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ABSTRACT

Cyanobacteria have a similar photosynthesis as plants. Despite of their tiny size, 
cyanobacteria have had a revolutionary effect on Earth’s evolution and they are still 
responsible for at least one third of global primary production. I have studied the possible 
role of cyanobacteria in the oxygenation of the atmosphere and the oceans during the 
Archaean time. The results showed that cyanobacteria are able to live in anaerobic 
conditions in the presence of high concentrations of ferrous iron. These conditions mimic 
those in Archaean oceans. Furthermore, oxygen produced during photosynthesis caused 
precipitation of iron. The results suggest that cyanobacteria may have caused the massive 
precipitation of iron that led to the build-up of banded iron formations during Archaean 
era. The results also show that microcystins or nodularins do not play important role in 
iron metabolism.

In the second part of the study, I modeled thermoluminesence and chlorophyll a 
fl uorescence. The focus was on the reaction in which the charge separated state S2QA

- 

recombines, forming the ground state S1QA. S2QA
- recombination is associated with a 

decrease in chlorophyll a fl uorescence yield and with the Q band of thermoluminescence. 
The results showed that energy transfer between photosystem II centers widens the Q 
band and shifts the peak to a lower temperature. Comparison of thermoluminescence 
data with measurements of decay of chlorophyll a fl uorescence yield showed that a 
common model can be applied to both phenomena. For the fi rst time, the Marcus theory 
of electron transfer reactions was applied to photosynthetic thermoluminescence.

The group 2 σ factor triple inactivation strains sigBCD, sigBCE, sigBDE and 
sigCDE of Synechocystis sp. PCC 6803 were analyzed with the biophysical methods. 
The biophysical methods revealed differences in light acclimation in these strains. 
All triple inactivation strains had a higher photosystem II peak in 77 K fl uorescence 
spectra than the control strain, and the sigBCE strain was found to be locked to state 
1. Absorption spectra revealed that sigCDE (with SigB as the only group 2 σ factor) 
has more carotenoids than the control strain and in photoinhibition experiments the 
sigCDE strain behaved like the control strain while all other triple inactivation strains 
were more sensitive to light than the control strain. Synechocystis cells lacking SigB and 
SigD simultaneously were unable to use high light as effi ciently as the control strain. 
These data show that SigB factor is important for acclimation to high light.
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1. INTRODUCTION

1.1. Cyanobacteria

1.1.1. Ancient Earth and fi rst cyanobacteria

The Earth is over 4.5 billion of years old (Nisbet and Sleep, 2001), and conditions in 
ancient Earth were quite different than nowadays. There was no oxygen in the atmosphere 
and the carbon dioxide content was higher. Temperature has been fl uctuating from warm 
(70°C) to cold (worldwide ice ages) during different periods in Earth’s early history. The 
environment in ancient oceans was rich in different metals such as iron and manganese. 
The fi rst life forms were prokaryotes and the fi rst evidence for biological carbon fi xation 
are fossil stromatolites which are dated as 3.4 billion of years old (Schidlowski, 1988). 
Most probably, photosynthesis evolved via anoxygenic forms resembling current 
photosynthetic anoxygenic bacteria. Anoxygenic photosynthetic organism have either a 
reaction center complex resembling photosystem I (PSI) or one resembling photosystem 
II (PSII) (Bryant and Frigaard, 2006).

Oxygenic photosynthesis, employing both PSII and PSI, evolved in cyanobacteria. 
Oxygen, a side product of oxygenic photosynthesis, caused huge changes in the 
ancient environment. In oceans, oxygen reacted fast with metals, forming both soluble 
and insoluble compounds. Geochemical evidence suggests that oxygen appeared 
in Earth’s atmosphere 2.45 billion years ago (BA) (Bekker, et al., 2004; Claire, et 
al., 2006). However, the oxygen content of oceans may have started to rise long 
before oxygen escaped to the atmosphere, and the actual timing of the emergence 
of cyanobacteria is still unclear. The oldest microfossils tentatively identifi ed as 
cyanobacteria are 3.5 billion of years old (Schopf and Packer, 1987; Schopf, 1993) 
but they might be fossils of fi lamentous non-oxygen-evolving phototrophs (Pierson, 
1994), sulfur metabolizing organisms (Bontognali, et al., 2012) or even abiogenic 
structures (Brasier, et al., 2002).

Banded iron formations (BIF) are iron rich stones which were formed in oceans 
mainly during the Archaean and early Proterozoan era (2.5-1.8 BA) but the oldest known 
BIF is dated as 3.8 BA (Rosing, et al., 1996). Most of the mineable iron of the Earth’s 
crust is in these stones. BIFs are striped by two layers, an iron rich reddish layer and an 
iron poor gray or dark layer (James, 1954). The thickness of these layers is from a few 
millimeters to a few centimeters. The origin of these formations is under debate and 
there are several different hypotheses. The BIFs could be born when oxygen produced by 
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photosynthetic cyanobacteria oxidized the soluble ferrous iron (Fe2+) to ferric iron (Fe3+) 
which then precipitated, or they may have been formed by anoxygenic phototrophic 
bacteria (Widdel, et al., 1993). It could be speculated that the layered structure of the 
BIFs results from the toxicity of oxygen to cyanobacteria. In this case, precipitation of 
iron would have ended due to the toxicity of free oxygen, and started again only after 
mixing of the ocean water and re-establishment of a cyanobacterial population. However, 
the long time of BIF formation speaks against this interpretation, as cyanobacteria would 
be expected to have evolved protective mechanisms. Also ultraviolet light (Cairnssmith, 
1978) and hydrothermal plumes (Isley and Abbott, 1999) have been proposed to be 
behind oxidation of Fe2+.

1.1.2. Current cyanobacteria

According to the endosymbiosis theory, cyanobacteria are the progenitors of primary 
plastids including the chloroplasts of higher plants, green and red algae and the 
Glaucocystophyta (Keeling, 2004; Rodriguez-Ezpeleta, et al., 2005). Even after 
evolution of photosynthetic eukaryotes, cyanobacteria remain as extremely important 
producers in ecosystems. Cyanobacteria are responsible for at least one third of the net 
primary production on the Earth (Field, et al., 1998; Bryant, 2003). 

Cyanobacteria are gram negative eubacteria, and some species are unicellular while 
other species form fi laments. Filaments may contain specialized cells like akinetes or 
heterocysts. In addition to carbon fi xation, some cyanobacteria are able to fi x nitrogen. 
This biological nitrogen fi xation is catalyzed by nitrogenases which are sensitive to O2 
(Fay, 1992). For that reason, nitrogen fi xation and O2 evolution are either temporally or 
spatially separated. Some fi lamentous cyanobacteria, like Nodularia, have specialized 
nitrogen fi xing cells called heterocysts that have thick cell walls to prevent oxygen 
diffusion to the cell and that do not have PSII (Fay, 1992). Cyanobacteria which use 
temporal separation mechanism are photosynthetically active in the light and fi x nitrogen 
in darkness (Misra and Tuli, 2000). 

In the public eye, cyanobacteria are mostly known for their ability to produce 
cyanotoxins. In particular, cyanobacteria produce cyclic heptapeptides (microcystins) 
or pentapeptides (nodularins). These toxins inhibit protein phosphatases, which causes 
the toxicity to other organisms (Jaiswal, et al., 2008). The production of toxins is an 
ancient trait in cyanobacteria (Rantala, et al., 2004) but many cyanobacteria species 
have lost their ability to produce toxins during evolution. The roles of cyanotoxins are 
still unclear, but there are some hypotheses. They might have allelopathic effects on 
some algae and against herbivores (Babica, et al., 2006). The toxins resemble chemically 
bacterial siderophores and can form complexes with iron (Utkilen and Gjolme, 1995) 
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and other metals (Humble, et al., 1997). Iron may also induce microcystin production 
(Utkilen and Gjolme, 1995). These data may suggest that the toxins may have a role 
in iron metabolism. It has also been proposed that the toxins function as intraspecific 
signaling molecules (Dittmann, et al., 2001).

1.2.	 Photosynthesis and light harvesting in plants and cyanobacteria

Photosynthesis can be separated to light reactions and the Calvin-Benson cycle. In light 
reactions, light energy is converted to chemical energy in the form of ATP and NADPH, 
and oxygen is released as a side product. In the Calvin-Benson cycle, the energy of ATP 
and NADPH is then used to assimilate carbon dioxide to triose phosphates (Bräutigam 
and Weber, 2011).

Photosynthetic light reactions occur in the thylakoid membranes. The major 
multisubunit protein-pigment complexes in thylakoid membranes are PSII, the 
cytochrome b6f complex, PSI and the ATP synthase. The structure of PSII at 1.9 Å 
resolution (Umena, et al., 2011), and that of PSI at 2.5 Å (Jordan, et al., 2001) have been 
resolved. The PSII core proteins are very similar in plants and cyanobacteria, but the 
light harvesting antenna systems are different.

In plants, the membrane intrinsic chlorophyll-binding light harvesting complex 
(LHC) proteins function as the main antenna complexes of PSII and PSI. LHCII is the 
major antenna complex of PSII, and the reaction center of PSII and LHCII form the 
PSII-LHCII supercomplex (Boekema, et al., 2000). The LHCII is a trimer formed of 
Lhcb1, Lhcb2 and Lhcb3 proteins (Jansson, 1994). There are two or three LHCII trimers 
per one PSII reaction center. In addition to LHCII, antenna of PSII contains so called 
small Chl a/b proteins (Ganeteg, et al., 2004). PSI has its own light harvesting complex 
called LCHI which consists of proteins having amino acid sequences highly similar to 
the proteins of LHCII (Boekema, et al., 2001). LHCI is composed of four Lhca proteins 
(Lhca1–Lhca4) and there are four LHCI heterodimers per one PSI (Wientjes, et al., 
2011). Cyanobacteria have neither LHCI nor LHCII.

Cyanobacteria have a distinct light harvesting phycobilisome antenna that can be 
associated with PSII and PSI (Adir, 2005). Phycobilisomes are composed of water-
soluble protein subunits carrying covalently attached phycobilin pigments (Mullineaux, 
2008). The phycobilisomes do not bind Chl. Large phycobilisomes consist of more 
than 100 polypeptides and structurally two different parts, the core and the rods, can 
be distinguished (Fig. 1) (Grossman, et al., 1993). In Synechocystis, the phycobilisome 
antenna consists of six phycocyanin rods; and every rod consists of three hexameric 
disks on top of each other (Fig. 1). The absorption maximum of the phycocyanin 
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containing rods is 620 nm, and the fluorescence maximum is from 640 nm to 650 nm. 
The core of the phycobilisome consists of three allophycocyanin (APC) cylinders, each 
of them consisting of four trimeric disks. The two cylinders closest to the membrane 
emit at 680 nm. The cylinder consists of two 3αβAPC disks which emit at 660 nm 
(APC660) and two other disks where the α- or β subunit is replaced by ApcD, ApcF 
or ApcE (MacColl, 1998; Arteni, et al., 2009). This replacement of one of the α or β 
subunits changes the emitted wavelength. The third cylinder consists of four 3αβAPCs 
and thus emits at 660 nm. All pigment proteins in the phycobilisome antenna are bound 
to each other by several different types of linker proteins, and the phycobilisome antenna 
is attached to the membrane by several weak charge-charge interactions (Mullineaux, 
2008). The phycobilisome antenna is flexible and is able to diffuse on the thylakoid 
membrane, and also between PSII and PSI (Mullineaux, et al., 1997; Sarcina, et al., 
2001). It has been proposed that the phycobilisome antenna has a low specify for binding 
to different membrane components (Mullineaux, 2008). This enables fast rearrangement 
in changing light conditions. Phycobilisomes are efficient antenna systems, and they are 
able to funnel over 90 % of captured light energy to PSII or PSI via APC680 (Grossman, 
et al., 1993; Dong, et al., 2009).

