoC with mesh topology.

Intel has demonstrated an 80 tile, 100M transistor, 275mm2 2D NoC
prototype under 65nm processing technology [107]. Recently, an experi-
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mental CMP containing 48 cores on a chip has been manufactured by Intel
using 4×6 network-based 2D mesh topology with 2 cores per tile [51], each
core of this chip is a standard x86 core. The Tilera company has TILE
processor family, which includes TILE64, TILEPro and TILE-Gx members
[102]. The basic architecture of these processor are the same: an array
of 16 to 100 general purpose Reduced Instruction Set Computing (RISC)
processor cores (tiles) in a on-chip mesh interconnect. Each tile consists a
core with related L1 and L2 caches. The memory controllers are integrated
on the chip as well.

Figure 2.2: The Tilera TILE multicore processor with 100 cores [102].

Figure 2.2 shows the architecture diagram of TILE-Gx processor. Each
tile consists of a 64-bit VLIW core with private L1 cache (32KB instruction
and 32KB data) and shared L2 cache (256KB per tile). Four 64-bit DDR3
memory controllers, duplexed to multiple ports, connect the tiles to the
main memory. The L2 caches and the memory are shared by all processors.
The processor operates at 1.0 to 1.5GHz, with typical power consumption of
10 to 55W. The I/O controllers are integrated on chip to save costs of other
peripheral chips. The mesh network provides bandwidth up to 200Tbps.

2.2 Three Dimensional Network-on-Chip

3D NoC is an emerging research topic exploring the architecture of 3D ICs
that stack several NoC dies vertically [85]. It is shown that a 3D architec-
ture can reduce wire length as much as the square root of the number of
stacked layers [56]. Since the wire delay is related to the square of the wire
length (linear if repeaters are used), 3D NoC provides higher performance
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and lower power consumption than its 2D counterpart [56]. Traditional
stacking technologies such as System-in-Package (SiP) and Package-on-
Package (PoP) have been integrated into manufacturing technology. Recent
researches have focused on Through Silicon Via (TSV) [84]. TSV is a viable
solution in building 3D chips by stacking IC layers together using vertical
interconnects. These interconnects are formed through the die to enable
communication among different die layers [101]. Layers with different func-
tions, e.g. processor layer, cache layer, controller layer, Radio Frequency
(RF) layer and analogue layer can be implemented in a 3D NoC. This en-
ables the mapping of components to be optimized to a much larger degree.
The average on-chip wire length is considerably reduced in this architec-
ture. Figure 2.3 shows a 3D NoC model with one layer of processors and
one layer of caches.

C1 C5 C9 C13

C2 C6 C10 C14

C3 C7 C11 C15

C4 C8 C12 C16

P/C

NI

R

S
Tile

N
W ED

U
P1 P5 P9 P13

P2 P6 P10 P14

P3 P7 P11 P15

P4 P8 P12 P16

Heatsink

Figure 2.3: Schematic diagram of a 3D NoC with one processor layer (Px)
and one cache layer (Cx), layers are fully connected by TSVs. The heatsink
is attached on top of the processor layer

2.2.1 3D NoC Router and Routing Algorithm

As is shown in Figure 2.1, routers in mesh-based 2D NoCs have five ports
to connect to five directions, namely, North, East, West, South and Local
PE. For the vertical communication between different layers, routers in 3D
NoC have two more ports and the corresponding virtual channels, buffers
and crossbar to connect the Up and Down inter-layer connections. It is
noteworthy that in a two-layer 3D NoC design, as shown in Figure 2.3,
not all routers require seven ports, e.g. router of P4 has only East, North,
Down and Local PE ports.

Adaptive routing algorithm, such as Routing Information Protocol (RIP),
Enhanced Interior Gateway Routing Protocol (EIGRP), Open Shortest
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Code 1 The pseudo code of the routing algorithm.

procedure Route(network, flit):

for each flit f in network:

if f.source[Z] = f.destination[Z]

use X-Y deterministic routing

direction[f] := X

do send f to next node

if f.position[X] = pillar.position[X]

direction[f] := Y

if f.position[X, Y] = pillar.position[X, Y]

direction[f] := Z

until f.source[Z] = f.destination[Z]

send f to next node according to X-Y routing

Path First (OSPF) and Border Gateway Protocol (BGP), is used widely
in off-chip networks [108, 49], however deterministic routing is favorable
for on-chip networks because the implementation is easier. Here, a dimen-
sional ordered routing (DOR) [99] based deterministic routing algorithm is
selected and modified to fit the 3D topologies. When a node Nsource sends
a flit to a node Ndestination, the flit will first travel along the X direction,
then it will be routed in the Y direction. As the flit reaches the pillar, it
will be vertically routed in the Z direction to the layer of the destination
node. X-Y deterministic routing is used when the flit arrived the destina-
tion layer, in which a flit is first routed to the X direction and last the Y
direction. The pseudo code of the routing algorithm is shown in Code 1.

2.3 Simulation Platform

Since the NoC hardware/software environment is still limited, simulator
for NoC, especially a full system simulation environment is very impor-
tant. There are several partial function simulators for NoC. Nostrum from
KTH simulates the network model [61], which is a wormhole switching,
Virtual Channel (VC) based network. Popnet and Garnet from Princeton
[33, 3], Noxim from University of Catania functions similar as Nostrum
[80]. Router and link power model by ORION is developed by Princeton
as well [111]. Cacti, an integrated cache timing, power, and area model,
brought by HP Labs, has been used widely for researching multiprocessor
cache system [94]. Simics is a full system instruction-set simulator devel-
oped by Virtutech [73] and used to run unmodified applications of any
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supported hardware architecture (e.g. SPARC on x86). However Simics
does not simulate cache coherence, the memory is perfect and can access
data without any cycle delay. The aforementioned simulators are special
function simulator.

GEMS/Simics is a full system simulator developed by University of
Wisconsin based on Simics processor model [75]. It features GEMS cache/
memory model, ORION router/link power model and Garnet detailed worm-
hole virtual channel pipeline router model. With GEMS/Simics, it is pos-
sible to run unmodified operating system and software applications for a
destination platform, such as the original Sun Solaris/SPARC and SPEC
benchmark programs based on Solaris. The hardware system architec-
ture can be defined in details before running, with SMP/CMP support,
L1/L2 cache size, memory size, the latency and timing of cache and mem-
ory, memory/cache coherence protocol, network interconnection, various
buffers, routing protocol, router model and so on.

GEMS/Simics is able to simulate several cache coherence protocols. Dif-
ferent protocols can have impact on system performance. In multiproces-
sor systems, each block in the cache system have several states concerning
cache-memory data consistency, for example:

� Modified (M). This means the data block in cache has been modi-
fied, it is inconsistent with memory. The block has to be written to
memory before any read operation.

� Shared (S). This means the data block in cache has not been modified;
it holds the most recent consistent data with memory. Same cache
data might exist in other processors of the system.

� Invalid (I). This means the data block in cache is invalid, valid data
must be retrieved either from other caches or memory.

� Exclusive (E). This means the data block in cache has not been mod-
ified; it holds the most recent consistent data with memory. Data
only exist in one cache.

� Owned (O). This means the data block in cache has not been mod-
ified; it holds the most recent consistent data with memory. Same
cache data might exist in other processors of the system. But the
data in memory can be inconsistent; only one cache can hold this
state. Shared state data must be hold in other caches.

According to these states, GEMS/Simics can simulate SMP and CMP
architectures with either MESI or MOESI cache coherence protocols. The
main memory is shared in GEMS/Simics. Here, a SMP machine mimics
each processor node of a processor, a private L1 cache and a private L2
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cache, each processor has a memory and directory controller. Interconnec-
tion latency between processor nodes in an SMP system is typically higher
than CMP. A CMP machine mimics each processor node of a processor,
a private L1 cache and a share L2 cache between all nodes. It is possible
to implement multiple CMPs within a system (SMP-CMP). MESI is used
widely because it supports write-back cache policy. In a write-back cache
dirty data writes are not synchronized to the memory compared with a
write-through cache. MOESI is an elaborated MESI protocol; it has been
used in AMD64 architecture. The protocol is designed to deliver higher
performance but is much more complex.

GEMS/Simics uses a simple 2D based network topology, with Gar-
net detailed wormhole router model and ORION router/link power model.
Garnet in GEMS/Simics consists of a fixed and flexible pipeline models.
It is based on the state-of-the-art virtual channel router (Figure 2.4); the
router can have different number of input and output ports, as well as input
buffers. There are several other parts of the router such as virtual channel
allocator, switch allocator and crossbar switch. The default routing com-
putation algorithm is X-Y deterministic. It is possible to implement other
routing protocol such as an adaptive one.

Crossbar

Switch

Routing

Computation

Unit

Virtual

Channel

Allocator

Switch

Allocator

Virtual Channel 1

Buffers

Virtual Channel n

…
Port 0

…

Virtual Channel 1

Buffers

Virtual Channel n

…
Port n

Port 0

Port n

Figure 2.4: Router model in GEMS/Simics.

The router has a classic five stage pipeline. A head flit arrives at an
input port as the Buffer Write (BW) stage and a request is sent to the
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Route Computation (RC) at the same time. The output port is therefore
calculated. The flit then arbitrates for a corresponding VC in the VC Allo-
cation (VA). If succeed, Switch Allocation (SA) stage will take place which
arbitrates for crossbar switch ports. Switch Traversal (ST), which means
crossbar traversal, happens after. Link Traversal (LT) is the last stage for
transferring to the next node. Route computation and VC allocations are
not required for flits other than the head flit (such as body and tail). The
tail flit has to de-allocate the VC. Five stages of the pipeline are shown in
Figure 2.5. BW/RCHead flit

Tail flit

VA SA ST LTBW Bubble SA ST LT
Figure 2.5: Five stage pipeline.

2.3.1 Example Configuration

The original GEMS/Simics has limited functionality. However, since the
source code is available, we have made several modifications to meet our
experimental requirements in this thesis. Here, we configure a simulation
platform. We use a 16-node network which models a single-chip CMP for
our 2D NoC. A full system simulation environment with 16 nodes, each with
a core and related cache, has been implemented. The simulations are run
on the Solaris 9 operating system based on SPARC instruction set in-order
issue structure. Each processor core is attached to a wormhole router and
has a private write-back L1 cache. The L2 cache shared by all processors
is split into banks. The size of each cache bank is 1MB; hence the total
size of shared cache is 16MB. The simulated memory/cache architecture
mimics Static Non-Uniform Cache Architecture (SNUCA) [58]. MOESI,
a two-level distributed directory cache coherence protocol is used in our
memory hierarchy, where each L2 bank has its own directory. The detailed
configurations of processor, cache and memory configurations can be found
in Table 2.1.

2.3.2 Example Workload

Several standard multiprocessor benchmark programs are used to evalu-
ate system overall performance. These programs include SPLASH-2 [116],
PARSEC [18, 17], SPECjbb [98] and TPC-H [104].
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Table 2.1: System configuration parameters

Processor configuration

Instruction set architecture UltraSPARCIII+ in-order

Number of processors 16

Processor frequency 2GHz

Cache configuration

L1 cache Private, split instruction and data
cache, each cache is 16KB. 4-way asso-
ciative, 64-bit line, 3-cycle access time

L2 cache Shared, unified 16MB (16 banks, each
1MB), 64-bit line, 6-cycle access time

Cache coherence protocol MOESI

Cache hierarchy SNUCA

Memory configuration

Size 4GB DRAM, 4KB/page

Access latency 260 cycles

Requests per processor 16 outstanding

Network configuration

Router scheme Wormhole

Flit size 128 bits

SPLASH-2, developed by Stanford in 1995, is one of the mostly com-
monly used shared memory parallel benchmark program for scientific uses.
It consists of programs of high scalability. Concurrency and load balance are
considered seriously in SPLASH-2, it is shown that Barnes, FFT, Volrend,
Water-Spatial, Ocean, Water-Nsquared, FMM and Raytrace can achieve
high scalability from one to sixty-four processors. SPLASH-2 has been
used over ten years as the state-of-the-art parallel benchmark program for
share memory systems.

PARSEC, developed by Princeton and Intel in 2008, is expected to be
the next generation of benchmark suite for shared memory CMP systems.
It consists of programs that are believed to be optimized for modern mul-
ticore architectures. Both SPLASH-2 and PARSEC are used widely in
evaluating performance of parallel computer systems. Other benchmark
suites, e.g. ALPBench [62], is designed for special purpose applications
such as multimedia processing.

SPECjbb is Standard Performance Evaluation Corporation’s (SPEC)
standard Java server benchmark. It evaluates the performance of a Java
server by simulating a three-tier client/server system (client, business logic
engine, server). The program tests the performance of the shared memory
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system and the scalability of multiprocessors. The clients are simulated by
driver threads, and the database storage are represented by binary trees of
objects. We choose Sun JRE-SE 1.4.2 as the Java runtime environment.

The Transaction Processing Performance Council’s (TPC) Benchmark
H (TPC-H) is a decision support benchmark. The benchmark examines
large amount of data from the database. It executes business oriented
ad-hoc queries and concurrent data modifications. The data and queries
give answers to critical business questions. The result reported by TPC-
H is called the TPC-H Composite Query-per-Hour Performance Metric.
It reflects the capability of the system to process queries. We configure
MySQL v5.0.67 with 1GB of reference database, query 1 is used.
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Chapter 3

Cache and Memory in 3D
Network-on-Chip

Network-on-Chip has become a widely accepted on-chip communication
architecture which provides a promising solution to integrate a large num-
ber of components on a single chip. However, with the increasingly higher
performance demands for on-chip systems, NoCs are facing several criti-
cal challenges such as wire delay and power consumption. Therefore, in
this section, we explore different cache and memory designs in 2D/3D NoC
architectures.

In Section 3.1, integrated core/cache and split core/cache architectures
have been analyzed. We present benchmark results using a cycle accurate
full system simulator. Experiments show that by using the proposed archi-
tecture, compared with the conventional integrated core/cache design, the
average network latency and average link utilization are reduced by 5.01%
and 26.07% respectively.

In Section 3.2, observing that the memory bandwidth of the commu-
nication between on-chip components and off-chip memory has become a
critical problem even in NoC based systems, we propose a novel 3D NoC
with on-chip Dynamic Random Access Memory (DRAM) in which different
layers are dedicated to different functionalities such as processors, cache or
memory. Results show that by using our proposed architecture, average
link utilization has reduced by 10.25% for SPLASH-2 workloads. Our pro-
posed design costs 1.12% less execution cycles than the traditional design
on average.
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3.1 2D/3D Multiprocessor with Different Cache
Architecture

In this section, we investigate 2D/3D NoC designs based on Non Uniform
Cache Architecture. We model a 16-core CMP based on NoC architecture.
We analyze two cache architectures; the integrated core/cache architecture
in 2D NoC and the split core/cache architecture in 3D NoC. The impact
of area and latencies in both architectures are analyzed. We present the
performance of two systems using a full system simulator.

Previous researches have focused on several implementations for 3D
NoCs. Feihui Li et al. [70] presented an implementation alternative in
which cores and caches were placed in interlaced locations in all the three
dimensions. In [82], Dongkook Park et al. illustrated a design to span
the components in 3D NoC across all the layers so that the wire latency
was reduced. Implementing caches in 3D has been explored for traditional
processors [106]. Kiran Puttaswamy et al. [89] have investigated the on-
chip 3D cache integration technology using Through Silicon Vias (TSVs).
Their experiments show that the latency in a uni-core chip with 3D cache
can be reduced by 21.5% comparing with its 2D couterpart.

3.1.1 The Architecture of Cache

Modern commercial multicore processors are designed for multi-bank multi-
level Uniform Cache Architecture (UCA). The worst case wire delay in UCA
may result in extremely low performance since the access times are uniform
for all the caches. Thus, it is obvious that system performance can be im-
proved if the cache access time varies from one cache bank to another so that
closer cache banks have smaller number of access clock cycles. This tech-
nique is called Non Uniform Cache Architecture (NUCA) [14, 47]. Based
on how data are mapped to the caches, NUCA implementation can be cat-
egorized into two groups, namely Static NUCA (SNUCA) and Dynamic
NUCA (DNUCA). In SNUCA, data are mapped to cache banks statically.
It is claimed that designing a NoC based SNUCA system saves channel
overhead ranging from 20.9% to 5.9% compared with its private per-bank
channels counterpart [58]. A DNUCA design maps the data to the cache
dynamically so that frequently accessed data are migrated to closer banks
for the sake of less access cycles. However, DNUCA is more complex than
SNUCA since it involves data mapping, searching and replacement. Here,
we explore systems using SNUCA. Figure 3.1a shows an UCA system with
uniform 9-cycle latency, while in Figure 3.1b, closer cache banks, e.g. C1,
C4 and C6 have lower access latencies.
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Figure 3.1: UCA and NUCA for one processor (P) with eight cache banks
(Cx).

3.1.2 Integrated and Split Core/Cache

The floorplan of modern multicore chips such as third-generation Sun SPARC
[105], IBM Power 7 [48], AMD Istanbul [6] shows the design choices of the
PE. The total area of Sun SPARC chip is 396mm2 with 65nm fabrication
technology. Each core has an area of 14.45mm2. We simulate the charac-
teristics of a 16MB, 16 banks, 64-bit line size, 16-way associative, 65nm L2
cache by CACTI [94]. Results show that the total area of cache banks is
193.38mm2. Each cache bank, including data and tag, occupies 12.09mm2.
A 5-port router is estimated to be 0.23mm2 scaled to 65nm, as we calcu-
lated. We estimate that the area for a tile of the 2D NoC is around 14.45
+ 12.09 + 0.23 = 26.77mm2 (as shown in Figure 3.2a, each PE has a core
with private L1 cache and shared L2 cache). Considering a 2D NoC with 16
tiles, the total area is about 428.32mm2, comparable with modern CMPs
[105, 48, 6].

Figure 3.2b shows a 3D NoC design with split core/cache. We adopt a
7-port router for our 3D NoC model with TSVs (bold line in Figure 3.2b)
as the upward/downward communication links [125]. It is noteworthy that
routers are quite small compared with processors and cache banks, e.g.
scaled to 65nm, as we calculated, a 7-port 3D router is estimated to be only
0.41mm2. Furthermore, not all routers in a 3D NoC require seven ports.
Therefore, the area for a core tile of the 3D NoC is around 14.45 + 0.41
= 14.86mm2, the area for a cache tile is around 12.09 + 0.41 = 12.50mm2

(the router occupies less than 2.76% and 3.28% of tile area, respectively).
The split core/cache design did not reduce the functionality of the system,
but rather reduce the wire length between tiles, since the footprint of each
tile is smaller. The wire length will be analyzed in following sections.
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Figure 3.2: Comparison of 2D NoC design with core and cache within the
same tile (a), and 3D NoC with core and cache in different tiles and layers
(b).

3.1.3 Thermal Issue in 3D NoCs

Since the processors consume overwhelming majority of power in a chip, it
is expected that stacking multiple processor layers could be unwise for heat
dissipation. According to a research [124], by stacking multiple processor
layers, heat dissipation is a major problem for some part of the chip even if
processors are interlaced vertically. Without direct contact with heatsinks,
the peak chip temperature of 3D design raises by 29� compared with the
2D design, which is not feasible for some applications [124]. However, by
stacking more cache layers instead of processor layers, the thermal con-
straint is supposed to be alleviated. Gian Luca Loi et. al. shows that even
for 18 stacked layers (1 of processors, 1 of cache and 16 of memory), the
maximum temperature for a 3D chip increases only 10� comparing with
2D chip [72]. It is estimated that 15% lower core frequency of a 3D chip
could compensate the thermal drawback [72].

On account of the aforementioned analysis, we choose a 3D NoC model
with one layer of processors and one layer of caches as shown in Figure 2.3.
In consideration of heat dissipation, the processor layer should be on top of
the chip (near heatsink). The processor layer is a 4×4 mesh of Sun SPARC
cores with private L1 cache. Based on the aforementioned analysis, the
total area of the core layer is around 237.76mm2. The cache layer has a
total area of 200.00mm2. Since the cache layer is smaller than the core
layer, other system components, e.g. I/O and memory controller can be
implemented in the cache layer. As we expected, the footprint of the 3D
NoC is much smaller, just 55.51% of the 2D NoC.
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3.1.4 Cache Access Latencies

We note that data are mapped into banks statically in SNUCA. The low
order bits of the index determine the bank number. Considering a perfect
application with average access probability to cache banks, for our 16-bank
cache, each bank has an access probability of 1/16. However, real-world
applications tend to have different cache access patterns, i.e. the access
probability to certain banks might be higher than others.

We first consider a cache hit of the cache architecture shown in Fig-
ure 3.2a. The core requests a data, the data is right in the local L2 cache,
thus accessing the data only involve the in-tile wire latency between the
core and cache, the operation did not pass through local router. In the
cache architecture shown in Figure 3.2b, the closest L2 cache of the core
requires one network hop using TSV, which involves link latency of the
TSV and the latency of routers. For a router in the NoC, there are several
parts (e.g. the routing computation unit, the virtual channel allocator, the
switch allocator and the crossbar switch) that will affect latency, depend-
ing on the number of pipeline stages. Here, we use a router of two pipeline
stages. It is noteworthy that the TSV is quite short (e.g. 50µm) compared
with links between adjacent routers which are usually several millimeters.

Equation 1 shows the latency of a local cache access in 2D NoC. Because
of core and L2 cache are in the same tile (Figure 3.2a), the latency involves
only two in-tile short links (LLink delay1) and the router (LRouter delay).

Equation 1 LL2D = 2×LLink delay1 + LRouter delay

By splitting the core and cache in different layers, the latency of a local
cache access in a 3D NoC is shown in Equation 2. In this situation, one
more router delay and the delay caused by TSV (LTSV delay) are added. It
is obvious that this local cache access is slower than 2D NoC.

Equation 2 LL3D = 2×LLink delay1 + 2×LRouter delay + LTSV delay

Assuming X-Y deterministic routing, Equation 3 shows the latency re-
quired for a remote cache access, in case the required data for a core is in
another cache bank. Figure 3.3 shows an example of a remote cache access,
in which core in the node N2 accesses data in cache bank of node N15. This
access costs two in-tile link delays, four tile-tile link delays (LLink delay2) and
five router delays.

Equation 3 LR2D = 2×LLink delay1 + (nhop + 1)×LRouter delay +
nhop×LLink delay2
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Figure 3.3: An example of remote cache access.

Equation 4 LR3D = 2×LLink delay1 + (nhop + 2)×LRouter delay +
nhop×LLink delay2′ + LTSV delay

In a 3D NoC, as shown in Equation 4, accessing a remote cache causes
one more router delay and the delay caused by TSV as well. Notice that
the nhop does not include vertical hops, since the vertical delay is consid-
ered in LTSV delay. However, in the split core/cache architecture, shown
in Figure 3.2b, the tile-tile link delays (LLink delay2′) are lower compared
with integrated core/cache architecture, due to the shorter tile-tile links
contributed by smaller tile footprint. Based on the aforementioned assump-
tions, each cache bank in our NoC has an access probability of 1/16. Thus
despite a local cache access in the split core/cache design is slower than its
counterpart, the possibility for a remote cache access is 15/16, which should
be faster. We also note that in a larger NoC, e.g. 8×8, the possibility for
remote cache accesses is higher (63/64). The benefit for split core/cache
architecture in 3D NoC could be improved further.

3.1.5 Wire Delay

Over the last 40 years, the development of microelectronics technology
has led to the improvements of system performance in many perspectives
including clock frequency, feature size, power consumption and etc., thanks
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to the evolutionary device scaling. However, scaled chip wiring suffers from
the increased resistance and capacitance if metal height is not reduced with
conductor spacing. Thus, RC parasitics play an increasingly important role
in overall chip performance as feature size scales [44]. According to a report
from ITRS, the increasing wire latency and RC delay of long wires have
often become bottlenecks of system performance [7].

One of the major advantages of adopting 3D architecture is that it
can improve system bandwidth and throughput, and reduce wire length.
Ideally, without considering the inter-layer vias and repeaters along long
wires, the average wire length is expected to drop by a factor of

√
Nlayers,

where Nlayers is the number of layers in the 3D architecture. Both wire
resistance and capacitance would drop proportionately, thus power would
drop by a factor of

√
Nlayers and RC delay would drop by a factor of Nlayers

[29]. Repeaters are often used in long wires to reduce the delay so that it
increases linearly with wire length. However, repeaters are connected to
the power networks and thus consume power when in use. Therefore the
application of repeaters is a trade-off.

In this research, we assume that each tile in our NoC platform is of a
square shape, and the length of an edge for a tile in the 2D NoC is 5.17mm.
In 3D NoC, the length of an edge for a tile is 3.85mm and 3.54mm for tiles
with core only and with cache only, respectively. In consideration of the
area of the router, we calculate the delay for these wires between routers,
since the inter-router latency will be determined by the physical length of
the link. For inter-router long wires in voltage-mode transmission, the wire
delay is significant. Repeater insertion can considerably reduce the wire
delay, while incurring a large power overhead. We simulated 3 links with
different lengths in Cadence Spectre. All links are driven by voltage-mode
signaling with repeaters. The repeater interval is 0.5mm. The drivers,
repeaters and receivers are synthesized in 65nm technology, with Vdd = 0.8V
and temperature of 50�. The link width, spacing and thickness are 0.14µm,
0.14µm and 0.35µm, respectively. Table 3.1 summarizes the simulation
results. The size of routers are considered. We assume that the network
runs at 2.5GHz, with a cycle of 400ps. The total power of the wire is
calculated as one bit switching at a time. Results show that the reductions
in wire length lead to considerably reductions in both delay and power
consumption.

