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This thesis presents deep photometry of the globular cluster (GC) system of three isolated
elliptical galaxies: NGC 3962, NGC 2865 and NGC 2271. Due to the scarcity of isolated
ellipticals in the local universe, little is known about the properties of globular cluster systems
(GCS) in under-dense environments. Using data obtained from the Gemini South telescopes
in the g′ and i′ filter passbands, we have determined the color and radial distributions for
these GCS.

We find bimodal color distributions in the GCS of all the isolated elliptical galaxies in our
sample, with NGC 2865 showing evidence of a third mode. The peak colors of the metal-rich
sub-populations in all our GCS are slightly redder than in results obtained for GCS of similar
mass galaxies in denser environments. The three GCS we have studied are dominated by
GCs belonging to the metal-poor sub-population, a result clearly at odds with predictions
from some hierarchical based models where red GCs are expected to be more abundant.

No difference is found in the spatial distribution of the blue and red sub-populations in
our sample compared to results from denser environments. The blue GCs have a more
extended radial distribution and the red are more centrally concentrated. We obtained
shallow, negative average GC color gradients in the three galaxies studied.

We report the detection of a population of ultra-compact dwarf (UCD) candidates in NGC
3962. Spectroscopic studies to confirm their membership is ongoing.

keywords : globular clusters, elliptical galaxies.
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Chapter 1

Introduction
Astronomers try to answer questions like how did the celestial objects we see today form,

how long have they been around, how have they evolved in time? Such puzzles are resolved

by proposing hypothesis and models which often times do not adequately describe the entire

spectrum of the observed properties of these objects. The ultimate goal is to find the “right”

model that accounts for all what we know about our object of interest. This thesis uses the

globular cluster systems of some isolated elliptical galaxies to provide clues that would help

in answering these questions.

1.1 Globular clusters

Star clusters are useful tools in answering some of these fundamental questions and in con-

straining the several models. Stars in a cluster have the same age, the same initial chemical

composition and are roughly at the same distance from the earth (differing only in their

masses), forming rare astrophysical “laboratories”. A globular cluster (GC) is a roughly

spherical group of stars, orbiting a galactic core, tightly bound by gravity with high stellar

density towards the center. The stars however have different masses and are in different evo-

lutionary phases. GCs are the oldest, visible stellar structures in the universe. A typical GC

has ∼ 104 − 106 stars concentrated within ∼ 103 pc3. They are thus compact objects with

typical half-light radii of a few pc. GCs have been found around galaxies of all morphological

types over a wide range of galaxy luminosities (brighter than ∼MB = −15). The Milky Way
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Figure 1: The GC ω Centauri. Credit: ESO

(MW) has ∼150 GCs, Andromeda (M31) has ∼400 GCs, Virgo A (M87) has ∼13,000 GCs

while Fornax dwarf spheroidal has 5 GCs (Kissler-Patig et al. 1997; Ashman & Zepf 1998).

Fig. 1 shows the GC ω Centauri, the largest and brightest GC orbiting the MW. Most GCs

probably formed at the same time as their host galaxies (Brodie & Strader 2006). Since they

are the oldest objects that survived the dynamical evolution of the galaxy system, they are

therefore relics with unique fossil records of the conditions during galaxy formation and early

evolution. Also, GCs are good tracers of the star formation histories of their host galaxies

(Larsen et al. 2001). Major star formation epochs are normally accompanied by significant

GC formation (Strader et al. 2005). GCs and field stars form during initial proto-galactic

cloud collapse and gas-rich major mergers. The number of clusters formed is proportional

to the amount of gas involved (Djorgovski & Santiago 1992) and properties of the GCs scale

with the properties of the host galaxy e.g number of GCs has a very tight correlation with

the total galaxy stellar mass (Rhode & Zepf 2004). Hence they can be studied to understand
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the chemical enrichment history of spheroids and halos.

Historically, the study of GCs was used to show that the MW is not heliocentric. Shapley

(e.g 1918), from a series of studies of the GCs in MW, showed that the Sun was offset from the

center of the spherical distribution of GCs by ∼ 15 kpc. The current estimate for the offset is

∼ 7.6−8.7 kpc (Gillessen et al. 2009). GCs are also among the first objects used to establish

the distance scale of the Universe. The peak magnitude of the globular cluster luminosity

function (GCLF) is an established secondary distance indicator with intrinsic accuracy of the

order of ∼ 0.2 mag (e.g Rejkuba 2012).

Individual GCs in the Local Group can be characterised with a single age and a single

metallicity (since they appear as point sources), indicating that the clusters formed in a single

star formation episode (Puzia 2003). There are exceptions however, ω Cen orbiting the MW

and Mayall II (G1) orbiting M31 have wide metallicity distributions (multiple star formation

episodes). Alternatively, these objects have been described as stripped dwarf galaxies (e.g.

Zinnecker et al. 1988; Hilker & Richtler 2000; Meylan et al. 2001; Bekki & Freeman 2003).

The GCs NGC 2808, NGC 1851, NGC 2419, Ter 5 and NGC 6656 in our MW also show

this wide metallicity distribution and there is increasing evidence that virtually all GCs show

some level of chemical composition inhomogeneity (Valcarce & Catelan 2011; Bragaglia et al.

2013).

1.2 Globular Cluster Systems

The Globular cluster system (GCS) of an elliptical galaxy is the ensemble of all the old star

clusters (>= 10 Gyr) found in its spheroid and halo region. Most Galactic GCs are old with

mean age of ∼ 13 Gyr and dispersion of 2-3 Gyr (e.g. Krauss & Chaboyer 2003). By mass,

GCS constitute ∼ 0.25% of the total stellar mass of the host galaxy and for all types of

galaxy morphologies, the number of GCs normalised to the total baryonic mass of the host
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gives a constant value of ∼ 0.25% (McLaughlin 1999). Below is a brief description of the

global properties of GCS.

1.2.1 Globular Cluster Luminosity Function

The relative number of GCs per unit magnitude of a GCS gives the GCLF which can be

described by either a Gaussian or a t-distribution (df = 5) (Secker 1992). The GCLF is

characterised by the dispersion and the turnover magnitude (TOM). GCLFs have a universal

shape in all GCS studied, with an asymmetry in the form of a longer tail towards the

faint magnitude end. This is due to the preferential erosion of low mass clusters during

the dynamical evolution of the galaxy (Harris & Pudritz 1994). The TOM of the GCLF is

almost universal (for all observed GCS and different morphology) with a mean magnitude of

Mv = −7.4± 0.2 and a dispersion σ = 1.2 for MW and M31 (Ashman & Zepf 1998). The

dispersion of the distribution is linked to the absolute magnitude of the host galaxy (Jordán

et al. 2006).

1.2.2 Specific Frequency

The specific frequency, SN , of a GCS is the number of GCs per unit luminosity of the host

galaxy and it is a description of how rich the GCS is. It is defined by

SN = NGC × 100.4(MV +15)

where NGC is the total number of GCs and MV is the galaxy’s absolute V -band magnitude

such that a MV = −15 galaxy with one GC has a SN equal to one. Dwarf and large elliptical

galaxies have higher SN than spirals (e.g. Forbes 2005) since they have different mass-to-light

ratios and total stellar mass is not used for the normalisation. However, for galaxies hosting

more than 10000 GCs, MV is easily underestimated due to their very extended stellar halos
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as shown in results obtained by McLaughlin et al. (1995); Wehner et al. (2008) and Richtler

et al. (2011) for NGC 3311. In a galaxy that has no interaction history, the SN gives the

formation efficiency of GCs relative to field stars and how well they survived. Harris & van

den Bergh (1981) reported values in the range 2 < SN < 10 for elliptical galaxies. M87, the

central galaxy in the Virgo Cluster, has a high value SN = 12.6 ± 0.8 (Peng et al. 2006).