Figure 1. Structure of phycobilisome antenna of Synechocystis. The light grey cylinders are the 
rods and white cylinders form the core. Dark grey parts in the core are the subunits APC680. 
Modified from Tian, et al. (2012).
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1.3. Analyses of photosystem II

1.3.1. Electron transfer in PSII

PSII is a thylakoid embedded pigment-protein complex composed of more than 20 
subunits with a molecular mass of 350 kDa (Ferreira, et al., 2004). In addition to 
polypeptides, the PSII monomer contains 35 Chl, two pheophytins, 11 β-carotenes, 
over 20 lipids, two plastoquinones, two haem irons, one nonhaem iron, four manganese 
atoms, three or four calcium atoms, three Cl- ions and one bicarbonate ion (Umena, et 
al., 2011).

PSII transfers electrons across the thylakoid membrane from water to the plastoquinone 
pool, and oxygen is released as a side product. Water splitting occurs in the oxygen 
evolving complex of PSII. In forward electron transfer reactions of PSII, a photon excites 
an antenna pigment molecule and the exited state moves to the reaction center Chl P680 
(Fig. 2). An exited primary electron donor P680

* reduces a pheophytin, and the pheophytin 
reduces a plastoquinone molecule QA. QA

- then reduces another plastoquinone molecule 
QB. After double reduction and protonation the reduced plastoquinone molecule is 
replaced with an oxidized one from the plastoquinone pool.

The hole in the primary donor is fi lled by an electron from the oxygen-evolving 
manganese complex via YZ that is a tyrosine residue 161 of the D1 protein (Debus, 
et al., 1988). The consecutive oxidations of the OEC are described as an S-state cycle 
containing fi ve different oxidation states S0-S4 (Kok, et al., 1970).

After formation of the state S2QA
- or S2QAQB

-, an electron has a certain low 
probability to move backwards from QA

- or QB
- and recombine with the S2 state of the 

oxygen evolving complex, producing S1QA or S1QAQB, respectively. A similar charge 
recombination may occur between S3 and QA

- or QB
-. The charge pairs produced by 

electron transfer reactions of PSII, e.g. P680
+ QA

-, are stabilized by loss of free energy. 
Respectively, the recombination of a charge pair requires input of activation energy. 
If P680

* is an intermediate of a recombination reaction, then the activation energy 
equals the energy lost in stabilization. For this reason, analysis of the recombination 
reactions gives important information about forward electron transfer reactions as 
well. 
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Figure 2. The linear photosynthetic electron transfer chain in cyanobacteria. Light excites P680 
and an electron is transferred to pheophytin (Pheo). P680 gets an electron via a tyrosin residue (YZ) 
from the oxygen evolving complex (OEC) which pulls electrons out of water. From Phe electron 
moves to plastoquinone QA and further to a second plastoquinone QB. QB receives two electrons 
and dissociates from PSII to the plastoquinone pool, and passes electrons to the cytochrome b6f 
complex (Cyt b6f) where an electron moves fi rst to an iron-sulfur center (Fe-S) then to a heme 
iron (Fe) and fi nally to plastocyanin (PC). The Q cycle (not shown) enhances proton pumping by 
Cyt b6f). Light excites P700 and an electron moves from P700 via iron-sulfur-centers (Fe-S-centers) 
to ferredoxin (Fd) and fi nally to ferredoxin-NADP+ reductase (FNR). PC carries an electron from 
the Cyt b6f complex to P700

+.

1.3.2. Oxygen evolution

The function of PSII can be measured by oxygen evolution. Oxygen measurements with 
an artifi cial quinone as an electron acceptor are used to measure the function of PSII 
alone. Artifi cial electron acceptors can be used with isolated thylakoids, and in vivo with 
cyanobacteria and many microalgae (Renger and Hanssum, 2009). In the presence of an 
artifi cial electron acceptor of PSII, the rate of oxygen evolution obtained in saturating 
light is proportional to the amount of active PSII reaction centers in the sample, and 
measurements in limiting light monitor the function of PSII in growth conditions.
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The rate of O2 evolution measured with CO2 as the electron acceptor is affected both 
light and dark reactions of photosynthesis. If photosynthesis is measured in high light, 
the carbon cycle limits the rate of oxygen evolution, whereas the light reactions limit in 
low light.

1.3.3. Fluorescence of photosynthetic pigments

Chl and phycobilins emit fl uorescence in the red to far-red range. The emission spectrum 
of a photosynthetic organism depends strongly on temperature and the spectra are often 
measured at 77 K. The 77 K spectra show two peaks of PSII (at 685 and 695 nm) and 
one peak of PSI (at 725 nm, cyanobacteria). If the emission spectrum is measured from 
cyanobacteria by using orange exciting light, also a phycobilisome peak is present (at 
640–650 nm). If the exciting light is blue, the phycobilisome peak does not appear 
because blue light excites only Chl a and not the phycobilins. Emission spectra can be 
used to measure the ratios of the photosynthetic complexes. 

Chl fl uorescence can be used to monitor the function of the photosynthetic electron 
transfer reactions. Most applications of Chl a fl uorescence are based on the fact that the 
yield of Chl a fl uorescence depends on the reduction state of QA. Maximum fl uorescence 
(FM) is detected when all QA are reduced, i.e. the reaction centers are closed. The minimum 
level (F0) is detected in the opposite situation when all reaction centers are open (all QA 
oxidized). Variable fl uorescence (FV), in turn, is fl uorescence detected above F0, and the 
quantum yield of variable fl uorescence is roughly proportional to the ratio QA

-/(QA + QA
-

). With a pulse amplitude modulation (PAM) fl uorometer, changes in the yield of Chl a 
fl uorescence can be measured in the presence of background light. PAM fl uorometry can 
be used for measurements of non-photochemical quenching and state transitions. Chl a 
fl uorescence can also be used to measure back electron transfer reactions of PSII, as the 
recombination reaction S2QA

- → S1QA causes a decrease in fl uorescence. This recombination 
reaction is the same that causes the Q band of thermoluminescence (TL) and thus it should 
be possible to analyze the behavior of fl uorescence and TL with a common model. 

Connectivity is a phenomenon in which excitation energy can migrate from a 
closed reaction center to an open reaction center. This connectivity is the reason for the 
sigmoidal shape of the fl uorescence induction curve in the presence of DCMU (Lavergne 
and Trissl, 1995). The effect of connectivity is also expected to affect TL measurements.

1.3.4. Thermoluminescence

Photosynthetic TL was found by Arnold and Sherwood (1957) and it can be described by 
a TL model for solid materials (Randall and Wilkins, 1945). Photosynthetic TL curves 
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originate from PSII. In TL measurements, a fl ash of light is given at low temperature to 
cause a charge separation, and the sample is then heated at a constant rate, which leads 
to a peak of luminescence at a temperature that depends on the free energy of activation 
of the recombination reaction. 

Many of TL peaks are found at very low temperatures. Photosynthetic energy transfer 
reactions are not involved in the low temperature peaks (Noguchi, et al., 1993), and they 
rise from energy stored in Chl a and Chl b at -253°C, -223°C and -203°C. The Z peak 
at -160°C originates most probably from recombination of the pair Chl+ Chl- (Sonoike, 
et al., 1991). The ZV peak occurs from -80°C to -33°C; the position of peak depends on 
the temperature at which the exciting fl ash was given. This peak originates presumably 
from recombination of P680

+ and QA
- (Chapman, et al., 1991). A peak at -15°C (A band) 

originates from the recombination of YZ
+QA

-. If a thylakoid sample is treated with Tris 
to remove manganese, an AT peak originates from the recombination of the His+QA

- pair 
(Koike, et al., 1986).

Two important peaks occur between 0°C and 50°C. When DCMU is added it binds 
to the QB pocket of PSII and prevents electron transfer from QA

- to QB. The TL peak at 
+5°C to +20°C observed in the presence of DCMU is called as the Q band. The Q band 
originates from recombination reactions of S2QA

- and S3QA
- (Rutherford, et al., 1982; 

Demeter, et al., 1984; Demeter and Vass, 1984). The B band, approximately at +35°C, 
can be divided to two different peaks. The B1 band originates from the reaction S2QAQB

- 
→ S1QAQB and the B2 band from the reaction S3QAQB

- → S2QAQB (Rutherford, et al., 
1982; Demeter and Vass, 1984). However, these two peaks can be seen separately only 
in low pH 4.5–6.0 and in neutral conditions they are identical (Inoue, 1981). 

The C band at +50°C is luminescence from the recombination of Tyrosine D+QA
- 

(Rutherford, et al., 1982; Demeter, et al., 1984). Addition of DCMU makes the intensity 
of the C band higher. When TL is measured from intact samples (like chloroplasts or 
leaves) the recombination of the pair S2(3)QB produces the after glow peak (AG) at 
+40°C to +50°C. The AG band can be initiated by illumination with far red light at room 
temperature. 

The peaks observed at still higher temperature are not related to PSII electron transfer. 
Oxidative chemiluminescence of protein binding pigments (Vass, et al., 1989; Hideg and 
Vass, 1992) produces a peak between +47°C and +70°C, and peroxidation of lipids is 
responsible of peaks around +125°C (Ducruet and Vavilin, 1999).

The Q and B bands are the most studied bands. The Q band deviates from an ideal 
fi rst-order TL band, which causes a particular problem in using the Q band for analyzing 
the S2QA

- recombination. Different models have been put forward to explain the deviation 
(Tyystjärvi and Vass, 2004). Rappaport, et al. (2002, 2005) presented a model where the 
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recombination reaction occurs via three different reaction routes and only one of these 
routes produces luminescence. This model explains why the recombination of the S2QA

- 
pair seems to occur more slowly when studied with TL than when fl uorescence is used 
to measure the reaction.

1.3.5. Delayed light emission

Delayed light emission (DLE) is luminescence measured as function of time at 
constant temperature. Photosynthetic DLE was found by Strehler and Arnold (1951). 
Photosynthetic luminescence mainly originates from PSII, and PSI only emits very 
short-lived DLE. The time scale of DLE is from nanoseconds to minutes. The fast (μs-
ms) components originate from recombination of Z+P680QA

- and the slow ones (from 
ten seconds to minutes) from S2QA

- and S3QA
- recombination (Rutherford and Inoue, 

1984). The intensity of DLE relative to the luminescence intensity at zero time after a 
single turnover fl ash depends on three parameters i) the amount of PSII ii) the rate of 
the recombination reaction and iii) how big proportion of the recombination reactions 
produces luminescence.