Table 3.1: Comparison of wire characteristics

Wire Length Delay Cycle Total P

2D 4.69mm 2.19ns 6 28.59nW

3D Core 3.21mm 1.58ns 4 20.58nW

3D Cache 2.90mm 1.42ns 4 17.48nW
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As aforementioned, the TSV links are very short, e.g. around 50µm.
The transmission can be completed within one cycle under 2.5GHz fre-
quency. Based on these assumptions and analyzes, according to Equation 1
and 2, it is calculated that 4 cycles are needed for a local cache access in 2D
NoC, while 7 cycles in 3D NoC. Apparently, the local cache access is much
slower in the split core/cache design. Figure 3.4 shows the total latency of
a remote cache access in 2D/3D cache architectures. The total latency of
2D NoC for one hop cache access is lower than 3D (12 and 13 respectively).
With increasing hop count, the total latency of cache accesses in 3D NoC
becomes much lower than 2D, e.g. the longest cache access in a 4×4 NoC
requires 6 hops, inducing 9 more cycles in 2D. For a larger NoC, e.g. 8×8,
the longest cache access requires 14 hops, inducing 25 more cycles in 2D.
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Figure 3.4: Total latency in cycles with increasing hop count.

3.1.6 Experimental Evaluation

In this section, we present the experimental evaluation under different NoC
configurations. Workloads used here include FFT and LU from SPLASH-2
[116], Swaptions and x264 from PARSEC [18]. The simulation platform is
based on a cycle-accurate 3D NoC simulator which can produce detailed
evaluation results (Section 2.3). We use a 16-node network for our 2D
NoC. The 3D architecture has one layer for processors and another layer
for caches (Figure 2.3). The size of each cache bank is 1MB. MOESI cache
coherence protocol is used in our memory hierarchy in which each L2 bank
has its own directory.
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Figure 3.5 shows that on average, the cache hit latency has decreased
3.74% by spliting the cache from the core in a NoC platform. Application
with higher cache access frequencies, e.g. FFT and LU, has significant
lower cache hit latency (6.34% and 4.23% lower, respectively), compared
with the original integrated core/cache design. The savings are mainly from
the shorter wires in the 3D split core/cache design. Notice that since the
NoC has other latencies, overall cache hit latency has not improved that
much.
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Figure 3.5: Normalized average cache hit latency in cycles.

As is shown in Figure 3.6, the proposed split core/cache design outper-
forms the traditional design in terms of average link utilization. Average
link utilization is calculated with the number of flits transferred between
NoC resources per cycle. Under the same configuration and workload, lower
utilization means mitigated network load, which is favorable. Comparing
with the integrated core/cache design, the average link utilization for our
proposed design is reduced by 26.07%, on average. Swaptions and x264
have the most significant reduction of average link utilization, 26.18% and
32.98% respectively.

As illustrated in Figure 3.7, the 3D split core/cache design outperforms
the 2D design in terms of average network latency. The improvement is
more notable in FFT and x264, with 9.75% and 6.18% reduced latency,
respectively, compared with the integrated core/cache design. This is pri-
marily due to the reduced number of cycles required for tile-tile data trans-
mission in the 3D design. The reduction of wire lengths translate directly
into network latency savings. On average, comparing with the 2D design,
the network latency in 3D design is reduced by 5.01%.
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Figure 3.6: Normalized average link utilization in flits/cycle.
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Figure 3.7: Normalized average network latency in cycles.

3.2 3D Network-on-Chip with Dynamic Random
Access Memory

There is a great concern about memory bandwidth, the number of memory
requests are growing with the number of cores. In the era of Pentium 3, the
processor has only one core, thus the requirement for memory bandwidth is
relatively low. As the number of processor core grows, the requirement of
memory bandwidth grows as well. As it is shown in Table 3.2, Core 2 Duo
doubles the requirement of memory bandwidth to fit the requests of two
cores. The system performance will decline if memory bandwidth cannot
sustain the rate requested by processor cores. By plugging two identical
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Dual In-line Memory Modules (DIMMs) on the motherboard, dual channel
can be configured to provide double bandwidth. In the dual channel, data
is transfered in a 128-bit flavor instead of conventional 64-bit in one cycle.
Triple channel is introduced with Double-Data-Rate 3 Synchronous DRAM
(DDR3 SDRAM) memory, providing 192-bit data transfer in a clock cycle.
Configured with triple channel DDR3-8500 memory, the maximum theo-
retical memory bandwidth for Intel Core i7 980X is thus 25.6GB/s [53].

Table 3.2: Processor and memory bandwidth for one channel

Processor Core Typical memory Typical BW

Pentium 3 1 PC-133 SDRAM 1.066 GB/s

Pentium 4 1/2 PC-1600 DDR 1.6 GB/s

Core 2 Duo 2 PC2-3200 DDR2 3.2 GB/s

Core 2 Quad 4 PC2-6400 DDR2 6.4 GB/s

Core i7 980X 6 PC3-8500 DDR3 8.5 GB/s

Increasing the memory bandwidth by using DDR4 seems to be a so-
lution, quadrupling or even quintupling the number of memory channels
is another solution. However, as mentioned earlier, triple channel configu-
ration requires at least three DIMMs, which increases cost, fault rate and
power consumption. Another constraint is the pin count limitation. It is
predicted by the ITRS roadmap that pin count will increase by about 10%
each year only, comparing with the number of cores that is expected to
double every 18 months [7].

There have been several researches in the field of processor-memory
bandwidth. Brian M. Rogers et. al. [90] developed a mathematical model
to evaluate the impact of memory bandwidth on CMP scaling in different
technologies. However, the authors focus only on the theoretical studies
in this work. In [114], the organization and performance of 3D memory in
NoC are analyzed. They assumed a simple NoC model with uniform ran-
dom traffic and local traffic. Gabriel H. Loh presented a novel 3D-stacked
memory architecture for CMP [71]. It is claimed that a 1.75x speedup
is achieved over previous approaches. Nevertheless the paper presumed a
conservative quad-core configuration.

In this section, however, we investigate the empirical design of 3D NoC
with memory on chip. By integrating the memory module on chip us-
ing 3D IC technology, overall system performance is expected to improve
due to reduced latency and increased bandwidth. We model a 64-core 3D
NoC with 3D on-chip DRAM memory, analyze the memory bandwidth
and latency with different memory sub-system implementations, present
the performance of our proposed approach and traditional system using a
full system simulator.
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3.2.1 Modeling of the 3D NoC

It is expected that since the processors consume overwhelming majority
of power in a chip, stacking multiple processor layers could be unwise for
heat dissipation. Therefore, a feasible design method is to have only one
processor layer. Unlike the previous section, here, we model the 3D NoC
with 32nm fabrication technology. The total area of Sun SPARC chip is
396mm2 with 65nm fabrication technology. Scaled to 32nm, each core has
an area of 3.4mm2. Results from CACTI show that the total area of cache
banks is 204.33mm2, for a 64MB cache with 64 banks, 64-bit line size, 4-
way associative under 32nm. Each cache bank, including data and tag,
occupies 3.2mm2. We also simulate the characteristics of a 1GB, 8 banks,
32nm DRAM memory by CACTI [94]. It is revealed that the total area of
the memory is 212.79mm2.
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Figure 3.8: 3D NoC with one processor layer (Px), one cache layer (Cx)
and one memory layer, layers are fully connected by through silicon vias
(TSVs, not shown in figure).

On account of the aforementioned analysis, we use a 3D NoC model with
one layer of processor, one layer of cache and several layers of memory. In
consideration of heat dissipation, the processor layer should be close to the
heatsink. The top layer is a 8×8 mesh of Sun SPARC cores. The cache
layer has a 8×8 mesh of cache banks. It is noteworthy that routers are quite
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small compared with processors and cache banks, e.g. scaled to 32nm, as
we calculated, a 7-port 3D router is estimated to be only 0.096mm2. As
mentioned earlier, not all routers in a 3D NoC require seven ports, e.g.
router of P8 in Figure 3.8 has only East, North, Local PE and Up ports.
The total area of the chip is supposed to be around 230mm2. Figure 3.8
shows the above-mentioned 3D NoC with three layers, however more layers
of memory can be stacked. Notice that processor-cache and cache-memory
are fully connected by TSVs.

3.2.2 Analysis of the Impact of On-chip DRAM

The different designs of traditional off-chip memory system are shown in
Figure 3.9. In Figure 3.9a, both the memory controller and the memory are
off-chip with only one memory channel. This was a default configuration
with early CMP systems. When reading data from or writing data to the
memory, a transmission delay is incurred. The delay consists of two parts:
the delay between processor and memory controller, and the delay between
memory controller and DRAM module. For modern systems these delays
are usually hundreds of cycles (e.g. 200-300). Figure 3.9b illustrates a CMP
system with on-chip memory controller and dual channel DRAM memory.
The latency between processor cores and memory controller is reduced sig-
nificantly while the memory bandwidth is doubled. By increase the number
of memory controller, as shown in Figure 3.9c, the performance of memory
sub system can be improved further, notwithstanding this configuration is
used rarely due to pin count limitations.
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Figure 3.9: Compare of different processor and memory sub system orga-
nization.
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To analyze the effect of memory architecture to a NoC, we first consider
a smaller 5×5 mesh with the focus on network latency which is one of the
most important performance factors for NoCs. A SystemC based cycle
accurate NoC simulator Noxim [80] has been extended. We use workload
trace of FFT from SPLASH-2 [116]. The trace has 2.11M packets, with
78.79M cycles executed. We gather the trace from Simics [73] configured
as a 5×5 NoC. The NoC has 25 PEs, in which each PE has a private L1
cache and a shared L2 cache, the two memory controllers are attached in
the center.

Table 3.3: Highest network latency for a NoC node

64 36 45 31 40

44 32 25 39 54

45 98 83 48 28

43 50 46 51 66

45 56 62 44 65

Table 3.3 shows the highest network latencies for different nodes. Ob-
viously, the two central nodes have the highest network latency (98 and 83,
compared with 25 to 66 of other nodes), due to the concentrated memory
traffic from all nodes. The performance of the NoC could be affected with
higher latencies. The memory sub-system might be a limitation of scalabil-
ity in future multicore systems. Memory-on-Chip is a feasible way to break
the bottleneck of the memory sub-system. Here, we explore the following
approaches.

Memory data bus

A standard single-channel DDR2 SDRAM has a bus width of 8 bytes.
Dual-channel technology utilizes two memory channels which result in a 16
bytes bus width, and double the memory bandwidth. Intel Core i7 brings
triple-channel architecture, with 24 bytes bus width. It is noteworthy that
pin-count grows with channel-count, 373 of 1366 pins in the Intel Core i7
processor are dedicated to one memory controller with three channels [50].
By taking the bus completely on-chip, a much wider bus, e.g. 64 bytes,
with the same size of cache line, is possible and the bandwidth improves
significantly.

Frequency of processor-memory bus

The frequency of off-chip memory bus is quite slow comparing with
common processor frequencies. The bus is used for the communication be-
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tween on-chip memory controller and memory. In the era of Intel Pentium,
the frequency of the processor was 66 to 200 Mhz, and at the same time
the SDRAM itself was 66 to 133 Mhz. However, the frequency of a mod-
ern processor could be over 3Ghz, while even with DDR2/3 SDRAM, the
clock does not grow so much. The typical frequency of a DDR2/3 SDRAM
is 100 to 266 Mhz (200 to 533 Mhz for DDR2 and 400 to 1066 Mhz for
DDR3, due to dual/quadruple clock rate). Higher bus clock rate is not
feasible due to power and signal noise limitations with current technology.
It is possible to achieve core clock frequency for the processor-memory bus,
with 3D stacked memory design. More than ten times of bus bandwidth is
predicted.

Memory access latency (MAL)

By stacking multiple layers of DRAM onto a 3D chip, access latencies
are expected to reduce due to shorter wire lengths. DRAM is organized
into a grid of single-transistor bit-cells, and the grid is divided into rows
and columns. On the higher level, a DRAM bank consists of the grid and
accompanying logic. A DRAM rank consists of several banks. When the
memory controller accesses data in a DRAM, tRCD (the number of clock
cycles needed between a row address strobe and a column address strobe),
tCAS (the number of clock cycles needed to access a column) and tRP (the
number of clock cycles needed to precharge a row) are major factors. For
a DDR-400 memory, the bus frequency is 200Mhz, each cycle takes 5ns,
the typical number of clock cycles for tRCD, tCAS and tRP are 3, 3 and 3
respectively (15ns each). By stacking the DRAM ranks in a 3D fashion,
the length of internal buses and bitlines are reduced, and hence the access
latencies of the memory are reduced.

Equation 5 tMAL = tBus delay + tDRAM delay

As aforementioned, the area of a 1GB DRAMmodule is about 212.79mm2

under 32nm technology, therefore the length of a side for the square mod-
ule is 14.58mm. Figure 3.10 depicts that a request traveling from module
1 to 4 in 2D off-chip memory will take at least 29.17mm of wire length, by
going through module 2 and 3. In 3D on-chip memory, since the distance
between stacked layers are shorter, around 50µm, the wire delay between
multiple layers can be neglected. Researches have shown that based on this
architecture, memory access time has improved by 32% [71].

The latency for an off-chip DRAM is typically 200-300 cycles. In a sys-
tem with 2Ghz processor, the time is 100-150 ns. By bringing the DRAM
on-chip, this latency can be reduced significantly, thus we ignore this la-
tency. According to Equation 5, the total latency from memory controller
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to DRAM will be reduced from (250+9×10) = 340 to (0+9×10×0.68) =
61.2.
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Figure 3.10: 2D off-chip memory and 3D on-chip memory organizations.

Memory controllers

Many conventional architectures employ a limited number of memory
controllers due to pin count limitations. With only one memory controller,
373 of 1366 pins in the Intel Core i7-900 processor are dedicated to that
[50]. The ratio between the number of cores and the number of memory
controllers is 6:1 (Table 3.4). The Tilera Tile64 processor [115] implemented
a 2D 8×8 mesh with four on-chip memory controllers and off-chip memory
architecture. The ratio between core and memory controller is thus 16:1
(Table 3.4). It is not realistic to have a memory controller for each PE in
2D architectures. However, for 3D stacked DRAM NoC, since die layers can
be connected with layer-layer TSVs [125], one memory controller per core
is possible. The number of transistors required for a memory controller
is quite small compared with billions of total transistors for a chip. It
is presented that a DDR2 memory controller is about 13,700 gates with
application-specific integrated circuit and 920 slices with Xilinx Virtex-5
field-programmable gate array [38].

Table 3.4: Comparison of processors with memory controller and memory
channel

Processor Core Memory controllers

AMD MagnyCours 6 1 DDR3, 533Mhz (133x4), 2 channels

Intel Nehalem 4 1 DDR3, 533Mhz (133x4), 3 channels

IBM Power 7 8 2 DDR3, 533Mhz (133x4), 8 channels

Tilera Tile64 64 4 DDR2, 200Mhz (100x2), 1 channel
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Mixing of all techniques

With higher bus frequency, wider bus width, shorter wire length and
more memory controllers, memory bandwidth can be improved signifi-
cantly.

Equation 6 Bandwidth = Clock × Data Rate × Rate Multiplier × Bus
Width × Channel × Controller

The bandwidth of memory is defined in Equation 6. According to that,
the bandwidth of a modern single-channel single-controller DDR2 memory
with 200Mhz bus frequency is 200×2×2×8×1×1 = 6.4GB/s. By stacking
the memory on-chip, with native clock rate of the core (2Ghz), 64-byte
bus width and 64 memory controllers, the theoretical maximum bandwidth
would reach: 2000×1×2×64×1×64 = 16,384GB/s! It is noteworthy that
the memory runs in synchronous mode, i.e. the memory and the I/O bus
are with the same frequency. We observed that the 3D stacked DRAM
has a lower power consumption comparing with off-chip DRAMs, due to
that 3D on-chip connection is more power efficient than off-chip bus I/Os.
Higher frequencies can be achieved with lower power consumption, or lower
frequencies for power constrained applications. Table 3.5 shows the com-
parison of memory sub system of modern systems and our proposed system.

Table 3.5: Memory sub system configurations for different processors

Processor Typical BW BW per core Latency

AMD M-Cours 17.1GB/s 2.85GB/s/core 250+(7-7-7)

Intel Nehalem 25.6GB/s 6.4GB/s/core 250+(7-7-7)

IBM Power 7 136.8GB/s 17.1GB/s/core 250+(7-7-7)

Tilera Tile64 12.8GB/s 0.2GB/s/core 250+(3-3-3)

Our proposed 16,384GB/s 256GB/s/core 0+(2-2-2)

3.2.3 Experimental Evaluation

In this section, we present the experimental evaluation under different mem-
ory configurations. Applications are selected from SPLASH-2 [116]. The
simulation platform is based on a cycle-accurate 3D NoC simulator which
can produce detailed evaluation results (Section 2.3). We use a 128-node
network which models a single-chip CMP for our experiments. The 3D
architecture here has one layer for processors, one layer for shared cache
memories and five layers of DRAM memory (one layer for logic) (for sim-
plicity, Figure 3.8 shows only three layers). A full system simulation envi-
ronment with 64 processors and 64 L2 cache nodes has been implemented.
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The size of each cache bank node is 1MB. MOESI cache coherence proto-
col is used. Orion [111], a power simulator for interconnection networks,
is used to evaluate detailed power characteristics. A wormhole router is
modeled in Orion, with corresponding input/output ports, buffers and the
crossbar. Power consumption of routers is analyzed.

The normalized full system simulation results are shown in Figure 3.11
and 3.12. As is shown in Figure 3.11, our proposed design outperforms
the traditional design in terms of average link utilization. Average link
utilization is calculated with the number of flits transferred between NoC
resources per cycle. Under the same configuration and workload, lower
utilization means mitigated network load, which is favorable. Comparing
with the traditional design, the average link utilization for our proposed
design is reduced by 10.25%, on average. FFT and Cholesky have the
most significant reduction of average link utilization, 13.34% and 12.81%
respectively.
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Figure 3.11: Normalized average link utilization with different configura-
tions.

The results in Figure 3.12 show that our proposed design outperforms
the traditional design in terms of executed cycles under all workloads. On
average, our proposed design costs 1.12% less cycles than the traditional
design, and the cycle reduction reaches 2.29% for LU workload and 1.77%
for Radix respectively. The improvements of executed cycles can be in-
terpreted as the result of the increased memory bandwidth and reduced
memory access latency which commensurate with the number of memory
accesses. The improvement of executed cycles is less remarkable comparing
with average link utilization since local operations (e.g. core and cache)
are not related with network operations. We notice that the bandwidth
improvement enables just a modest performance gain in application level.
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This is due to the fact that most applications are not sensitive to memory
bandwidth. However, future applications may have higher requirements to
memory bandwidth and therefore can benefit more from this design.
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Figure 3.12: Normalized executed cycles with different configurations.
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Chapter 4

Resource Placement

Future multicore processors is expected to have hundreds of even thousands
of cores. In such a huge system, there are many hardware resources, e.g.
cores, caches, routers, links, memory controllers and so on. It might be not
economical to equip each node with a hardware resource. The utilization
of resources can be low, and therefore leading to poor system efficiency. To
improve system efficiency, one solution is to distribute a limited number of a
certain resource. In this case, multiple requesters have to share a resource,
leading to possible traffic contention and/or performance bottleneck. To
alleviate the problem of performance degradation by reduced amount of
resources, intelligent placement of resources is introduced, so that the op-
timal position of the resource is determined. We study optimal resource
placement in a mesh-based NoC. Three hardware resources are used as case
studies: Through Silicon Via (TSV), memory controller and core/cache.

In Section 4.1, theoretical background of resource placement is intro-
duced. In Section 4.2, a generic “Divide and Conquer” method for solving
the optimal resource placement problem is proposed. In Section 4.3, we
analysis the impact of TSV placement in 3D NoCs. The adoption of a 3D
NoC design depends on the performance and manufacturing cost of the
chip. Therefore, a study of TSV, that connects different layers of a 3D
chip, is crucial. We discuss the number of TSVs required for a 3D NoC.
Different placements of layer-layer connections are explored. We configure
two 3D NoCs: (i) a 4×4 mesh with five layers, and (ii) an 8×8 mesh with
two layers. Experiment results show that under different workloads, the
average network latencies of (i) in two different configurations are reduced
by 5.24% and 2.18% respectively, compared with the design with quarterly
connected TSVs. The average network latencies of (ii) in two different
configurations are reduced by 14.78% and 7.38% respectively, compared
with the alternative design. With optimal placement of TSVs, the vertical
connections are reduced significantly with acceptable latency penalty.
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In Section 4.4, we analyze and compare different placements of mem-
ory controllers for CMPs. As the number of cores increases, the memory
bandwidth between on-chip components and off-chip memory has become a
critical problem. The integration of more memory controllers on chip is one
feasible way to solve this problem. However, the physical location of mem-
ory controllers in a mesh-based NoC have a significant impact on system
performance. We investigate the placement of multiple memory controllers
in an 8×8 NoC. Several metrics have been analyzed. An optimal mem-
ory controller placement is found and evaluated. By using applications
selected from SPLASH-2, PARSEC, TPC and SPEC as benchmarks, it is
shown that the average network latency, average link utilization and per-
formance power product in our optimal placement are reduced by 7.63%,
10.44% and 13.94% compared with the conventional two-sides placement,
respectively. The goal is to give a solid theoretical foundation to future
CMP design.

In Section 4.5, optimal core and cache placements for modern CMPs is
studied. As the number of cores increases, traditional on-chip interconnects
such as bus and crossbar suffer from poor scalability and low efficiency. Ring
based design has been proposed and implemented to mitigate these prob-
lems. However, the continuing growth of number of cores will render the
ring interconnect infeasible. Network based designs are therefore proposed
for future CMPs for better scalability. We explore the interconnect of a
state-of-the-art CMP. We analyse and compare the implementation of the
ring-based and the network-based interconnect. The placement of cores and
caches in a network is proved crucial for system performance. We investi-
gate optimal core/cache placement for CMPs. Results show that by using
the optimal network interconnect, compared with the ring interconnect,
the average network latency and execution time are reduced by 11.93%
and 19.53% respectively, for four configurations and two applications.

4.1 Theoretical Background

The different placement of hardware resources can have a dramatic impact
on the performance of the NoC. Here, for theoretical analysis, we define
hop count (Manhattan Distance, or MD) as the number of routers a flit
has to go through from a requester to a hardware resource. Average Hop
Count (AHC) is selected as a metric in evaluating the performance of a
placement configuration. AHC is calculate as, the average number of the
minimal number of hops to a hardware resource, for all potential requesters.
Figure 4.1 shows a worst case placement of 16 hardware resources in an 8×8
mesh. In this configuration, all the resources are placed on one side of the
chip, causing high delays in the other side of the chip (AHC = 168/64 =
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2.625, 168 is the accumulation of all MDs). Furthermore, due to the poor
distribution of pillars, there could be traffic contentions.

Figure 4.1: A placement of 16 resources (grey nodes with P) in an 8×8
NoC, white nodes are requesters, number means minimal hops required for
a requester to reach a resource.

To find a placement with minimum AHC, exhaustive simulation is a
possible solution. However, it is noteworthy that this method is only feasi-
ble for a small size NoC, while a heuristic-guided search is required to deal
with the computational complexity from a larger search space [2], e.g. an
8×8 mesh with a quarter of limited resources has

(
64
16

)
= 488,526,937,079,580

different placement possibilities,
(
64
32

)
= 1.83e+18 for half resource numbers!

The situation may become more complex in certain conditions, e.g. the
memory controller. We note that the memory traffic in modern systems are
distributed to all the controllers evenly, according to the physical addresses.
In this case, calculating the average MD from a node to all the controllers
is more meaningful. In the following sections, we propose two methods in
solving the resource placement problem for a mesh on-chip network.

4.2 Divide and Conquer

The divide and conquer algorithm is an essential algorithm in computer
science. It works by breaking down a problem into multiple sub-problems,
until these sub-problems can be solved within reasonable computation time.
The results of the sub-problems are then combined, giving the solution of
the original problem. The divide and conquer method has been used in
many problems, such as quick sort, fast Fourier transform and map reduce.
However, this technique is not possible for all problems, and it requires
analysis to prove the effectiveness and efficiency of the algorithm.
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As aforementioned, the design space for placing 16 resources in an 8×8
mesh is too large. We explore the possibilities starting from a smaller
NoC by writing a program that exhaustively enumerate all placement pos-
sibilities and output the combinations of lowest hop count (Code 2). It is
noteworthy that because of the huge design space, the time required for
exhaustive simulation is practical for a NoC below 6×6. For larger NoCs,
we divide it into several smaller NoCs and solve them (divide and con-
quer), e.g. an 8×8 NoC with 16 pillars is divided into four 4×4 NoCs,
each with 4 pillars. The design space is then much smaller (

(
16
4

)
= 1,820),

and the time required for enumeration process is feasible. After enumerat-
ing a 4×4 mesh, we found that there are 7,129 configurations that satisfy
the lowest average hop count for half resource configuration (8 resources), 2
configurations that satisfy the lowest average hop count for quarter resource
configuration (4 resources). Figure 4.2 shows 3 representative designs for
best case and worst case resource placement. We note that the two best
case placements are actually the same, and there are several other equal
worst case placements.

(a) 16/Best1 (b) 16/Best2 (c) 16/Worst

Figure 4.2: Different placements of 4 resources in a 4×4 NoC.

4.2.1 Placement for 16 Resources

By expanding the 4×4 mesh four times, we select the design of Figure 4.2a
as our placement strategy for 16 resources. Figure 4.3 shows this configura-
tion. In this configuration, all non-native PEs (those not directly attached
to a resource) require just one hop to access a resource, which results a
minimal average hop count (AHC = 48/64 = 0.75). It is notable that
the resources are well distributed, e.g. there are only two resources per
row/column and no adjacent resources, providing a good traffic variance.