This suggests the influence of environment in GC formation. High SN galaxies have been

identified as brightest galaxies or second brightest galaxies in clusters.

1.2.3 Color Bimodality

Bimodality has been observed in the optical color distribution of nearly every massive galaxy

studied with accurate and deep enough photometry (Brodie & Strader 2006). Color bimodal-

ity is the most important defining feature in modern GC studies. Histograms of GC color

generally have two peaks (blue and red peaks) which are found at similar colors for most

galaxies in the same filter system. This implies the presence of two sub-populations of GCs

in the system which either formed at different epochs and/or through different mechanisms.

In Fig. 2, bimodality is clearly obvious in the color-magnitude diagram (CMD) of NGC 1399

obtained from wide-field photometry using filters in the Washington system (Dirsch et al.

2003).

Bimodality can be attributed to age and/or metallicity differences between the sub-

populations, though spectroscopic studies have shown that it is mainly due to metallicity

difference between the sub-populations. The blue and red peaks correspond to the metal-

poor and metal-rich sub-populations (e.g. Puzia et al. 2005; Strader et al. 2006; Brodie et al.

2012; Usher et al. 2012).
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Figure 2: CMD of detected objects in the field of NGC 1399 using filters in the Washington
system. The line corresponds to limiting magnitude of the photometry (Dirsch et al. 2003).

Bimodality in metallicity has been observed in spectroscopic studies of the MW (e.g. Zin-

necker et al. 1988; Bica et al. 2006) and M31 our spiral neighbour (e.g. Barmby et al. 2000)

10



though it is less pronounced in M31 (Caldwell et al. 2011). In the MW, the metal-poor

GCs are found in the halo, at large galactocentric radii (Armandroff & Zinn 1988) while the

metal-rich GCs are associated with the bulge (Côté et al. 1998). However, knowledge of GC

color distributions in spiral galaxies, especially outside the Local Group, is sparse (Puzia

2003). This is due to contamination from the young star cluster populations, crowding and

extinction correction problems, which are much more severe in spirals. Bimodality is thus

easier to study in elliptical and S0 galaxies because of the large numbers of globular clusters

in their halos.

Several studies (e.g. Forbes et al. 1997; Larsen et al. 2001; Forbes & Forte 2001) showed

that there is a strong correlation between the mean color of the red sub-population and the

host galaxy luminosity and also with galaxy halo-star color. This is evidence that GCs are

tracers of the chemical abundance evolution of the star formation and assembly processes

that shaped galaxies over cosmic time. While metallicity may be the most important driver

of GCS color bimodality, age effects, especially outside the Local Group, are also important

(Puzia 2003).

Richtler (2006), Yoon et al. (2006, 2011a,b) however suggested that a broad, single-peaked

metallicity distribution, presumably as a result of continuous chemical enrichment, can pro-

duce color bimodality due to non-linearity of metallicity-color relation, without invoking two

distinct sub-populations. These studies suggest that color distributions do not translate di-

rectly into metallicity distribution. They showed that non-linear color-metallicity relations

caused by the hot horizontal branch stars may also transform a unimodal metallicity distribu-

tion into a bimodal optical color distribution. Chies-Santos et al. (2012) using optical/near-

infrared (NIR) color distributions of the GC systems in 14 E/S0 galaxies concluded that a

bimodal optical color distribution is not necessarily an indication of an underlying bimodal

metallicity distribution. However, Brodie et al. (2012), using the GCS of NGC 3115, showed

that color and CaT index (a metallicity proxy as it correlates closely with metallicity) are
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bimodal, lending more weight to the evidence, from direct metallicity distribution functions,

that multiple GC metallicity sub-populations are common.

1.3 Theories of Globular Cluster System Formation

Several models with different variants attempt to describe the formation of the large GCS

observed in elliptical galaxies within the hierarchical framework. Generally these models

can be grouped into three broad classes: gas-rich major merger, multi-phase dissipational

collapse and dissipationless accretion.

1.3.1 Major merger model

Ashman & Zepf (1992) proposed that in the gas-rich major mergers of spiral galaxies, new

GCs are formed such that the GCS of the new elliptical galaxy is made up of metal-poor

GCs from the progenitor spirals and young, metal-rich GCs are formed during the merger.

The model is unique in that it predicted bimodality in GCS before it was observed (Ostrov

et al. 1993; Zepf & Ashman 1993). Large number of young massive star clusters (YMCs)

have been observed in the famous Antennae galaxy-galaxy merger (Whitmore & Schweizer

1995) and in several other star forming events - in NGC 1275 (Holtzman et al. 1992), NGC

3256 (Zepf et al. 1999, etc) and they are believed to be the progenitors of globular clusters,

though the fraction of YMCs that survive to become GCs is not well constrained (Portegies

Zwart et al. 2010). The luminosity function (LF) of YMCs is well described by a power-law

dN

dL
∼ Lα

with α ∼ 2 (Whitmore & Schweizer 1995). How the power-law LF is converted to the observed

log-normal GCLF is however not properly understood especially considering the mechanism
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of dynamical interactions of a star cluster with its host galaxy (Fall & Zhang 2001).

Even though there are observational evidences for major mergers, several problems are

associated with the model if it is considered as the sole process responsible for bimodality. For

example, the model predicts that more massive ellipticals with higher SN should have larger

metal-rich sub-population since new metal-rich GCs are formed in the spiral-spiral merger.

However, Forbes (2005) showed that there is a correlation between SN and the fraction of

metal-poor GCs, such that the highest SN galaxies also have the highest proportion of metal-

poor GCs. Also, on the average, the metal-poor GC sub-populations of spirals have lower

metallicities than those of massive ellipticals (Strader et al. 2004). There has to be some

other mechanism(s) responsible for this observed shift.

1.3.2 Dissipational collapse model

Due to the inconsistency of the observed SN and color distribution of the GCS in massive

ellipticals with the predictions of the major merger model, Forbes et al. (1997) suggested a

multiphase dissipational collapse where metal-poor clusters are first formed at high redshift

z > 5 but not before z ∼ 12 in low-mass proto-galaxies during initial galaxy formation after

which star formation is truncated. Metal-rich clusters are then formed when star formation

resumes and gas re-collapses. The star formation truncation at high redshift lasts for a

few Gyrs and it has been explained in terms of the cosmic reionization epoch. Beasley

et al. (2002) proposed a hybrid, semi-analytic galaxy formation model using cosmological

formation simulations based on the semi-analytic model of Cole et al. (2000) assuming that

“GCs form contemporaneously with the star formation occurring in proto-galactic disc, and

during major mergers involving star formation”. This would produce two sub-populations of

GCs made from gas which has undergone different levels of chemical enrichment: a metal-

poor GC sub-population would be formed in the cold gas of the proto-galactic disc and a

metal-rich sub-population would be formed during gas-rich merging.
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Artificial truncation of the formation of metal-poor GCs at z ∼ 5 is necessary to prevent

the over-production of metal-poor GCs. The GCs would have a significant age-structure with

a wide age range (5-12 Gyrs), which would increase for low-luminosity galaxies. Generally,

the metal-rich GC sub-populations are younger than the metal-poor GC sub-populations,

with mean ages of 9 and 12 Gyrs respectively. Also, the mean ages of the metal-rich GCs

would depend on host galaxy luminosity and environment.