1.3.6. Arrhenius, Eyring and Marcus theories of the reaction rate constant

The rate of a reaction is determined by the concentrations (chemical activities) of the 
reactants and by a reaction-specifi c factor called the rate constant. The structure of the 
rate constant has been a topic of theoretical analysis in chemistry from the time of Svante 
Arrhenius, who fi rst explained why temperature speeds up chemical reactions and who 
introduced the term activation energy, Ea. Ea is the energy that has to be obtained from 
the environment before a chemical reaction can occur, and the reaction rate depends on 
Ea. Increase in temperature increases the movement of molecules and thereby also their 
energy. The Arrhenius equation is 

Tk
E

b

a

esk


 0   (1)

where s0 is a temperature independent pre-exponential constant and kb is the Boltzmann 
constant. kb is a constant which tells the how much energy the reactants gain when 
temperature raises by one Kelvin. The exponential component of the Arrhenius equation 
describes the proportion of molecules whose energy is larger than Ea according to the 
Maxwell-Boltzmann distribution.
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The further developed Eyring theory (Glasstone, et al., 1941) takes into account 
the transition state theory. In the Eyring theory, the temperature independent Ea was 
replaced by activation free energy, also called the Gibbs energy (ΔGa), which depends 
on temperature according to the equation

aaa STHG    (2

where ΔHa is activation enthalpy and ΔSa is activation entropy. Another difference between 
Arrhenius and Eyring equations is in the pre-exponential factor, as the temperature 
independent constant s0 of the Arrhenius equation is replaced by a universal temperature 
depended constant value A in the Eyring theory. For monomolecular reactions A is

h
Tk

A b    (3)

where h is Planck’s constant. In addition, the Eyring theory applies transmission factors 
that take into account that reactions can occur only if the reactants meet each other. In 
analysis of TL it was assumed that the transmission factor is unity. The Eyring equation 
for the reaction rate constant is

Tk
HaSaT

b be
h
Tk

k


   (4)

The fact that in the Eyring model both the pre-exponential and exponential factor 
depend on temperature, causes problems in extracting the thermodynamic parameters 
from kinetic data. For example, the data of Paper II could equally well be fi tted by using 
a positive Sa and somewhat higher ΔHa than reported. However, we chose to use a 
negative Sa on the basis of literature. The Marcus theory has a similar property. 

While both Arrhenius and Eyring theories deal primarily with molecular reactions of 
gases, the Marcus theory is developed specifi cally to explain electron transfer reactions. 
Also in the Marcus theory the equation can be divided to a pre-exponential and an 
exponential factor. The equation for the rate constant is

)
4

)((2

20

4
12 Tk

G

b
AB

be
Tk

H
h

k 









   (5)



 INTRODUCTION 19

where h is the reduced Planck’s constant (h = h/2), |HAB| quantifi es the electronic 
coupling between the initial and fi nal states, l is the solvent reorganization energy, and 
ΔG° is the standard free energy change of the reaction. The Marcus theory explains the 
nature of the activation energy with the balance between the free energy change of the 
reaction and the energy required to reorganize solvent molecules during the reaction.

1.4. Acclimation of photosynthesis

1.4.1. Photoinhibition

Photoinhibition is a phenomenon in which light causes decrease of photosynthetic 
activity. The main target of photoinhibition is PSII. There are several different hypotheses 
on the mechanism of photoinhibition. The earlier main hypotheses were the acceptor-
side, low-light and donor-side mechanisms. In the acceptor side hypothesis, it is assumed 
that under excess light, over-reduced plastoquinone pool slows down electron transfer 
from QA

- to QB, which fi nally leads to double reduction and dissociation of QA (Vass, 
et al., 1992). Consequentially, the lifetime of the primary radical pair is prolonged and 
the probability of triplet Chl (3Chl) production is increased. 3Chl, in turn, may promote 
production of singlet oxygen. The low-light hypothesis has been created to explain 
why photoinhibition occurs in dim light. Under very low light the quantum yield of the 
recombination reactions between the S2 and S3 states of OEC and the quinone acceptors 
of PSII increases (Keren, et al., 1995) leading to a higher probability of 3Chl and singlet 
oxygen production. In the donor-side hypothesis, electron donation from the OEC is 
disturbed and the long lived P680

+ oxidizes PSII reaction center components (Callahan 
and Cheniae, 1985; Jegerschöld and Styring, 1996). Also donor-side photoinhibition can 
produce reactive oxygen species (Hideg, et al., 1994). In the manganese hypothesis, 
light inactivates the OEC by removing a Mn ion from the Mn-cluster. After this, light is 
absorbed by Chl and damage is caused by P680

+ or singlet oxygen (Hakala, et al., 2005).
As recombination reactions have been suggested to be important in photoinhibition, 

better understanding of the recombination reactions might open up pathways for 
biotechnology that could relieve the stress caused by reactive oxygen species to plants 
and cyanobacteria

1.4.2. State transitions

State transitions balance the energy distribution between PSII and PSI, optimizing the 
use of light energy (Bonaventura and Myers, 1969; Murata, 1969). In state 1, light 
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energy is mainly transferred to PSII and in state 2 energy capture by PSI is favored 
(Bonaventura and Myers, 1969; Murata, 1969). Light harvesting complexes are different 
in cyanobacteria and in plants, and the mechanism of state transitions differs between 
cyanobacteria and plants. In plants, phosphorylation of LHCII proteins and thylakoid 
rearrangements are involved in state transitions (Bennett, et al., 1980; Lemeille and 
Rochaix, 2010). In cyanobacteria, rearrangement of the phycobilisome antenna between 
PSII and PSI has a central role (Mullineaux, 1992; van Thor, et al., 1998). In higher 
plants, state transitions are regulated by the redox state of the plastoquinone pool (PQ) 
but in cyanobacteria, the details of the regulation are not known. State transitions are 
physiologically important for growth in dim light (Murata, 1969; Emlyn-Jones, et al., 
1999).

State transitions can be detected by fl uorescence measurements. In cyanobacterial 
state transition, blue light induces a transition from state 2 to state 1 and a rise of the 
fl uorescence maximum (FM). Orange light, in turn, excites phycobilisomes which are 
connected to PSII in state 1, and this leads a state 1 to state 2 transition. The intensity 
and rate of state transitions decreases at lower temperatures. State transitions can be 
measured either at a physiological temperature by following the FM level with a PAM 
fl uorometer, or by measuring the ratio of PSII and PSI emission peaks at 77 K.

1.4.3. Non-photochemical quenching

Non-photochemical quenching (NPQ) protects plants and cyanobacteria from excessive 
light by removing the excess energy as heat. In plants, the PsbS protein and conversion 
of violaxanthin to zeaxanthin are required for NPQ (Li, et al., 2000; Niyogi, et al., 
2005). Cyanobacteria have their own type of NPQ that was only recently discovered. 
Cyanobacterial NPQ is dependent on an orange carotenoid protein (OCP, slr1963 gene) 
(Wilson, et al., 2006). OCP consists of an α-helical N-terminal domain and an α/β helical 
C-terminal domain, and it binds one carotenoid, a 3’-hydroechinenone molecule (Wilson, 
et al., 2010). OCP is the fi rst discovered photoactive protein in which a carotenoid acts as 
a chromophore. The native OCP has two different forms, an inactive orange form and an 
active red form (Wilson, et al., 2008). The active form is induced by blue-green light that 
causes structural changes in the carotenoid. Hydroechinenone is inside of the structure 
of the OCP and has contact to both C and N terminal domains (Wilson, et al., 2010). 
OCP can also bind other carotenoids like echinenone and zeaxanthin (Punginelli, et al., 
2009). However, binding of zeaxanthin leads to an inactive form of the OCP whereas 
binding of echinenone leads to an active form. This is due the lack of a carbonyl group 
in zeaxanthin (Punginelli, et al., 2009). 
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The active form of OCP attaches to the phycobilisome core APC660 (Tian, et al., 2012) 
and induces decrease in phycobilisome emission and reduces the amount of energy 
transferred to the PSII reaction center. In normal conditions wild type cells contain one 
OCP per two to three phycobilisomes, but different stresses can induce more OCP to 
the cells to help cells to acclimate (Gwizdala, et al., 2011). In contrast to plant NPQ, the 
cyanobacterial OCP-induced NPQ is temperature independent (Cadoret, et al., 2004).

The fl uorescence recovery protein (FRP) has a central role in the separation of the 
OCP from the phycobilisome core (Boulay, et al., 2010). When FRP is affi liated to the 
active red form of OCP, the OCP separates from APC660 and turns to the orange inactive 
form (Boulay, et al., 2010). FRP is an essential protein in the recovery of the capacity of 
the phycobilisome antenna in dim light after exposure to high light (Boulay, et al., 2010). 
The amount of FRP in cells is probably considerably smaller than the amount of OCP 
(Boulay, et al., 2010).

Under iron defi ciency, the PSI to PSII ratio decreases and simultaneously cells start 
to produce an iron defi ciency protein named IsiA or CP43’ (Bibby, et al., 2001). This Chl 
binding antenna polypeptide forms a ring structure around PSI and increases the light 
harvesting capacity of PSI (Kouril, et al., 2005). This leads to very effi cient and active 
NPQ which replaces state transitions.

1.4.4. Adjustment of gene expression

Acclimation to new environmental conditions, like changes in the quantity or quality of 
light, requires changes in gene expression. Cyanobacteria have only one type of RNA 
polymerase that is responsible for all transcription. The cyanobacterial RNA polymerase 
holoenzyme consists of a catalytically active multi-subunit core and a sigma (σ) factor. 
The cyanobacterial RNA polymerase core consists of two identical α subunits, and β, β’, 
γ and ω subunits (Schneider, et al., 1987; Schneider and Haselkorn, 1988). The σ factor 
recognizes specifi c promoter sequences, and each cyanobacterium contains multiple σ 
factors. 

Cyanobacterial σ factors are σ70-type, and have been divided into three subgroups 
according to structural and functional features (Lonetto, et al., 1992; Kaneko, et al., 
1995; Imamura, et al., 2003). The group 1 σ factors are called primary σ factors because 
they are essential, and mainly responsible for transcription of housekeeping genes. The 
group 1 σ factor of Synechocystis PCC 6803 is SigA. The molecular weight of SigA is 
67 kDa (Imamura, et al., 2003). 

Group 2 σ factors of Synechocystis have a similar structure as the group 1 σ factor 
but they are non-essential, and they also have a smaller molecular weight from 40 to 
47 kDa (Imamura, et al., 2003; Pollari, et al., 2008). Group 2 σ factors do not have a 
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conserved region 1.1, and the non-conserved region connecting conserved regions 1.2 
and 2 are of variable length (Lonetto, et al., 1992). Models of Synechocystis group 2 σ 
factors visualize how similar group 1 and group 2 σ factors are (Pollari, et al., 2008). 
Synechocystis PCC 6803 has four group 2 σ factors, SigB, SigC, SigD and SigE. 