4.2.2 Placement for 8 Resources

We use the same metrics as aforementioned to evaluate the optimal place-
ment of 8 resources theoretically. An 8×8 NoC with 8 resources is divided
into four 4×4 NoCs, each with 2 resources (

(
16
2

)
= 120). After enumeration,
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Code 2 The pseudo code of calculating average Manhattan Distance be-
tween a requester and a resource, for a combination of resource placement.
void calculate_amd()

{

for(i=0;i<Combinations;i++) //Calculate for all combinations

{

for(j=0;j<R_Num;j++) R[j]=R_Comb[i*R_Num+j];

//R_Comb is an array of all resource

placement combinations

for(k=0;k<Net_x*Net_y;k++) //Calculate for all requesters in the mesh

{

min_dist=Max_Hop;

for(l=0;l<R_Num;l++) //Calculate all resources

{

tmp=MD(k, R[l]); //Calculate the MD from a requester to a

resource

if (min_dist>tmp) min_dist=tmp;

}

distance[k]=min_dist; //Find the minimal distance for a requester

}

for(m=0;m<Net_x*Net_y;m++) total_dist+=distance[m];

final_amd[i]=total_dist/(Net_x*Net_y);

//Final average Manhattan Distance for a

combination

total_dist=0;

}

}

Figure 4.3: An optimal placement of 16 resources (P) in an 8×8 NoC.

we found that there are 8 configurations that satisfy the lowest average hop
count for 2 resources. Figure 4.4 shows these configurations.
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(a) 16/2P/Best1 (b) 16/2P/Best2 (c) 16/2P/Best3 (d) 16/2P/Best4

(e) 16/2P/Best5 (f) 16/2P/Best6 (g) 16/2P/Best7 (h) 16/2P/Best8

Figure 4.4: Different placements of 2 resources in a 4×4 NoC.

We expanded the optimal 4×4 placement four times in the 16-resource
configuration, however it is more complex for the 8-resource configuration.
Figure 4.5a shows a placement with four duplications of Figure 4.4a. The
minimal hop count required for four requesters to reach a resource is re-
duced by one for the lower two duplications (light-gray numbers). However,
by combining different placements of Figure 4.4, the hop counts reduction
can be even larger. Figure 4.5b shows a placement, in which two duplica-
tions of Figure 4.4h are placed on top, and two duplications of Figure 4.4g
are placed on bottom. Thus, hop count is reduced by one in six nodes,
improving the placement of Figure 4.5a. Furthermore, other metrics in
Figure 4.5b are better than in Figure 4.5a. For instance, in Figure 4.5a,
there are two resources in all even rows/columns. However, in Figure 4.5b,
resources are well distributed in the vertical axis. For a dimensional ordered
deterministic routing, e.g. XYZ routing, better distribution of resources in
all directions can alleviate traffic contention on resources. We note that to
find the best placement, the problem can be described as: Choose 4 place-
ments from Figure 4.4, the order of choice is important, and repetition is
allowed. The design space is reduced to 84 = 4, 096.

With exhaustive simulation of 4,096 combinations, we discover that
Figure 4.5b represents one of the best placement for 8 resources in an 8×8
mesh. Table 4.1 shows the computation complexity of exhaustive enumer-
ation and our “divide and conquer” method. Our idea can be expanded to
NoCs with regular sizes and regular number of resources, e.g. an 8×8 mesh
with 4 resources (divided into 4 meshes, each 4×4 with 1 resource), a 9×9

44



(a) Placement 1 (b) Placement 2

Figure 4.5: Two placements of 8 resources in an 8×8 mesh.

mesh with 18 resources (divided into 9 meshes, each 3×3 with 2 resources).
NoCs with irregular sizes and irregular number of resources, e.g. a 13×13
mesh with 53 resources, are not suitable for our method.

Table 4.1: Comparison of computation complexity of exhaustive enumera-
tion and “divide and conquer”.

Problem Exhaustive Divide Conquer

8×8, 16 Resources 4.885e+14 1,820 16

8×8, 8 Resources 4.426e+9 120 4,096

4.3 Placement for Through Silicon Via

Through Silicon Via (TSV) is the most promising solution for building 3D
chips. There are several types of TSVs, e.g. data transmission, control,
power distribution and thermal dissipation. Here, a pillar is defined as a
bunch of TSVs, including TSVs for data, control and power distribution.
On the assumption that the power supply voltage is 1V, a practical aspect
ratio for TSVs is between 10:1 to 5:1, in which data transmission TSVs are
dominant ones [118] [7].

Obviously, maximum performance can be achieved by full layer-layer
connection, i.e. all routers between layers are connected by pillars. How-
ever, as the number of tiles grow, it might not be practical to assume that
each tile will be connected with corresponding TSVs because of the limita-
tion of manufacturing cost and chip area. Assuming that a flit in a NoC is
128 bits, full layer-layer connection for a 4×4 NoC would require 128×4×4
= 2,048 TSVs for parallel data signals, full layer-layer connection for an
8×8 NoC would require 128×8×8 = 8, 192 TSVs for parallel data signals.
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In addition, other TSVs are required for control, power distribution and
thermal dissipation.

4.3.1 Cost Considerations

There are three major tasks of 3D integration processing, a) TSV formation
for vertical interconnects; b) wafer thinning and backside processing; and
c) stacking of chips. It is shown in [109] that based on IMEC 3D cost model,
TSV processing cost is the dominating cost for a 3D wafer. Assuming a
CMOS processing technology of 65nm with 200mm silicon wafers, 46% to
65% costs are spent on TSV processing, with annual production volume
varies from 10,000 to 300,000 wafers.

There are different integration methodologies for the implementation of
TSVs. The manufacturing process determines integration density and cost.
Two main methods, namely via middle (VM) and via last (VL), are com-
pared. In VM, the TSVs are fabricated before the interconnect metal layers
and after the devices. In VL, the TSVs are fabricated by processing the
back side of the wafer after wafer-thinning. Based on the aforementioned
technologies, the diameter of a TSV processed by VM is around 5µm com-
pared with 35µm by VL, the pitch between TSVs processed by VM is
around 10µm compared with 60µm by VL. Although higher density can be
achieved by VM, the processing cost of VL is considerably lower [109]. It is
demonstrated that the manufacturing cost raises significantly beyond 1,000
TSVs per chip stack for VL, while it raises significantly beyond 10,000 TSVs
for VM [109]. Another research conducted by the International Technol-
ogy Roadmap for Semiconductors (ITRS) have shown that the maximum
feasible number of TSVs in a high performance 3D chip will reach 1,000
in 2012, and increase by 1,000 in every two years [7]. Obviously, in terms
of chip area and manufacturing cost, the total number of TSVs should be
limited to a practical value.

It is shown that the yield for processing each TSV is about 99.99% un-
der current technology [63]. The yield is acceptable for a smaller number of
TSVs. As the number of TSVs grows, e.g. 10,000 TSVs per chip, the pos-
sibility of a faulty chip becomes higher. Figure 4.6 shows the accumulated
yield for processing TSVs for a perfect chip die. It is depicted that the yield
is only 36.79% for 10,000 TSVs. As the number of TSVs reduces to 2,000
or 1,000, the yield is much higher (81.87% and 90.48% respectively). We
deduce that the die yield will reduce with the increasing number of TSVs
manufactured on a chip. The total manufacturing cost for building a 3D
chip can be unacceptable for the market with full TSV connection between
layers.

Here, in order to reduce the number of total pillars and evaluate the
placement for fewer pillars, we choose 16 and 8 pillars for an 8×8 mesh

46



Figure 4.6: The TSV yield with increasing TSV numbers (x).

network (one fourth and one eighth of total nodes). The total number of
TSVs in these two configurations is expected to be between 1,000 and 2,000.

4.3.2 Performance with Reduced Number of TSVs

It is cheaper and easier to manufacture a 3D chip with fewer pillars between
layers, however the performance of the chip is affected. Multiple nodes have
to share a pillar, high congestion could be created on a pillar, leading to
communication bottlenecks. To minimize traffic contention between layers,
the placement of pillars should be considered carefully. Figure 4.7 presents
half and quarter TSV connections between layers.

C1 C5 C9 C13

C2 C6 C10 C14

C3 C7 C11 C15

C4 C8 C12 C16

P1 P5 P9 P13

P2 P6 P10 P14

P3 P7 P11 P15

P4 P8 P12 P16

C1 C5 C9 C13

C2 C6 C10 C14

C3 C7 C11 C15

C4 C8 C12 C16

P1 P5 P9 P13

P2 P6 P10 P14

P3 P7 P11 P15

P4 P8 P12 P16

Figure 4.7: 3D NoC with layers half and quarter connected by TSVs.

Figure 4.8 shows the comparisons of the average hop counts among
different architectures. Although the maximum and minimum hop count
for all configurations are the same (10 and 1), the average hop counts in half
and quarter configurations are respectively 5% and 11.875% higher than full
TSV configuration. Average network latency, one of the most important
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factors of a NoC, is affected by the average hop count. Besides, fewer TSVs
will increase contention of inter-layer communication; the situation can be
fatal with a high flit injection rate. Detailed simulation analysis will be
given in the following section.

 4.6

 4.8

 5

 5.2

 5.4

 5.6

 5.8

 6

Fu
ll

H
al

f

Q
ua

rt
er

Average hop count

Figure 4.8: The comparison of average hop count among full, half and
quarter connected layers.

4.3.3 3D NoC Models

Here, we use two 3D NoC models. One of them has five layers, based on
65nm processing technology. The top layer is a 4×4 mesh of Sun SPARC
cores, each core is 14mm2 based on 65nm technology. Other four layers are
cache layers. The total area of a 64MB cache with 64 banks, 64-bit line
size, 4-way associative under 65nm is estimated to be 843.50mm2. Each
cache bank, including data and tag, occupies 13.18mm2. Therefore, each
cache layer has a 4×4 mesh of cache banks. Because of routers are quite
small, e.g. a 7-port 3D router under 90nm is estimated to be 0.76mm2 [82],
total area of the chip is supposed to be below 300mm2.

Another 3D NoC model has two layers, based on 32nm processing tech-
nology. The top layer is an 8×8 mesh of 64 Sun SPARC cores, each core
has an area of 3.4mm2. The area of cache similar as aforementioned under
32nm is 204.33mm2. Each cache bank, including data and tag, occupies
3.2mm2. The cache layer has an 8×8 mesh of cache banks. It is noteworthy
that routers are quite small compared with processors and cache banks, e.g.
scaled to 32nm, as we calculated, a 7-port 3D router is estimated to be only
0.096mm2. The total area for one layer of the 3D NoC is supposed to be
below 300mm2.
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4.3.4 Evaluation for 4×4 NoC with Five Layers

In this section, we present the experimental evaluation under different num-
ber and placement of pillars, for a 4×4 NoC with five layers. Applications
are selected from SPLASH-2 [116] and PARSEC [18]. SPECjbb [98] and
TPC-H [104] are used as synthetic benchmarks.

We use an 80-node network which models a single-chip CMP for our
experiments. The 3D architecture has five layers, in which the first layer
is processors, other layers are shared cache memories. A full system sim-
ulation environment with 16 processors and 64 L2 cache nodes has been
implemented. The MESI cache coherence protocol is used. Orion [111], a
power simulator for interconnection networks, is used to evaluate detailed
power characteristics. A wormhole router is modeled in Orion, with corre-
sponding input/output ports, buffers and the crossbar. Power consumption
of routers is analyzed.

The normalized full system simulation results are shown in Figures 4.9
and 4.10. As illustrated in Figure 4.9, the design of full pillar connection
outperform others in terms of network latency. The improvement is more
notable in Cholesky (chol), FMM and TPC-H, with 9.69%, 8.04% and 8.8%
reduced latency, respectively, compared with the quarter design. This is
primarily due to the reduced hop count of processor-cache data access in
the full pillar connection than the other designs. We notice that perfor-
mance difference for some of the applications, e.g. FFT and Radix (radi),
is not that significant, the network latency is reduced by 1.09% and 2.93%
respectively comparing with the quarter design. The reason is that these
applications have a lighter network load compared with the other applica-
tions. On average, compared with the quarter design, the network latency
is reduced by 5.24% and 2.18% for full and half designs, respectively.

As a combination of both performance and power consumption, the
Performance Power Product (PPP) is a more meaningful metric because
performance is usually a trade-off for power consumption. Performance is
measured in terms of application execution time. Systems with a lower PPP
(PPP > 0) generally have a better trade-off between the performance and
power. The results in Figure 4.10 show that the PPP improves more signif-
icant from quarter pillar design to full pillar design, when compared to per-
formance improvements. Configuration with full pillars performs 32.42%,
41.65%, 35.82% and 44.34% better than quarter pillars in Cholesky, Ocean,
Radix and TPC-H respectively. On average, the PPP is reduced by 25.11%
and 15.85% for full and half designs respectively compared with quarter
design. We noticed that by using more pillars, the traffic contention be-
tween layers is alleviated. Therefore overall network power consumption
is reduced with reduced execution time, resulting a significantly improved
PPP. However, as aforementioned, the design and implementation of ver-
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Figure 4.9: Normalized average network latency with different number of
pillars, for a 4×4 NoC with five layers.
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Figure 4.10: Normalized power performance product with different number
of pillars, for a 4×4 NoC with five layers.

tical links are very expensive, manufacturing cost is a trade-off for this
power-performance improvement. It is always desirable to have a balanced
number of vertical links.
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4.3.5 Evaluation for 8×8 NoC with Two Layers

Here, we present the experimental evaluation under different number and
placement of pillars, for a 8×8 NoC with two layers. Applications are
selected from SPLASH-2 [116] and PARSEC [18]. SPECjbb [98] and TPC-
H [104] are used as synthetic benchmarks.

We use a 64-core multiprocessor which models a single-chip CMP for
our experiments. The 3D architecture has two layers; the first layer is
processors, the second layer consists of shared cache memories. A full
system simulation environment with 64 processor nodes and 64 cache nodes,
has been implemented. MOESI is used in our memory hierarchy. Orion
[111] is used to evaluate detailed power characteristics.

The normalized full system simulation results are shown in Figures 4.11
and 4.12. For 16-pillar configuration we use Figure 4.3, for 8-pillar configu-
ration we use Figure 4.5b. Average network latency represents the average
number of cycles required for the transmission of all network messages. For
each message, the number of cycle is calculated as, from the injection of
a message header into the network at the source node, to the reception of
a tail flit at the destination node. As illustrated in Figure 4.11, the 64-
pillar connection outperforms others in terms of average network latency.
The improvement is more notable in Cholesky, Swaptions and x264, with
21.40%, 17.47% and 18.91% reduced latency, respectively, compared with
the 8-pillar design. This is primarily due to the reduced average hop count
of processor-cache data accesses in the 64-pillar connection compared to
the other designs. We notice that performance differences for some of the
applications, e.g. LU, Radix, Raytrace and SPECjbb, are less significant,
the network latencies are reduced by 12.61%, 12.32%, 12.11% and 10.65%
respectively comparing with the 8-pillar design. The reason is that these
applications have a lower network load compared with the other applica-
tions. On average, compared with the 8-pillar design, the network latency
is reduced by 14.78% and 7.38% for 64-pillar and 16-pillar designs, respec-
tively.

The results in Figure 4.12 show that the PPP improves more significant
from 16-pillar design to 64-pillar design, when compared to performance
improvements. Configuration with 64-pillars performs 37.76%, 37.99%,
44.90% and 38.44% better than 8-pillars in Cholesky, FMM, Ocean and
TPC-H respectively. On average, the PPP is reduced by 32.69% and 24.27%
for 64-pillar and 16-pillar designs respectively compared with the 8-pillar
design. Similar as the previous section, by using more pillars, the traffic
contention between layers is alleviated. However, a balanced number of
vertical links should be determined by the system designer.
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Figure 4.11: Normalized average network latency with different number of
pillars, for a 8×8 NoC with two layers.
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Figure 4.12: Normalized power performance product with different number
of pillars, for a 8×8 NoC with two layers.

4.4 Placement for Memory Controller

As the number of processor cores increases, there is a great concern about
memory bandwidth, since the number of memory accesses are growing with
the number of cores. Intel Core 2 Duo doubled the memory bandwidth
requirement to fit the requests of two cores. The system performance will
decline if memory bandwidth cannot sustain the rate requested by processor
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cores. Dual channel and triple channel can be applied to provide double or
triple memory bandwidth. However, these configurations require multiple
memory modules, which increases cost, fault rate and power consumption.
Another way of increasing memory bandwidth is to apply more memory
controllers. Nevertheless, the number of memory controllers is limited due
to pin count limitations. Intel Core i7-900 processor has only one memory
controller, 27.31% of its total pins are dedicated to that [50]. It is not
realistic to have a dedicated memory controller for each core.

With a limited number of memory controllers, quality of service support
for the on-chip network can reduce the interconnect pressure via efficient
distribution of memory traffic [66]. Fair arbitration between requests arriv-
ing at the memory controller has been proposed in [76] [77]. The placement
of memory controllers can have a significant impact to the system perfor-
mance and efficiency as well. In [2], intelligent memory controller placement
and routing of core-memory traffic have been advocated. Based on their
conclusion, the Diamond placement (Section 3) is the optimal placement
for an 8×8 mesh with 16 memory controllers. Here, we argue that there
are better placement possibilities compared with the Diamond. A good
placement of memory controllers should have the following features: a) low
average hop count for memory messages from all processors; b) the memory
messages are distributed in the on-chip network evenly, e.g. less hot-spots
and congestions. The memory messages are the messages between memory
controllers and last level caches, in case of a cache miss event. We pro-
pose the “divide and conquer” method for large mesh networks to avoid
huge design space. The permutation of all possibilities is not necessary.
The metric of average hop count, Distance-m, Adjacent-n, memory con-
trollers per row/column and adjacent memory controllers are analyzed and
compared with several placements. We find the optimal placement of 16
memory controllers in an 8×8 mesh theoretically. A general strategy for
other mesh sizes are discussed. To confirm our study, we model a NoC with
8×8 mesh, discuss the performance with different placements using a full
system simulator, under multiple workloads.

4.4.1 Motivation

In our study, the on-chip memory controllers are shared by all processors
to provide large physical memory space to each processor. Each of the
controller controls a part of the physical memory, and each processor can
access the memory controlled by any of the controllers. A physical address
will be mapped to a memory controller according to its address bits and
cache line address (See Section 4.4.6 for details). In this case, memory
traffic is distributed to all the controllers evenly. This represents a typical
design of modern processors [59].
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Figure 4.13: Memory request rate for 16-core NoC running FFT.

An unoptimized placement of memory controllers can cause hotspots
and traffic contentions/delays. As a result, average network latency, one of
the most important factors of a NoC, is increased and overall performance
is degraded. Figure 4.13 shows the memory request rate of each processing
element (PE) when running FFT in a 16-core NoC under GEMS/Simics
simulation environment. The detailed system configuration can be found
in Chapter 2 (except for the number of cores and number of memory con-
trollers etc., we use a 4×4 mesh with 16 cores and 8 memory controllers).
The traffic trace has generated 59,665 packets, with 22.1M cycles executed.
In Figure 4.13, the X axis is the number of PE, the Y axis is the number of
memory controllers. The traffic is shown for all the 16 PEs and 8 memory
controllers. It is revealed that despite the memory traffic is distributed to
all the memory controllers evenly, 73.53% of memory request traffic are
generated by five nodes (N6 27.63%, N0 13.27%, N11 11.62%, N4 10.73%
and N2 10.28%).

To access the memory controllers, assuming X-Y deterministic routing,
Equation 4.1 shows the latency required for a memory request generated
by a node (without considering the latencies of the memory controller and
the memory itself). The latency involves in-tile links (Between NI and
PE, LLink delay1), router (LRouter delay), tile-tile links (LLink delay2) and the
number of hops required to reach the destination (nhop).

LM = LLink delay1 + (nhop + 1) × (LRouter delay + LLink delay2) (4.1)

Figure 4.14 shows the different memory controller accesses of two place-
ments. In Figure 4.14a, memory controllers are placed on upper and lower
sides of the NoC. This represents a typical design such as Intel and Tilera.
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In this case, the average delay for a memory access is: LLink delay1 + 3.5
× (LRouter delay + LLink delay2). In Figure 4.14b and 4.14c, memory con-
trollers are placed on the other positions of the NoC. The average delays
for a memory accesses are thus reduced to: LLink delay1 + 3 × (LRouter delay

+ LLink delay2) and LLink delay1 + 2.5 × (LRouter delay + LLink delay2), re-
spectively. We note that memory access time reduction can be different
for different nodes under two placements, e.g. nodes 4, 6 and 11 (see Fig-
ure 2.1) benefit more from configuration of Figure 4.14c, while the average
delay remains the same for nodes 0 and 2. In brief, we think an optimal
placement of memory controllers is essential in designing future multicore
processors.

(a) Upper/Lower (b) Four sides (c) Center

Figure 4.14: Three examples of memory controller accesses of different
placements of memory controllers, node 6 is colored as dark gray, nodes
with light gray are connected with a memory controller.

4.4.2 Analysis of Different Placements of Memory Controllers

The number of transistors required for a memory controller is quite small
compared with billions of total transistors in a chip. Many architectures
employ a limited number of memory controllers due to the pin count limi-
tation. It is predicted by the ITRS roadmap that pin count will increase by
about 10% each year only, comparing with the number of cores that is ex-
pected to double every 18 months [7]. As aforementioned, 373 of 1366 pins
in the Intel Core i7-900 processor are dedicated to one memory controller
[50]. Moreover, about 50% of total pins are used for power supply (e.g.
VDD, VCC, VSS and VTT). The ratio between the number of cores and
the number of memory controllers is 6:1. The Tilera Tile64 processor [115]
is implemented as an 8×8 mesh with four on-chip memory controllers and
off-chip memory architecture. The ratio between core and memory con-
troller is thus 16:1. Table 4.2 shows several modern multicore processors
with different numbers of memory controllers.
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Table 4.2: Comparison of processors with memory controllers

Processor Cores Memory controllers

AMD MagnyCours 6 1 DDR3

Intel Nehalem 4 1 DDR3

IBM Power 7 8 2 DDR3

Tilera Tile64 64 4 DDR2 in 16 ports

As aforementioned, multi channel configuration will increase cost, fault
rate and power consumption. Increasing the number of on-chip memory
controllers is a practical way for future multicore processors. However, it is
not realistic to have a memory controller for each processor core in a NoC. A
NoC with n cores and m memory controllers has

(
n
m

)
possible permutations

for the placement of memory controllers. Here, we assume that a square
shaped NoC with radix

√
n has 2

√
nmemory controllers. If the chip has pin

count limitations, these memory controllers can be replaced with memory
ports and multiplexed to a smaller number of memory controllers.

The following definitions will be used for subsequent sections.

Definition 4. 1 A NoC N(P (X,Y ),M) consists of a PE mesh P (X,Y )
of width X, length Y ; and on-chip memory controllers M .

Definition 4. 2 Each PE is denoted by a coordinate (x, y), where 0≤x≤X−
1 and 0≤y≤Y − 1. Each PE contains a processing core, a private L1 cache
and a shared L2 cache.

Definition 4. 3 The Manhattan Distance (hop count) between ni(xi, yi)
and nj(xj , yj) is MD(ni,nj), MD(ni,nj)=|xi − xj |+ |yi − yj |.

Definition 4. 4 Two nodes n1(x1, y1) and n2(x2, y2) are adjacent if |x1 −
x2|+ |y1 − y2| = 1.

4.4.3 Placement for the Memory Controllers

The placement of memory controllers can have a dramatic impact on the
performance of the NoC. It is shown in [2] that the Diamond placement
reduces average network latency of a NoC by 10% on average, compared
with Column 0/7 (Figure 4.15). Optimal placement of memory controllers
can be found through exhaustive simulation. However, due to the compu-
tational complexity of a large search space, this method is only feasible for
small size NoCs, e.g. an 8×8 mesh with 16 memory controllers has

(
64
16

)
=

488,526,937,079,580 different placement possibilities,
(
64
32

)
= 1.83e+18 for

32 memory controllers!
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(a) Column 0/7 (b) Column 2/5 (c) Checkerboard

(d) Diamond (e) XCross (f) Slash

Figure 4.15: Different placement of memory controllers, M means a memory
controller, number means minimal hops required for a processor to reach a
nearest memory controller. (a) to (e) are studied in [2]

Figure 4.15 shows six intuitive, typical placement possibilities. The
values of AHC for a core accessing a nearest memory controller (1MC) are
shown in Table 4.3 (AHC/1MC). We note that the memory traffic in our
system are distributed to all the controllers evenly, according to the physical
addresses. In this case, calculating the average Manhattan Distance (MD)
from a node to all the controllers is more meaningful. Figure 4.16 shows hop
counts required for transmitting memory requests from a PE to the memory
controllers. In Figure 4.16a, the AHC for all memory controllers is 5.5.
This value is reduced to 4 and 3.5 in Figure 4.16c and 4.16b respectively.
A summary of the numbers are listed in Table 4.3 as AHC/All-MC. It is
revealed that Column 2/5 has the lowest number of AHC/All-MC.

However, based on deterministic X-Y routing, if the memory controllers
are in the same column, the request messages could get congested, e.g. in
Column 0/7 and Column 2/5, eight memory controllers are in the same col-
umn (Figure 4.17a). In this situation, all memory messages have to be sent
to the next hop node in the first place (16X in the figure). After the first
column of controllers, 50% of the messages have to pass the next two nodes
(8X in the figure). It would then follow that if the memory controllers are
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in the same row, the reply messages could get congested (Figure 4.17b).
This explains why the Diamond placement (Figure 4.15d) shows the bet-
ter performance, despite it has higher AHC/1MC and AHC/All-MC values
compared with the Column 2/5 and Checkerboard [2]. Memory controllers
in Diamond and XCross are distributed better (2 for each row/column,
shown in Table 4.3, and the memory request traffic are depicted in Fig-
ure 4.17c) than the Checkerboard.

(a) Column 0/7 (b) Column 2/5 (c) Diamond

Figure 4.16: Hop counts to all memory controllers in three placements, dark
gray node is a active PE sending memory requests, memory controllers are
colored as light gray.