1.3.3 Dissipationless accretion model

In the dissipationless accretion model, metal-rich GCs are formed in-situ in a massive seed

galaxy, while the metal-poor GCs are acquired in the dissipationless accretion of neighbouring

lower-mass galaxies. Since dissipationless accretions involve little or no gas, star formation

is absent in this model. Côté et al. (1998) suggests that a substantial part of the GCS of

an elliptical galaxy is accreted from neighbouring dwarf galaxies. At the heart of this model

is the correlation between the mass of the host galaxy and the mean metallicity of its GCS

(Forbes & Forte 2001).

Since the intrinsic GC metallicities of massive protogalaxies are quite high, such galaxies

must accrete large numbers of metal-poor GCs from dwarf galaxies to produce bimodality. A

large number of metal-poor field stars should also be accreted alongside the metal poor GCs,

however, these stars are not observed in the fields of elliptical galaxies (Hilker & Richtler

2000). Also, metal-poor GCs in dwarf galaxies have much lower metallicities than those in

massive ellipticals ∼ 0.5− 0.6 dex (Strader et al. 2004). Brodie & Strader (2006) suggests

that this could be resolved by placing the merger or accretion events at high redshift and

allowing for significant gas in the components.
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1.4 Predictions of models for low density environments

From these three models it can be concluded that the evolution of galaxies and their GCS is

an extended process that is still ongoing, rather than a one-off event in the distant past. If

the metal-rich and metal-poor clusters are the result of two separate epoch of star formation,

then the metal poor GCs must be older than those that are metal rich. If, however, the

bimodal GC sub-populations seen in GCSs are due to the accretion of pre-existing GCs, then

the metal-rich and metal-poor GCs should co-evolve and both distributions should be old,

with no correlation between metallicity and age.

Most of the studies of GCS in early type galaxies have concentrated on high-density

environments where massive ellipticals are very common (e.g. Peng et al. 2006). It is crucial to

test these models in GCS of galaxies in under-dense environments where accretion processes is

expected to be far less important. Very little is known about GCS in low density environments

due to their scarcity in the local Universe. Also, the need for large statistical correction for

contaminations from background galaxies make such studies with ground-based imaging more

complex.

In the major merger model, blue GCs in elliptical galaxies are inherited directly from

spiral progenitors (e.g. Ashman & Zepf 1992), hence it is expected that the number of metal-

poor GCs in spirals and ellipticals are similar.

In hierarchical structure formation models, protogalactic clumps in higher density regions

start to form GCs earlier than fragments in lower density regions (Elmegreen 2008). This

implies that in high density environments, massive galaxies should have more metal-poor GCs

that are older per unit mass compared to less massive galaxies in under dense environments.

Also, in hierarchical based major-merger scenario, the blue, metal-poor GCs are expected

to have a more extended radial distribution compared to the red, metal-rich sub-population

(Brodie & Strader 2006). Due to accretion of metal-poor GCs in the dissipationless accretion
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model, they are expected to have a more extended galactocentric distribution. This trend is

expected to be more pronounced in giant ellipticals at centers of clusters where capture of

dwarf ellipticals and tidal stripping are rife (e.g. Muzzio et al. 1984; Bekki et al. 2003).

Thus in the major merger models, we would expect to see steeper radial color/metallicity

gradients in galaxies with very rich GCS due to the relatively large number of blue GCs

found at large galactocentric radius (Rhode & Zepf 2004).

One prediction of Beasley’s model is that the formation of the red GCs will be extended

over several Gyrs in low-density environments (Forbes et al. 2004). Semi-analytic models of

galaxy formation predict that the largest spread in galaxy properties such as metallicity and

age should occur for low luminosity early-type galaxies in under-dense environments.

Tonini (2013), using empirical galaxy mass-metallicity relation with observed galaxy stel-

lar mass in the hierarchical model, predicts that the metal-rich sub-population should dom-

inate GCS of galaxies in the field since they are expected to have evolved passively with

little or no merger and interaction. Galaxies with prolonged star formation histories are also

expected to have GCS dominated by red GCs. However, in galaxies with similar luminosities

but more intense merger histories, the metal-poor clusters are expected to dominate. Fig. 3

summarize the predictions from Tonini (2013), where galaxies with poor merger histories e.g

isolated ellipticals are expected to have GCS dominated by metal-rich GCs.

Results from the study of NGC 821, one of the few low density GCS studied (Spitler

et al. 2008) gives the constraints on the GCS properties in an under-dense environment.

All measured properties of its GCS indicate resemblance to similar-mass elliptical galaxies

in higher density environments with its isolation producing no special discernable feature

compared to ellipticals in cluster environments. Cho et al. (2012) studied ten low-luminosity

ellipticals in low-density environments with the Advanced Camera for Surveys (ACS) on the

Hubble Space Telescope and tentatively concluded that GCS in under-dense environments

are either less metal-rich or younger (or both!) than those in high-density regions.
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Figure 3: Variation of GC metallicity for galaxies with different assembly histories. Parameter
M1/M0 is the ratio of stellar mass of the progenitor galaxy in the merger tree to the stellar
mass of the galaxy at redshift z = 0. An isolated galaxy with more or less no merger or
interaction should have the distribution in panel with M1/M0 = 0.6 (Tonini 2013).

1.5 Isolated Elliptical Galaxies

Elliptical galaxies are preferentially found in regions of high galactic density and low velocity

dispersion, while spiral galaxies dominate in the field (Dressler 1980). This morphology-

density relation implies that the probability of finding an early-type galaxy in a low density

environment is low. Few ellipticals are thus found in the field and they are termed isolated

ellitical galaxies. The hierarchical model suggests that isolated ellipticals are formed in the

merger of many subclumps during the early stages of the evolution of the universe and

are likely to show evidence of recent star formation and/or merger events. Gravitational

interaction signatures like tidal tails, dust lanes and shells have been observed in some studies

of isolated ellipticals by Reda et al. (2004); Tal et al. (2009); Lane et al. (2013).

Isolated elliptical galaxies could be formed from the collapse of poor groups of a few

galaxies. Mergers at different redshifts of progenitors with different mass ratios and gas

fractions are needed to reproduce these observed features. Niemi (2011) used the Millennium

simulation to study the properties and formation history of isolated elliptical galaxies, and
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compared their results with observational data. Despite the sparseness of the observational

datasets available to them, they were able to conclude that isolated ellipticals are rare, with a

small number of companions ranging from only a few dwarf companions to as much as about

20. Thus, isolated ellipticals are not completely without neighbours though by definition

they are situated in low density environments.

1.6 Isolated Elliptical Galaxy Samples

Defining a “true” sample of isolated ellipticals is a complex task due to the presence of satellite

galaxies and possible presence of dwarf galaxies around bright galaxies at the low end of the

luminosity function. Samples of early-type galaxies in the field are found in literature with

different isolation conditions (e.g. Karachentseva et al. 1986; Aars et al. 2001; Kuntschner

et al. 2002; Stocke et al. 2004). For this study, we have made use of the isolated elliptical

catalogs of Smith et al. (2004) and Reda et al. (2004).

Smith et al. (2004) made such a sample from galaxies in the Lyon-Meudon Extragalactic

Database (LEDA)1 by classifying as isolated ellipticals, galaxies that satisfied the following

criteria:

• velocity of primary galaxy must be less than 10,000 km s−1

• absolute magnitude of the galaxy must be brighter than MB ∼ −19

• galaxies must lie above a Galactic latitude of |25◦|

• a de Vaucouleurs morphological type T < −4 from the LEDA database

• neighbours should be at least twice as faint as the primary candidate

The candidates were also visually confirmed as truly isolated before they were adopted.

1created in 1983 at Lyon Observatory, merged with Hypercat in 2000, now known as HyperLeda
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Reda et al. (2004) also used LEDA as source catalogue but used a different set of criteria

in defining their sample.