The sigB strain is fully viable and has a similar growth rate as the control strain in 
standard growth conditions (Imamura, et al., 2003; Tuominen, et al., 2006). In general, 
SigB seems to be involved in acclimation to several different kinds of stresses. The sigB 
gene is heat-shock responsive (Imamura, et al., 2003; Tuominen, et al., 2003; Tuominen 
et al., 2006,) and the transcription of a heat-shock gene hspA depends partly on the 
presence of SigB (Imamura, et al., 2003; Tuominen, et al., 2006). The sigB strain is 
not able to acquire thermal tolerance as effi ciently as the control strain (Tuominen, et 
al., 2006). In addition, SigB is involved in light acclimation processes. The SigB protein 
levels increased 2-fold after a shift from continuous light to darkness (Imamura, et al., 
2003). The SigB mRNAs are very rapidly but only transiently induced when cells are 
transferred from dark to light (Tuominen, et al., 2003). SigB is also involved in the 
acclimation of the light harvesting systems to high light and in the regulation of psbA 
genes encoding the PSII reaction center protein D1 (Pollari, et al., 2009). Under nitrogen 
deprivation the SigB protein levels are circa 2 times higher, and SigB plays a central role 
in the NtcA-dependent nitrogen-related gene expression and regulates the expression 
of the glnB gene (Imamura, et al., 2006). Furthermore, transcription of the sigB gene 
is induced by osmotic (Paithoonrangsarid, et al., 2004), high salt (Marin, et al., 2003; 
Pollari, et al., 2008; Nikkinen, et al., 2012) and oxidative stresses (Kanesaki, et al., 
2007). 

The sigC strain grows well in standard conditions, but shows retarded growth under 
mild heat stress (Tuominen, et al., 2008). The problems of the sigC inactivation strain 
in heat acclimation are partly dependent on the poor availability of inorganic carbon 
(Gunnelius, et al., 2010). The SigC factor has a role in acclimation to osmotic stress 
(Pollari, et al., 2008). SigC regulates genes of nitrogen metabolism during the stationary 
phase under nitrogen deprivation (Asayama, et al., 2004).

The sigD strain has a similar growth rate as the control strain in standard conditions 
(Pollari, et al., 2008). The SigD factor accumulates in high light, and strains missing 
SigD grow slowly in high light (Imamura, et al., 2003; Pollari, et al., 2008). Normal 
activation of psbA genes in high light requires either the SigB or SigD factor (Pollari, et 
al., 2009). In addition, the SigD factor regulates nitrogen metabolism (Asayama, et al., 
2004) and has also a small role in acclimation to salt and sorbitol-induced osmotic stress 
(Pollari, et al., 2008).
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The fourth of Synechocystis group 2 σ factors, the SigE factor, is also involved 
in acclimation to salt-induced osmotic stress (Pollari, et al., 2008) and in nitrogen 
metabolism (Muro-Pastor, et al., 2001). Like the three other single inactivation strains, 
also the sigE strain grows well in standard growth conditions (Pollari, et al., 2008). The 
SigE factor regulates genes involved in sugar catabolism (Osanai, et al., 2007). The SigE 
factor is under the control of circadian rhythm (Osanai, et al., 2005; Kucho, et al., 2005).

Synechocystis has four group 3 σ factors, SigF, SigG, SigH and SigI. These are also 
called as alternative σ factors. They are smaller than group 2 σ factors having molecular 
weight from 23 to 30 kDa (Imamura, et al., 2003). Usually group 3 σ factor proteins are 
not detected under normal growth conditions (Imamura, et al., 2003). SigG is essential 
but the physiological reason for that is not known (Matsui, et al., 2007). The SigI and 
SigH are non-essential, they are induced in many stress conditions but their actual 
physiological roles remain to be solved (Imamura, et al., 2003; Matsui, et al., 2007). 
SigF is the most intensively studied group 3 σ factor. SigF is needed for the formation of 
pili and for phototactic movements (Bhaya, et al., 1999; Asayama and Imamura, 2008).
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2. AIMS OF THE STUDY

The fi rst aim of this study was to investigate whether cyanobacteria are able to live and 
oxidize iron in conditions mimicking the Archaean ocean. I was also testing whether 
cyanotoxins have a role in iron tolerance.

In the theoretical part of the study, the aim was to solve the relationship between 
thermoluminescence, delayed light emission and Chl fl uorescence during the charge 
recombination reaction S2QA

-→S1QA, basing on the fact that the same thermodynamic 
parameters control the reaction in both fl uorescence and luminescence. The results 
can be used as a tool for the analysis of thermoluminescence and fl uorescence data. 
Additionally, a luminometer was brought into use for the fi rst time and thus also the 
testing and optimizing of the luminometer were a parts of the work.

Fluorescence and luminescence methods were used for practical studies of 
Synechocystis σ factor mutants to see how different σ factors affect PSII.
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3. METHODOLOGICAL ASPECTS

A number of methods ranging from growth measurements to TL, as well as different 
materials, were used to carry out the experiments. The main materials and methods used 
in this thesis are summarized in Table 1. As a general principle, each experiment described 
in the results sections of Papers I-V has been repeated by at least three times. The SE’s are 
presented in growth curves when the error bar is larger than the data point (Papers I, IV 
and V). SE values of the fi ts of the TL data (Papers II and III) are not presented because the 
deviation of the model values from the experimental data tend to be largest at the beginning 
and end of the peak where the data are often affected by factors that are not included in 
the model. For this reason, the goodness of the fi t was judged by visual comparison of the 
experimental data and the model. The TL curves of are averages of three very similar curves. 

Table 1.  Summary of materials and main methods. The bold headings identify the physiological 
phenomenon for which the methods were used. 

Paper
Materials I II III IV V
Nodularias spumigenia X
Microcystis aeruginosa X
Synechocystis sp. PCC 6803 X X
Cucurbita maxima (pumpkin) thylakoids X
Spinacia oleracea (spinach) thylakoids X
Growth media
Z8Y with different iron contents X
BG-11 X X
Growth rate
Chl a concentration X
A730 X X
IsiA induction
77 K fl uorescence X
NPQ
Chl a fl uorescence under blue-greenish light (PAM fl uorometer) X
State transitions
77 K fl uorescence X X
Chl a fl uorescence in darkness, blue  and orange light (PAM fl uorometer) X
Pigment composition
Absorption spectra X X
Proteins, relations of PSII to PSI
Western blotting X
S2QB

- recombination
TL without DCMU (B-band) X
S2QA

- recombination
TL in presence of DCMU (Q-band) X X
TL (Q band) measured by varying fl ash energy X
Decay of Chl a fl uorescence  yield after a single turnover fl ash X
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3.1.	 Plant and cyanobacteria material

Spinach (Spinacia oleracea) was grown at 24°C in 12 h light/12 h dark rhythm under 
the photosynthetic photon flux density (PPFD) of 250 µmol m-2 s-1 in Paper II and in 
the same light rhythm under the PPFD of 150 µmol m-2 s-1 at 20°C in Paper I. Pumpkin 
(Cucurbita maxima) was grown at 20°C in 16 h light/8 h dark rhythm under the PPFD 
of 150 µmol m-2 s-1 (Paper I). Thylakoid membranes were isolated as described earlier 
(Hakala, et al., 2005) and stored at -80°C.

I used several different cyanobacterial strains. In paper I, toxic AV1, GR8, BY1 and 
HEM and the non-toxic HKVV strains of the filamentous nitrogen fixing Nodularia 
spumigenia (hereafter Nodularia) were used. I also used the toxic Microcystis 
aeruginosa (hereafter Microcystis) strains NIES107 and the non-toxic strain PCC7005. 
In contrast to the filamentous Nodularia, the unicellular Microcystis is not able to fix 
nitrogen. Microcystis cells were grown in modified Z8 medium which did not contain 
tungsten, cadmium, chromium, vanadium or aluminum. This modified medium was 
named Z8Y. For Nodularia, 150 mM NaCl was added, and this medium was named 
Z8Ys. Nodularia was grown both in the presence and absence of nitrate. Iron tolerance 
experiments were done in aerobic (10-100 µM FeCl3) and anaerobic (10-800 µM FeCl2) 
conditions. Anaerobic conditions were generated inside a plexiglass box by nitrogen 
and CO2 (3000 ppm) flow. This environment mimicked the atmosphere above the 
Archaean ocean. These experiments were done at 20°C in continuous light at PPFD 20 
µmol m-2 s-1.

The glucose tolerant strain of Synechocystis sp. PCC 6803 (Williams, 1988) 
(hereafter Synechocystis) was used as a control strain in papers IV and V. Synechocystis 
is a unicellular, non-toxic cyanobacterium and it is not able to fix nitrogen. In addition 
to the glucose tolerant strain, group 2 σ factor inactivation strains were used. The single 
inactivation strains ∆sigB (Tuominen, et al., 2006), ∆sigC (Tuominen, et al., 2008), 
∆sigD (Tuominen, et al., 2006) and ∆sigE (Pollari, et al., 2008) were used in Paper IV. 
Four triple inactivation strains ∆sigBCD, ∆sigBCE, ∆sigBDE and ∆sigCDE (Paper IV) 
were used in Papers IV and V. Standard growth conditions for Synechocystis were: BG-
11 medium supplemented with 20 mM Hepes pH 7.5, continuous PPFD 40 µmol m-2 s-1, 
and 32°C. Liquid cultures were shaken at 90 rpm. All liquid cultures were grown without 
antibiotics, but the BG-11 agar plates of ∆sigBCD, ∆sigBCE, ∆sigBDE and ∆sigCDE 
were supplemented with kanamycin (50 µg/ml), streptomycin (20 µg/ml), spectinomycin 
(10 µg/ml) and chloramphenicol (10 µg/ml) and plates for the single activation strains 
with kanamycin (50 µg/ml). 
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3.2. Cyanobacteria growth experiments

Growth of the Nodularia and Microcystis strains was monitored by measuring Chl 
concentration after methanol extraction (Paper I). Cells were vacuum fi ltered to a glass 
microfi lter. Chl a was then extracted by enclosing the fi lter in 1 ml of methanol for 24 h, 
and then measuring the absorbance of the solution at 665 nm and 750 nm. Synechocystis 
growth was monitored by measuring A730 (Papers IV and V). When cultures were 
dense, the samples were diluted so that A730 did not exceed 0.3. Dilutions were taken 
into account in fi nal results. Different growth measuring methods were used because 
Nodularia is fi lamentous while Synechocystis is unicellular, and some Nodularia and 
Microcystis strains fl oat in the growth medium while Synechocystis does not fl oat.

Growth of Synechocystis strains was measured in standard conditions under 
continuous illumination (PPFD 40 μmol m2 s1) or under a 12 h light/12 h dark rhythm. 
For mixotrophic conditions, 5 mM glucose was added. Growth at the PPFDs of 20 and 
80 μmol m-2 s-1 was also measured. Low temperature growth was followed at 22°C. For 
light quality experiments, cells were grown under blue or orange light at the PPFD of 40 
μmol m-2 s-1 at 32°C. 