Placements presented in Figure 4.15a to 4.15e are studied in [2]. How-
ever, we believe that the Slash placement, shown in Figure 4.15f, could be
even better than Diamond and XCross, because it provides better AHC
and does not worsen the distribution of memory controllers. In fact, in
terms of adjacent memory controllers, the XCross placement has four ad-
jacent controllers in the center, which could cause congestion in the central
region of the NoC. The Diamond placement has two adjacent controllers
in four sides, therefore the congestion should be alleviated. In the Slash
configuration, there are no neighboring memory controllers, hence the con-
gestion should be alleviated further. The detailed data of adjacent memory
controllers are given in Table 4.3. Besides the aforementioned metrics, the
distance between a processor core and memory controllers can be used for
analysis as well. We summarize these into three groups of sub-problems.

� Distance-m problem, which considers placing memory controllers such
that each processor core in the NoC either has a memory controller
directly attached or it is at a Manhattan Distance of at most m from
at least one processor core having a memory controller.

� Adjacent-n problem, which considers placing memory controllers such
that each node without a memory controller is adjacent to n memory
controllers.
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� The third problem is a combination of the distance-m and the adjacency-
n problems. A node without a memory controller must be a MD of
at most m from n memory controllers.
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Figure 4.17: Three cases for memory message congestion.

In Figure 4.15a, any node without a memory controller can reach one
memory controller within a MD of three, at least two memory controllers
within a MD of four. We note that the distance-m adjacent-n problem can
lead to further optimization of the system. For example, modifying the
mapping mechanism of virtual addresses to physical memory addresses in
the operating system, so that the nearest memory controllers are used [9].
Table 4.3 shows the summary for the placements presented in this section.

We examine further possibilities by using the “divide and conquer”
method, and starting from a smaller NoC. It is noteworthy that because
of the huge design space, Dennis Abts et al. used several intuitive con-
figurations with a genetic algorithm and random simulations to prune the
design space [2]. However, they have missed several possibilities which we
will examine in this section. The 8×8 NoC with 16 memory controllers
is divided into 4 small NoCs, each 4×4 with 4 memory controllers. The
computation complexity is thus reduced from

(
64
16

)
= 488,526,937,079,580

to
(
16
4

)
= 1,820.

We select the design of Figure 4.3 as our placement strategy for 16
memory controllers. In this configuration, all non-native PEs (those not
directly attached to a memory controller) require just one hop to access a
memory controller, which results in a minimal AHC/1MC. The AHC/All-
MC is the same with several other configurations, e.g. Diamond, XCross
and Slash. In terms of other metrics, the memory controllers are well
distributed, there are only two memory controllers per row/column in our
Optimal placement. No adjacent memory controllers can be found in the
Optimal placement as well. These provide good memory variance. Any
node without a memory controller in Figure 4.3 can reach one memory
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Table 4.3: Characteristics of different memory controller (MC) placements.
AHC/1MC and AHC/All-MC are shown as 1MC and All-MC respec-
tively. The Adjacent Memory Controllers (AMC) are shown in Number of
Sets×Number of nodes in each Sets.

Placement 1MC All-MC Distance-m, Adjacent-n

Column 0/7 1.50 6.125 1 MC in 3 hops, 2 MCs in 4 hops

Column 2/5 1.00 4.875 1 MC in 2 hops, 2 MCs in 3 hops

Checkerboard 1.00 5.125 1 MC in 2 hops, 2 MCs in 3 hops

Diamond 1.25 5.250 1 MC in 3 hops, 2 MCs in 3 hops

XCross 1.25 5.250 1 MC in 3 hops, 2 MCs in 3 hops

Slash 1.06 5.250 1 MC in 3 hops, 2 MCs in 3 hops

Optimal 0.75 5.250 1 MC in 1 hop, 2 MCs in 2 hops

Placement MC per row/col AMC

Column 0/7 8 2×8

Column 2/5 8 2×8

Checkerboard 4 0

Diamond 2 4×2

XCross 2 1×4

Slash 2 0

Optimal 2 0

controller within a MD of one, at least two memory controllers within a
MD of two. We note that by minimizing AHC/1MC, the overall theoretical
metrics are the best among all strategies.

4.4.4 Generic Placement Method

Our method can be applied to other numbers of memory controllers as
well, e.g. an 8×8 mesh with 8 memory controllers. In this case, a 4×4
mesh with 2 memory controllers is enumerated (

(
16
2

)
= 120, compared with(

64
8

)
= 4,426,165,368). Figure 4.4 shows these configurations.

We expand the best 4×4 placement four times in 16 memory controllers,
however it is more complex for the 8 memory controller configuration. Fig-
ure 4.18a shows a placement with four instances of Figure 4.4a. The min-
imal hop count required for four nodes to reach a memory controller is
reduced by one for the lower two instances (light-gray numbers). How-
ever, by combining different placements in Figure 4.4, the reduction for
hop counts can be even better. Figure 4.18b shows a placement, in which
two instances of Figure 4.4h are placed on top, and two instances of Fig-
ure 4.4g are placed on bottom. In Figure 4.18c, two instances of Figure 4.4f
are placed on the right side, one of Figure 4.4h is placed on top-left, and
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one of Figure 4.4g is placed on bottom-left. The hop counts in these two
figures are reduced by one in six and five nodes respectively, better than
Figure 4.18a. Apparently, the AHC/1MC in Figure 4.18b and 4.18c are bet-
ter than Figure 4.18a, while the AHC/All-MC in the three configurations
remain the same (5.125).

(a) Placement 1 (b) Placement 2 (c) Placement 3

Figure 4.18: Three placements of 8 memory controllers in an 8×8 mesh.
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Figure 4.19: The memory request and response traffic for Placement 2 in
Figure 4.18.

Besides, other metrics in Figure 4.18b are better than Figure 4.18a.
For instance, in Figure 4.18a, there are two memory controllers in all even
rows/columns, meaning that the memory requests/responses could be con-
gested on these rows or columns. However, in Figure 4.18b, memory con-
trollers are evenly distributed in the vertical axis. In this case, the request
messages will be distributed evenly in the horizontal axis (Figure 4.19a),
the response messages will be concentrated on the four rows (Figure 4.19b).
The situation is different in Figure 4.18c: there are two rows with two mem-
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ory controllers in the horizontal axis (four rows with one, two with zero),
and two columns with two memory controllers in the vertical axis (four
columns with one, two with zero). In this case, the request and response
messages will be evenly balanced in two axes.

The combination should take other metrics into consideration as well,
e.g. Distance-m, Adjacent-n and adjacent memory controllers. We note
that to find the best combination, the problem can be described as: Choose
4 placements from Figure 4.4, the order of choice is important, and repeti-
tion is allowed. The design space is reduced to 84 = 4096.

Table 4.4: Comparison of mesh size and placement possibilities, with 2
√
n

memory controllers

Mesh size Placement possibilities Exec time

3×3 84 0.007s

4×4 12870 0.060s

5×5 3268760 23.343s

6×6 1.252e+9 14755.577s

7×7 6.752e+11 N/A

8×8 4.885e+14 N/A

9×9 4.567e+17 N/A

10×10 5.360e+20 N/A

Although we study memory controller placement for an 8×8 mesh in
this section, the idea can be generalized. The time required for exhaustive
simulation is practical for a NoC below the size of 6×6. Table 4.4 shows
placement possibilities and execution time for exhaustive simulation with
different mesh sizes. The simulation platform is 3.372GHz Intel Core 2 Duo
processor with 2GB of memory. We observe that the execution time is too
long beyond 6×6, thus the data is shown as “N/A”.

For a larger NoC, we divide it into several smaller NoCs and solve them.
The time required for enumerating a smaller NoC is feasible:

� A 6×6 NoC with 12 memory controllers is a combination of four
3×3 NoCs, each with 3 memory controllers (“divide”,

(
9
3

)
= 84). In

this case, simulation shows 10 best placements. The design space for
“conquer” is 104 = 10, 000.

� A 10×10 NoC with 20 memory controllers is a combination of four
5×5 NoCs, each with 5 memory controllers (“divide”,

(
25
5

)
= 53,130).

In this case, simulation shows 34 best placements. The design space
for “conquer” is 344 = 1, 336, 336.

Table 4.5 lists the computation complexity of two methods, for several
chip configurations. Our idea can be expanded to NoCs with regular sizes
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and regular number of memory controllers. It is noteworthy that NoCs
with large prime radix numbers (13×13 and 19×19 etc.), or with irregular
number of memory controllers (11, 17 etc.) are more difficult to solve,
however these configurations are very rare in real world.

Table 4.5: Comparison of computation complexity of exhaustive enumera-
tion and “divide and conquer”, for several memory controller placements.

Problem Exhaustive Divide Conquer

6×6, 12MC 1.252e+9 84 10,000

8×8, 8MC 4.426e+9 120 4,096

10×10, 20MC 5.360e+20 53,130 1,336,336

4.4.5 Routing Algorithm

Adaptive routing is used widely in off-chip networks, however deterministic
routing is favorable for on-chip networks because the implementation is
less complex. Dimensional ordered routing (DOR) [99] algorithms, e.g. X-
Y and Y-X, are typical deterministic routing algorithms to avoid deadlocks.
In X-Y routing, when a node sends a flit to another node, the flit will first
travel along the X direction, then it will be routed in the Y direction.
A Class-based Deterministic Routing (CDR) is proposed to further reduce
network contention [2]. The algorithm takes advantage of both X-Y and Y-
X routing, where the path is determined by message class. Memory request
packets use one routing algorithm, while reply packets take another.

Intuitively, Column 0/7 and Column 2/5 benefit more from CDR com-
pared with the other placements. Since the memory controller nodes are
in the same column, inducing high contention in one axis of X-Y and Y-X
routing. It is claimed that CDR improves performance by 56% for uniform
traffic comparing with the baseline X-Y routing for Column 0/7 placement
[2]. The performance improvement is very limited in the Diamond place-
ment, since the memory controllers are well distributed in rows and columns
and there are only four sets of two adjacent nodes. Here, we propose an op-
timal placement of memory controllers, in which the distribution of traffic
and adjacent nodes are comparable or better than the Diamond placement.
Therefore we use X-Y routing instead of CDR.

4.4.6 Address Mapping

In our system, the memory controllers are shared by all processors. For
a physical address (an unsigned 64-bit integer), the following algorithm
determines which memory controller it maps to. The memory controller
accepts requests from the processors and provides the arbitration interface
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to determine which request will be processed. The request is then mapped
to a memory address location and converted to Dynamic Random Access
Memory (DRAM) commands.

Code 3 The pseudo code of mapping physical addresses to memory con-
trollers.
int Address_to_MC(addr)

{

b1=Data_Block_Bits; //Data block width in bits

b2=Data_Block_Bits+Memory_Bits-1;

if(b2>=63) //Memory address width (64) minus 1

return (addr>>b1);

else

return ((addr&(~((64)~0<<(b2+1))))>>b1);

}

4.4.7 Experimental Evaluation

In this section, we present the experimental evaluation under different
placements of memory controllers. Applications are selected from SPLASH-
2 [116], TPC-H [104] and PARSEC [18]. To evaluate the performance of
different memory controller placements, we model a NoC with 16 memory
controllers. The NoC consists of an 8×8 mesh of PEs. Each PE consist of
a processor core with a private L1 cache and a shared L2 cache. We use
a 64-node network which models a single-chip CMP for our experiments.
The size of each cache bank node is 1MB; hence the total size of shared L2
cache is 64MB. MOESI is used in our memory hierarchy. A power simulator
for interconnection networks is used to evaluate detailed power character-
istics [57]. The simulator models a wormhole router with corresponding
input/output ports, buffers and the crossbar. Power consumption of both
routers and links are analyzed.

We evaluate performance in terms of Average Network Latency (ANL),
Average Link Utilization (ALU) and Performance Power Product (PPP).
The results are illustrated in Figure 4.20, 4.21, 4.22 and 4.23. The ANL
is measured in two ways: one for memory request messages (ANL-MReq),
and another for all network messages (ANL-All). ANL-MReq represents
the average number of cycles required for the transmission of memory re-
quest messages. ANL-All represents the average cycles required for the
transmission of all network messages, e.g. cache data and coherence mes-
sages. The number of cycles of each message is calculated as, from the
injection of the message header into the network at the source node, to the
reception of the tail flit at the destination node.
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Figure 4.20: ANL-MReq for FFT, with different placements of memory
controller.

As is shown in Figure 4.20, in terms of memory request messages, the
Column 2/5 placement outperforms the other placements. The ALN-MReq
in Column 2/5 is reduced by 22.6% compared with Column 0/7. The
improvement is because of the lower value of AHC/All-MC in Column
2/5. We note that the experimental results conform to our theoretical
analysis in Table 4.3. In spite of the lower ALN-MReq in Column 2/5, only
processor(cache)-memory traffic is considered in this case.

The data in Figure 4.21 contains additional traffic, for example, processor-
processor communication. It is noteworthy, the processor-processor com-
munication makes up the major portion of the traffic. According to our
traffic trace, more than 90% of the traffic are processor-processor related.
Both Slash and Optimal placements outperform the other placements in
terms of ANL. For example, comparing with the Column 0/7 placement,
the ANL for all applications of the Slash placement is reduced by 6.04%
(7.63% for the Optimal placement). This is primarily due to the reduced
hop count of memory data traffic in the Slash and Optimal placements,
compared with that in the Column 0/7 counterpart. Although Column
2/5 has lower number of ANL-MReq, in terms of ANL, it does not benefit
from that advantage. As aforementioned, the adjacent memory controllers
in Column 2/5 can cause traffic congestion.

The ALU is defined as the number of flits transferred between NoC
resources per cycle. The average load of all virtual channels are calculated.
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Figure 4.21: Normalized ANL with different placements of memory con-
troller.

Under the same configuration and workload, lower utilization means allevi-
ated network load, which is favorable. It is depicted in Figure 4.22 that com-
paring with the traditional Column 0/7 design, the ALU for our proposed
Optimal placement is reduced by 10.44%, on average. FMM, SPECjbb and
swaptions have the most significant reduction of ALU, 14.79%, 13.38% and
12.14% respectively. We note that the ALUs in Column 0/7 and Column
2/5 are nearly the same, while there’s a significant reduction in the other
three placements. This is due to the fact that the memory request messages
could get congested in the 8 adjacent memory controllers of the two columns
in these two placements (Column 0 and 7 in Column 0/7, Column 2 and 5
in Column 2/5). Besides, the congestion may happen in surrounding nodes
as well (Figure 4.17a). On average, the ALU for our proposed Optimal
placement is reduced by 2.87% compared with the Diamond placement.

As a combination of both performance and power consumption, the
PPP is a more meaningful metric because performance is usually a trade-
off for power consumption. We measure performance in terms of execution
time of an application. Power consumption of both links and routers are
calculated. Systems with a lower PPP generally have a better trade-off
between the performance and power. The results in Figure 4.23 show that
the PPP improves more significantly, when compared to ANL and ALU im-
provements. For example, configuration with Optimal placement performs
17.56%, 15.60%, and 16.38% better than Column 0/7 in FMM, Ocean and
SPECjbb respectively. On average, the PPP is reduced by 13.94% and
10.90% for Optimal and Slash designs respectively compared with the Col-
umn 0/7 design. By using better placements, we notice that the execution
time is reduced slightly (e.g. 5.88% reduced execution time of FFT in Opti-
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Figure 4.22: Normalized ALU with different placements of memory con-
troller.
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Figure 4.23: Normalized PPP with different placements of memory con-
troller.

mal compared with Column 0/7), while the power consumption is reduced
further (e.g. 8.43% reduced power consumption of routers and links of FFT
in Optimal compared with Column 0/7). We also note that the Column 2/5
placement provides lower execution time in some cases (Cholesky, FFT, LU,
Radix etc.), due to its lower AHC/All-MC. However, as aforementioned, the
concentrated memory controllers in Column 2/5 and Diamond can cause
hotspots in certain region of the on-chip network. In conclusion, the system
efficiency will improve significantly with an optimal placement of memory
controllers.
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4.5 Placement for Core and Cache

Multicore processors are dominating the market nowadays. Normally, each
core has its own computational units, registers and private caches. A last
level cache will be shared by all cores. Intel Pentium-D is one of the first
CMP which embedded two dies on a processor package. Quad-core CMPs
such as Intel Core i5, i7 [50] and AMD Phenom II [5] are mainstream for
desktop systems. The integration of more cores on a CMP is under intensive
research. For example, AMD has announced its twelve-core Opteron CMP
with two dies on a chip, each of which has six cores [6]. The newest Xeon,
based on Westmere-EX architecture, has been fabricated by Intel with ten
cores [52]. Sun and IBM have their own CMP design as well [105, 48]. It
is predictable that in the future, the integration of more cores on a single
chip will move on.

In this section, we investigate the placement of cores and caches in a
2D mesh network interconnect. We model a CMP based on state-of-the-art
processors. We analyze the impact of different placements of cores/caches
in a mesh network. Optimal placements of several configurations have
been found and discussed. We present the performance using a full system
simulator.

4.5.1 Modern Chip Multiprocessor Design

As aforementioned, there have been different interconnect topologies for
CMPs. Conventional designs are focused on crossbar or hierarchical cross-
bar. While recently, designers are moving from crossbar to ring interconnect
to improve scalability. Ring has natural ordering properties, making de-
sign, validation and routing simpler. Table 4.6 shows the key features of
state-of-the-art CMPs. Take the Westmere-EX for example (Figure 4.24),
it uses a bi-directional ring to connect the last level caches to the cores.
The ring consists of 4 different sub-rings, namely request, acknowledge,
snoop and data. The data ring is pipelined and uses 32 bytes data width.
For each processor cycle, data can move one hop on the ring for either
directions. These 4 rings are responsible for the cache/memory coherency.
It is reported that [27], although the sizes of last level cache in Nehalem
and Sandy Bridge are the same (8MB), the access latency is significantly
reduced from 35 cycles in Nehalem (Minimal latency is 35 cycles if the fre-
quencies of core and uncore are the same) to 26-31 cycles in Sandy Bridge
(Depending on the hop count to the cache slices). Several factors contribute
to the reduced latency. For example, the cache architecture of Nehalem is
uniform and divided into multiple levels. The access latency of the 8MB
last level cache is determined by the longest access latency to the furthest
data arrays and tags. While in Sandy Bridge, the 8MB cache is split into
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4 slices, each 2MB. The access latencies to access the cache slices are de-
creased. Each slices has different access latency, making it a non-uniform
cache architecture.

Table 4.6: Comparison of different Chip Multiprocessors. LLC for Last
Level Cache.

CMP Cores LLC Transistors

AMD MagnyCours [6] 12 (2×6) 12MB 1,808M

IBM Power 7 [48] 8 32MB 1,200M

Intel Nehalem [50] 4 8MB 731M

Intel Westmere [50] 6 12MB 1,170M

Intel SandyBridge [52] 4 8MB 995M

Intel Nehalem-EX [50] 8 24MB 2,300M

Intel Westmere-EX [52] 10 30MB 2,600M

Sun SPARC T3 [105] 16 6MB 1,000M

CMP Process Die Size Interconnect

AMD MagnyCours [6] 45nm 692mm2 Crossbar

IBM Power 7 [48] 45nm 567mm2 Ring

Intel Nehalem [50] 45nm 263mm2 Crossbar

Intel Westmere [50] 32nm 239mm2 Crossbar

Intel SandyBridge [52] 32nm 216mm2 Ring

Intel Nehalem-EX [50] 45nm 684mm2 Ring

Intel Westmere-EX [52] 32nm 513mm2 Ring

Sun SPARC T3 [105] 40nm 377mm2 Hierarchical Crossbar

Routing in a ring is more complex than routing in a crossbar. Fur-
thermore, the scaling of the ring has limitations. As data travel across the
ring, it can block accesses from other agents. With each additional agent,
the available bandwidth will be reduced and the average hop count will
increase. In this case, as aforementioned, on-chip network has been intro-
duced as a better solution. The scalability of on-chip network is better
compared with crossbar and ring. Each network node can include different
component, e.g. a node with only Core/L1 cache, and a node with only L2
cache, creating a heterogeneous network.

4.5.2 Area of Core and Cache

As is shown in Figure 4.24, cores and caches in the Westmere-EX have
similar area. For example, a 32nm Westmere core has an area of about
17mm2. The last level cache in Westmere-EX is split into 10 slices, each
3MB. Notice that each slice is about the same size as a core. Here, we
assume that:
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Figure 4.24: Intel Westmere-EX architecture, presented by Intel at Hot
Chips 2010.

� The area of a core and a cache slice are the same,

� The last level cache consists of multiple slices, the number of cores
and cache slices is equal.

In this case, an 8-core CMP has 8 cores and 8 cache slices. These
assumption fits the design principles of Intel and IBM [50, 52, 48].

4.5.3 Ring and Network Connection

In a ring connection, the average hop count accessing cache slices for all pro-
cessors are the same. For example, Figure 4.25a shows an abstract model
of 8-core Nehalem-EX. The cores (C0 to C7) are connected to the central
bi-directional ring (the connections between cores and ring are not shown
in figure). Figure 4.25b and 4.25c demonstrate the hop counts required for
accessing each cache slice of C0 and C1, respectively. The latencies for ac-
cessing each cache slice is different. Considering a perfect application with
average access to cache slices, for the 8-slice cache, each slice has an access
probability of 1/8. Real-world applications are most likely to have different
cache access patterns, i.e. the access frequency to certain slices might be
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higher than others. In this case, the addresses of data kept in the cache
arrays can be distributed among the cache slices with a uniform distributed
hash function [27]. However, a system with billions of cache accesses tend
to have a balanced access to all slices. We define AHPCn as the Average
Hop Count accessing all cache slices for a core Cn:

AHPCn =

∑m
i=0Distance(Cn, Cachei)

m+ 1

Such that: m+ 1 = (Number of cache slices)

Notice that the average hop counts for C0 (AHPC0) and C1 (AHPC1)
to all cache slices are the same, which is 3. We define AHPAll as the average
value of all AHPCn:

AHPAll =

∑n
i=0AHPCi

n+ 1

Obviously, the AHPAll for Figure 4.25a is 3 since all cores have the
same average latency to the cache.
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(c) Hop count for C1

Figure 4.25: An example of 8-core CMP, with Bi-directional ring intercon-
nect (a, Cx as Core x), and access latency (shown as hop count) for Core
0 (b) and Core 1 (c) of each cache slice.

By implementing a network interconnect, theAHP s can be non-uniform
for different cores. Manhattan Distance, or MD, is used to calculate the
hop count in a network-based interconnect. For example, AHPC0 in a
network is the same as in a ring, however AHPC1 in a network is just 2.5
compared with 3 in a ring. We calculate that in Figure 4.25a, the AHPAll

for a network interconnect is 2.75, 8.3% lower than that in a ring.

4.5.4 Placements of Caches

The different placement of cache slices can have a dramatic impact on the
performance of the CMP. Figure 4.26a shows a worst case placement of 8
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cache slices. In this configuration, all the cache slices are placed on one
side of the chip (gray nodes), causing high delays for the cores in the other
side of the chip (AHPAll=3.25).
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Figure 4.26: Examples of worst case placement (a), best case placement
(b), and access latency Core 1 (c) of each cache slice of the best case.

To minimize cache access latencies for all cores, the placement of cache
slices should be considered carefully. For example, an 8-core CMP with 8
cache slices has

(
16
8

)
=12,870 different cache placement possibilities. The

value of AHPAll varies significantly with different placements. We ex-
plore the placements by writing a program that exhaustively enumerate
all possibilities and output the AHPAll (Code 4). The outputs are then
processed and sorted for analysis. A best case placement of 8 cache slices
is illustrated in Figure 4.26b. We observe that there are 90 placements
with lowest AHPAll (2.5), and 4 placements with highest AHPAll (3.25).
The cache access latencies of Core 1 are demonstrated in Figure 4.26c. It
is noteworthy that AHPC3 and AHPC4 are lowest among 8 cores, while
AHPC0 and AHPC7 are highest.

We continue our investigation for a 10-core CMP, similar to Westmere-
EX. In this case, there are

(
20
10

)
=184,756 different cache placement possi-

bilities. The simulation output has 4 worst case placements and 1,240 best
case placements. Figure 4.27a and 4.27b show two of these. The AHPAll

for worst case placements and best case placements are 3.68 and 2.86 re-
spectively, while the value is 3.5 in a ring interconnect.

The best case AHPAll for a 12-core CMP is similar to the 8-core, where
6 cores are placed on one side, and the other 6 cores are placed on the other
side of the CMP (Figure 4.28a). The AHPAll for worst case placements
and best case placements are 3.19 and 4.25 respectively, while the value is 4
in a ring interconnect. We find 1,860 best case placements from 2,704,156
combinations. Figure 4.28b shows a best case placement for a 14-core
CMP, notice that the placement of cores and caches is similar to the 10-
core configuration.
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Code 4 Part of C source code of calculating AHPAll, for a combination of
cache slices placement.
void calculate_ahpall()

{

for(i=0;i<Combinations;i++) //Calculate for all combinations

{

for(j=0;j<C_Num;j++) C[j]=C_Comb[i*C_Num+j];

//C_Comb is an array of all cache

placement combinations

last_node=0;

for(k=0;k<Net_x*Net_y-C_Num;k++) //Calculate for all caches in the CMP

{

Cores[k]=last_node; //Cores is set of cores

for(l=0;l<Net_x*Net_y;l++)

{

for(m=0;m<C_Num;m++)

{

if(Cores[k]==C_Comb[m]) Cores[k]++;

if(k>0&&(Cores[k-1]==Cores[k])) Cores[k]++;

}

last_node=Cores[k];

}

for(x=0;x<Net_x*Net_y-C_Num;x++) //for all cores

{

for(y=0;y<C_Num;y++) //for all caches

{

tmp+=MD(Cores[x], C_Comb[y]); //Calculate the MD from a Core to a

cache slice

}

avg_dist=tmp/C_Num;

total_dist+=avg_dist;

avg_dist=0;

tmp=0;

}

final_ahpall[i]=total_dist/(Net_x*Net_y-C_Num);

//Final AHP_all for a combination

total_dist=0;

}

}

4.5.5 Discussion

To compare the difference between ring and network interconnect, we sum-
marize and calculate the AHPAll for several configurations. Table 4.7 shows
the data (NW for worst case placement of a network, NB for best case place-
ment of a network, NB%Ring for percentage of NB compared with Ring,
NB%NW for percentage of NB compared with NW). It is shown that, on
average, the AHPAll for a best placement of cache slices in a network inter-
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Figure 4.27: Examples of worst case placement (a), and best case placement
(b), for a 10-core 10-cache configuration.
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Figure 4.28: Best case placements for a 12-core CMP (a), and 14-core CMP
(b).

connect is around 25% less than that in a ring. Researches have shown that
[27], due to the implementation of ring interconnect, the last level cache hit
latency has reduced from 35-40 cycles (Nehalem) to 26-31 cycles (Sandy
Bridge).