• morphological type T ≤ −3

• Virgo corrected recession velocity V ≤ 9000 km s−1

• apparent magnitude B ≤ 14.0

• galaxy not listed as a member of a Lyon Galaxy Group (Garcia 1993)

• no neighbours within 700 kms−1 in recession velocity, 0.67 Mpc in the plane of the sky

and a magnitude of ±2.0 in the B− band of the primary galaxy

1.7 The Galaxy Sample

Our sample consist of three early-type galaxies imaged with the GMOS on the Gemini South

telescopes. They are part of a larger sample of 5 isolated elliptical galaxies within a distance of

50 Mpc that are reachable from the southern hemisphere observed under Gemini programme

GS-2012A-Q-6. Images of the Galaxy sample and basic data for the galaxies are presented

in Fig. 4 and Table 1.1.

The William Herschel Deep Field (WHDF) (Metcalfe et al. 2001), taken from the Gemini

Science Archive (GSA), is used to estimate background contamination from faint galaxies.

1.7.1 NGC 3962

NGC 3962 is classified as an E1 galaxy in the Crater constellation. It is an HI rich elliptical

galaxy (MHI ∼ 2.7×109M� Serra & Oosterloo 2010) with two distinct kinematic subsystems

(Buson et al. 1993; Zeilinger et al. 1996) with the outer arm-like feature thought to be
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Figure 4: GMOS image of galaxies. NGC 3962 (left), NGC 2865 (center) and NGC 2271
(right). Each image has a FOV of 5.5′ × 5.5′.

Table 1.1: Galaxy sample. Coordinates and distance are from NASA Extragalactic Database,
BT magnitudes from RC3 catalogue de Vaucouleurs et al. (1991), distance modulus from
Tonry et al. (2001), extinction coefficient from Schlegel et al. (1998)

Galaxy αJ2000 δJ2000 l b BT MB (m−M)0 d E(B − V )
(h:m:s) (◦:′:′′) (◦:′:′′) (◦:′:′′) (mag) (mag) (mag) (Mpc)

NGC 3962 11:54:40.1 -13:58:30.0 282:39:10.8 -46:38:57.5 11.59 -21.15 32.74± 0.49 30.73 0.0452
NGC 2865 09:23:30.2 -23:04:41.0 252:57:10.8 +18:56:29.8 12.18 -20.71 32.89± 0.20 32.13 0.1182
NGC 2271 06:42:53.0 -23:28:34.0 233:13:30.0 -12:14:46.0 12.10 -20.41 32.51± 0.28 30.36 0.0841

WHDF 00:22:32.8 +00:21:07.5 107:34:49.5 -61:39:20.7

associated with a bluer color component compared to the surrounding regions (Goudfrooij

et al. 1994). The inner disk of NGC 3962 is rich in ionised gas - a signature of earlier merger

with another galaxy. A young stellar population with age 2.5± 0.4 Gyrs is also hinted at by

Serra & Oosterloo (2010). It is known to have a central radio source (Birkinshaw & Davies

1985). There is no report of any previous study of its GCS in literature.

1.7.2 NGC 2865

NGC 2865 is a classical shell galaxy in the Hydra constellation (Malin & Carter 1983)

with abundant evidence of a recent minor merger or accretion that involves a gas-rich disc

galaxy (see central panel in Fig. 4). It has a very luminous shell and an HI disk with

(MHI ∼ 5.3× 108M� Serra & Oosterloo 2010). The velocity profile has a clear signature of a
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kinematically distinct core (KDC) in the central 4′′ region (6.4 kpc) and solid-body rotation

in the outer regions (Hau et al. 1999). Its chaotic shells are bluer than the main body of

the galaxy and contributes 11 − 22 % of the total luminosity (Fort et al. 1986). Hau et al.

(1999); Serra & Oosterloo (2010) report the presence of a young stellar population with age

0.4 − 1.7 and 1.1 Gyrs, respectively. Sikkema et al. (2006) in the study of the GCS of six

shell galaxies reported the presence of a population of very blue, low luminosity GCs near

(V − I) = 0.7 in the complex CMD of NGC 2865. This is evidence of the recent formation

of GCs in the galaxy.

1.7.3 NGC 2271

NGC 2271 is classified as an E/S0 galaxy in the constellation Canis Major. NGC 2271 has

a non-rotating kinematically decoupled central component within 1.5′′ of the galaxy’s center

(Koprolin & Zeilinger 2000) which shows a disturbed structure (de Souza et al. 2004). Hau

& Forbes (2006), however, could not confirm the presence of this distinct core and reported a

smooth velocity profile and declining velocity dispersion. There is no report of any previous

study of its GCS in the literature.
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Chapter 2

Data and Reduction

2.1 Data

Raw images of the science targets were obtained using the GMOS1 (Gemini Multi - Object

Spectrograph) instrument in imaging mode on the 8.1 meter diameter Gemini South telescope

in Cerro Páchon, Chile. The GMOS detector array consists of three 2048× 4608 pixel CCDs

with an unbinned scale of 0.0727′′ pixel−1. A 2 × 2 on-chip binning was used such that

pixel size is 0.146′′ pixel−1. Binning increases S/N ratio, reduces final readout time and final

image size. The FOV of the camera is 5.5′×5.5′ with 2.8′′ (39 pixels) gaps between the chips.

The instrument was used in the one-amp mode and dithered between exposures in the x-

direction to facilitate removal of cosmic-rays, bad/hot pixels and the gaps between the CCD

chips. Broad band imaging was done using SDSS2 g′(G0325) and i′(G0327) filters. Table 2.1

contains details of observational parameters. It also includes the WHDF that we have used

to estimate contamination from faint background galaxies in our FOV (see Sec. 2.8).

1Further information on GMOS can be found on the instrument homepage
(http://www.gemini.edu/sciops/instruments/gmos/)

2Sloan Digital Sky Survey
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Table 2.1: Summary of Observations. Table lists the date of observation, number of exposures
taken with exposure times and seeing of co-added images in the two bands

Galaxy Obs. date Exp. time (s) FWHM(′′)
(dd.mm.yyyy) g′ i′ g′ i′

NGC 3962 22.02.2012 6× 610 6× 440 0.70 0.54
NGC 2865 25.01.2012 6× 480 6× 340 0.62 0.55

26.01.2012 8× 4903 6× 350 0.56 0.48
NGC 2271 01.02.2012 9× 419 9× 315 0.70 0.62
WHDF 20.08.2001 6× 300 6× 300 0.86 0.67

2.2 Image reduction

The raw images obtained from GMOS were processed using the GEMINI GMOS package

within IRAF 4(Image Reduction and Analysis Facility). Instrument signatures (overscan,

gaps, bias)

were removed from the images using the GPREPARE, GIREDUCE and GMOSAIC task

in IRAF. Appropriate bias and flat-field calibration frames in the g′ and i′ bands were ob-

tained from the GSA.

GPREPARE was used to prepare raw GMOS images for reduction. GIREDUCE reduced

the partly processed images in GMOS. It applied overscan correction by fitting and subtract-

ing the overscan level and then trimmed the entire overscan section away by keeping only

the section specified in parameter key datasec. It also subtracted the bias image from the

raw image and divided the image by the flat field image.

final reduced object frame =
raw object frame− bias frame

normalized{flat field frame− bias frame}
(2.1)

Dark frames were not used in our calibration as the effect of dark currents is negligible.

3two of the exposures were not used as they have unusually poor seeing
4IRAF is distributed by the National Optical Astronomical Observatories, which are operated by the

Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National
Science Foundation
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In the i′ band (at longer wavelengths), there is significant fringing in GMOS images due to

night sky emission lines. Full correction for fringing is very difficult due to its strong variabil-

ity, hence we assumed that the shape of the fringe pattern is constant. GIRMFRINGE task

removed fringing from GMOS images by subtracting the fringe frame. This was performed

only on reduced images in the i′ band.