3.3. Toxin and iron content measurements

The nodularin and microcystin contents were measured with HPLC (Meriluoto and 
Codd, 2005). The iron content was measured with the o-phenanthroline method (Vogel, 
1962).

3.4. Absorbtion spectra (Paper IV)

In vivo absorption spectra of Synechocystis strains were measured with a UV3000 
spectrophotometer (Shimadzu, Japan) from 350 nm to 800 nm. 

3.5. Chl a fl uorescence measurements

For assessment of NPQ and state transitions in Synechocystis, Chl a fl uorescence was 
measured with pulse amplitude modulated (PAM) fl uorometry (Papers IV & V). For 
NPQ measurements, samples were placed to a temperature controlled cuvette and dark 
incubated for 3 min. The F0 level was measured with a weak measuring beam, and FM 
was measured by using a saturating fl ash of 4 s and the PPFD of 5000 μmol m-2 s-1. 
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The light-adapted maximum fluorescence level (FM´) was measured under illumination 
with blue-green light at PPFD 1000 µmol m-2 s-1 by firing saturating flash as at 40 s 
intervals. NPQ and state transition measurements were done at 32°C. Samples were first 
dark adapted for 3 min and after that illuminated for 135 s with blue-green light, PPFD 
80 µmol m-2 s-1 (400 nm Corion long-pass and 500 nm Corion short-pass filters) and 
thereafter for 195 s with orange light, PPFD 20 µmol m-2 s-1 (600 nm Corion long-pass 
and 650 nm Corion short-pass filters). Saturating flashes during illumination were fired 
at 30 s intervals to measure FM´.

For comparison of fluorescence with TL, the decay of Chl a fluorescence yield 
was measured in the presence of DCMU with FL-2000 fluorometer (Photon Systems 
Instruments, Brno, Czech Republic) at 0, 10, 20, 25, 30, 35 and 40°C (Paper III).

3.6.	 Emission spectroscopy (Papers I, IV & V)

To detect state transitions, 77 K emission spectra were measured with S2000 
spectrophotometer (Ocean Optics) from in the control, ∆sigBCD, ∆sigBCE, ∆sigBDE 
and ∆sigCDE strains of Synechocystis (Papers IV & V). Cells were illuminated for 5 min 
with blue-green light (450 nm Corion short-pass filter) at PPFD 40 µmol m-2 s-1, then kept 
in darkness for 5 min and after this illuminated again for 5 min with blue-green light. 
Samples were taken after each illumination step and frozen quickly with liquid nitrogen. 
Orange light (590 nm Corion narrow-band filter) was used for excitation of 77 K spectra.

Spectra were measured from cells treated with high iron to detect the possible 
expression of the iron-deficiency-induced IsiA protein (Paper I). The excitation 
wavelengths used in these measurements were 450 nm and 580 nm.

3.7.	 Thermoluminescence and delayed light emission

A homemade thermoluminometer was built to allow measurements of both TL and DLE. 
This was achieved by installing the photomultiplier tube on the sample in a slightly 
tilted position which allows a light guide to be inserted between the sample and a shutter 
protecting the detector. The sample cuvette was placed on top of a water cooled Peltier 
module that can cool and heat the sample between temperatures 20 and 70°C. The 
temperature was controlled with a fuzzy-logic-based software. Several different types of 
samples including leaf discs and thylakoids were used to measure TL for optimizing the 
function of the new luminometer. Different rates of cooling and heating (0.2 to 1.0°C/
min) were tested to detect the intensity and position of the TL peak, and to test the actual 
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heating capacity of the device. The maximum heating rate was found to be 1°C/min. The 
details of the thermoluminometer are described in Paper II.

TL was measured in the absence (Paper II) and in the presence of 20 μM DCMU 
(Papers II & III) from pumpkin (Paper II) and spinach thylakoids (Papers II & III). 
DCMU is a plastoquinone analogue which blocks electron transfer from QA to QB by 
binding to the OB site in photosystem II. The heating rate was 1°C/s. Samples were dark 
adapted for 15 min (Paper II) or 5 min (Paper III). The fl ash energy was 3.0 J in Paper III 
and in Paper II it was varied from 0.39 J to 4.44 J. The fl ash was given at -14°C (Paper 
II) or at -10°C (Paper III).

DLE was measured in the presence of DCMU at same temperatures as fl uorescence 
(at 0, 10, 20, 25, 30, 35 and 40°C). The Chl concentration of thylakoid samples for 
DLE measurements was 200 μg Chl/ml. The samples were dark adapted for 5 min and 
DCMU was added like in the fl uorescence measurements (described in detail in Paper 
III). The fast and slow components of DLE curves had to be measured with different 
amplifi cations (photomultiplier voltage -600 V for the fast and -800 V for the slow 
component). Both measurements lasted 130 s and the two data sets were then combined 
as DLE curve.

Differences in Chl concentration in TL and DLE measurements do not cause much 
difference in results because luminescence is measured from recombination reactions 
in complete darkness during heating (TL) or time (DLE), and the results are thereafter 
normalized.

3.8. Modelling (Papers II & III)

TL and fl uorescence were modeled with ModelMaker software (ModelKinetics, 
Oxfordshire, UK). The models were compartment models where every reactant had 
its own compartment. Differential equations control the changes of the amounts of the 
reactants when the model is run. TL bands were simulated with equations by Arrhenius, 
Eyring and Marcus theories in Paper III. In Paper II, the Eyring theory was used as the 
basis of equations and the connectivity parameter J (Lavergne and Trissl, 1995) was 
taken into consideration.

3.9. Molecular biology methods (Papers IV & V)

To construct triple inactivation strains of group 2 sigma factors, inactivation plasmids 
pUC19-sigC-Cmr and pUC19-sigE-Cmr were constructed. The sigC or sigE gene 
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was amplifi ed with PCR and cloned into pUC19. Then a fragment containing a 
chloramphenicol resistance cassette was obtained from pKRP10 and cloned into the 
middle of the sigC or sigE gene, and transformation of the double inactivation strains 
sigBD, sigBE and sigDE was done. PCR analysis confi rmed complete segregation 
of the inactivated genes. The details are described in paper IV. Western blotting was done 
to detect the amounts of the orange carotenoid protein, PSII reaction center protein D1 
and PSI reaction center protein PsaA.
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4. OVERVIEW OF THE RESULTS

4.1. Growth of cyanobacteria in media with high iron content

4.1.1. Growth medium Z8Y

Traditionally, W, Cd, Cr, V and Al have been added in low quantity to Z8 growth medium 
because natural waters contain traces of these toxic metals, but our growth experiments 
showed that they are not needed. Both Nodularia strains grew equally well with and 
without these metals (Paper I). The two cyanobacterial species had very different 
growth rates. In control conditions (10 μM Fe3+) both Microcystis strains (PCC7005 and 
NIES107) grew faster than Nodularia.

4.1.2. Effect of high iron concentration in aerobic conditions

In present oceans, iron concentrations can often be so low that iron defi ciency limits 
growth (Martin, 1990). However, in the distant past, concentrations of dissolved iron 
have been considerably higher than the current 0.03-2 nM (De Baar and De Jong, 2001; 
Parekh, et al., 2004). The standard growth media of cyanobacteria contain 10 μM iron. 
In this work, the iron tolerance of cyanobacteria was fi rst tested in aerobic conditions by 
growing Nodularia and Microcystis at 5 to 10 times as high iron concentrations as in the 
standard growth media. The data indicate that the ability to produce toxins did not affect 
iron tolerance of Nodularia or Microcystis (Paper I). The toxic Nodularia strain AV1 
died in 100 μM Fe3+ but the non-toxic HKVV grew fairly well. On the other hand, 100 
μM Fe3+ had a stronger inhibitory effect on the growth of the non-toxic strain Microcystis 
PCC7005 than on growth of the toxic strain NIES107. 77 K fl uorescence measurements 
showed that the iron-defi ciency protein IsiA was not induced in high iron (Fig. 3A). 
Furthermore, the ratio between CP43 and CP47 to PSI was not affected signifi cantly 
according to 77 K measurements (Fig. 3B).

Because the nitrogen fi xing Nodularia can be grown with or without added nitrate, 
we tested if there are differences in iron tolerance when the medium contains nitrate 
or Nodularia is fi xing nitrogen. Nodularia was found to tolerate 100 μM Fe3+ in the 
presence of nitrate; in the absence of nitrate, however, growth at 100 μM Fe3+ was 
drastically reduced (Paper I). 77 K fl uorescence spectra revealed that different Nodularia 
strains can have quite different fl uorescence spectra. However, the effects of excess iron 
were similar, including a rise of the phycobilisome peak (Fig. 3D). A fast change in 
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the form of the PSII fl uorescence peak occurred when cells were grown in medium 
containing 100 μM Fe3+ (Figs. 3C, D). The spectra returned back to original form when 
cells adapted to high iron (Fig. 3D).

Figure 3. 77 K fl uorescence measurements. A) 77 K emission spectrum from Nodularia HKVV 
grown with 10 μM (black) or 100 μM (red) Fe3+ for 4 days. Excitation was at 450 nm. B) Ratio 
of CP43 emission (dashed line) and CP47 emission (solid line) to PSI emission measured from 
Nodularia HKVV grown in the presence of 50 μM Fe3+. Excitation was at 450 nm. C) 77 K emis-
sion spectrum from Nodularia HEM grown at 100 μM Fe3+ without nitrate (-N) and 10 μM Fe3+ 
with nitrate (+N). D) 77 K emission spectrum from Nodularia HEM grown at 100 μM Fe3+ with 
nitrate (+N) and at 10 μM Fe3+. Excitation was at 580 nm both in C and D.

4.1.3. High iron concentration in anaerobic conditions

Next we tested iron tolerance in anaerobic conditions mimicking the conditions in 
the Archaean ocean. In anaerobic conditions, all strains tolerated much higher iron 
concentrations than in aerobic conditions. The non-toxic Nodularia strain HKVV was 
able to grow in as high concentration as 650 μM Fe2+ and died only at 800 μM Fe2+. The 
toxic strain AV1 stayed alive and grew slowly in 150 μM Fe2+ but died at 300 μM Fe2+. 
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Both Microcystis strains tolerated high iron concentrations, and the non-toxic PCC 7005 
grew slightly faster than the toxic NIES107 in 300 μM Fe2+. In 650 μM Fe2+, PCC7005 
was still able to grow but NIES107 died. Like HKVV, PCC7005 died in 800 μM Fe2+ 
(Paper I).

4.1.4. Iron oxidation

Because BIFs were formed from O2 and ferrous iron, we studied whether cyanobacteria 
are able to form this kind of sediment in anaerobic growth conditions. Oxygen produced 
by cyanobacteria in growth vessels was found to react with ferrous iron and to lead to 
brown sedimentation on the bottom of the vessels. In a 50 ml culture of PCC7005 in 
650 μM Fe2+, the sediment contained 0,3–0,4 μmol iron after ten days of growth. In 
same time, photosynthesis produced 0.25 mg (20 μmol) of new Chl (Paper I) and so 
approximately 25 mg carbon was assimilated, assuming that the carbon:Chl ratio is 100 
(Wang, et al., 2009). Thus less than 2 % of the oxygen produced during growth reacted 
with iron; the rest must have escaped from solution. 