We use abstract models of 4×N , where N equals to half of the num-
ber of cores. For example, we use 4×N network in ”10 Core/10 Cache”
configuration. This model fits well with smaller number of cores/caches.
According to [67], a model shape has lower number of AHP (this AHP is
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Table 4.7: Comparison of AHPAll for different interconnect and placement

Configuration Ring NW NB NB%Ring NB%NW

8 Core/8 Cache 3.00 3.25 2.50 83.3% 76.9%

10 Core/10 Cache 3.50 3.68 2.86 81.7% 77.7%

12 Core/12 Cache 4.00 4.25 3.19 79.9% 75.2%

14 Core/14 Cache 4.50 4.69 3.54 78.7% 75.5%

for all nodes, assuming a homogeneous model) if it is closer to a square.
Their conclusion applies to our heterogeneous model as well. Considering
the ”12 Core/12 Cache” configuration which has 24 nodes, the communi-
cation overhead for a 4×6 model is smaller than that in 3×8 and 2×12. In
this case, we don’t consider models such as 3×8 and 2×12. CMPs with a
higher number of cores are not considered here, due to the fact that the
number of cores and cache slices may not be equal in the future. For in-
stance, current desktop CMP design trends tend to have smaller and faster
caches for better user interface experience, while a CMP designed for server
environment have larger caches.

However, it is hard to define a rule of thumb for optimal placement of
cores/caches. We note that exhaustive simulation is feasible for a smaller
number of nodes, e.g. a 6×6 model with 18 cores and 18 cache slices has(
36
18

)
= 9,075,135,300 different placement possibilities, a 5×8 model with

20 cores and 20 cache slices has
(
40
20

)
= 137,846,528,820 possibilities. The

design space grows exponentially as the number of cores increases, making
the exhaustive method to be unpractical. As aforementioned, divide and
conquer method can be used for a huge design space, however this method
only applies with certain limitations. Heuristic-guided methods can reduce
the computational complexity from a large search space, notwithstanding
the non-optimal outputs.

4.5.6 Experimental Evaluation

In this section, we present the experimental evaluation under different CMP
configurations. Applications are selected from SPLASH-2 [116] and PAR-
SEC [18].

We use ring and network interconnects to model a single-chip CMP
with 8, 10, 12 and 14 cores (16, 20, 24 and 28 nodes). Each processor core
has a private write-back L1 cache. The L2 cache shared by all processors
is split into slices/banks. The size of each cache bank is 3MB; hence the
total sizes of the shared cache are 24MB, 30MB, 36MB and 42MB respec-
tively. MOESI cache coherence protocol is implemented here. Workloads
used here include FFT from SPLASH-2 and swaptions from PARSEC. The
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FFT is a one-dimensional, radix-n, six-step algorithm, which is optimized
to minimize inter processor communication. The communication between
processors only take place at the last stage of the execution. However the
coherence traffic and cache miss rate are very high. Swaptions is a workload
that employs Monte Carlo simulation to compute prices.

We evaluate performance in terms of Average Network Latency (ANL)
and execution time. The results are illustrated in Figures 4.29 and 4.30.
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Figure 4.29: Normalized average network latency in cycles.

Figure 4.29 shows that, on the whole, the average network latency of
our optimal core/cache placement in a network interconnect (*-NB in the
figure) outperforms the ring interconnect (*-Ring in the figure) in four
configurations. The improvement is more significant in the 8-core configu-
ration, with 16.89% reduced latency in FFT and 11.78% reduced latency in
Swaptions, respectively. This is primarily due to the fact that the AHPAll

for NB is much lower than that in the Ring. We notice that the on-chip
communication consist of cache coherent messages, cache data and mem-
ory control/data messages. Out of these messages, the cache related con-
trol/data messages are the dominant (over 90%). In this case, lower average
access latency to the cache slices will transfer into lower average network
latency. We also note, the improvement is more significant in application
with higher cache access frequencies, for example FFT. Overall, the average
network latency has reduced 11.93% for four configurations.

As depicted in Figure 4.30, in terms of execution time, the optimal
core/cache placement has considerable advantage compared with the ring.
Overall, the reduction of execution time is more significant than that in the
average network latency. Comparing with the ring interconnect, on average,
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Figure 4.30: Normalized execution time.

the execution time for our proposed core/cache placement is reduced by
19.53% in four configurations. Again, the higher cache/memory traffic
in FFT benefits more from reduced AHPAll, compared with Swaptions.
Results shown that the execution time of FFT has reduced 22.62% in four
configurations, while the reduction in Swaptions is 16.43%. This proves
that FFT is more sensitive to core/cache latency than Swaptions as well.
The savings of AHPAll have translated directly into the reduced execution
time.
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Chapter 5

Application Study for
Network-on-Chip

To improve energy efficiently, a computer system should have both efficient
hardware and software specially optimized for the hardware. For computers
based on Network-on-Chip paradigm, the hardware chip is manufactured
for research and commercial use by Intel, Tilera, Intellasys and many other
companies and laboratories. However, the adaptation of software system
falls far behind the hardware. Without the collaboration of software sys-
tem, the processing ability of NoC can be limited, and therefore the system
energy efficiency can be low. In this section, we analyze several applications
originally designed for traditional architectures, and try to give optimiza-
tion suggestions for NoC architecture. Arbitrary core allocation is used in
this section.

In Section 5.1, we implement, analyze and compare different NoC ar-
chitectures aiming at higher efficiency for MPEG-4/H.264 coding. Notic-
ing that the inter-thread data dependencies of shared reads and writes
are performance bottlenecks, we explore different Non-Uniform Cache Ac-
cess (NUCA) designs using NoC architectures. Two-dimensional (2D) and
three-dimensional (3D) NoCs have been analyzed with the focuses on hop
counts and heat dissipation. Experiments show that under different work-
loads, the average network latencies in two 3D NoC architectures are re-
duced by 28% and 34% respectively, comparing with their 2D counterparts.
It is also shown that the heat dissipation is a trade-off consideration in im-
proving the performance of 3D chips.

In Section 5.2, we study two hierarchical N-Body methods for Network-
on-Chip (NoC) architectures. The N-Body problem is a classical problem
of approximating the motion of bodies. Two methods, namely Barnes-
Hut (Barnes) and Fast Multipole (FMM), have been developed for a fast
simulation. The two algorithms have been implemented and studied in
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conventional computer systems and Graphics Processing Units (GPUs).
However, as a promising multicore architecture, the evaluation of N-Body
methods in a NoC platform has not been well addressed. We define a NoC
model based on state-of-the-art systems. Experiments show that Barnes
scales better (53.7x/Barnes and 36.6x/FMM for 64 processing elements)
and requires less cache than FMM. However, we observe hot-spot traffic
in Barnes. Our analysis and experiment results provide a guideline for
studying N-Body methods in a NoC platform.

In Section 5.3, we propose an optimized NoC design for data parallel
FFT applications. NoC based architecture is proposed for future multicore
processors due to its scalability. FFT is widely used in digital systems. The
implementation of FFT on conventional architectures have been studied.
However, the evaluation of data parallel FFT in a NoC platform has not
been well addressed. We analyse data parallel FFT in terms of traffic
patterns and propose an optimized NoC design. Experiments show that the
execution time of our optimized design is 12.13% faster than the original.

5.1 H.264

H.264, also known as Advanced Video Coding (AVC), is the latest interna-
tional standard of video stream coding [86]. It has been defined in MPEG-4
part 10. Previous standards such as MPEG-2 have been widely used for
coding video streams over digital television signal and video conference
system. However, new applications and services such as camera phone and
on-line video services require higher coding efficiency. H.264 has been used
in a wide range of applications such as Blu-ray Disc, videos from YouTube
and the iTunes Store, DVB broadcast, direct-broadcast satellite television
service, cable television services, and real-time video conference. Not sur-
prisingly, H.264 is hungry for higher processing power which requires par-
allelism and multicore computing. However, the current portable devices
are usually suffering from the limited processing ability and low efficiency,
thus a new chip design is required.

Most prior researches have focused on functional partition of the H.264
coding, including conventional architectures and NoCs. We analyze the
impact of NoC design, and the influence of temperature and performance
of 2D/3D NoC for data parallel H.264 coding in this section. The en-
coding and decoding processes of H.264 have been analyzed. We discuss
the parallelism of H.264, and an open-source H.264 encoding program is
used as a case study. The contribution of this section lies in the NoC
design method and performance evaluation of data parallel H.264 coder.
We present benchmark results using a cycle accurate full system simulator
based on realistic workloads. Our analysis and experiment results provide
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a guideline to design efficient 3D NoCs for data parallel H.264 coding ap-
plications.

5.1.1 The H.264 Coding Standard

Like the traditional coding system such as MPEG-2 and MPEG-1, H.264
is based on motion compensation and inverted coding. However, in H.264,
several advanced coding technologies have been introduced, such as multiple
motion estimation, inter-frame estimation and multi-frame estimation [86].

A video sequence in H.264 is constructed by multiple groups of pictures,
each of which includes several frames, and each frame includes one or more
slices which are built by multiple macroblocks. A macroblock is a block
shaped unit (e.g. 8x8 pixels) of associated luma and chroma sample [86].

The following are the three basic frame types in H.264.

� I Frame: All macroblocks in an I frame are coded by the intra motion
prediction. The I frames are not optimized for motion compensation.

� P Frame: Certain macroblocks in a P frame are coded by intra motion
prediction as those in I Frames, while others are coded by inter motion
prediction with a motion compensated frame as a reference. The
referred frame is usually the previous frame.

� B Frame: Certain macroblocks in a B frame are coded by the in-
ter motion prediction which refers to two other motion compensated
frames. The B frames are similar to the P frames except for the dif-
ference in the number of reference frames that are used. Better video
quality and compression ratio can be achieved with well predicted B
frames.

Both encoding and decoding processes are defined in H.264. Figure 5.1
and Figure 5.2 illustrate these processes respectively.

A frame from the video stream which has been divided into macroblocks
is inputted for encoding (Figure 5.1). The Macroblocks are encoded in ei-
ther inter or intra prediction mode (mode selection, MS) depending on their
frame types. In the intra prediction (IP) mode, the macroblocks use sam-
ples in the same frame for coding while in the inter prediction mode, samples
from the reference frames that have been motion estimated (ME) or mo-
tion compensated (MC) are used. After being subtracted from the current
macroblock, the predicted macroblock produces a difference macroblock
Dn which is then transformed using discrete cosine transform (DCT) and
quantized (Q). Thereafter, the generated coefficients are encoded by the
entropy coder for output. To encode a macroblock using reconstructed
frames, the coefficients are inversely quantized (Q-1) and inversely discrete
cosine transformed (IDCT) to produce the difference macroblock D’n. The
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Figure 5.1: H.264 encoding process.

predicted macroblock is added to D’n and a deblocking filter is applied to
minimize the distortion.
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Figure 5.2: H.264 decoding process.

The input of the decoding process is the compressed video streams
(Figure 5.2). The data are entropy decoded to a set of coefficients which
then produce the difference macroblock D’n via Q

-1 and IDCT. Based on the
information in the video stream, reference frames (RF) can be selected for
inter frame motion compensation. The compensated macroblock is added
to D’n to generate the result which can be used as either intra prediction or
output after deblocking. It is obvious that the decoding process of H.264
is included in the encoding process.
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5.1.2 The Parallelism of H.264 Encoding

As discussed in the previous section, the decoding process of H.264 is a
part of the encoding process, hence the analysis on the parallelization of
the encoding process is suitable for the decoding process as well.

Functional Partition and Data Parallel

There are two approaches to design a H.264 coding system; functional
partition and data parallel. In a functional partitioned system, tasks such
as MC, ME, DCT and deblocking are assigned to individual PEs. Each PE
is designed and optimized for a specific task to minimize its area and power
consumption. Macroblocks are processed sequentially. However, this archi-
tecture is suffering from high transfer rates between PEs and unbalanced
workloads. Furthermore, a functional partitioned design is usually applied
to certain applications with simple control and fixed/static communication
patterns like digital signal processing.

In data parallel design, in contrast to its functional partitioned coun-
terpart, is applied to applications with enough independent data. For data
parallel H.264 coding, video stream data such as macroblocks, slices and
frames are distributed to PEs. Multiple video stream data can be pro-
cessed simultaneously. Data dependency is a major constraint. Here, we
will analyze two data parallelization methods at the slice and frame level.

Slice Level Parallelization

As is shown in Figure 5.3, the program divides a frame into a number of
slices and each slice has its own independent structure. A thread is gener-
ated for each slice. After execution, a thread has to wait until other threads
are completed. Apparently parallelization increases when more slices are
divided. However, by dividing more slices, there will be a penalty to the
quality of the video since each slice requires a few bits in the video stream.
It is claimed in [103] that the peak signal-to-noise ratio decreases when
more slices are divided. Furthermore, sequential portions of the program
do not scale well as the number of PEs increases.

Frame Level Parallelization

Independent frame sequence is required to realize a full frame level
parallelization. However, frames in H.264 are dependent on each other.
For the three frame types I, P and B, an I frame need no reference frame, a
P frame refers to the previous P frame and a B frame refers to the previous
and next P frames.
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Figure 5.3: Slice level parallelization of a frame.

Take the video sequence in Figure 5.4 as an example. The first I frame
refers to nothing, while the fourth frame (P) refers to the first I frame and
is referred by the previous B frames (second and third) and the next P
frame (seventh). Therefore, full parallelization of all frames is impossible
due to the inter dependabilities in the frame sequences.

PI BB B PB IPB B …...

Figure 5.4: Dependency in a video sequence, with 2 B frames.

A thread Tn will be generated for each frame n. Earlier frames must
be completed before later frames can be processed because the motion
prediction and compensation involves previous frames (Figure 5.5).
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Figure 5.5: Frame level parallelization of a video sequence.

5.1.3 Case Study

In our research, the x264 has been chosen as case study for the analysis
of parallelization. X264 is an open source H.264 video encoder which is a
benchmark program in the Princeton Application Repository for Shared-
Memory Computers (PARSEC) [18]. PARSEC benchmark suite is designed
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for studies of shared memory CMPs. It has been proved to be more accu-
rate than SPLASH-2 when executing modern multithreaded applications
[17]. The x264 program is multithreaded with threads including B-adapt
(adaptive B-frame placement), rate-control, encoding and decoding. The
coarse-grained pipeline parallelism is also achieved in x264.

It is shown in [18] that the speedup of x264 in a multicore system is lim-
ited because of the serial section in the code. Data dependency among x264
threads is heavy due to the shared reads and writes which are introduced
by inter-thread communications. The shared data are deblocking pixels
and reference frames that are used for the motion compensation and pre-
diction in P and B frames. Moreover, data transfers from external memory
to local cache are expensive in terms of latency and power consumption.
If these shared data (e.g. the information of macroblocks) are stored and
shared in a high performance on-chip network, cache miss rate and power
consumption can be greatly reduced.

5.1.4 The Baseline 2D NoC Design for H.264

As aforementioned, data dependencies among threads are a major bottle-
neck of data parallel H.264 coding. Scalability of data parallel processing in
a NoC requires minimized inter-communication between nodes. Figure 5.6
shows a NoC based 2D mesh SNUCA design which is optimized for data
parallel H.264 coding. The cache banks are placed in the center of the 2D
mesh topology while PEs are placed on the two sides. Each cache bank and
PE is attached to a router which connects to the underlying on-chip inter-
connect network. The shared frame data for inter-thread communication
are stored in the central cache banks.
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Figure 5.6: 2D NoC design based on SNUCA.
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5.1.5 3D NoC Designs for H.264

In this section, two 3D NoC designs are studied, as shown in Figure 5.7.
3D-DL is achieved by simply folding the 2D design, leaving the PEs in
both layers. In the 3D-top design, the PEs are gathered on the top layer
for the efficient heat dissipation. Each design alternative has its pros and
cons. For example, in terms of hop count, the 3D designs are lower than
the 2D. Figure 5.8 shows the comparisons of the worst case and average
hop counts among different architectures. The worst case hop count in the
2D design is 9, while in 3D-top with 4 pillars (top-4) it is reduced to 7
and eventually in 3D-DL with 4 pillars (DL-4) it is further decreased to
6. Similarly, the average hop counts in top-4 and DL-4 are respectively
17.5% and 21.9% less than those in the 2D design. From Figure 5.8, it
is unsurprisingly obvious that the hop counts decreases with the increase
in the number of pillars. The effect of pillar numbers in real workload is
discussed in Section 6. Apparently, 3D-DL outperforms the 3D-top design
in terms of hop count.
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Figure 5.7: Two 2-layer 3D NoC designs with PEs distributed in layers
(3D-DL) and on top (3D-top). Four pillars are shown for clarity.

However, comparing with the 3D-top design, the 3D-DL suffers from
the severe constrain of thermal hot spots. In on-chip systems, PEs such as
CPUs and DSPs usually produce much more heat than memory devices.
As a result, the chip temperatures are usually high in the regions where the
density of PEs is high. The high temperature often results in higher fault
rates, process variations and shorter lifetime. In the 3D-top design, since
all the PEs lie on the top layer where the heat can be easily dissipated into
heat sinks, the hop spot problem is alleviated in a certain degree. On the
contrary, in 3D-DL, the space between the two layers is so limited that the
heat cannot dissipate efficiently.
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Figure 5.8: The comparison of hop count among 2D, 3D-DL and 3D-top.

On-chip temperatures of both the 2D and 3D implementations have
been evaluated in our research. The HotSpot [97] 3D thermal model is
used to simulate the thermal dissipation of the chip. HotSpot takes power
trace and floorplan as inputs, and the corresponding transient temperatures
as output. The simulator provides a thermal aware floorplanning tool which
takes a list of connectivity between functional blocks such as caches and
processors. The power consumption of a 512KB, 64-bit line size, 4-way as-
sociative, 90nm cache bank has been simulated by CACTI [94]. The power
consumption of the processor cores is extracted from the Sun UltraSPARC
T1 [60] design. Although power consumption profile differs from platform
to platform, the analysis is still meaningful for 3D chip design.
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Figure 5.9: Chip temperature of 2D and two 3D configurations.

Figure 5.9 shows the evaluation results of chip temperatures in different
system structures. In 3D-top design, the average chip temperature raises
by 8� comparing with the 2D design, while the maximum and minimum
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temperature does not have significant raise. However, in 3D-DL, the peak
chip temperature raises by 29� comparing with the 2D design, which could
be too high to be feasible for some applications. It is predictable that
the temperature would be even higher by stacking more PEs vertically.
To address this problem, dynamic voltage and frequency scaling (DVFS)
can be used to cool down the chip or hot regions by lowering the working
frequency and voltage, at the cost of performance degradation [133, 134, 15].
Obviously 3D-DL requires more scaling of voltage and frequency than 3D-
top.

The above evaluation results show that the two aforementioned 3D ar-
chitectures have a trade-off between network access efficiency and chip level
thermal dissipation. System designers are recommended to choose either
of these architectures by carefully examining the specifications of their ap-
plications and platforms.

5.1.6 Experimental Evaluation

In this section, we present the experimental evaluation for system perfor-
mances based on the simulation of H.264 coding. X264 from PARSEC is
used to test the encoding efficiency of different architectures including 2D,
3D-top and 3D-DL with different pillar numbers. We use a 32-node network
which models a single-chip CMP for our experiments. The 3D architectures
have two layers. The size of each cache bank node is 512KB. MESI cache
coherence protocol is used in our memory hierarchy (see Chapter 2). Orion
[111, 57], a power simulator for interconnection networks, is used to evalu-
ate detailed power characteristics. Power consumption of both router and
related links are calculated.

Three input video sequences have been selected for evaluation (Ta-
ble 5.1). “simlarge” is a standard video clip from the PARSEC. It is taken
from an open source movie called “Elephants Dream”. This video clip mod-
els a high motion chasing scene. “Street” is a video clip which models a
medium motion scene. “VConference(VConf)” is a video conference clip
which models a low motion scene.

The effect of B frames has also been evaluated here. We first use the
default parameters of x264 from PARSEC which have no specification of
encoding B frames. We then simulate two scenarios in which 2 and 4
additional B frames have been tested respectively1. It is shown in Table 5.1
that different B frame configurations result in different compression ratio.
The sizes of the output files with 2 extra B frames are reduced by 14.9% in
“simlarge”, 17.6% in “Street” and 1.5% in “VConference”. But the effect

1The command line options are: x264 –quite –qp 20 –partitions b8x8,i4x4 –
ref 5 –direct auto –b-pyramid –weightb –mixed-refs –no-fast-pskip –me umh
–subme 7 –analyse b8x8,i4x4 –threads 8 –bframes n

88



Table 5.1: Input video sequences

Video clip simlarge Street VConference

Motion High Mid Low

Frames 128 176 160

Resolution 640x360 704x400 640x480

RAW data 44,237KB 74,343KB 73,729KB

P only 3,171KB 2,370KB 598KB

B=2 2,759KB 2,016KB 579KB

B=4 2,758KB 2,006KB 579KB

is not obvious with the increase in the number of B frames. Therefore in
our later experiments, we consider two configurations in which either only
P frames or 2 B frames are used.

The full system simulation results are shown in Figure 5.10, 5.11 and 5.13.
In Figure 5.10 and 5.11 we use the configuration of 4 pillars. As is shown in
Figure 5.10, 3D NoC designs outperform the 2D NoCs in terms of network
latency. Comparing with the 2D NoCs, the network latency of 3D-top with
“simlarge” workload is reduced by 31% and 33% for P frame only and 2
B frames respectively. This is primarily due to the reduced number of hop
counts of processor-cache data accesses in the 3D design, than it is in the
2D counterpart. Moreover, as mentioned before, shared data operation is
intensive in x264 coding process. The improvement of “Street” is almost
the same as that of “simlarge”. With “VConf”, the improvement is limited
because of the smaller amount of shared data operations. For the 3D-DL,
comparing with the 3D-top, network latencies of the three workloads are
reduced by 7.1% and 10.1% for P frame only and 2 B frames respectively.
However, heat dissipation is a trade-off consideration in this architecture.

The results in Figure 5.11 show that both 3D based topologies outper-
form 2D mesh in terms of execution time under all workloads. On average,
3D-top takes 18.8% shorter execution time than the 2D design, and the
maximum time reduction reaches 25%. In 3D-DL the average execution
time is reduced by 23.9%, and maximum decrease even reaches of 32%.
The improvements of execution time can be interpreted as the result of
network latency savings which commensurate with the number of shared
cache accesses. The average execution times in the scenario with 2 B frames
are 2.1% and 3.6% shorter than that in the scenario with P frame only in
3D-top and 3D-DL respectively. The improvement of execution time is less
remarkable comparing with network latency since local operations are not
related with network latency.

It is shown in Figure 5.12 that network latency advantages in 3D NoC
designs translate into power consumption benefits. In comparison with the
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Figure 5.10: Normalized average network latency with different chip and
video configurations.
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Figure 5.11: Normalized execution time with different chip and video con-
figurations.

2D NoC, power savings for 3D NoCs are even better. Power consumption
of 3D-top with “simlarge” workload is reduced by 48% and 51% for P
frame only and 2 B frames respectively. The power savings are due to
the structural advantages of the 3D NoCs, i.e. decreased hop count and
network latency. The 3D NoC designs show lower power consumption than
2D design in “Street” and “VConf” as well. In the “Street” case, the power
consumption of 3D-top and 3D-DL has decreased, on an average, by 52%
and 48% over the 2D design. The improvement of power consumption in
“VConf” is limited as above-mentioned.

The impact of the number of pillars is shown in Figure 5.13. The
“simlarge” workload with P frame only is used for this evaluation. It is
shown that network latencies in the 3D-DL and 3D-top architectures are
reduced by 9% and 10% respectively by increasing the number of pillars
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Figure 5.12: Normalized power consumption with different chip and video
configurations.

from 2 to 4. This is mainly due to the decreased contention of inter-layer
communications. Moreover, as shown in Figure 5.8, average processor-cache
access hop count is reduced. By using 8 pillars, the latency reductions are
2.2% for 3D-DL and 4.4% for 3D-top comparing with the 4 pillars case.
Maximum performance is achieved in the scenario where there are 16 pillars,
i.e., each router has a pillar for the vertical communication. However, the
simulation results show that in the systems with more than 4 pillars, the
performance improvements are not significant.

2
4
8
16

  0

  0.2

  0.4

  0.6

  0.8

  1

  1.2

3D−DL 3D−top

N
or

m
al

iz
ed

 N
et

w
or

k 
La

te
nc

y

Figure 5.13: Normalized average network latency with different number of
pillars.

As a combination of both performance and power consumption, the Per-
formance Power Product (PPP) is more meaningful because performance is
usually a trade-off for power consumption. Systems generally have better
trade-off between the performance and power with higher PPP. The results
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in Figure 5.14 show that the PPP improves more significant from 2 pillars
to 16 pillars, comparing with performance improvements. Configuration
with 4 pillars performs 26.7% better than 2 pillars. Configuration with
8 pillars performs 14.3% better than 4 pillars. The highest efficiency is
provided by full pillar connection, outperforming 8-pillar design by 15.6%.
We noticed that the traffic contention between layers is alleviated by us-
ing more pillars, therefore overall network power consumption (link and
router) is reduced with reduced execution time. This finding is of great
importance since the design and implementation of vertical links are very
expensive and therefore it is always desirable to have an optimized number
of vertical links.
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Figure 5.14: Normalized performance power product with different number
of pillars.