GMOSAIC task was used to join the three GMOS CCDs images into one image. The

resulting images for g′ and i′ (for each target) were then co-added separately using IMCOADD

to remove the CCD gaps, cosmic-ray hits and bad/hot pixels from the final image. Using

GEMSEEING task in GEMTOOLS package we determined images to be co-added. Images

with very deviant FWHM values were not co-added. The FWHM from the observation

log for the targets compares well with that of the final images in the g′ and i′ band from

GEMSEEING, hence image quality is good.

Using X- and Y- windows with sizes of 7.88′′ and the MEDIAN task in IMFILTER

package, we masked out as much of the galaxy light as possible without removing too many

point sources in the final co-added images. IMARITH task which perfoms binary type

arithmetic on images was used to do the actual galaxy light removal. These final co-added,

galaxy-light subtracted images were then used for all the subsequent data analysis.

2.3 Object Detection and Photometry

At the distance of the science targets (see Table 1.1 in Chapter 1), most of the GCs would

be unresolved (point sources). SExtractor (Bertin & Arnouts 1996) was used for object

detection in the reduced images in both bands since it gives better result than DAOFIND

task in IRAF for crowded extragalactic fields containing extended sources (DAOPHOT II

manual). In crowded fields, neighbouring objects often overlap (centers are separated by

distances significantly less than one FWHM), hence the need for accurate deblending before
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any meaningful photometry can be done. SExtractor uses simple convolution kernels as

simplifying approximations to deal with varying shapes and sizes of astrophysical objects,

blending and variable point spread function (PSF) across the fields. It generates a catalogue

of detected, deblended objects with flags, positions, fixed-aperture and adaptive-aperture

magnitudes. Of special interest to this work is the CLASS STAR parameter, also called

stellarity index, used to distinguish between point sources and resolved sources. The neural

network system of SExtractor assign detected sources CLASS STAR parameter values from

0 to 1 with the limits corresponding to extended sources and point sources respectively.

Objects can take values over the range.

The ideal configuration of SExtractor parameters should give as complete a sample as

possible with accurate magnitudes i.e detect the faintest sources, perform deblending on

overlapping objects in the crowded field without including false detections in the catalogue.

We achieve this by performing sextraction using gaussian (gauss 4.0 7× 7) and mexican hat

filters (mexhat 4.0 9× 9)5 separately and combining the output into a single catalogue. The

former uses a smaller aperture for its photometry, hence it returns more accurate magnitude

than the later which gives a more complete sample by detecting faint objects and deblending

objects more effectively. Duplicate entries in the final output catalogue were removed before

photometry was done using the standalone DAOPHOT II and ALLSTAR (Stetson 1992).

The PHOT task within DAOPHOT uses a list of apertures defined in parameter file

photo.opt to perform concentric aperture photometry on all the objects catalogued by SEx-

tractor. A list of suitable point sources that are isolated from bright neighbours, not saturated

and not too close to the edge of the frame is generated with the PICK task. This is used by

the PSF task to generate a point spread function for the frame in a series of iterative steps.

ALLSTAR, using parameters specified in allstar.opt, does multiple-simultaneous psf fitting

of the photometric objects and writes output to ∗.als file. Of particular importance to this

5naming convention for Sextractor filters is filtername seeingFWHM(pixels) filtersize(pixels)
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Table 2.2: Aperture Correction

Galaxy g′ i′

NGC 3962 −0.035± 0.008 −0.051± 0.064
NGC 2865 −0.034± 0.020 −0.020± 0.008
NGC 2271 −0.034± 0.003 −0.048± 0.022

work is the SHARP parameter, which together with the stellarity index from SExtractor is

used to separate resolved objects from unresolved ones. SHARP for an object is linked to

its intrinsic angular size, without any contribution from the atmosphere. For point sources,

SHARP is close to zero; for resolved or blended sources, SHARP is significantly more than

zero while for cosmic rays and bad pixels, SHARP is significantly less than zero. The detected

objects in the g′ and i′ frames were matched using their positions with DAOMATCH and

DAOMASTER, thus we obtained colors for all photometrically detected objects.

2.4 Photometric Calibrations

We made corrections for the finite size of apertures used in obtaining the psf magnitudes

by applying the magnitude difference between the 15 pixel (outermost concentric radius

used in ∗.opt parameter file) and 25 pixel (outer sky annulus radius in ∗.opt parameter

file) radii apertures to the psf magnitudes for all of the detected objects. Summary of the

aperture corrections (in magnitudes) can be found in Table 2.2. We accounted for foreground

galactic extinction in the science targets using values from Schlegel et al. (1998)6, extinction

ratios Ag = 3.793E(B − V ) and Ai = 2.086E(B − V ). We then added a factor of 2.5 ×

log10(EXPOSURE TIME) to the total magnitude to obtain extinction-corrected instrumental

magnitudes. To convert the instrumental magnitudes to standard SDSS magnitudes, we used

images of standard star fields taken during nights when the science targets were observed

in the g′ and i′ bands. The images were reduced the same way as the science frames but

6http://irsa.ipac.caltech.edu/applications/DUST/
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without performing GIRMFRINGE since exposure times were significantly shorter. For each

of the reduced standard star frames, we created a catalog of the magnitudes and color indices

of the standard stars on the standard system using a combination of PHOTCAL in IRAF,

SKYCAT and zero-point magnitudes from the Southern u′g′r′i′z′ standard star catalog7 from

Smith et al. (2002). We obtained the following transformation equations:

g′ − i′ = G′ − I ′ − Zpg + Zpi − kg(Xg − 1.0) + ki(Xi − 1.0)

1.0 + CTg − CTi
(2.2)

i′ = I ′ − Zpi − CTi(g′ − i′)− ki(Xi − 1.0) (2.3)

where G′ and I ′ are the instrumental magnitudes; Zpg and Zpi are the zero-point magnitudes

for g′ and i′ bands respectively; kg and ki are the atmospheric extinction coefficients in g′ and

i′ bands respectively; Xg and Xi are airmasses in g′ and i′ bands respectively.; CT g and CT i

are color terms in the g′ and i′ bands respectively at Cerro Páchon, with values corresponding

to each science target in Table 2.3. We have used the color term values obtained for NGC

2865 for all our science targets due to the small number of standard stars available for the

others. In the transformations, we accounted for atmospheric extinction due to location

of observatory and altitude of science targets and made corrections for color term due to

variations in throughput of the telescope’s optical system as a function of wavelength.

2.5 Completeness Test

We performed completeness test on all the galaxy-light subtracted frames to determine the

magnitude limits of our observations with both filters on all science targets. Using ADDSTAR

task in DAOPHOT II, we added 3000 artificial stars to each frame in a series of 10 independent

experiments, placing the stars at random positions (300 at a time to avoid overcrowding the

images). We repeated this for 5 different seeds, thus adding a total of 15000 artificial stars

7http://www-star.fnal.gov/Southern ugriz/New/index.html
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Table 2.3: Photometric calibration using standard stars from the Southern standard star
catalog

Galaxy Zero Point mag Color term rms no. of stars
g′ i′ g′ i′ g′ i′ g′ i′

NGC 3962 −3.110± 0.034 −2.770± 0.033 -0.055 -0.024 0.101 0.103 9 11
NGC 2865 −3.253± 0.022 −2.917± 0.012 -0.055 -0.024 0.046 0.041 16 14
NGC 2271 −3.226± 0.005 −2.900± 0.007 -0.055 -0.024 0.035 0.028 11 11

per frame. The stars were created using corresponding point spread functions earlier obtained

and added over magnitude range of 19.5 < Mobject < 28.0 where most GCs lie. The new

frames are analysed exactly the same way as the original images. We made plots of fraction

of added stars recovered against magnitude and fit with a Pritchet function (Fleming et al.