4.2. Analysis of thermoluminescence, fl uorescence and delayed light 
emission

4.2.1. Energy transfer between PSII centers affects thermoluminescence

Paper II aimed at elucidating the effect of energetic connectivity of PSII on the Q band of 
TL. The topic had not been earlier discussed in the literature. The experimental Q band 
was fi rst compared with two kinetic models, a pure fi rst order kinetic model and another 
where the connectivity parameter J was taken into account (Paper II). The model with 
the connectivity parameter fi tted better to the experimental data. The simulations of the 
changes of J values showed that increasing J leads to a wider and more symmetrical TL 
band, and the simulated peak shifts toward a lower temperature. The effect of the initial 
fraction of closed PSII centers was tested by measuring TL in the presence of DCMU 
from pumpkin and spinach thylakoids by using different intensities of the excitation 
fl ash. When fl ash intensity was changed from saturating (100 %) to 0.39 % of saturation, 
the TL Q band peak position moved ~2.5oC toward a higher temperature. Simultaneously, 
the area of the TL peak decreased from 100 % to 3.2 %. 

In the experiment above, the fl ash was fi red at -14oC during heating (1oC/s). Applying 
a 30 s delay between the exiting fl ash and the beginning of the heating led to lower TL 
bands. In this case, lower fl ash intensities did not lead to clearly narrower bands or 
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clear movement of the peak position. However, the form of the Q band still resembled a 
second-order TL band. 

In terms of the reaction pathways, the analysis in Paper II was done assuming that 
the luminescence-producing reaction is the only pathway of recombination, or that other 
pathways do not signifi cantly affect the form of the TL peak. This assumption is called 
the “deactivation” model of analysis of TL (Lavorel, 1975). 

4.2.2. Analysis of thermoluminescence and fl uorescence originating from the S2QA
- 

recombination reaction 

The Q band of TL of pumpkin thylakoids peaked at 17°C. After the Q band TL intensity 
increased again, suggesting the presence of another TL peak above 60°C.

In terms of the reaction pathways of charge recombination, the TL analysis in Paper 
III was based on the Rappaport-Lavergne model (Rappaport and Lavergne, 2009). Thus, 
a deactivation-type analysis of TL used in Paper II was changed to a “leakage”-type 
scheme in Paper III, as only a small fraction of S2QA

- recombinations were assumed 
to produce luminescence, and it was assumed that the three routes of recombination 
compete for the same substrate. In modeling the rate constants of the pathways, the 
Arrhenius, Eyring and Marcus theories were used. The results showed that the Marcus 
theory gave the best fi t, the Arrhenius equation gave the poorest one, and the Eyring 
equation was slightly better than the Arrhenius equation. In the model, PSII was divided 
to a fast population (a rapidly recombining population of PSII centers) and a slow 
population (slowly recombining population of PSII centers). The amount of the slow 
population in the TL analysis was kept at 75 % for all three theories. 

Fluorescence was measured in the presence of DCMU at different temperatures. 
The decay of Chl a fl uorescence yield occurred faster at higher temperatures. In 
fl uorescence analysis, the fractions of the fast and slow PSII populations varied between 
temperatures. The very slow component of fl uorescence decay was successfully fi tted 
with the parameters of the high-temperature band of the TL curve. The amplitude of this 
very slow phase in fl uorescence decay was 13–32 %. The activation parameters obtained 
by using the three different theories are tabulated in Paper III, Tables 1, 2 and 3.

4.2.3. Delayed light emission

DLE was measured in the presence of DCMU at same temperatures as fl uorescence. 
However, it was not possible to analyze DLE with the same models as TL and fl uorescence. 
The simulated TL model did not fi t to the DLE curves, suggesting that there are more 
components in DLE than in TL. 
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4.3. Triple inactivation strains of group 2 sigma factors of Synechocystis 
sp. PCC 6803

Three out of four group 2 σ factor genes were inactivated simultaneously, and the 
resulting Synechocystis strains contained only one functional group 2 σ factor; SigE 
in sigBCD, SigD in sigBCE, SigC in sigBDE and SigB in sigCDE. In standard 
growth conditions (continuous light PPFD 40 μmol m-2 s-1, 32°C), the autotrophic growth 
of all triple inactivation strains was similar to that of the control strain, and in accordance 
with that, light saturated photosynthetic activities of all strains were similar. Absorption 
spectra measurements revealed that control, sigBCD, sigBCE and sigBDE strains 
have similar spectra, indicating that phycobilin to Chl a and carotenoids to Chl a 
ratios were similar in these strains (Fig. 4). Furthermore, it was shown by measuring 
the amounts of the reaction center proteins D1 (PSII) and PsaA (PSI) that the PSII:PSI 
ratio was similar in the control and sigBCE strains. The sigCDE strain had a similar 
phycobilin to Chl ratio as the other strains but the carotenoid peak was higher than in the 
other strains (Fig. 4).

Figure 4. Phycobilin to Chl a (black) and carotenoid to Chl a (grey) ratios in the control and σ 
factor triple inactivation strains of Synechocystis.

In addition to normal autotrophic growth, the glucose tolerant strain of Synechocystis 
can grow in the presence of 5 mM glucose in the light. The control and all other triple 
inactivation strains except for sigBCD grew faster in mixotrophic than in autotrophic 
conditions (Paper IV).

When temperature was decreased from the standard 32°C to 22°C, the growth of the 
control strain was slow, the doubling time being circa 19 h (in standard conditions circa 
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12 h). At 22°C, the triple inactivation strains ∆sigBCD and ∆sigBDE and the single 
inactivation strains ∆sigB and ∆sigD grew slowly compared to the control strain while 
∆sigBCE and ∆sigCDE grew as fast as the control strain. In 12h light/12 h dark light 
rhythm at 22°C, ∆sigBCD and ∆sigBDE were not able to grow almost at all, while 
∆sigCDE and ∆sigBCE grew only slightly more slowly than the control strain. At 32°C, 
the light rhythm did not have any effect on the growth of the inactivation strains compared 
to the control strain (Paper IV). Light rhythm clearly enhanced the low temperature 
sensitive phenotypes of ∆sigBCD and ∆sigBDE but a similar effect was not detected in 
∆sigB or ∆sigD. According to these results, the presence of either SigB or SigD seems 
to be important to acclimation to low temperature.

4.3.1.	Acclimation to blue light

The growth of ∆sigBCE in blue light (40 µmol m-2 s-1) was slower than that of the 
control strain or other triple inactivation strains. This difference was a blue light specific 
phenomenon, as similar growth was obtained in orange and white light (Paper IV). 
Because cyanobacterial NPQ is induced by blue-green light and the ∆sigBCE strain 
grew slowly in blue light, the OCP content and NPQ were studied. Western blot results 
showed that the OCP content was slightly higher in ∆sigBCE than in the control strain 
after one hour of blue or high light treatments (Paper IV). However, there were no 
differences in the blue light induced NPQ between the ∆sigBCE and control strains 
(Paper IV). As NPQ did not explain why the ∆sigBCE strain was not able to grow like 
the control strain in blue light, the state transitions were studied.

State transitions were induced by light treatments. In darkness, cyanobacterial cells 
are in state 2, and blue light illumination causes a change to the high fluorescence state 
1. Orange light, in turn, causes a change to state 2. For the 77 K measurements, samples 
were first taken directly from growth conditions, and then another sample was taken 
after a 5-min blue-light illumination, a third one after a 5-min dark adaption, and the last 
one after a new 5-min illumination in blue light. The 77 K fluorescence measurements 
revealed that the ∆sigBCE strain does not have as clear state transitions as the control 
strain and seems to be locked in state 1. This phenomenon was confirmed by results 
obtained with a PAM fluorometer (Paper IV). In these experiments, FM´ was measured 
in darkness, then during illumination with blue light and after that during illumination 
with orange light, and finally again in darkness. The control strain showed a clear state 2 
to state 1 transition after transfer from dark to blue light and a state 1 to state 2 transition 
when light was changed from blue to orange. The ∆sigBCE strain, however, did not 
show state transitions but it appeared to be locked in state 1. All other group 2 σ factor 
triple inactivation strains had higher PSII fluorescence peaks (both 683 nm and 693 nm) 
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than the control strain (Table 2) (Paper V). This finding may suggest that the lack of state 
transitions in the ∆sigBCE strain is an extreme case of a similar phenomenon in all triple 
inactivation strains.

Table 2	 Intensities of the peaks of CP43 (683 nm) and CP47 (693 nm) in 77 K emission spec-
tra of triple inactivation strains. The peaks have been normalized to the PS I emission 
peak at 725 nm. The spectra were measured from cells taken directly from growth 
(GL) conditions and after 5 min of blue light (BL) illumination. Orange light was used 
for excitation.

CS ∆sigBCD ∆sigBCE ∆sigBDE ∆sigCDE
GL BL GL BL GL BL GL BL GL BL

CP43 (683 nm) 0.75 0.84 1.02 1.07 0.95 0.98 0.82 0.95 0.88 0.92
CP47 (693 nm) 0.86 0.95 1.11 1.13 1.06 1.06 0.99 1.06 1.00 1.08
CP43/CP47 0.87 0.89 0.92 0.95 0.90 0.92 0.89 0.90 0.88 0.85

4.3.2.	Acclimation to different light intensities and photoinhibition

At PPFD 20 µmol m-2 s-1, all triple inactivation strains grew slightly more slowly than 
the control strain, and at PPFD 80 µmol m2 s1 ∆sigBCD and ∆sigBDE were not able to 
grow as well as the control strain but ∆sigBCE and ∆sigCDE enhanced their growth 
like the control strain (Paper V). Obviously Synechocystis cells lacking SigB and SigD 
simultaneously were not able to use higher light as efficiently as the control strain.

Photoinhibition was measured at PPFD 1500 µmol m-2 s-1. In the ∆sigBCD, ∆sigBCE 
and ∆sigBDE strains, photoinhibition was 20 % faster than in the control strain whereas 
∆sigCDE behaved like the control strain (Paper IV). The only group two σ factor left 
in the ∆sigCDE strain is SigB which seems to be important for high light acclimation.
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5. DISCUSSION

5.1. Cyanobacteria tolerate high iron concentrations in anaerobic but not 
in aerobic conditions

In paper I, toxic and non-toxic cyanobacteria were grown with excess iron. The results 
confi rm that cyanobacteria are able to live in anaerobicity and high iron concentrations, 
which were typical conditions in Archaean oceans. The results also showed that 
cyanobacteria are capable of causing the precipitation of iron oxides in these conditions, 
and thus it is possible that cyanobacteria caused the formation of BIFs.