5.2 Hierarchical N-Body

The N-Body problem is a classical problem of approximating the motion
of bodies that interact with each other continuously. The bodies are usu-
ally galaxies and stars in an astrophysical system. The gravitational force
of bodies is calculated according to Newton’s Principia [1]. The N-Body
problem is used in other computations and simulations as well, e.g. the
interference of wireless cells and protein folding [87]. Several algorithms
have been developed for N-Body simulation. In principle, to be precise,
the simulation requires the calculation of all pairs, since the gravitational
force is a long range force. However the computation complexity of this
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method is O(n2) [91]. J. Barnes et al. and L. Greengard introduced two
fast hierarchical methods [13, 41]. A tree is built firstly according to the
position of the bodies in the physical space. The interactions are calculated
by traversing this tree. The computation complexities in these algorithms
are reduced to O(nlogn), or even O(n) in some cases.

The performance of these two algorithms has been studied in traditional
cache-coherent shared address space multiprocessors, e.g. Standford DASH,
KSR-1 and SGI-Challenge [45]. A simulator is used for examining the
implications of the two algorithms in a multiprocessor architecture [96].
However, the previous works are based on conventional architectures, e.g.
bus-based multiprocessors, physically distributed main memory or cache-
only memory architecture. NVIDIA has presented a CUDA-based N-Body
simulation by calculating the gravitational attractions of all body-pairs [79].
Hierarchical methods for GPGPU-based (General Purpose GPU) systems
have been implemented and compared in [55] and [43]. As a promising
multicore architecture in the future, the implementation of these algorithms
in a NoC platform has not been well studied. To design efficient NoCs,
designers need to understand the characteristics of the applications, e.g.
the amount of communication among cores, caches and memory controllers,
as well as the scaling of the application with the designated architecture.
Here, we study and discuss two hierarchical N-Body algorithms for the NoC
architecture. To validate our study, we model and analyze a 64-core NoC
with 8×8 mesh, present the performance and network traces of the two
algorithms using a full system simulator.

5.2.1 Modeling of the Network-on-Chip

To analyze the low-level behavior of an application, we model a NoC similar
to the Tilera TILE architecture. Each processing core of the NoC is a Sun
SPARC RISC core [105], which is 3.4mm2 under 32nm. The simulation
results by CACTI show that the total area of a 16MB cache with 64 banks,
64-bit line size, 4-way associative under 32nm is 64.61mm2. Each cache
bank, including data and tag, occupies 1mm2. Routers are quite small
compared with processors and caches, e.g. we calculate a 5-port router to
be only 0.054mm2 under 32nm. The number of transistors required for a
memory controller is quite small compared with a chip (usually billions). It
is presented that a DDR3 memory controller is about 2,000 LCs with Xilinx
Virtex-5 Field-Programmable Gate Array (FPGA) [39]. The total area of
the chip is estimated to be around 300mm2, comparable to the TILE-Gx.
Figure 5.15 illustrates the architecture of the aforementioned NoC.
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Figure 5.15: An 8×8 mesh-based NoC with memory controllers attached
to up and down sides.

5.2.2 The Hierarchical N-Body Methods

In this section, we describe the two most important hierarchical N-Body
algorithms that we used for analysis: the Barnes-Hut method [13] and the
Fast Multiple Method (FMM) [41]. The two hierarchical methods build
a structured tree in the first step. The tree is built by subdividing space
cells until a certain condition, e.g. reaching the maximum number of par-
ticles in a leaf cell. The physical space is represented by a hierarchical
tree. The computation of interactions is done by traversing this tree. The
two algorithms differ in the steps they use to calculate the interactions of
particles.

In Barnes-Hut method, for each particle, the tree is traversed to com-
pute the forces. It starts at the root of the tree, and traverses every cell. To
reduce the computation complexity of long-range interactions, the subtree
is approximated by the mass of the center cell, if the cell is far away from
the particle. The accuracy of this methods is thus dependent on the approx-
imation metrics. The Barnes-Hut method only computes the interactions
for particle-particle and particle-cell.

The FMM computes the interactions for cell-cell as well, compared with
Barnes-Hut. If two cells are far away from each other, the interaction
between them is computed by the multipole expansion of the cells. The
computation complexity is thus reduced. For uniform distributions, the
complexity of FMM is O(n), compared with O(nlogn) in Barnes-Hut. To
develop a multithreaded program for both algorithms, the space is divided
into several regions where each core is assigned with a region. A tree for
the regions is built for the responsible core, and each core calculates its
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local tree. Most of the calculation time is spent in traversals of the tree to
compute the forces. In a NoC platform, the performance of the algorithms
will be affected by (a) long distance communication of nodes; (b) the initial
distribution of particles; (c) the dynamic changing of position of particles;
(d) hot-spot traffic.

5.2.3 Experimental Evaluation

We use a 64-core network which models a single-chip NoC for our exper-
iments. Each processor core is running at 2GHz, attached to a wormhole
router and has a private write-back L1 cache (split I+D, each 32KB, 4-
way, 64-bit line, 3-cycle). The 16MB L2 cache shared by all processors
is split into banks (64 banks, each 256KB, 64-bit line, 6-cycle). For both
methods, we use the Plummer model [31] for particle generation, instead
of uniform distribution. The multithreaded part of the programs utilizes
the C/pthread model.

We start by evaluating the computation time distribution and scalabil-
ity of the two algorithms. Both algorithms apply the same parameters. The
results are listed in Table 5.2 and 5.3. The first five rows show the compu-
tation time from 4K to 64K particles, with 64 processors. In Barnes-Hut,
around 90% of the total time are spent on force calculation (84.2% in 4K
to 91.1% in 64K), while the time spent on other tasks (e.g. tree building)
are relatively small. The Barnes-Hut method scales very well from 1 to 64
processors. The speedups for 64 processors are 53.7x and 61.8x for total
execution time and force calculation time, respectively.

Table 5.2: Time distribution and scalability of the Barnes-Hut Method

Configuration Total time Treebuild Forcecalc Others

64p/4K 19 1 16 2

64p/8K 41 2 35 4

64p/16K 87 5 76 6

64p/32K 184 8 168 8

64p/64K 385 15 351 19

4K/1p 1020 28 988 4

4K/2p 511 15 495 1

4K/4p 258 8 246 4

4K/8p 129 4 124 1

4K/16p 65 3 61 1

4K/32p 34 2 31 1

4K/64p 19 1 16 2

In Figure 5.16, the network request rates of 64 cores are illustrated. We
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Figure 5.16: Network request rate for 64-core NoC running Barnes.

simulate 64K particles in 5 time steps. The horizontal axis is time, seg-
mented in 12.1M-cycle percentage fragments. The traffic trace has 165.2M
packets. It is observed that, several nodes, especially N0 and N34, generate
more data traffic than others (e.g. N0 14.18%, N34 12.19%, N12 5.3% and
N20 2.76%). This introduces heavy hot-spot traffic in certain regions of
the NoC. Notice that the traffic patterns of other nodes are quite similar,
they have a high traffic in the starting phase, and drop to a lower traffic
after that. There are several time slices, for example 16% to 21%, when
all processors are sending packets simultaneously. The reason is, the simu-
lation has executed for 5 time steps, the positions of particles will change
at the end of each time step. In terms of point-to-point traffic, several
source-destination pairs, specifically originated from N0 and N34, gener-
ated a considerable amount of the traffic. We observe the top 5 pairs are:
34-62 (0.88%), 0-14 (0.63%), 0-58 (0.62%), 0-8 (0.60%) and 34-10 (0.51%).
These hot-spot traffic can be alleviated with, e.g. long links between nodes,
or increase the link bandwidth for hot-spot nodes.

The time spent on force calculation in the Fast Multipole method is
lower than Barnes-Hut (Table 5.3), e.g. 58.8% in 4K to 70.3% in 64K.
Nearly 10% of the time are spent on tree building, and about 15% on bar-
rier. The Fast Multipole method scales worse than Barnes. The speedups
for 64 processors are 36.6x and 53.3x for total execution time and force
calculation time, respectively. This is primarily due to the higher number
of barriers in Fast Multipole method. It is noteworthy that in spite of poor
scaling, the Fast Multipole method spends less time for calculation. For
example, it spends 54.3% of the total execution time in 64p/64K, compared
with Barnes. In consideration of better scalability, the Barnes-Hut method
could use shorter time in a systems with thousands of cores.
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Table 5.3: Time distribution and scalability of the Fast Multipole Method

Conf. T.Time T.build F.calc Barrier L.build Others

64p/4K 17 1 10 3 2 1

64p/8K 27 2 16 6 0 3

64p/16K 54 7 30 14 2 1

64p/32K 102 11 73 13 1 4

64p/64K 209 21 147 30 4 7

4K/1p 622 75 533 0 10 4

4K/2p 316 38 270 1 3 4

4K/4p 162 20 136 1 3 2

4K/8p 83 9 71 0 1 2

4K/16p 44 4 35 2 1 2

4K/32p 26 3 16 4 0 3

4K/64p 17 1 10 3 2 1
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Figure 5.17: Network request rate for 64-core NoC running FMM.

Figure 5.17 shows the network request rate of each processing core when
running FMM in a 64-core NoC. The horizontal axis is time, segmented in
1.69M-cycle percentage fragments. The traffic trace has 57.4M packets. It
is revealed that several nodes (e.g. N0 7.6%, N46 4.15%, N13 2.72% and
N7 2.71%) generate more data traffic than others. The network traffic is
relatively low in the starting phase (before 30% of the time slice). After
that time point, FMM shows similar traffic patterns as in Barnes. However,
the hot-spot traffic in FMM is not as significant as Barnes. We note that,
in terms of point-to-point traffic, a small portion of source-destination pairs
generated a sizable portion of the traffic. For example, only 4 (19-60, 13-
44, 60-19 and 0-29) of the pairs (in totally 642 = 4, 096) generated 1.42%
traffic.
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Figure 5.18: Performance for Barnes and FMM.

We evaluate other performance metrics of the two algorithms in terms of
L2 cache miss rate (L2MR), misses per thousand instructions (MissPKI),
Average Link Utilization (ALU) and Average Network Latency (ANL).
ALU is calculated with the number of packets transferred between NoC
resources per cycle. ANL represents the average number of cycles required
for the transmission of all messages. The number of required cycles for
each message is calculated from the injection of the message header into the
network at the source node, to the reception of the tail flit at the destination
node. Under the same configuration and workload, lower values of these
metrics are favorable. The results are shown in Figure 5.18. We note that,
in terms of L2MR and MissPKI, Barnes is lower than FMM (1.21% for
L2MR and 15.77% for MissPKI respectively). This reflects, FMM requires
more cache than Barnes. A system with limited cache could be unsuitable
for FMM. The ALU of Barnes is only 43.83% of FMM, which means an
alleviated network load. It is noteworthy that despite the fact that the value
of Z axis in Figure 5.16 is twice as larger than that in Figure 5.17, each time
slice in Figure 5.16 represents 12.1M cycles, compared with 1.69M cycles in
Figure 5.17. Finally, the ANL of Barnes is 96.31% that of FMM, indicating
that the network performance of Barnes is better, and hence having lower
communication overhead.
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5.3 FFT

The Fast Fourier transform (FFT) is a fast algorithm to compute the dis-
crete Fourier transform. FFT is widely used in digital signal processing,
solving partial differential equations and multiplication of large integers.
Broadband wireless communication is a famous application field that heav-
ily rely on FFT. In modern wireless communication, Orthogonal Frequency-
Division Multiplexing (OFDM) is developed and widely used, due to the
fact that OFDM is capable of coping with bad channel conditions (e.g.
IEEE 802.11a/g/n WLAN, IEEE 802.16 WiMAX, 3GPP Long Term Evo-
lution and DVB-H for mobile TV) [10, 132, 34, 8, 35]. In OFDM, FFT
is implemented on the receiver side and inverse FFT on the sender side
to achieve efficient mmodulation and demodulation. Previous generations
of wireless standards, e.g. IEEE 802.11a, use an FFT of 64 points. Lat-
est standards, e.g. 802.16, scale the FFT to the channel bandwidth. The
allowed FFT subcarrier numbers are up to 2,048 in 802.16 and 8,192 in
DVB-H, respectively.

There are many FFT algorithm implementations, the most common
FFT is the Cooley-Tukey algorithm [26]. Other algorithms have been pro-
posed to reduce complexity of FFT, including reducing the required multi-
plications and additions. A famous algorithm is the split-radix FFT, which
achieves the lowest arithmetic operation count [32]. Implementing FFTs
on multi-processor systems has been studied in [11] and [4]. However, the
implementation and optimization of data parallel FFT in a NoC platform
have not been well addressed. In our section, we analyse a data paral-
lel FFT algorithm with on-chip traffic trace data, propose and discuss a
novel optimized NoC architecture which aims to reduce the latency of long
distance communications and improve the efficiency of data parallel FFT.
To confirm our study, we model a NoC with 4×4 mesh, present the per-
formance of the data parallel FFT with different NoC designs using a full
system simulator (refer to Figure 2.1 for details).

5.3.1 The FFT Algorithm

We select a one-dimensional, radix-n, six-step FFT algorithm from [12].
There are two input data sets, one with n2 complex data points is to be
transformed, and the other with n2 complex data points is referred as the
roots of unity. The two data sets are organized and partitioned as n×n
matrices, a partition of contiguous set of rows is assigned to a processor
and distributed to its local cache. The six steps are: (1), Transpose the
input data set matrix; (2), Perform one-dimensional FFTs on the resulting
matrix; (3), Multiply the resulting matrix by roots of unity; (4), Transpose
the resulting matrix. (5), Perform one-dimensional FFTs on the resulting

99



matrix; (6), Transpose the resulting matrix. The communication among
processors can be a bottleneck in the three matrix transpose steps. During
the matrix transpose step, a processor transposes a contiguous sub-matrix
locally, and a sub-matrix from every other processor. The transpose step
requires communication of all processors. It is shown in [117] that fast data
transfer between processors is the most dominant factor for this application
(Step (1), (4) and (6)). Traffic hotspots and contentions could occur in an
unoptimized system, and thus the overall performance is degraded.

5.3.2 FFT Traffic Pattern

Firstly, we need a detailed overview of the traffic. Figure 5.19 shows the
network request rate of each PE when running FFT in a 16-core NoC under
GEMS/Simics simulation environment. In Figure 5.19, the horizontal axis
is time, segmented in 216K-cycle percentage fragments. The traffic trace
has 1.64M packets, with 21.6M cycles executed. The traffic is shown for
all the 16 nodes. It is revealed that 63.9% of data traffic are concentrated
on five nodes (N0 29.6%, N8 6.7%, N11 10.0%, N13 8.7% and N15 8.8%,
refer to Figure 2.1 for numbering of nodes). There is a traffic peak for all
nodes during the last stage of execution (around 80% of the time). Three
nodes (N0, N8 and N15) have hotspot traffic in the beginning. The top
point-to-point traffics are listed in Table 5.4. A small portion of source-
destination pairs generated a sizable portion of the traffic, e.g. 3.13% of
the pairs (8/256) generated 32.07% traffic. Notice that traffic between N0
and N11 contributed 10.97% of total volume.
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Figure 5.19: Network request rate for 16-core NoC running FFT. The time
is segmented in 216K-cycle/percentage.
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Table 5.4: Top Point-to-Point traffics.

Source Node Destination Node Traffic Percentage

0 11 7.43

0 4 4.11

0 3 3.94

15 11 3.66

13 6 3.63

11 0 3.54

0 12 3.49

8 11 2.27

5.3.3 An Optimized Network-on-Chip Design

Assuming X-Y deterministic routing, Equation 5.1 shows the access time
(latency) required for a core-core communication. The latency involves in-
tile links (Between NI and PE, LLink delay1), router (LRouter delay), tile-tile
links (LLink delay2) and the number of hops required to reach the destination
(nhop).

L = (nhop + 1)×LRouter delay + 2×LLink delay1 + nhop×LLink delay2 (5.1)

In order to evaluate the detailed number of cycles required for each of
these metrics, we model the NoC according to Sun SPARC. Each SPARC
core with private L1 cache has an area of 14.45mm2 with 65nm fabrica-
tion technology. Results from CACTI show that (16MB, 16 banks, 64-bit
line size, 16-way associative, 65nm), each cache bank, including data and
tag, occupies 12.09mm2. We calculate a 5-port router is estimated to be
0.23mm2 under 65nm. Hence the area for a tile of the NoC is around 14.45
+ 12.09 + 0.23 = 26.77mm2. Considering a NoC with 16 tiles, the total
area is about 428.32mm2, comparable with modern chip multiprocessors,
such as Sun SPARC and IBM Power 7. In this research, we assume that
each tile and each router is of a square shape, and thus the length of an
edge is 5.17mm and 0.48mm for a tile and a router, respectively.

We calculate the delay for the links between routers, NIs, cores and
caches using Cadence Spectre, since the latency will be determined by the
physical length of the link. For inter-router long links in voltage-mode
transmission, the wire delay is significant. Repeaters are inserted to reduce
the wire delay in long links over 0.5mm. The delays are calculated under
2.5GHz, with a cycle of 400ps. Notice that the in-tile links between NI
and router are very short, e.g. Less than 0.5mm. The transmission can
be completed within one cycle. For a router in the NoC, there are several
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Figure 5.20: A diagram showing NoC model used here.

parts (e.g. RCU, VCA, SA and CS) that will affect latency, depending
on the number of pipeline stages. Here, we use a standard router of four
pipeline stages. The tile-tile links are much longer than in-tile links. For
example, the length of a tile-tile link connecting two routers is 4.69mm. In
consideration of the synchronization of these pipelined long links, a data
transfer requires 6 cycles. Assuming a packet transmitted from N0 to N11,
it will go through N1, N2, N3 and N7, resulting 5 hops (Figure 5.20). Hence
the latency is calculated as: 2×1+(5+1)×4+5×6=56 cycles.

By noticing that some source-destination pairs generate significant amount
of traffic, we propose direct long links as an optimization method. The
delays of intermediate routers are eliminated. For instance, a long link
can be placed between N0 and N11 directly. In this case, the latencies
of LRouter delay for N1, N2, N3 and N7 will be eliminated. However, the
number of links that can be routed in a NoC is limited by the router size
and the area of the links. The limitation of router area is more significant
than the long links. A typical router in a 2D mesh NoC has five ports to
connect to five directions, namely, North, East, West, South and Local PE.
This requires a 5×5 crossbar. Researches have shown that [82], crossbar
occupies over 50% of the router area. A 7×7 crossbar doubles the area
compared with 5×5. Therefore, adding too many long links can be unde-
sirable. We note that the router of N0 has only 3 out of 5 ports utilized
(North, East and Local PE), which leaves 2 free ports. Other routers have
free ports as well, e.g. N3 and N11 have 2 and 1 free ports, respectively.
In our optimized design, we connect N0-N11 and N0-N3 with long links.
Other pairs are not practical with long links, e.g. despite the fact that the
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communication between N0 and N4 is more frequent than N0 and N3, they
are directly connected. Connecting N6 with N13 will require an expansion
of the crossbar of router in N6, which is not favourable. Equation 5.2 shows
the latency for a core-core communication with long links.

LL = 2×(LLink delay1 + LRouter delay)+ LLonglink delay (5.2)

The latency of the long links (LLonglink delay) between N0-N3 and N0-
N11 will be much higher than LLink delay2. We calculate that the length of
link between N0 and N3 is 15.03mm. Based on the aforementioned wire
delay model, a data transfer requires 18 cycles under 2.5GHz. Comparing
with the original communication delay (2×1+(3+1)×4+3×6=36 cycles),
the delay of N0-N3 long link is reduced to 28 cycles. The savings are mainly
from two routers. The length of N0-N11 long link is 24.89mm, resulting 32
cycles for a data transfer. The reduction of the communication latency for
long links between N0 and N11 is higher than N0 and N3 (42/56=0.75 and
28/36=0.78 respectively). Taking into account of the 10.97% communica-
tion volume between N0 and N11, system performance can improve with
our optimization. It is noteworthy that placing long links all over the NoC
will incur higher design complexity of both hardware and software.

5.3.4 Experimental Evaluation

The simulation platform contains a 16-core network. Each PE is running
at 2GHz, attached to a wormhole router and has a private write-back L1
cache (split I+D, each 32KB, 4-way, 64-bit line, 3-cycle). The 16MB L2
cache shared by all processors is split into banks (16 banks, each 1MB, 64-
bit line, 6-cycle). We setup a system with 4GB of main memory, and the
latency from the main memory to the L2 cache is 260 cycles. The MOESI
cache coherence protocol is implemented.

We evaluate performance in terms of Average Network Latency (ANL),
Average Link Utilization (ALU), Execution Time (ET) and Cache Hit La-
tencies (CHL). ANL represents the number of average cycles required for
the transmission of all network messages. The number of cycles of each
message is calculated as, from the injection of the message header into the
network at the source node, to the reception of the tail flit at the destina-
tion node. ALU is defined as the number of flits transferred between NoC
resources per cycle. Under the same configuration and workload, lower
values of these metrics are favourable.

The results are depicted in Figure 5.21. Our optimized NoC architec-
ture outperforms the original design in all metrics. For example, the ANL
for the optimized NoC is 9.89% lower than the original. This is primarily
due to the lower latencies between hotspot nodes, e.g. N0-N11 and N0-N3,
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Figure 5.21: Normalized average network latency with different number of
pillars.

compared with the original design. As aforementioned, the transpose steps
in FFT require communication of all processors (especially the last stage,
see Figure 2). We note that the communication is not evenly distributed
to all processors. In this case, reducing the delay of the hopspot nodes by
adding long links is a feasible method. The ALU of FFT for our optimized
design is 2.15% lower than the original as well. Apparently, the improve-
ment is not as significant as ANL. The reason is that there are only two
additional links which can alleviate the overall link load. The CHL in our
design is 4.66% lower than the original, because of the reduced latencies.
Overall, in terms of ET, our design uses 12.13% less time than the original.
This reflects the savings of ANL, ALU and CHL.
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Chapter 6

Operating System
Scheduling

The Operating System (OS) scheduling (or dynamic task mapping, the
two terms are considered same here) is one of the most important design
issues for future CMP systems. Higher performance can be achieved by
proper scheduling of processes and threads. For example, the modular de-
sign of AMD Bulldozer CMP benefits from better scheduling [36, 21]. Each
Bulldozer module contains two discrete integer cores with several shared
resources, including the floating-point cores, the front-end instruction fetch
and decode units, the L2 caches, and the associated data pre-fetchers. This
shared nature of the modules requires OS and application developers to
optimize their programs for better performance. Results shown that, with
proper scheduling, the performance is 10% to 20% higher in three applica-
tions [113]. Dynamic task mapping is studied in MPSoC and NoC architec-
tures as well for various optimization goals, for example energy consumption
[23], network contention [24, 25], communication volume [30], inter-task de-
pendency [74] and so on. Here, two scheduling algorithms are proposed,
one focuses on optimizing memory access and inter process communication
(IPC), while the other aims to reduce cache access latencies in 3D NoCs.

In Section 6.1, limitations of state-of-the-art OS scheduler are discussed,
with Sun Solaris used as a case study. The contribution of this section lies in
the on-chip data traffic calculation of running applications. By evaluating
FFT and SPECjbb as benchmarks, it is shown that the Solaris scheduler
does not provide the optimal communication scheme and thus suffers from
the network latency and overall performance degradation. We define a
model for future CMPs, based on which a minimal average accessing time
scheduling algorithm is proposed to reduce on-chip communication laten-
cies and improve performance. The impact of memory access and IPC in
scheduling are analyzed. We explore six typical core allocation strategies.
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A protocol for OS-level implementation of the algorithm has been proposed.
Results show that a strategy with the minimal average accessing time of
both core-core and core-memory outperforms other strategies, the overall
performance for three applications (FFT, LU and H.264) has improved for
8.23%, 4.81% and 10.21% respectively comparing with other strategies.

In Section 6.2, we propose a greedy heuristic approximation scheduling
algorithm for future 3D CMPs. To reduce on-chip communication delay, 3D
integration with TSVs is introduced to replace the 2D counterpart. Mul-
tiple functional layers can be stacked in a 3D CMP. However, operating
system process scheduling has not been well addressed for such a system.
We define a model for future 3D CMPs, based on which a scheduling al-
gorithm is proposed to reduce cache access latencies and the delay of IPC.
We explore different scheduling possibilities and discuss the advantages and
disadvantages of our algorithm. Experiments show that under two work-
loads, the execution times of our scheduling in two configurations (2 and
4 threads) are reduced by 15.58% and 8.13% respectively, compared with
the other schedulings.

6.1 A Minimal Average Access Time Scheduler

The design of OS schedulers is one of the most important issues for CMPs.
For large scale CMPs such as hundred-core chips, it is obvious that schedul-
ing of multi-threaded tasks to achieve better or even optimal efficiency
is crucial in the future. Several multiprocessor scheduling policies such
as round robin, co-scheduling and dynamic partitioning have been stud-
ied and compared in [69]. However, these policies are designed mainly
for the conventional shared bus based communication architecture. Many
heuristic-based scheduling methods have been proposed [42]. These meth-
ods are based on different assumptions, e.g. the prior knowledge of the
tasks and execution time of each task in a program, presented as a directed
acyclic graph. Hypercube scheduling has been proposed for off-chip systems
[93]. Hypercube systems are usually based on Non-Uniform Memory Access
(NUMA) or cache coherent NUMA architectures [64], which are different
from CMPs. It is claimed in [2] that the network latency is greatly affected
by the distance between core and memory controller. Therefore, how to
reduce the distances is one of the main considerations in our approach.
However, the work in [2] is based on enumerating all possible permutations
of memory controller placement explicitly beforehand. While in our study,
we focus on the other side instead of hardware design. Task scheduling for
NoC platforms is studied in [22] and [46]. The effect of memory controller
placement is not considered in these papers. In this section, we propose
and discuss a novel scheduler for NoC-based CMPs which aims to mini-
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mize the average network latency between memories and processing cores.
With the decrease of average network latency, lower power consumption
and higher performance can be achieved. To confirm our theory, we model
and analyze a 64-core NoC with 8×8 mesh, present the performances with
different allocation strategies using a full system simulator.