1995) using Markwardt IDL curve fitting library (Markwardt 2009). Pritchet function is

given by :

f =
1

2

[
1− α(m−mlim)√

1 + α2(m−mlim)2

]
(2.4)

where mlim is the magnitude at which the recovered fraction, f = 0.5 and α controls how

quickly f declines (the larger the value of α, the steeper the transformation from 1 to 0).

From Table 2.4 and Fig. 5, the completeness magnitudes in i′ fall faster than in g′. Based

on the completeness test, the detection is 80% complete at i′ = 25.1, 25.8 and 24.6 for NGC

3962, NGC 2865 and NGC 2271 respectively.

2.6 Object Classification

The detected objects consist of GCs, foreground stars and faint background galaxies - un-

resolved and resolved sources. Artificial star experiment enable us characterize the true

behaviour of the CLASS STAR and SHARP parameters of point sources in our fields by

defining their boundaries in order to classify detected sources as resolved or unresolved. To
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Table 2.4: Completeness Parameters

Galaxy g′ i′
8mlim α mlim α

NGC 3962 26.70 2.06 25.40 3.04
NGC 2865 27.31 1.90 26.24 2.95
NGC 2271 26.20 1.32 25.40 1.63

Figure 5: Fraction recovered in artificial star experiment. The dots are the fraction of artificial
stars recovered as a function of magnitude. The dashed lines are the fitted Pritchet function.
The vertical red lines indicate magnitudes where the detection is 80% complete.

classify the detected objects, we made plots of the CLASS STAR and SHARP parameters for

the recovered artificial stars against aperture magnitudes with overplots of these parameters

for the science fields.

8magnitudes quoted here are at 50% completeness
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Figure 6: Upper panels contains plot of stellarity index vs aperture magnitude for detected,
artificially added stars (open red circles) and all detected sources in our science targets
(black filled circles). Objects with stellarity index more than 0.35, the blue dashed line, are
unresolved point sources. Lower panel is the plot of sharp parameter vs aperture magnitude
with red and black markers same as above. Objects with sharp parameters between the blue
dashed lines are unresolved point sources.

We define unresolved objects in the science fields as those with CLASS STAR and SHARP

parameters in the region defined by the recovered artificial stars. Fig. 6 contains plots of

stellarity index and sharp parameters for detected artificial stars (blue circles) and science

objects (green circles) in the i′ field. Objects with CLASS STAR > 0.35 and with SHARP

values within range in equations 2.5, 2.6 and 2.7 are classified as unresolved.

NGC 3962 :

 −0.5− exp(i′ − 25.5) ≤SHARP≤ 0.5− exp(i′ − 25.5) i′

−0.5− exp(g′ − 26.4) ≤SHARP≤ 0.5− exp(g′ − 26.4) g′
(2.5)
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NGC 2865 :

 −0.5− exp(i′ − 26.5) ≤SHARP≤ 0.5− exp(i′ − 26.5) i′

−0.5− exp(g′ − 27.5) ≤SHARP≤ 0.5− exp(g′ − 27.5) g′
(2.6)

NGC 2271 :

 −0.5− exp(i′ − 25.5) ≤SHARP≤ 0.5− exp(i′ − 25.5) i′

−0.5− exp(g′ − 27.5) ≤SHARP≤ 0.5− exp(g′ − 27.5) g′
(2.7)

2.7 Globular cluster candidate selection

To obtain a clean sample of GC candidates, we used the 80% completeness values in i′

magnitude to define the faint magnitude limits. This is because we have better seeing in i′

band (see Table 2.1). To define the bright magnitude limit for each frame (in i′), we used the

integrated magnitude of ω Cen, the most massive galactic GC-like object, with an integrated

magnitude of MI ∼ 11.5 and distance moduli from Table 1.1. Based on previous GC studies

using g′ and i′ filters (Forbes et al. 2004; Wehner et al. 2008; Faifer et al. 2011), we applied

a reasonable color cut of 0.4 < g′ − i′ < 1.4 and the previously obtained magnitude limits to

our sample of detected objects to obtain our GC candidates.

2.8 Contamination from Background Galaxies

Contamination from background galaxies and foreground stars is inevitable in deep pho-

tometric studies of extragalactic objects. Contributions to the contamination from faint

unresolved background galaxies dominate in the faint magnitude regime where they appear

more extended than GCs. This contamination can be statistically estimated and appropriate

corrections can be applied to photometric results. To do this, we used the g′ and i′ WHDF
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Table 2.5: Background Galaxy Contamination

Galaxy GC Candidate Contamination
NGC 3962 719 43
NGC 2865 602 132
NGC 2271 435 15

images obtained from the GSA. We applied the same routines we used for our science targets

to detect objects, perform photometry, calibrate, test for completeness and classify detected

objects in the comparison fields. We ensured that our comparisons were done over similar

magnitude range by using the 80% completeness faint magnitude limits from our science

targets. The number of unresolved objects obtained in the WHDF analysis is taken as

statistical estimate of the background contamination.

WHDF photometry was not deep enough compared to that of NGC 2865, thus the need

for a workaround solution. We extrapolated the Pritchet function for WHDF to the 80%

i′ magnitude limit for NGC 2865 and assumed that α would remain constant. We then

numerically integrated Pritchet function over 10 magnitude bins from i′0 = 25.58 to i′fin =

25.80 to determine fraction of objects that would have been detected if our photometry was

that deep. For each extrapolated WHDF magnitude bin, the number of WHDF objects is the

product of the number of objects in NGC 2865 magnitude bin and the ratio of the integral

to the area of the bin. We thus get an extra 69 background contaminants whose color values

we randomly generated from the color sample for WHDF.

A summary of the GC candidates and statistically obtained background contamination

is given in Table 2.5. NGC 2865, with the deepest photometry, has more background galaxy

contamination. Even though NGC 3962 is at a higher galactic latitude compared to NGC

2271, it has a higher contamination level due to its deeper photometry.
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Chapter 3

Results
CMDs for all detected sources (resolved and unresolved) in the GMOS fields studied are

presented in Fig. 7 with all detected objects that fall into the color and magnitude ranges

defined for GC candidates in Section 2.6 represented as red-filled circles, unresolved and

resolved objects that are not GCs are represented by the big black-filled and small circles

respectively. Very easily, apart from NGC 2865, the GC candidate population is seen as the

dominant collection of points around (g′ − i′) ∼ 0.9 and color bimodality is evident only in

NGC 2271 at bright GC magnitudes. In all GCS studied, field contamination and photometric

scatter is stronger at fainter magnitudes. In the faint magnitude regimes, contamination is

dominated by unresolved background galaxies and in the brighter magnitudes, by MW stars.

NGC 3962 has some bright, unresolved sources with GC-like color but with i′ magnitudes

brighter than in GCs (see left panel of Fig. 8). These objects are ultra-compact dwarf

(UCD) candidates. UCDs, first discovered by Hilker et al. (1999) in galaxy clusters, have

sizes of 10 pc < rhalf < 100 pc and typical luminosity of L ∼ 107L�. Their formation

mechanism, however, is unclear. They could be formed from the stripping down of the nuclei

of dwarf ellipticals in dense environments (Bekki et al. 2001), or from star cluster mergers

(Kroupa 1998) or produced by changes in the physics of cluster formation when mass is high

(Murray 2009). Hau et al. (2009) however suggests that mode of UCD formation should be

independent of environment. Till date, no UCD has been found in any isolated elliptical

galaxy.
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Figure 7: Color-magnitude diagrams of all detected objects in the FOV of the isolated
elliptical galaxies. Photometric errors at different magnitudes are shown on the left. The
dashed lines represent the limits we have defined for GC candidates. The red filled circles
are the GC candidates

In the right panel of Fig.8, the unresolved UCD candidates are marked on the GMOS

image of NGC 3962 as green triangles while the diamonds are resolved objects with parame-

ters in the UCD range. Visual inspection confirms that these objects are evenly distributed

spatially along the semi-major axis of the galaxy, close to the central regions. Further spec-

troscopic studies to confirm their UCD status is ongoing using data obtained in April, 2013

from the Nordic Optical Telescopes, La Palma. Also, from the CMD of NGC 3962, there

is a small subgroup of faint, blue GC candidates which could be wrongly classified faint

background galaxies or blue stars.