Only 1 % of the oxygen produced in the growth vessel had reacted with iron after ten 
days of growth, indicating that the main part of oxygen escaped to the atmosphere from 
the cultivation. This may suggest that oxygen would have escaped to the atmosphere from 
the very beginning of the existence of oxygen-evolving photosynthetic cyanobacteria. 
However, geochemical evidence shows that cyanobacteria existed already in the time 
range 3.4 to 2.8 BA (Schopf and Packer, 1987; Schopf, 1993; Summons, et al., 1999) 
whereas the fi rst evidence of the rise of the oxygen content of atmosphere is from 2.45 
BA (Bekker, et al., 2004; Claire, et al., 2006). Thus, cyanobacteria of the Archaean 
ocean must have lived in relatively deep waters, which would explain why the oxygen 
that they produced reacted with Fe2+ rather than escaped to the atmosphere. Another 
possible reason why cyanobacteria may have favoured deep waters is that there was no 
protective ozone layer during the Archaean era. Water absorbs UV-light more effi ciently 
than photosynthetically active light. Even nowadays, some cyanobacteria are found as 
deep as 140 m in oceans (Zubkov, et al., 2000). Obviously, oxygen produced in depths 
reacted with iron, which led to the formation of iron precipitates. Only after the iron 
content in waters had been lowered, oxygen started to escape to the atmosphere, which 
led to the formation of a protective ozone layer. Habitation of surface waters was then 
possible.

The above scheme can be criticized by noting that all geologists do not assume that 
the oxygen content of the atmosphere depends on the rate of oxygen production. In an 
alternative scheme, oxygen levels increased fi rst about 3.0 BA, decreased then again 
about 0.2 BA later (Ohmoto, et al., 2006), and Earth’s atmosphere was bistable for some 
time before the great oxidation event which may have been caused by a 3 % increase in 
burial of organic carbon (Goldblatt, et al., 2006).

The estimated yearly iron precipitation in BIFs was 45.3 mol Fe m-2 (Konhauser, et 
al., 2002) which would not be reached by the rate of current day primary production 
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in oceans (11.7 mol C m-2 year-1) (Field, et al., 1998). However, the rate of current day 
primary production in oceans is limited by shortage of iron in seawater (Martin, 1990; 
Loukos, et al., 1997) and therefore primary production may have been considerably 
faster in Archaean oceans. 

Another important fi nding of Paper I was that excess iron is much more toxic to 
cyanobacteria in aerobic conditions than in anaerobic conditions. This may indicate that 
excess iron is toxic because iron ions induce the production of reactive oxygen species. 
Furthermore, the nitrogen fi xing Nodularia tolerated higher iron concentrations under 
aerobic conditions when the medium contained nitrate (Fig. 3C, D). This fi nding may 
indicate that reactive oxygen species specifi cally affect the heterocysts or interfere with 
the interaction between vegetative cells and heterocysts.

Fluorescence measurements at 77 K (Figs. 3C, D) confi rmed that the fl uorescence 
spectra of toxic and non-toxic Nodularia strains are different (Keränen, et al., 2009). 
The main difference is the PSII/PSI ratio which is circa 1.5 in the non-toxic and circa 
2 in the toxic strains (Keränen, et al., 2009). This ratio is compatible with our results, 
as in the non-toxic strains the PSII/PSI ratio varied between 0.9 and 1.1, whereas in the 
toxic strains the ratio was 1.7 to 2.3. Exposure to excess iron caused a rapid appearance 
of a high phycobilisome peak in the fl uorescence spectra (Figs. 3C, D). The high 
phycobilisome peak could be due to the presence of free phycobilisomes (Figs. 3C, D). 
The measurements also showed that in a few days, the spectra returned to normal in cells 
that tolerated the high iron content.

One of the aims of Paper I was to test the possible importance of cyanotoxins in iron 
metabolism. In Paper I, the toxins did not offer any protection in excess iron conditions. 
In the literature, iron defi ciency has been studied much more than excess iron. The main 
effect of iron defi ciency in cyanobacteria is the accumulation of the IsiA chlorophyll-
protein complex (Bibby, et al., 2001); iron defi ciency also causes monomerization of 
PSI trimers and reduces the capacity of state transitions (Ivanov, et al., 2006). It has been 
proposed that microcystins can protect cells against reactive oxygen species during iron 
starvation (Alexova, et al., 2011), and microcystin production has also been found to be 
suppressed (Utkilen and Gjolme, 1995) as well as induced (Lukac and Aegerter, 1993) 
by iron defi ciency. In our experiments, neither excess iron nor iron defi ciency induced 
toxin production. Thus, the results of Paper I do not support the hypothesis that the 
toxins are involved in iron metabolism.
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5.2. A common model for analysis of thermoluminescence and 
fl uorescence associated with the S2QA

- recombination reaction 

When TL is modeled, three different theories for reaction rate have been applied. The 
Arrhenius equation of reaction rate is commonly used (Rappaport and Lavergne, 2009) 
although it has not been developed for dealing with reaction rates of electron transfer 
reactions. Another theory used to calculate activation energies of reactions is the Eyring 
theory which has been designed for the analysis of reactions between gas molecules 
(Glasstone, et al., 1941). The Eyring theory has also been used to analyze photosynthetic 
TL (Vass, et al., 1981; Demeter and Vass, 1984; Demeter, et al., 1985; Hakala-Yatkin 
and Tyystjärvi, 2011). The Marcus theory is specifi cally designed for electron transfer 
reactions (Marcus and Sutin, 1985), and therefore it can be expected to be the best tool 
for the analysis of TL. 

5.2.1. Connectivity of PSII and thermoluminescence

The shape of the fl uorescence induction curve of thylakoids, measured in the presence 
of DCMU, can be interpreted by assuming that PSII centers can transfer energy to each 
other (Joliot and Joliot, 1964; Lavergne and Trissl, 1995). The phenomenon is called PSII 
connectivity. The analysis of Paper II tested the hypothesis that PSII connectivity should 
also affect the shape of the TL Q band. The reason why energetic connectivity would 
affect TL, is the same as in the analysis of TL from semiconductors, described already in 
1946 by Garlick and Gibson (Garlick and Gibson, 1948). Semiconductor luminescence 
is described with traps and luminescence centers. The traps are analogous to the charge 
separated states in PSII, and the luminescence center corresponds to the ground state. 
In semiconductors, the valence band is common to all luminescence centers and to all 
semistable trap states. Therefore, an electron raised to the valence band will drop to a 
luminescence center if all semistable traps are occupied, but may easily enter a trap 
without producing luminescence if the traps are unoccupied. Similarly, the fraction of 
closed PSII centers affects the peak position of the Q band, and this must in general 
be taken into account in TL measurements. However, if the fl ash used to separate the 
charges is not saturating, then the effect of connectivity is negligible (Paper II)

The model used in the analysis of TL connectivity was the connected-units model 
(Lavergne and Trissl, 1995) and for the reaction rate constant, the Eyring equation (Eq. 
4) was used. The connectivity was taken into account through the parameter J (Paper II, 
equation 10) (Lavergne and Trissl, 1995). This correction makes the simulated Q band 
resemble a second-order TL band. The J value was 0.4 for both pumpkin and spinach 
thylakoids. This value is similar to values obtained from leaves of higher plants (Strasser 
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and Stirbet, 2001) but lower than values obtained from spinach thylakoids in fl uorescence 
measurements (Kirchhoff, et al., 2004).

5.2.2. Association of thermoluminescence and fl uorescence with recombination 
reactions of PSII

TL and fl uorescence are two different methods that can be used for measuring the 
recombination reactions of PSII. TL measures the activation parameters more directly, as 
the intensity of TL is proportional to the rate of the luminescence -producing pathway of 
the recombination reaction S2QA

-→S1QA at any moment, whereas the quantum yield of 
fl uorescence is proportional to the fraction of the reactant S2QA

-. The rate of the decrease 
of the fl uorescence yield depends on temperature. Because the form of the TL band 
and the decay of fl uorescence yield refl ect the same recombination reactions, the same 
activation parameters are expected to control these phenomena.

In Paper II, TL was treated as if all recombination reactions of S2QA
- produced 

luminescence. This is called as the “deactivation” model. However, the recombination 
may proceed via multiple, alternative routes (Rappaport, et al., 2002; Rappaport, et al., 
2005). In this so called “leakage” model only one reaction route produces luminescence 
whereas other routes are non-luminescence producing. This multiple-reaction-route 
model seems to be needed to explain the shape of TL Q band even though the dependence 
of peak position and relative width are also affected by the energetic connectivity of PSII. 
Multiple reaction routes may be behind the lower J values obtained from TL (Rappaport, 
et al., 2002; Rappaport, et al., 2005). A similar apparent loss of the effect of connectivity 
was seen when the initial fraction of PSII centers in the S2QA

- state was lowered by 
applying a 30-s delay between the fl ash and the start of heating (Paper II). Such loss of 
the effect of connectivity is obviously caused by a non-excitonic recombination reaction 
that proceeds at low temperature. Such a reaction must have a low activation energy but 
also a low pre-exponential factor. As discussed below, these features are compatible with 
the characteristics of the “direct” recombination route (Rappaport and Lavergne, 2009)

In Paper III, TL and fl uorescence, at different temperatures, were measured in the 
presence of DCMU to create a common model to be used for the analysis of the results 
of these two methods. The reaction route model used in this study is the Rappaport 
& Lavergne leakage type TL scheme (Rappaport, et al., 2002; Rappaport, et al., 
2005; Rappaport and Lavergne, 2009). According to this three-route model (Fig. 5), 
recombination of S2QA

- can occur via three different routes. In the “direct” and “indirect” 
routes, free energy is lost as heat whereas the “excitonic” route leads to an exited state 
of the primary donor and may therefore produce luminescence. The excitonic route 
accounts for only 3 % of the overall decay, as the indirect and direct routes account for 
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77 % and 20 % of overall decay, respectively (Fig. 5). The route is called indirect when 
an electron is transferred via Pheo- and direct when the electron goes directly from QA

- to 
P680

+.

Figure 5. The main recombination routes of S2QA
-. Only the excitonic route produces lumines-

cence. The scheme is drawn according to Rappaport and Lavergne (2009). 

5.2.3. Comparison of Arrhenius, Eyring and Marcus theories in S2QA
- recombination 

reaction

Three different reaction rate theories, Arrhenius, Eyring and Marcus theory, were 
compared with each other to test which gives the best fi t for the combined fi tting of 
the TL and fl uorescence data. The results showed that compromises were needed to 
keep the fi tting-error in both TL and fl uorescence reasonable. The Marcus theory 
gave the best fi t whereas the commonly used Arrhenius equation gave the poorest fi t. 
However, it was found that all three theories can be used to simultaneously analyze 
TL and fl uorescence. The Arrhenius theory gave the same (s0) or very similar values 
(Ea) for the thermodynamic parameters as previous studies (Rappaport and Lavergne, 
2009). Also the Eyring theory was found to lead to similar results as an earlier study 
that used a similar model (Hakala-Yatkin and Tyystjärvi, 2011). In an earlier study in 
which the Eyring theory was used with a deactivation type model, slightly smaller ΔHa 
(720 meV) and ΔGa (810 meV) values and also a smaller Sa value (-0.318 meV/K) was 
obtained (Vass, et al., 1981). For Marcus theory, there are no previous photosynthetic 
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TL studies to compare with. However, parameter values obtained by the fi tting are 
physically reasonable in comparison to literature on other electron transfer reactions of 
PSII (Haffa, et al., 2002; Moser, et al., 2006). The results may suggest that the Marcus 
theory should be used to analyze of TL data. However methods need to be developed to 
handle each reaction of the reaction chain separately, as Marcus theory requires more 
detailed treatment of the reaction series than the Arrhenius equation.