6.1.1 Evaluation of Scheduler under NoC-based CMP

In this section, full system simulation is performed to gain further insight
into the scheduling issues. We use a configuration with 16 cores which mod-
els a single-chip CMP for our experiments. Each PE has a core, a private
L1 cache and a shared L2 cache bank (16 banks, each 512KB). Memory
controllers are connected to the top and bottom side of the chip. NUCA
[14] is implemented in our memory/cache architecture. Compared with
UCA, which has been used in traditional commercial multicore processors,
NUCA has more flexible cache access latencies and thus improves the sys-
tem performance. This is due to the fact that in UCA, the unified cache
access latency is determined by the worst case wire delay. The MESI [83]
cache coherence protocol is used in our memory hierarchy, in which each
L2 bank has its own directory. Cache data and related messages such as
Get exclusive and Get shared ; and memory data and related messages such
as Memory data have been collected and calculated.

We evaluated the scheduling algorithm of Sun Solaris 9. Results are
presented for FFT [116] and SPECjbb2000 [98] workloads with different
numbers of threads or warehouses involved. The Java platform is based on
Sun JRE-SE 1.4.2.

Figure 6.1 shows the analysis results of the study on FFT in which
configurations with 2, 4 and 8 threads are tested. As anticipated, the
Solaris scheduler allocates cores using a non-optimal way. Nodes N1, N5
and N12 generated the most data traffic (totally 61.3%, Figure 6.1a) with
2-thread FFT. It is noteworthy that the OS itself has to be scheduled to at
least one core. Nodes N1, N4, N5 and N12-N14 are selected with 4-thread
FFT, generated 79.46% of data traffic. In 8-thread FFT, nodes N1-N5, N8
and N12-N14 are selected, 90.51% data traffic are concentrated on these
nodes. The traffic of memory controller is unbalanced as well. It is obvious
from Figure 6.1b that memory data traffic are concentrated on channels
1, 3 and 4 of memory controller 1 and channel 1 of memory controller 2,
corresponding with the above node traffic.

The results in Figure 6.2a and Figure 6.2b show the SPECjbb node
and memory data traffic distribution. Nodes N1, N9 and N14 generate
totally 55.17% data traffic in 2-warehouse SPECjbb, while in 4-warehouse
configuration 67.38% data traffic are concentrated on N1, N4, N9, N13 and
N14. 82.92% of total data traffic are distributed among N1, N3, N4, N6,
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Figure 6.1: Node traffic distribution (a) and memory controller traffic dis-
tribution (b) over FFT.

N8-N10, N13 and N14. Memory traffic is similar to FFT, observable unbal-
anced distribution can be noticed. An unoptimized scheduling algorithm
can cause hotspots and traffic contentions. As a result, average network
latency, one of the most important factors of a NoC, is increased and overall
performance is degraded. Obviously, without proper schedule, the commu-
nication overhead can be an obstacle for future multicore processors.
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Figure 6.2: Node traffic distribution (a) and memory controller traffic dis-
tribution (b) over SPECjbb.

6.1.2 The Scheduler for NoC-based CMP Architecture

As aforementioned, the scheduler fails to maintain optimal node/memory
traffic. To overcome the limitation of traditional processor scheduler, a
new scheduling algorithm for NoC-based CMP is proposed. We use a CMP
model as described below. The algorithm takes into consideration of on-
chip topology, scheduling decisions are made based on such information.
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Definition 6. 1 A NoC N(P (X,Y ),M) consists of a PE mesh P (X,Y ) of
width X, length Y ; and on-chip memory controllers M (connected to the up-
per and lower sides of the NoC). Figure 6.3 shows a NoC of N(P (8, 8), 16).

Definition 6. 2 A N(P (X,Y ),M) consists of X×Y PEs, therefore this
is the maximum number of concurrent threads it can process (without con-
sideration of hyper-threading).

Definition 6. 3 A task T (n) with n threads requests the allocation of n
cores.

Definition 6. 4 nFree is a list of all unallocated nodes in N .

Definition 6. 5 R(T (n)) is a unallocated region in P with n cores for
T (n).

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

PE

NI

R

S

Tile

N

W E

Figure 6.3: A 8×8 mesh-based NoC with 16 memory controllers attached
to top and bottom of the design.

Average core access time (ACT ) and average memory access time (AMT )
are calculated when making scheduling decision. The aim of the algorithm
is to minimize average network latency of the system, which is one of the
most important factors of a NoC. ACT is defined as the number of nodes
a message has to go through from a node to other nodes, ∀i, j ∈ P .

ACT =

∑
MD(ni, nj)

n
(6.1)

Such that: ∀i ̸=j∈P and ni ̸=nj

For a rectangular core allocation with A×B nodes, according to [67],
ACT can be calculated in an easier way (Equation 6.2). For example, 4×4
and 2×8 are possible rectangular core allocations for a task with 16 threads.
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However, the value of ACT in 4×4 is smaller than in 2×8 (2.5 and 3.125).
In consideration of ACT, an allocation shape have a lower ACT number
if it is closer to a square. Figure 6.4a and 6.4b show two core allocation
schemes for a task with 15 threads. In Figure 6.4b, the number of ACT is
lower than in Figure 6.4a (2.4177 and 2.4888 respectively).

ACT =
A+B

3
× (1− 1

A×B
) (6.2)

(a) (b)

Figure 6.4: Two core allocation schemes for 15 threads.

Taking into account of memory controller placement, e.g. the memory
controllers are allocated in top and bottom of the chip. The number of
transistors required for a memory controller is quite small compared with
billions of total transistors in a chip. The memory controllers are shared by
all processors to provide a large physical memory space to each processor.
Each of the controller controls a part of the physical memory, and each
processor can access any part of the memory [59]. Traditionally, a physical
address will be mapped to a memory controller according to its address
bits and cache line address. In this case, memory traffic are distributed to
all the controllers evenly. However, in our study, we assume that a physical
address will be mapped to a memory controller according to its physical
location of the on-chip network, i.e. the nearest controller in terms of MD
[9]. We define AMT as the minimal number of nodes a message has to
go through from a node to the memory controller since more than one
controller can co-exist, ∀i ∈ P .

AMT =

∑
min(MD(ni,M))

n
(6.3)

Equation 6.4 shows the access time required for a core-memory com-
munication (not considering the latencies of the memory controller and the
memory).

LM = LLink delay1 + (nhop + 1)×(LRouter delay + LLink delay2) (6.4)
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Figure 6.5 shows four typical allocation of a task with 4 threads to a 16-
core CMP configuration, all cores are free initially, gray nodes are allocated
nodes. The worst case ACT is shown in Figure 6.5a, in which 4 threads are
distributed in 4 corners of the CMP, thread-thread communication delay
is very high. We can calculate the ACT is 12 according to Equation 6.1.
Allocated cores are in a line in Figure 6.5b, the ACT is therfore reduced
to 5. In Figure 6.5c and Figure 6.5d, the ACT is further reduced to 4.5
and 4 respectively. Obviously Figure 6.5d represent a minimal ACT in a
4-thread task.
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Figure 6.5: Different core/memory allocation schemes, arrows are memory
accesses.

In consideration of AMT however, although ACT s in Figure 6.5a and
Figure 6.5b are not optimal, the AMT s are only 1 for both configurations
because of each allocated core is connected with the memory controller
directly. For Figure 6.5c and Figure 6.5d, the AMT is 1.25 and 1.5 re-
spectively. Although Figure 6.5d has the best ACT value, it might not be
optimal in case a task has a lot of memory accesses. Each time a cache
miss happen, a request to the memory subsystem is generated to fetch the
required data. Lower network latency translates into higher performance.

Figure 6.6 shows six typical allocation of a task with 16 threads to a 64-
core CMP configuration, all cores are free initially, gray nodes are allocated
nodes. One of the worst case ACT configuration is shown in Figure 6.6c, in
which 16 threads are distributed in four corners of the CMP, thread-thread
communication delay is thus very high. We can calculate the ACT is 6.625
according to Equation 6.1. The square allocation shown in Figure 6.6a
shows the most promising ACT , it is reduced to the minimum of 2.5. As
aforementioned in Equation 6.2, for a rectangular core allocation, a quasi-
square shape has the lowest ACT value. Obviously Figure 6.6a represent
a minimal ACT in a 16-thread task.
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Figure 6.6: Comparison of different core/memory allocation schemes.

In consideration of AMT however, although ACT in Figure 6.6c is the
worst, AMT is only 1.75. For Figure 6.6a, despite the fact that it has the
best ACT value, the value of AMT is 2.5. This allocation might not be
optimal in case a task has a lot of memory accesses. Each time a cache
miss happen, a request to the memory subsystem is generated to fetch the
required data. Lower network latency translates into higher performance.

The best case AMT is shown in Figure 6.6b, because of each allocated
core is connected with the memory controller directly. Figure 6.6d shows
the worst value of AMT , which is 4. Two balanced allocation strategies are
shown in Figure 6.6e and 6.6f. In these strategies, despite neither ACT nor
AMT beats other strategies as a single value, the average numbers of these
two factors are better than other four strategies. For instance, allocated
cores are in two lines, adjacent to each other in Figure 6.6e, the ACT and
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AMT are therefore 3.125 and 1.5, respectively. The average value is lower
than in Figure 6.6a (2.3125 and 2.5). Figure 6.6f shows another possibil-
ity, with further reduced average number of ACT and AMT . Table 6.1
summarizes these data. We note that if we want to reduce ACT (between
6.625 and 2.5), the value of AMT will increase (between 1 and 4), and vice
versa.

Table 6.1: ACTs and AMTs for different allocation strategies

Strategy ACT AMT Average value

Figure 6.6a 2.5000 2.5000 2.5000

Figure 6.6b 6.1250 1.0000 3.5625

Figure 6.6c 6.6250 1.7500 4.1875

Figure 6.6d 3.1250 4.0000 3.5625

Figure 6.6e 3.1250 1.5000 2.3125

Figure 6.6f 2.6406 1.8750 2.2578

In our case (irregularly shaped allocation with ACT and AMT con-
straints), given a task with n executing threads, we define the problem as
deciding the best core allocation for the task by selecting a region contain-
ing of n cores. Furthermore, with multiple tasks, the problem is extended
to be deciding the best core allocation for all the tasks. Overall network
latency is minimized for a task, and the average communication delay for
all tasks is minimized. The problem can be described as: Find a region
R(T (n)) inside N(P (X,Y ),M) and a node list Nl of R(T (n)), which:

min{ACT +AMT

2
} (6.5)

Code 5 The steps of region selection algorithm.

1, ∀n∈nFree, calculate all min(MD(n,M)).
2, ∀n∈nFree, start with the first free node ni and calculate all
other nj∈nFree with MD(ni, nj) and sort them in ascending order
MD1≤MD2≤MD3≤. . .MDk.
3, Repeat 2 for the remaining free nodes.
4, Select R(T (n)) from 3 which contains Nl that satisfies T (n) with Equa-
tion 6.5.

The pseudo code of the algorithm is shown in Code 5. Figure 6.6f
shows the outcome of the algorithm, with minimal average value of ACT
and AMT . This algorithm uses method of exhaustion, and it works always.
However, it is very important to design an efficient scheduling algorithm.
Our problem belongs to the set of nondeterministic polynomial time (NP)
that can be solved in polynomial time with a nondeterministic machine but
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likely take an exponential execution time to complete in a deterministic
machine. That is, to determine if an allocation strategy has the lowest
combination of ACT and AMT , it suffices to enumerate the allocation
possibilities and then verify if these possibilities produce the lowest value.
We consider the problem to be NP-complete. It means that, despite any
allocation can be verified in polynomial time, there is no known efficient way
to find that allocation. It is as difficult as any other NP-complete problems.
The time required to solve this problem increases very quickly as the size
of the inputs grows (e.g. the number of free nodes and the number of
threads in a task). As a result, it is noteworthy that exhaustive simulation
is feasible only for a small size NoC, because of the high computational
complexity from the large search space, e.g. an 8×8 mesh with 16 threads
has

(
64
16

)
= 488,526,937,079,580 different allocation possibilities! Table 6.2

shows the allocation possibilities for different thread numbers in an 8×8
NoC.

Table 6.2: Allocation possibilities for an 8×8 mesh

Threads of the task Allocation possibilities

1 64

2 2,016

4 635,376

8 4,426,165,368

16 488,526,937,079,580

In real world, however, most applications have fewer threads, and there
are fewer available PEs for allocation. Faulty PEs can also be excluded
from the search space. Thus there might be a much smaller search space.
Figure 6.7 shows a fragmented allocation, in which only 28 cores are avail-
able for a new task. In this case, there are only

(
28
16

)
= 30,421,755 allocation

possibilities for a 16-thread task.

Another problem is that the trade-off for spending time to find the best
combination of ACT and AMT can be undeserving. If the differences be-
tween different allocation strategies are quite small, and if the search algo-
rithm takes too much time, a near optimal allocation strategy is preferable.

Heuristical scheduling algorithms are proposed with a clear view of the
behaviour of a program beforehand [42]. The longest path to a leaf is
selected in the dependence directed acyclic graph [42]. However, consid-
ering millions of different applications, it is not practical to draw a graph
for all applications. We extend Code 5 with greedy heuristic approxima-
tion. As aforementioned, an allocation shape closer to a square have a
lower ACT number. The calculation of all combinations is unnecessary.
Take Figure 6.7 for example. To schedule a task with 8 threads, we start
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Figure 6.7: A fragmented situation with 36 cores occupied (gray), and 28
cores free (white).

from square regions which are closest to the number of nodes required
for the task. In this case, we have 4 candidates (R1(N33 − N35, N41 −
N43), R2(N31, N32, N39, N40, N47, N48), R3(N38−N40, N46−N48),
R4(N38, N39, N46, N47, N54, N55)). To select other two nodes, adjacent
nodes of the region are considered. The improved algorithm is shown below.

Code 6 The steps of greedy heuristic approximation.

1, ∀n∈nFree, calculate the ACT and AMT of all region, which contains
nodes ≤ T (n).
2, Add adjacent nodes of the region in 1, if the region is smaller than the
task.
3, Select R(T (n)) from 2 which contains Nl that satisfies T (n) with
min{ACT+AMT

2 }.

6.1.3 Discussion

Despite our goal is to find the best combination of ACT and AMT using the
average value of the two, the weight of ACT and AMT should be considered
as well. Different applications have their own profile: memory-intensive
or IPC-intensive. Researches shown that scientific applications such as
transitive closure, sparse matrix-vector multiplication, histogram and mesh
adaption are memory-intensive [37]. It is also shown by Patrick Schmid et
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al. that video editing, 3D gaming and file compression are memory sensitive
applications in daily computing, while other applications concentrate more
on thread-thread communication [92].

It is difficult to determine the behavior of an application automatically
beforehand, since there are millions of them and the number is still increas-
ing. One feasible way is to add an interface between the application and
the OS, the application will tell the OS if it is memory-intensive. Another
way is to add a low overhead profiling module inside the OS. Program ac-
cess patterns are traced dynamically. Memory management functions such
as malloc(), free() and realloc() are obtained as histograms for evaluating
the weight of AMT, thread management functions such as pthread create(),
pthread join() and pthread mutex*() are obtained as histograms for evalu-
ating the weight of ACT. It is noteworthy that these histograms can be only
used as rescheduling (thread migration, or in case of a fault PE), i.e. there
are no access patterns for the first run of a program. Here, we evaluate the
performance differences for several allocation strategies of three 16-thread
tasks. These tasks have different IPC and memory access intensities. The
detailed performance analysis is shown in later sections.

We also consider a protocol called Processor Status Protocol (PSP).
The protocol is implemented between the CMP and the OS, describing the
physical topology of the CMP. The physical position of cores and mem-
ory controllers and their network connection to other components is deter-
mined. The topology information of the CMP is used by the scheduling
algorithm (Figure 6.8 and Code 7). The primary work of the scheduler is
to evaluate the network performance of the CMP and determine the best
core allocation for a task. Better efficiency can be achieved by optimized
core allocation and power schemes of the scheduler.

NoC-based

CMP
OS Application

User level 

scheduler
PSP

Figure 6.8: The scheduling system between CMP, OS and application.

Code 7 The steps of PSP-OS implementation.

1, OS start and query for CMP topology information via PSP.
2, The CMP status is returned and registered to the OS.
3, OS processor scheduler schedules threads with Code 5 according to PSP
info.
4, DVFS and power/clock gating commands are sent via PSP by the sched-
uler.
5, User level application can send their behavior profile to the scheduler so
that the scheduler will optimize its scheduling decisions.
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6.1.4 Case Studies

FFT

The fast Fourier transform (FFT) is an algorithm to compute the con-
tinuous and discrete Fourier transform. FFT is widely used in digital signal
processing. There are many FFT algorithm implementations, we select a
one-dimensional, radix-n, six-step algorithm from [12], which is optimized
to minimize IPC. Refer to Section 5.3 for details. It is shown in [117]
that the performance is mostly determined by the data latencies between
processors. Our workload contains 64K points with 16 threads.

LU

The LU decomposition/factorization is a matrix decomposition which
factors a matrix into the product of a lower triangular (L) and an upper
triangular matrices (U). It is used in numerical analysis to solve linear equa-
tions or to calculate the determinant. The main application fields of LU
include: digital signal processing, wireless sensor networks and simulating
electric field components. We select a LU decomposition kernel from [117].
This program is optimized to reduce IPC by using blocking. A dense n×n
matrix M is divided into an N×N array of B×B blocks (n = N×B). The
implementation of blocking method in the program can exploit temporal
locality on individual sub-matrix’s elements.

DB

PB

PB

IB

P0

P3

P6

P1

P4

P7

P2

P5

P8

Figure 6.9: LU decomposition algorithm with blocking.

As is shown in Figure 6.9, the diagonal block (DB) is decomposed first.
The perimeter blocks (PB) are updated using DB information. The matrix
blocks are assigned to processors (P1, P2...) using a 2D scatter decom-
position. The interior blocks (IB) are updated using corresponding PB
information. It is very important that since the computation of IB involves
a dense matrix multiplication of two blocks, to reduce IPC, the computation
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is performed by the processor that owns the block. Despite the optimiza-
tion, communication of processors can still be a bottleneck. One situation
is that when processors require a DB used by all processors to update their
own PBs. In this case, a copy of the DB is sent to all requesting processors
by the processor that updates the DB. Another case is that when proces-
sors require PBs used by all processors to update their IBs. In this case,
a copy of the PB is sent to all requesting processors by the processor that
updates the PB [117]. The 16-thread workload used in our experiment has
an input matrix of 512×512 with 16×16 element blocks.

H.264

The H.264 is the latest standard of video stream coding, it is optimized
for higher coding efficiency than previous standards. We select a data
parallel H.264 coding implementation from [18]. In this program, video
stream data are distributed to processors. Multiple video stream data can
be processed simultaneously in data parallel coding. The program is mul-
tithreaded with frame level parallelization, and coarse granular pipeline
parallelism is achieved. In terms of IPC and external memory communica-
tion, H.264 can be the toughest among three applications. Refer to Section
5.1 for further details. We select “simlarge” as our workload. This is a
standard video clip from the PARSEC, taken from an open source movie
[18]. This video clip models a high motion chasing scene.

6.1.5 Experimental Evaluation

In this section, a NoC with 64 processing cores is modeled for evaluation
(Figure 6.3). The NoC consists of a 8×8 mesh of processing elements
(PEs). Each PE consists of a processor core and a shared cache. The 16
memory controllers are connected to the two sides of the mesh network.
This represents a typical NoC design, similar as Intel and Tilera. The L2
cache shared by all processors is split into banks. The size of each cache
bank node is 1MB; hence the total size of shared L2 cache is 64MB.

We first evaluate performance data of FFT, in terms of cycles per in-
struction (CPI), misses per thousand instructions (MissPKI) and cache
hit latencies. Figure 6.10 shows the normalized values for six allocation
strategies for FFT (Figure 6.6). Lower numbers are better. Allocation F
(Figure 6.6f) outperforms other strategies in terms of CPI and MissPKI.
For example, the MissPKI for allocation F is 20.62% lower than allocation
D, and 3.72% lower than allocation A. This is primarily due to the better
ACT and AMT numbers in allocation F, compared with other allocations.
As aforementioned, the transpose steps in FFT require communication of
all processors. It is clearly that allocation B, C and D are not favorable
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strategies, since the ACT and AMT are high. We also note that the value
of CPI does not change significantly among six strategies. In terms of cache
hit latency, however, allocation A shows the most promising performance.
The reason is that the value of ACT in A is lowest among six strategies. In
consideration of three factors, it is obvious that allocation A and F perform
better than other four. On average, for allocation F, the three metrics are
reduced by 6.94% compared with other allocations. The improvements for
MissPKI and cache hit latency of allocation F are reduced up to 25.97%
and 13.11%, respectively. Apparently, the FFT algorithm we used here is
IPC-intensive, with certain memory accesses.
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Figure 6.10: Normalized performance metrics with different allocation
strategies, for FFT.

Other performance metrics for three applications are evaluated in terms
of Average Network Latency (ANL), Average Link Utilization (ALU), Ex-
ecution Time (ET) and Cache Hit Latencies (CHL). ANL represents the
number of average cycles required for the transmission of all network mes-
sages. The number of cycle of each message is calculated as, from the
injection of the message header into the network at the source node, to the
reception of the tail flit at the destination node. ALU is defined as the
number of flits transferred between NoC resources per cycle. Under the
same configuration and workload, lower metric values are favorable.

The results are illustrated in Figure 6.11, 6.12 and 6.13, in terms of FFT,
LU and H.264 respectively. Allocation F (Figure 6.6f, similarly hereinafter)
outperforms the other strategies on average, in the three applications. For
example, the ANL for allocation F is 10.42% lower than for allocation C,
and 3.84% lower than for allocation A when considering FFT application.
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This is primarily due to the better ACT and AMT numbers in allocation
F, compared with the other allocations. As aforementioned, the transpose
steps in FFT require communication of all processors (especially the last
stage, see Figure 5.19). In this case, the ACT plays as a major role. It is
clear that allocation B, C and D are not favorable strategies in this case,
since the two values are high. The ACT is very high in Allocation E,
compared with A and F (3.13 in E, 2.50 in A and 2.64 in F). This is the
reason why ANL in E is worse than in A and F. The differences of ANL in
LU is not as significant as in FFT, e.g. the value of ANL in allocation F is
7.02% lower than in allocation C, and 1.84% lower than in allocation A. The
reason is that LU generates less network traffic compared with FFT. The
larger difference of ANL in H.264 reflects its higher demand on core-core
and core-memory communication, compared with FFT and LU.
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Figure 6.11: Normalized ANL, ALU, ET and CHL with different allocation
strategies, for FFT.

The ALUs of FFT for allocation E and F are lower than other strategies
as well, e.g. 12.69% and 12.05% lower than in allocation C, respectively.
Apparently, ALU is directly related with the average number of ACT and
AMT. However, as we observed in the preceding part, the ALU is affected
by the traffic intensity of an application as well. In terms of ET, however,
the ACT plays as a major role again. Allocations A and F shows the most
promising performance, while the other strategies did not perform well.
For instance, the ET of allocation F in the three applications has reduced
1.69%, 0.67% and 2.87% compared with allocation A, respectively. The
CHL is more related with ACT. Allocations A and F have lower number
of CHLs, while allocations with high ACT numbers (B, C, D and E) have
much higher values.

121



ANL
ALU
Execution Time
Cache Hit Latency

  0.95

  1

  1.05

  1.1

  1.15

  1.2

  1.25

  1.3

  1.35

A B C D E F

N
or

m
al

iz
ed

 V
al

ue

Allocation Strategy

Figure 6.12: Normalized ANL, ALU, ET and CHL with different allocation
strategies, for LU.
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Figure 6.13: Normalized ANL, ALU, ET and CHL with different allocation
strategies, for H.264.

We note that ACT is more important than AMT in most cases. This
is due to, most multithreaded applications nowadays are still optimized
for IPC. An application with abnormal behavior can benefit more from
closer memory controllers, e.g. one with a lot of threads sending memory
requests constantly to the memory controller, and without communications
with each other. We also note that allocations A and F provide better
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performance than the other allocations in most cases. In consideration of
the four metrics, on average, for allocation F, the performance is improved
by 8.23%, 4.81% and 10.21% in FFT, LU and H.264, respectively, compared
with the other allocations.

6.2 A Greedy Heuristic Approximation Schedul-
ing Algorithm

The 3D integration has the potential to increase device density, providing
shorter wire lengths and faster on-chip communication compared with the
2D integration. TSV is proposed as a viable solution in building 3D chips.
The manufacturing process of the TSV is complex and expensive [109],
therefore finding an optimal number and placement of TSVs is critical. It
is presented that the balance between performance and manufacturing cost
is essential in designing a 3D chip [128].

With limited resources between layers, it is obvious that better or even
optimal efficiency can be achieved through appropriate scheduling of multi-
threaded tasks in large scale 3D multicore processors. Task scheduling for
2D NoC platforms is studied in [22] and [46]. The impact of limited re-
sources between layers is not considered in these papers. Here, we propose
and discuss a novel greedy heuristic approximation scheduler for TSV con-
strained 3D multicore processors which aims to reduce the average network
latency between caches and processing cores. With the decrease of the la-
tencies, lower power consumption and higher performance can be achieved.
To confirm our theory, we model and analyze a 64-core, 2-layer NoC with
8×8 meshes, present the performance of an application with different allo-
cation strategies using a full system simulator.