The CMD of detected sources in NGC 2865 (see central panel of Fig. 7), a shell galaxy

with obvious signs of recent minor merger (e.g Sikkema et al. 2006; Hau & Forbes 2006),

shows no clearly distinct color peak. There seems to be a group of blue GCs with average

color ∼ 0.6, distinct from the main GC distribution.
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Figure 8: In the left panel, UCD candidates are marked with green triangles and blue
diamonds on the CMD of NGC 3962. In the right panel, the UCD candidates are marked
with green triangles and cyan diamonds. Note the axial distribution of the UCD candidates

3.1 Color distribution of globular clusters

This section describes quantitatively the color distribution of our GCS using statistical tools.

We generated statistically-cleaned samples of GC candidates for each GCS and obtained

(g′ − i′) color distributions. Using Bopt , the “optimal” bin size from Izenman (1991) with

Bopt = 2IQRn−1/3, where IQR is the interquartile range of the ranked colors and n the

sample size, we grouped the GC candidates and faint galaxy contaminants into color bins

and randomly determined what objects to “clean” out per bin. The contamination removal

was done randomly since we only know the number of contaminants to remove per bin and

not the colors. We performed the iterations 100 times for each GCS and determined the

number of Gaussian distributions in each output set using the Gaussian Mixture Modelling

(GMM) algorithm (Muratov & Gnedin 2010). In Fig. 9, we plot the distribution of raw color

peaks and dispersion for NGC 3962 for all iteration steps and see that sample distribution

can be described by Gaussian functions. Thus we use average color peaks and dispersion for
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Figure 9: Top panels contain distribution of blue and red peaks returned by GMM per 100
iterations while lower panels contain distribution of dispersions.

subsequent analysis.

GMM uses expectation-maximization (by comparing the likelihood ratio test (LRT) of

a sample having a unimodal distribution to a multimodal one) to identify the number of

Gaussian distributions in a dataset based on some initial user defined guess for peak values

and dispersions. It works on the assumption that the distributions are Gaussian, allowing for

both homoscedastic (same dispersion) and heteroscedastic (different dispersion) fits unlike

other distribution fitting algorithms like RMIX1 which offers flexibility in the functional form

of the curve. GMM performs independent tests of bimodality, unlike KMM Ashman et al.

(1994) and RMIX, using the LRT, peak separation (D) and kurtosis (K) parameters from the

input dataset to determine if a unimodal description can be rejected in favor of a multimodal

one if the three statistics have sufficiently low values with D > 2 and K < 0. GMM also

calculates the probability of each data point belonging to a particular mode.

1http://www.math.mcmaster.ca/peter/mix/mix.html
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Figure 10: Left panel compares µblue and µred returned by RMIX with GMM while right
compares dispersions

Galaxy µb σb µr σr fr K D

NGC 3962 0.89± 0.03 0.11± 0.01 1.15± 0.05 0.12± 0.02 0.30± 0.11 −0.05 2.21± 0.23
NGC 2865 0.92± 0.08 0.16± 0.03 1.24± 0.06 0.09± 0.03 0.27± 0.12 −0.62 2.96± 0.49
NGC 2271 0.90± 0.01 0.14± 0.01 1.22± 0.02 0.08± 0.01 0.16± 0.04 −0.34 2.84± 0.23

Table 3.1: GMM fits to the (g′ − i′) color distribution. Col. 1: system name; Cols. 2
and 3:mean value and dispersion of blue sub-population; Cols. 4 and 5: mean value and
dispersion of red sub-population; Col. 6: fraction of GCs assigned by GMM to the red sub-
population; Col. 7: kurtosis of color distribution; Col. 8: peak separation, D=| µblue − µred |
/[(σ2

blue + σ2
red)/2]1/2

To see if GMM and RMIX give consistent results, we generated color peaks and dispersions

for the five galaxies in the dataset of Faifer et al. (2011) using GMM and compare results from

RMIX and GMM and see that both give similar results for the same dataset (see left panel

of Fig. 10) with clear one to one relationship between the color peaks. Dispersion is however

not well behaved (right panel of Fig. 10 b), hence we use only color peaks for subsequent

analysis. The means and dispersions of the best fitting Gaussian for sub-populations detected

in all GCS are presented in Table 3.1.
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Figure 11: Histogram with overplot of best fitting Gaussians from GMM. Blue and red
solid are individual Gaussians while black curve is their sum. The dashed, solid and dotted
histograms represents raw, corrected and contamination data respectively
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Figure 12: Histograms describing GCs detected in NGC 2865 by three- and two-Gaussian fit
from GMM. Green Gaussian in first plot represent very blue sub-population. Blue and red
solid are individual Gaussians while black curve is the sum of the Gaussians. The dashed,
solid and dotted histograms represents raw, corrected and contamination data respectively
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Figure 13: Histogram with overplot of best fitting Gaussians from GMM. Blue and red
solid are individual Gaussians while black curve is their sum. The dashed, solid and dotted
histograms represents raw, corrected and contamination data respectively
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Fig. 11,12,13 show overplots of best fitting Gaussians (blue and red Gaussian curves) on

(g′ − i′) color distributions of GC samples before “cleaning” (dashed histogram), after sta-

tistically correcting for background galaxies (solid histogram) and that of the contamination

(dotted histogram). The black curve is the sum of the Gaussians for the blue and red GC

sub-populations.

Color distribution for NGC 2865 can be described by a three-Gaussian heteroscedastic

model2 with the bluest sub-population having a mean color of (g′−i′) = 0.53. This translates

to V − I = 0.74 if we use UBVRI to SDSS transformation equation from Usher et al. (2012),

thus confirming the very blue, low luminosity population with average color of V − I = 0.7

detected by Sikkema et al. (2006) though they could not obtain good fits to the modes.

Comparing the χ2 from GMMs output for both models in the case of NGC 2865 and testing

against the null hypothesis that a unimodal best describes our GC sample, the probability

that a heteroscedastic, three-Gaussian description of our sample is due to chance is lower than

that of a homoscedastic, two-Gaussian model, hence it is strongly preferred. This further

supports the claim that NGC 2865 has a very blue, metal-poor, low luminosity and young

subgroup (Hau et al. 1999). A sufficiently deep wide field photometric study of this GCS

would help to obtain a more definite result.

3.2 Radial distribution of globular clusters

We used the probability returned by GMM to classify our GC candidates into sub-populations,

unlike the “color-valley” approach commonly used in literature (e.g Faifer et al. 2011) and

made plots of the spatial distributions of the blue and red sub-populations for each GCS (see

Fig. 14).

As expected (e.g Geisler et al. 1996), the metal-poor subgroups have a more extended

2NGC 2865 can also be described by a two-Gaussian homoscedastic model
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Figure 14: Spatial distribution (pixels) of detected GC candidates in GMOS FOV for galaxy
sample. Blue triangles, red circles and green squares (only for NGC 2865) are the blue, red
and very blue, young population detected

Figure 15: Plots of (g′ − i′) color of detected GCs against radial distance (arcsec) with
overplots of peak blue and red sub-population colors for radial bins containing equal number
of objects

distribution and the metal-rich subgroups are relatively more centrally concentrated. For

NGC 2865, we have included (green markers) the very blue subgroup. The gap in the center
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of the plot corresponds to the region we lost to the bright, saturated galactic center in our

photometry.