The TL data revealed a second TL band at a higher temperature than the Q band. 
The fi tting of the decay of Chl a fl uorescence yield after single turnover fl ash revealed a 
component with exactly the same thermodynamic parameters as in the high-temperature-
TL band, strongly suggesting that the same reaction is seen in both data. The fi nding that 
the component can be seen in fl uorescence indicates that QA

- recombination is involved 
in this component. The component may be associated with inactive PSII centers.

In the three-routed model (excitonic, indirect and direct route) (Rappaport and 
Lavergne, 2009) PSII is divided to fast and slow recombining populations. The fractions 
of the fast and slow component varied in different temperatures in fi tting of fl uorescence, 
and it may be that there is temperature dependent equilibrium between these two 
conformations of PSII. The effect of PSII connectivity (Paper II) was minimized in 
Paper III by using a weak actinic light for TL. 

The Arrhenius, Eyring and Marcus theories were also compared with regard to the 
values of the pre-exponential and exponential factor. The Marcus theory was found to 
give higher values of the pre-exponential factor than Arrhenius and Eyring equations. On 
the contrary, values of the exponential factor were smaller in the Marcus theory than in 
Arrhenius and Eyring theories. 

In further studies it should be taken into account that S2QA
- recombination consists 

of several component reactions. When TL and fl uorescence are fi tted independently 
from each other, the fi tting can lead to different factor values. When they are modeled 
simultaneously, the modeling error decreases. The results of fi tting are even more 
reliable when fl uorescence is fi tted at several different temperatures. The best theory 
for describing these factors is the Marcus theory which is a special theory for electron 
transfer reactions unlike the commonly used Arrhenius theory.

5.3. Fluorescence studies reveal differences in light acclimation of group 2 
sigma factor inactivation strains

All triple inactivation strains, sigBCD, sigBCE, sigBDE and sigCDE, are able 
to grow like the control strain in our standard growth conditions. Furthermore, the 
simultaneous inactivation of three group 2 σ factors does not affect the photosynthetic 
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activity under standard growth conditions. The biophysical methods made it possible to 
analyze light harvesting and photosynthetic properties of the strains in more detail when 
cells were acclimated to different light intensities and qualities. These studies revealed 
that group 2 σ factors are important in light acclimation responses.

Expression of σ factors is light responsive. Only low amounts of sigA, sigB, sigC, 
sigD and sigE transcripts were detected after 18 h of dark treatment (Tuominen, et al., 
2003). When cells were grown in 12 h light/12 h dark rhythm, circa 350 genes were 
differently (at least 1.5 fold change) regulated in sigD and CS in the light, and 149 
genes in the dark (Summerfi eld and Sherman, 2007). In darkness, absence of SigB 
affects the transcription levels of over 150 genes (Summerfi eld and Sherman, 2007). 
There are controversial results about induction of SigB in light-dark transitions. High, 
but only transient upregulation of sigB mRNA was detected upon a dark to light transition 
(Tuominen, et al., 2003) while the level of the SigB protein was found to decrease during 
dark to light transition (Imamura, et al., 2003). It should be noted that the high sigB 
transcript levels were measured immediately after the dark to light transition (Tuominen, 
et al., 2003) while protein levels were measured only an hour after the dark to light sift 
(Imamura, et al., 2003). After an hour, also the amount sigB mRNA returns to a low level.

The SigE factor is also involved in regulation of responses to light-to-dark transitions 
in Synechocystis (Osanai, et al., 2009). In the light, the ChlH anti-σ factor bounds to 
sigE inactivating it. Upon transfer of cells to darkness, the cellular Mg2+ concentration 
decreases, causing dissociation of ChlH from SigE (Osanai, et al., 2009). All triple 
inactivation strains grew as well as the control strain under 12 h light/12 h dark rhythm 
at 32°C. However, application of a light rhythm together with low temperature enhanced 
low temperature phenotypes of the mutant strains. The fi nding that the growth rates of 
the triple inactivation strains were slower (sigBCE and sigCDE) or they were not able 
to grow almost at all (sigBCD and sigBDE) under diurnal light rhythm at 22°C may 
indicate that sigma factors may also be involved in regulation of circadian rhythms. The 
expression of SigE shows a diurnal light rhythm (Osanai, et al., 2005).

Previous studies have shown that sigD is upregulated under high light conditions 
(Hihara, et al., 2001; Huang, et al., 2002; Imamura, et al., 2003), and the corresponding 
gene rpoD3 in Synechococcus sp. PCC 7942 is also upregulated in high light (Seki, et al., 
2007). The mutant strains sigBCD and sigBDE were not able to enhance their growth 
at PPFD 80 μmol m-2 s-1 light like the control strain. Strains ΔsigBCD and ΔsigBDE are 
lacking SigB and SigD factors simultaneously, and the sigBD strain has earlier been 
shown to be unable to enhance growth rate when the growth light was doubled (Pollari 
et al., 2008). Furthermore, all double mutants lacking SigD and also the sigD strain are 
sensitive to bright light (Pollari et al., 2008).
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Under mixotrophic conditions the control, sigBCE, sigBDE and sigCDE grew 
faster than in autotrophic conditions. The growth of the sigBCD strain (having only 
sigE) was similar in both conditions. The SigE factor has been previously showed to 
be involved in regulation of sugar catabolic pathways and to be important for light 
activated heterotrophic growth (Osanai, et al., 2005; Summerfi eld and Sherman, 2007). 
It may be that when present as the only group 2 σ factor, SigE is recruited more often to 
form the RNA polymerase holoenzyme. This situation can lead to interference of sugar 
metabolism, which may cause an inability to enhance growth by effi cient use of glucose 
from the growth medium. 

In blue light, the sigBCE strain grew slowly and was not able to perform state 
transitions. The sigBCE strain is locked to state 1. In fact, all triple inactivation strains 
have a higher PSII peak in the 77 K fl uorescence curves than control strain. These data 
may suggest that all triple inactivation strains are constantly near to state 1, although only 
the sigBCE strain is fully locked to state 1. This fi nding suggests that an association 
between phycobilisomes and PSI may depend on the presence of group 2 σ factors. 
In sigBCE, phycobilisomes cannot associate with PSI at all, but in the other triple 
inactivation strains, the association of phycobilisomes with PSI occurs less effi ciently 
than in the control strain. Thus, the group 2 σ factors appear to have overlapping roles 
in the state transitions. An inactivation strain of RpaC (regulator of phycobilisome 
association C) is locked to state 1. The RpaC mutant has a normal phenotype in standard 
conditions, but at very low light it grows more slowly than the control strain (Emlyn-
Jones, et al., 1999). Interestingly, also all triple inactivation strains grow slowly at 
PPFD 20 μmol m-2 s-1 (Paper V). Importance of state transitions in low light has been 
earlier suggested (Emlyn-Jones, et al., 1999). No difference between the control and the 
sigBCE strain were detected in the blue-light induced, OCP-related NPQ (Wilson, et 
al., 2006). This fi nding is in line with previous results showing that OCP-related NPQ 
and state transitions are separate phenomena (Wilson, et al., 2006; Wilson, et al., 2007; 
Wilson, et al., 2008; Wilson, et al., 2010).

Recently it has been proposed that cyanobacteria have a previously unknown 
photoprotection mechanism involving the fl v4-fl v2 operon (Zhang, et al., 2009; Zhang, 
et al., 2012). Also the fl v4-fl v2 operon mutants have a higher PSII peak than the control 
strain. However, sigBCD, sigBCE, sigBDE and sigCDE have relative proportions 
of CP43 and CP47 similar to control strain (Table 2) unlike the fl v4-fl v2 operon mutant 
that has a high CP43 peak at 685 nm compared to the 695 nm peak. The sigCDE strain 
is resistant to photoinhibition. Depending on light intensity, the light-induced damage 
of PSII occurs 30 to 50 % more slowly in sigCDE than in the control strain (Hakkila 
et al. manuscript). A high carotenoid content together with up-regulation of fl v4-fl v2 
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operon are the most important reasons for photoinhibition resistance of sigCDE strain 
(Hakkila, et al., manuscript). In some of the previous studies, SigB has consider to be 
more important in darkness than in the light (Imamura, et al., 2003) but recent results 
from the sigCDE strain prove importance of the SigB factor in light.

Studies of the sigCDE strain in high salt conditions have revealed that the SigB 
factor also regulates many salt acclimation responses in Synechocystis (Nikkinen, et al., 
2012). The protective carotenoids zeaxanthin and myxoxanthophyll are upregulated in 
the control strain in high-salt conditions but in the sigCDE strain these carotenoids are 
already up-regulated in normal conditions (Nikkinen, et al., 2012). The SigB factor is 
also important for the production of glucosylglyserol-phosphate synthase and the HspA 
heat shock protein in high salt conditions (Nikkinen, et al., 2012).

Overall group 2 σ sigma factors have a central role in the global regulation of 
transcription in cyanobacteria. The competition for the binding of group 2 sigma factors 
to the RNA polymerase core might play a key role in the regulation of gene expression 
in Synechocystis.
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6. CONCLUSIONS

My thesis consists of a theoretical part (Papers II and III) and a more applied part (Papers 
I, IV and V). When trying to resolve the function of specifi c genes, proteins or pathways, 
it is useful also to understand the environment where the organism has evolved, and the 
effect of the environment to the organism (Paper I). Understanding of gene regulation in 
a present-day organism (Papers IV and V) benefi ts from the knowledge of the past. The 
main fi ndings of my thesis are:

 The peak temperature and form of the Q band of PSII thermoluminescence depend 
on the initial concentration of QA

-, indicating that energy transfer between PSII 
centers affects thermoluminescence

 The connected units model of PSII organization describes the effect of the energy 
transfer between PSII centers

 The Marcus theory gives a better fi t in modeling PSII thermoluminescence and 
fl uorescence than the Arrhenius or Eyring models

 Three out of four group 2 σ factors can be inactivated simultaneously without 
affecting growth in standard conditions but biophysical studies revealed differences 
between the strains

 sigBCE grows slowly in blue light and is locked in state 1. All other triple 
inactivation strains are constantly close to state 1

 Simultaneous inactivation of SigB and SigD (strains sigBCD and sigBDE) 
impaired acclimation to different illumination conditions and to low temperature

 sigCDE has a higher carotenoid content than the control strain

 Cyanobacteria are able to grow in high iron concentrations in anaerobicity; under 
these conditions ferrous iron reacts with oxygen produced by photosynthesis, 
forming brown precipitate

 Cyanotoxins do not protect cyanobacteria from excess iron
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