6.2.1 3D NoC with Through Silicon Via Constraints

A modern multicore processor is composed of several parts, e.g. processor
core, shared last level cache, I/O and memory controller. Nearly half of
the die area is devoted to cores and the other half is devoted to shared
caches and other circuits. A natural way of applying 3D integration is
to partition all the processors to one layer and other components to the
other layer. There is a significant concern for thermal hot-spots brought by
packing layers vertically. It is expectable that since the processors consume
overwhelming majority of power in a chip, stacking multiple processor layers
would be unwise for heat dissipation. According to [128], heat dissipation
is a major problem by stacking multiple processor layers even if processors
are interlaced vertically. Therefore, in consideration of heat dissipation of
current CMP, the processor layer should be on top of the chip.
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In this section, based on the above analysis, we use a 3D multicore
processor model of two layers (more memory layers can be attached). The
top layer is an 8×8 mesh with 64 Sun SPARC cores under 32nm. The L2
cache is 64MB split into 64 banks, with 64-bit line size and 4-way associa-
tivity. Based on 32nm, each cache bank, including data and tag, occupies
3.2mm2. The cache layer has an 8×8 mesh of cache banks. As aforemen-
tioned, routers are quite small compared with processors and caches. The
total area of the processor is supposed to be below 300mm2.

TSV is the most promising solution for building 3D chips. There are
several types of TSVs, e.g. data signal transmission, control signal trans-
mission, power distribution and thermal dissipation. Here, a pillar is de-
fined as a bunch of TSVs, including TSVs for data, control and power
distribution. It is obvious that the maximum performance can be achieved
by full layer-layer connection, e.g. all routers are connected with up/down
routers by pillars. However, as the number of tiles grow, it might not be
practical to assume that each tile will be connected with corresponding
TSVs because of the manufacturing cost and chip area. In [128], the place-
ment of pillars is studied, an optimal placement of TSVs for an 8×8 mesh
with 16 pillars is presented to minimize traffic contention between layers
(Figure 6.14a). The overall performance and total number of TSVs are 92%
and 20% compared with full layer-layer connection respectively, achieving
a good balance between performance and manufacturing cost.
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Figure 6.14: Gray nodes are attached to a pillar.

Assuming XYZ deterministic routing, Equation 6.6 shows the access
time (latency) required for a core-cache communication. The latency in-
volves in-tile links (Between NI and PE, LLink delay1), router (LRouter delay),
tile-tile links (LLink delay2), the number of hops required to reach the desti-
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nation (nhop) and the delay caused by TSV (LTSV delay). Since the delays
of link, router and TSV are fixed, hop count is the most important metric
in determining latency. Figure 6.14b shows the average hop counts required
for a core to access the shared cache nodes (AHPC). Obviously, without
proper schedule, the communication overhead can be an obstacle. For ex-
ample, nodes at corners of the NoC have much higher AHPC than nodes
in the center. However, nodes directly connected with a pillar usually have
lower AHPC, sometimes even lower than inner nodes, e.g. the AHPC for
the node 38 is 5.75, lower than 6.75 of the node 37. Scheduling a task to
the node 38 is therefore preferable than 37, since the average delay to the
shared caches is lower.

LCoreCache = 2×LLink delay1 + (nhop + 1)×LRouter delay+

nhop×LLink delay2 + LTSV delay (6.6)

6.2.2 The Scheduling Algorithm

Our proposed scheduling algorithm takes into consideration of on-chip topol-
ogy and TSV placement, scheduling decisions are made based on these in-
formation. The aim of the algorithm is to minimize average network latency
of the system, which is an important factor of system performance. We use
a 3D NoC model as described below. Other definitions can be found in the
previous section.

Definition 6. 6 A 3D NoC N(P (X,Y ), C(X,Y )) consists of a layer of PE
mesh P (X,Y ) (width X, length Y ); and a layer of cache mesh C(X,Y ).
Layers are connected by TSVs, only a quarter of nodes are connected (Fig-
ure 6.14a).

Definition 6. 7 nFree is a sorted list of all unallocated nodes in P , such
that: AHPCnFree1≤AHPCnFree2≤AHPCnFree3≤. . .AHPCnFreek.

To schedule a task efficiently, several metrics have to be considered, e.g.
MD, AHPC and so on. Scheduling a task with only 1 thread is relatively
easy. In this case, nodes 19, 29, 34 and 44 are considered in the first place,
if they are not utilized by other applications. The reason is that these four
nodes have the lowest AHPC (5.25). However, as the requested number of
threads grows, other metrics have to be included. For example, a 2-thread
task can be scheduled to nodes 19 and 29. In this case, the Inter Process
Communication (IPC) between threads will suffer higher delay, since the
messages have to go through nodes 20 and 21 according to XY routing.
Another problem is fragmentation. Non-contiguous allocation of cores in a
dynamic system can cause degradation of overall system performance. The
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2-thread task can be scheduled to nodes 19 and 20 as well. Despite the fact
that the AHPC is increased by 1 for node 20 compared with node 29, the
adjacent allocation will alleviate IPC bottleneck, and reduce fragmentation.

ACT is used to calculate the overhead of a core-core communication.
According to the equation, the ACT is 3 and 1 for nodes 19/29 and 19/20,
respectively. The delay for a core-core communication is shown in Equa-
tion 6.7. Obviously, allocation 19/29 will incur much higher router delay
and delay of tile-tile links, comparing with allocation 19/20. It is notewor-
thy that a core-core communication is a intra-layer communication, while
a core-cache communication is a inter-layer communication.

LCoreCore = 2×LLink delay1 + (nhop+1)×LRouter delay + nhop×LLink delay2

(6.7)

Code 8 The Greedy Heuristic Approximation Scheduling Algorithm

Input: A mesh based NoC N with TSV constrains, a task with n threads
Output: An allocated region R, containing n processors

1 Pop the first node as an initial node u0 from nFree, and push u0 to R

2 nMD := nFree sorted as MD(u0,nFree)

3 while nMD is not empty do
4 Pick a node un(xi, yi) from nMD with smaller AHPC

if several nodes with same AHPC then
5 pick a node un(xi, yi) with smaller ACT in the result region
6 end
7 if several nodes with same ACT then

8 pick a node un(xi, yi) which xi→X
2 and yi→Y

2
9 end

10 Pop un(xi, yi) from nMD, and push un to R

11 end

For a rectangular core allocation with A×B nodes, according to [67],
ACT can be calculated in an easier way. A scheduling algorithm should
have a low computation complexity and should deliver an optimal or near-
optimal results. This is due to the scheduling has to be solved online, and
the time for solving the scheduling is a part of the overall system response
time. It is clear that we should not try to solve the scheduling problem
optimally, in case the computation complexity is too high. Given a task
with n executing threads, we define the problem as determining the near-
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optimal core allocation for the task by selecting a region containing of n
cores. The pseudo code of the algorithm is shown in Code 8.

Line 1 sets the starting node of the algorithm, which is the one with
the lowest AHPC. A list nMD contains nodes sorted based on MD from the
starting node. The adjacent nodes are always considered first, in terms of
AHPC. ACT will be calculated, in case several nodes are with the same
AHPC. If ACTs for the allocation strategies are still the same, a node closer
to the center of the network will be selected (considering the statistical
variance of the coordinates of two nodes, Equation 6.8). This is due to the
fact that nodes in the center usually have lower AHPC than nodes in the
border, following steps may have better results from this heuristic.

V ar(n) =
1

2
× [(xi −

X

2
)2 + (xj −

Y

2
)2] (6.8)
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Figure 6.15: The node selection steps for the algorithm.

We analyze an example of the algorithm. Figures 6.15a to 6.15h shows
the steps for node selection, starting from node 19. The number between
two nodes ni and nj means MD(ni,nj) and AHPC(nj). Note that we only
show 4 child nodes in these figures. The actual list nMD and nFree may
contain more nodes. As illustrated in Figure 6.15a, node 19 has 4 adja-
cent nodes and 3 of them are with the same AHPC and ACT. However, in
terms of distance to the center, node 27 is selected (V ar(27) < V ar(20) <
V ar(18)). The selection of the next node follows the similar rule: same
AHPC, same ACT, same variance. In this case we choose node 28, hav-
ing a smaller node number than node 35. Figure 6.15c demonstrates that
node 29 is selected due to its lowest MD and AHPC. The next step in-
volves different ACTs: both node 21 and node 30 have the lowest AHPC,
however the ACTs for the two nodes are different (2 for node 30, and 1.8
for node 21). Node 20 and 12 are selected as the sixth and seventh node,
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respectively, due to their lowest AHPC. The next node (11) is picked out,
on account of its lower ACT than the others. It is noteworthy that the
aforementioned greedy heuristic approximation algorithm generates near-
optimal scheduling solution in most cases. However, in our algorithm we
put adjacent nodes as the first priority, the AHPC and ACT are consid-
ered next. This strategy may generate non-optimal scheduling for certain
applications.
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Figure 6.16: The execution of our algorithm, starting from node 19 and
selected 16 nodes.

Take a 4-thread application for example. As shown in Figure 6.16, the
algorithm will choose nodes 19, 27, 28 and 29 for allocation. An IPC-
intensive application may suffer from the long distance communication of
node 19 and 29. In this case, node 20 is a better choice than 29 since the
ACT is lower. Despite our goal is to find a near-optimal scheduling using
MD, AHPC and ACT, the weight of these metrics should be considered
as well. Different applications have their own profile: some have higher
demand of caches, some have higher volume of IPC. One solution is to add
an interface between the application and the OS, the application will tell
the OS its behavior. Another solution is to add a low overhead profiling
module inside the OS. Program access patterns are traced dynamically, and
possibly migrated for better allocations.

6.2.3 Experimental Evaluation

We use a 64-core multiprocessor for our experiments. The 3D CMP has two
layers; the first layer contains PEs (each running at 2GHz with a private
L1 cache, split I+D, each 16KB, 4-way associative, 64-bit line, 3-cycle),
the second layer consists of shared L2 caches (unified 64 banks, each 1MB,
64-bit line, 6-cycle). The MOESI cache coherence protocol is used. We
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select FFT [12] and Radix [19] as applications. In FFT, the communica-
tion between processors only take place at the last stage of the execution.
However the network traffic and cache miss rate are very high. The Radix
sort algorithm assigns each processor a part of the sorting keys. For every
iteration in the algorithm, a permutation for the keys is required to create
a new array for the next iteration. This will incur all-to-all communication
among processes. Hence Radix represents an application with high IPC.

Performance is evaluated in terms of Average Network Latency (ANL),
Execution Time (ET) and Cache Hit Latencies (CHL). We analyze two
core allocations for a 2-thread task: T2-1 is from our algorithm, which
contains nodes 19 and 27. It has lowest ACT values, however the AHPC
is not optimal. T2-2 is an alternative allocation, which contains nodes 19
and 29. In this case, the AHPC is minimized. The T4-1, T4-2 and T4-3
are three core allocations for a 4-thread task: T4-2 contains nodes 19, 20,
27 and 28, represents lowest ACT; T4-3 contains nodes 19, 29, 34 and 44,
represents lowest AHPC. Our algorithm selects T4-1, it has neither lowest
ACT nor AHPC numbers. However we believe it could be a good balance
for the two metrics.
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Figure 6.17: Performance for FFT and Radix.

The results are illustrated in Figure 6.17. The core allocation of our
scheduling algorithm for 2 threads outperforms the other in terms of ANL.
The improvement is more notable in 2-thread FFT and Radix, with 9.26%
and 11.77% reduced latency, respectively, compared with the T2-2 alloca-
tion. This is primarily due to the reduced communication overhead between
two PEs. We note that the reduced AHPC in T2-2 failed to compensate
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the increasing ACT, in terms of ANL. The CHL in T2-2 directly reflects
the reduced AHPC. However, the average runtime of two applications show
that our algorithm spends 15.58% shorter time than T2-2. Considering a
4-thread task, we note that both ACT and AHPC play important roles in
overall performance. For example, despite the fact that T4-2 has lowest
ACT, the ANL for two applications is 3.76% higher than in our algorithm.
This leads to a higher ET as well. Allocation T4-3 performs better than
our scheduling in the 4-thread FFT. This is because of, in FFT, the commu-
nication between threads only happens at the last stage of the execution.
In this case, we observe that the trade-off for ACT is worthy. However,
applications that heavily rely on IPC, e.g. Radix, will suffer from the T4-3.
The ET of T4-3 is 24.24% longer than in T4-1.
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Chapter 7

Conclusion

An efficient computer system should include both high efficiency hardware
and software that is specially optimized for the designated hardware. The
main contribution of this dissertation lies on the hardware/software co-
designs of multicore architectures.

As a part of hardware designs of this dissertation, the different two-
dimensional and three-dimensional Network-on-Chip designs with integrate
and split core/cache architectures were explored. In the proposed system,
the last level caches were separated from the processing elements and im-
plemented on another layer of the processor using static non uniform cache
architecture. Wire lengths were reduced significantly in the proposed sys-
tem. Through the experimental results, it is found that the proposed split
core/cache architecture outperformed the traditional design in terms of
cache hit latency, average link utilization and average network latency.

Observing that current on-chip systems suffer from the critical memory
bandwidth problems in the communication between on-chip components
and off-chip memory, a novel three-dimensional Network-on-Chip architec-
ture with several layers of on-chip dynamic random access memories was
proposed as a solution. The architecture contained a processor layer, a
cache layer and several memory layers. Results of the experiments show
that the average link utilization and execution time of application were
reduced compared with the design of off-chip memory.

Intelligent placement of resources was introduced in this dissertation,
so that the optimal position of the resource was determined in the design
phase and the performance degradation by reduced amount of resources was
alleviated. Several network sizes and amount of resources were explored. A
generic method, divide and conquer, has been proposed for larger networks.

Through silicon vias were used as a case study for resource placement.
In a three-dimensional chip, it is obvious that the maximum performance
can be achieved by full layer-layer connection. However, as more than half
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of the manufacturing costs are dedicated to these connections, reducing
the total number of layer-layer connections is an important design issue.
The performance of the chip could be affected, since multiple nodes have
to share a connection. To minimize traffic contention between layers, the
placement of these connections should be considered carefully. The opti-
mal placement of memory controllers were investigated in this dissertation
as well. The memory bandwidth problem could be a bottleneck for de-
signing future multicore processors. By integrating more on-chip memory
controllers, this problem can be alleviated. However, the number of on-
chip memory controllers will be limited due to the restrictions of the pin
count. Several metrics, including average hop count, memory controllers
per row/column and adjacent memory controllers have been analyzed for
optimal placement of memory controllers. As the third case study, we ex-
plored the optimal placements of cores and caches. It is found that the
placement of cores and caches in mesh networks have a significant impact
to the system performance. Several core/cache configurations were investi-
gated. Experimental results shown that the optimal placement of hardware
resources provided a balance between performance and manufacturing cost.

As a part of software designs of this dissertation, three applications,
including H.264, N-Body and FFT, were used to study the implementation
of software to on-chip networks. Different NoC design alternatives for data
parallel H.264 coding have been proposed and evaluated. Our study shows
that the inter-thread communication and shared data accesses are the sys-
tem performance bottlenecks. Two three-dimensional design approaches
with processors on the top layer and distributed in two layers have been
evaluated. It is shown that, although the performance of distributed design
was higher, it suffered from problem of heat dissipation. The implementa-
tion of two hierarchical N-Body methods (Barnes-Hut and Fast Multipole)
in a NoC platform was studied as the second application. Both scalability
and network traffic for the two methods were analyzed. The time distri-
bution of the two methods were explored. We investigated the advantages
and disadvantages of the two algorithms. The network requests rates of 64
processing cores were illustrated for both methods. Our experiments have
shown that the Barnes-Hut method generates more hot-spot traffic than
Fast Multipole. However, it scales better, and has lower overall pressure to
the on-chip network and caches, compared with Fast Multipole. An opti-
mized Network-on-Chip architecture for data parallel FFT was proposed in
this dissertation. A one-dimensional, radix-n, six-step FFT algorithm was
selected. We analysed low-level traffic pattern for FFT. Several hotspots
were found. An optimization method, namely long links between hotspot
nodes, was introduced. Results show that the reduced latencies have a
strong impact on system performance. The execution time of our opti-
mized design was reduced significantly compared with the original design.
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The scheduling of processes and threads for future multicore platforms
was explored. We investigated two scheduling algorithms for two-dimensional
and three-dimensional network-on-chips. A minimal average access time
scheduler was proposed to reduce overall on-chip communication laten-
cies for two-dimensional network-on-chips. For resource constrained three-
dimensional chips, we presented a greedy heuristic approximation schedul-
ing algorithm. The constraints of through silicon vias were discussed. Ex-
perimental results shown the execution time of applications reduced sig-
nificantly with proper scheduling. Our research have demonstrated that
operating system scheduling is crucial for future multicore architectures.

7.1 Future Work

The research of hardware/software co-design in two-dimensional and three-
dimensional Network-on-Chips has just started, and yet there are still many
open problems to explore.

For example, new technologies of volatile and non-volatile memories
are emerging, and can be a candidate in designing future multicore chips.
These include magneto-resistive random access memory (MRAM), phase-
change random access memory (PRAM), ferroelectric random access mem-
ory (FRAM) and resistive random access memory (RRAM). They can pro-
vide different design possibilities for multicore architectures.

The resource placement problem can be refined as well, by using other
mathematical methods. The integer linear programming is a candidate
for improving the effectiveness of resource placement. The combination of
both divide and conquer and integer linear programming could open a new
direction of resource placement.

The software adaptability for future multicore architectures still require
more work. For example, the implementation and optimization for applica-
tions to the Network-on-Chip platform, and the modifications to operating
system scheduler to reach an optimal or sub-optimal performance in such
platforms.
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Appendix A

Example Simulation Output
and Post-processing

The following results (Code 9) are generated by the GEMS/Simics full
system simulator. These results include network configuration, execution
time, cache misses, executed instructions, L2 cache profiles, average link
utilization, average virtual channel loads, average network latency and so
on.

By adding support for system event trace, messages sent from one node
to another node (unicast) or other nodes (multicast/broadcast) are gath-
ered for analysis. A typical request message is shown in Code 10, the
memory address of the message is ”0x2c486c0”, the type of the message is
”Get Instruction”, the access mode of the message is ”SupervisorMode”,
the requestor of the message is the 14th node of the L1 cache, the destina-
tion of the message is unicast to node 9, the message is sent on cycle 5, it has
no dirty bit nor prefetch option. The types of request messages are shown
in Code 11. The types of a respond messages are shown in Code 12. Notice
that different cache coherence protocols have different message types.

A segment of the event trace is demonstrated in Code 13. The four
fields in a line is segmented by a semicolon. The first field represents
the cycle number, the second represents the source node (e.g. 0-63 in a
64 node network), the third represents the destination node, and the last
field represents the message type (e.g. R for Request and S for Response,
number denotes the sequence in the enumeration structure). Notice that
the detailed information of a message can be gathered as well, however in
this case each line requires additional space. In this dissertation, the size
of traces ranges from tens of megabytes to hundreds of gigabytes. The
communication between cache nodes and memory controllers are presented
in Code 14. The extra field at the end of a line represents the memory
address.
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To process these trace data, which can contain hundreds of gigabytes
of information, several scripts are composed. For example, Code 15 is
used for generating source data for plotting figures from the trace file,
Code 16 and 17 are used for generating the inter-layer message statistics,
and Code 18 is used for counting inter-layer messages.
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Code 9 Sample results.
......

[Network Interface 0] - [inLink 84] - [outLink 0]

[Network Interface 1] - [inLink 89] - [outLink 1]

[Network Interface 2] - [inLink 94] - [outLink 2]

[Network Interface 3] - [inLink 104] - [outLink 3]

[Network Interface 4] - [inLink 109] - [outLink 4]

[Network Interface 5] - [inLink 114] - [outLink 5]

......

Elapsed_time_in_seconds: 58865

......

total_misses: 63716 [ 15959 550 183 251 117 121 118 114 117 7017

117 1560 8508 123 117 115 119 119 115 181 26499 122 115 112 109

306 114 114 191 123 115 175 ]

......

instruction_executed: 6148165072 [ 148532668 199320085

199908109 199840525 200006216 199998180 199992377

199982544 199947887 189757216 199839161 197883902

188127441 199964058 199962287 199961567 199994756

200000320 200003247 199255653 28217294 199969973

199961410 199965802 199966170 199747725 200004509

200000001 199889970 199979479 199955817 198228723 ]

......

L2_cache_misses_per_transaction: 63716

L2_cache_misses_per_instruction: 1.03634e-05

L2_cache_instructions_per_misses: 96493.3

L2_cache_request_type_GETS: 28.9645%

L2_cache_request_type_GET_INSTR: 10.8011%

L2_cache_request_type_GETX: 23.0005%

L2_cache_request_type_UPGRADE: 37.234%

......

Average Link Utilization :: 0.00107376 flits/cycle

Average VC Load [0] = 0.0292597 flits/cycle

Average VC Load [1] = 0.0292669 flits/cycle

Average VC Load [2] = 0.0292714 flits/cycle

Average VC Load [3] = 0.029272 flits/cycle

......

Average network latency = 29.4251

......
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Code 10 Request message.

RequestMsg: Address=[0x2c486c0, line

0x2c486c0] Type=GET_INSTR

AccessMode=SupervisorMode Requestor=L1Cache-

14 Destination=[NetDest (3) 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 - 0 0 0 0 - ] MessageSize=Control

DataBlk=] Dirty=0 Prefetch=No Time=5

Code 11 Request message types.

enumeration(CoherenceRequestType, desc="...") {

GETX, desc="Get eXclusive";

UPGRADE, desc="UPGRADE to exclusive";

GETS, desc="Get Shared";

GET_INSTR, desc="Get Instruction";

INV, desc="INValidate";

PUTX, desc="replacement message";

}

Code 12 Request message types.

enumeration(CoherenceResponseType, desc="...") {

MEMORY_ACK, desc="Ack from memory controller";

DATA, desc="Data";

DATA_EXCLUSIVE, desc="Data";

MEMORY_DATA, desc="Data";

ACK, desc="Generic invalidate ack";

WB_ACK, desc="writeback ack";

UNBLOCK, desc="unblock";

EXCLUSIVE_UNBLOCK, desc="exclusive unblock";

}
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Code 13 Example of Node-Node message queue.
29655002,4,30,S4

29655013,4,31,R2

29655013,4,30,R1

29655041,30,58,S4

29655051,30,59,R1

29655057,31,4,R7

29655097,4,31,S5

29655256,59,30,S2

29655305,30,4,S2

29655340,4,30,S4

29655344,4,26,R2

29655344,4,4,R1

29655356,4,0,R1

29655379,30,59,S4

29655384,26,4,R7

29655419,4,26,S5

29655544,0,4,S2

Code 14 Example of Cache-Memory message queue.

62,L2Cache-11,Directory-14,M0,[0x2c48780]

63,L2Cache-11,Directory-3,M0,[0x2c39cc0]

66,L2Cache-11,Directory-12,M0,[0x2c48700]

70,L2Cache-11,Directory-10,M0,[0x2c49a80]

71,L2Cache-11,Directory-1,M0,[0x2c4a040]

71,L2Cache-11,Directory-13,M0,[0x2c48740]

73,L2Cache-11,Directory-13,M0,[0x2c49b40]

73,L2Cache-11,Directory-11,M0,[0x2c486c0]

78,L2Cache-11,Directory-2,M0,[0x2c39c80]

322,L2Cache-3,Directory-3,M0,[0x10d940c0]

340,L2Cache-3,Directory-0,M0,[0x10dae000]

345,L2Cache-11,Directory-9,M0,[0x2c49a40]

374,L2Cache-11,Directory-14,M0,[0x2c49b80]

412,L2Cache-3,Directory-0,M0,[0x10dbe000]

431,L2Cache-11,Directory-11,M0,[0x2c49ac0]

445,L2Cache-12,Directory-2,M0,[0x3000080]

492,L2Cache-3,Directory-0,M0,[0x10dca000]
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Code 15 Perl source code of generating plot data from traffic trace.

#!/usr/bin/perl

$total_nodes = 64;

$array_size = $total_nodes * 100 * 3;

$array_magic = $total_nodes * 3;

$trace_file = $ARGV[0];

$output_file = $ARGV[1];

open(IN, "< $trace_file") || die "Cannot open $trace_file";

open(OUT, "> $output_file") || die "Cannot write $output_file";

my $file_head = qx(head $trace_file -n 1);

$file_head =~ s/(\d+),.*/\1/;

my $file_tail = qx(tail $trace_file -n 1);

$file_tail =~ s/(\d+),.*/\1/;

$total_cycles = int($file_tail)-int($file_head);

$cycle_frac = int($total_cycles / 100)+1;

for ($i=0; $i<100; $i++) {

for ($j=0; $j<$total_nodes; $j++) {

push (@xyz, ($i, $j, 0));

}

}

while(<IN>){

/(\d+),(\d+),(\d+),/;

$x = int(($1-int($file_head)) / $cycle_frac);

$y = $2;

$location = $x*$array_magic+$y*3+2;

splice(@xyz,$location,1,$xyz[$location]+1);

}

for ($i=0; $i<100; $i++) {

for ($j=0; $j<$total_nodes; $j++) {

print OUT "$xyz[$i*$array_magic+$j*3] ";

print OUT "$xyz[$i*$array_magic+$j*3+1] ";

print OUT "$xyz[$i*$array_magic+$j*3+2]\n";

}

}

close(OUT);

close(IN);

140



Code 16 Bash source code of generating point-to-point message statistics
in a 4×4 mesh.
# for i in ‘seq 0 15‘;

do for j in ‘seq 0 15‘;

do echo -n $i,$j" ";

grep "^.*,$i,$j," trace|wc -l;

done; done > p2pmsg

Code 17 Bash source code of generating inter-layer message statistics in
an 8×8 mesh.
# for i in ‘seq 0 63‘;

do for j in ‘seq 64 127‘;

do grep "^$i,$j " p2pmsg;

done; done > p2pmsg.l0-l1

Code 18 Bash/sed source code of counting inter-layer messages in an 8×8
mesh.
# sed -e "s/\(.*,.*\) \(.*\)/\2/" p2pmsg.l0-l1 | tr ’\n’ ’+’ |

sed -e "s/\(.*\)\(+\)/\1\n/" | bc
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