Each GCS sample was further divided into three (to have sufficient number of points

to analyse with GMM) radial bins containing approximately the same number of GCs and

we determined the average color, blue and red peaks for each bin. Using eccentricity and

position angle data of our galaxies from NED3 we derived the radial distance of each GC

candidate from the galaxy center. We made plots of the color peaks within each bin against

the projected radial distance (in units of log
√
ab) with overplots of the GC candidate radial

distribution in Fig. 15. We studied how the average color varies with galactocentric distance

(see Fig. 16) by binning GCs into groups with variable sizes but with equal number of clus-

ters and determined the color gradients by fitting with error-weighted, chi-square minimized

straight lines of the form

(g′ − i′) = slope× log
√
ab+ intercept

All the studied GCS have shallow negative gradients with average GCS color becoming bluer

as we move away from galaxy center. NGC 2271, the most extended GCS and least luminous

galaxy in our study, has the steepest gradient of −0.041± 0.015. NGC 3962 and NGC 2865

have gradients of −0.015 ± 0.016 and −0.029 ± 0.024 respectively. The very steep color

gradient of NGC 2271 is due to the drop in the number of red clusters as we move away from

the center of the galaxy. However, due to the relatively small number of GCs detected we

could not perform this analysis on the sub-populations. Also, it would be instructive to note

that due to the limited FOV of GMOS (5.5′×5.5′), these gradients are best representative of

the “inner halo” GCs. A wide field photometric study would help characterise any transition

in gradients in the outer regions and test the two-phase model for formation of

3ned.ipac.caltec.edu
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Figure 16: Variation of average (g′ − i′) color in detected GCs with galactocentric distance
(arcsec). Straights lines are fits to the data with black hexagons, green circles and red
triangles representing NGC 3962, NGC 2865 and NGC 2271 respectively

elliptical galaxies since color gradients are due to rapid dissipational collapse (e.g Oser et al.

2010) and flattened in mergers (Di Matteo et al. 2009).
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Chapter 4

Discussion

4.1 Host galaxy properties versus globular cluster prop-

erties

We compare GC properties obtained for our sample with host galaxy properties in different

environments. The properties of interest are peak colors of sub-populations, average colors of

detected GCs, peak separation in GCS and fraction of GCS that is metal rich and we study

how they vary with host galaxy luminosities and the local density of galaxies.

The peak color of the red sub-population as well as the average color are known to show

strong correlation with host galaxy luminosity (e.g Larsen & Richtler 2000). Also, the peak

separation is a measure of how well we can describe the GCS as multimodal (Wehner et al.

2008) and we seek to characterise this parameter as a function of the host galaxy and its

local environment.

Different models predict dominance by different sub-population e.g in Tonini (2013), the

red sub-population is expected to dominate the GCS whereas in the multiphase collapse

model,the metal-poor subgroup should be more dominant. We compare red fractions of the

GCS at different luminosities and from different environments. Galaxy luminosity is a proxy

for stellar mass, hence more luminous galaxies (more massive halos) are expected to be more

efficient at retaining and mixing metals during the epoch of GC formation (Liu et al. 2011).

The local density of galaxies is a crude approximation of its isolation. Though biased
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towards high luminosity isolated ellipticals, it provides a common quantitative basis for com-

paring GC properties in distant systems and nearby ones. For this study, we have adopted

values from the Nearby Galaxies Catalog of Tully (1988) where local density ρ, in units of

galaxies/Mpc3, is defined only for galaxies brighter than -16 mag (blue apparent magnitude

corrected for reddening) and velocity (corrected for local motion) less than 3000 kms−1. The

values were obtained using a 3D grid with 0.5 Mpc spacing. For NGC 2271, we use the local

density of NGC 2227, the nearest galaxy to NGC 2271 in the catalog, at a distance of 27.5

Mpc since the catalog contains no data for NGC 2271.

We compare our result with studies of GCS in both dense and low-density environments

using the works of Peng et al. (2006) and Cho et al. (2012). Peng et al. (2006) studied the

color distributions of GCS in 100 elliptical galaxies in the dense Virgo cluster environment

over a dynamic luminosity range with ACS using g and z filters. For this study, we include

only galaxies with magnitudes with −20.33 ≤ MB ≤ −18.50 so as to minimize any galaxy

luminosity dependence. Peng et al. (2006) generally found a bimodal color distribution in

all galaxies studied and observed that mean GC color increased with galaxy luminosity. For

fraction of GCs detected that belong to the red sub-population, we use Peng et al. (2008),

where the fractions have been corrected for background and foreground contamination as

well as incompleteness.

Cho et al. (2012) studied the role of environment in galaxy formation and evolution using

the GCS of 10 early-type galaxies in low-density environments via deep imaging with the

ACS on the Hubble Space Telescope. g and z filters were used and the galaxies studied

have magnitudes in the range −20.33 ≤ MB ≤ −18.57. They concluded that trends in

GC properties in the fields are similar to those in dense environments with mean GC color

appearing slightly bluer than in dense environments. For similar-luminosity galaxies, field

galaxies were found to have lower fraction of red GCs compared to galaxies in clusters. Using

simple stellar population models, they found that GCs in fields are either younger or more
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metal-poor than those found in dense environments.

Using (g′ − i′) to (g − z)0 color transformation equation from Usher et al. (2012),

(g′ − i′) = (0.7335± 0.009)× (g − z)0 + (0.147± 0.012),

we transformed our average colors and sub-population peak colors to (g − z)0 for comparison.

We further transformed our colors into metallicity [Z/H] using metallicity-color transforma-

tions from Faifer et al. (2011)

[Z/H] = (3.51± 0.21)× (g′ − i′)− 3.91± 0.20

and

[Z/H] = (2.56± 0.09)× (g − z) + (−3.50± 0.11)

from Usher et al. (2012). These transformation equations are from studies of GCS. Faifer

et al. (2011) conducted deep GMOS photometry for the GCS of five elliptical galaxies in the

g′, r′ and i′ filter passbands. Magnitude range, MB of early type galaxies studied is within

the range −21.43 ≤ MB ≤ −19.94. Only one of the galaxies studied, NGC 3115, belongs to

the field environment. Usher et al. (2012) assembled the largest sample of spectroscopic GC

metallicity by studying 11 nearby galaxies with a range of galaxy luminosity and environ-

ments. They used wide-field photometry results obtained with different instruments in g′, r′

and i′ passbands.

We further use

D =
| µblue − µred |√
(σ2

blue + σ2
red)/2

from Muratov & Gnedin (2010) to estimate peak separation.

For ease of comparison, we compare our results separately with results from Peng et al.

(2006) and Cho et al. (2012) in Fig. 17 and Fig. 18. Colors are given in (g − z) and for
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Figure 17: Comparison of GC properties in our sample with Peng et al. (2006) with host
galaxy luminosity. From top panel downwards, we compare mean color in (g − z)0, red
fraction detected in GCS (Peng et al. 2008), peak color in blue and red sub-populations
(also in(g − z)0) and peak separation with local galaxy density. Black and yellow markers
represent data from our sample and Peng et al. (2006) respectively. Red and blue markers in
peak color vs luminosity plot represent red and blue peaks, with triangles representing data
from Peng et al. (2006) and squares, our results

NGC 2865, we treat the very blue subgroup as part of the blue subgroup. The top panels of

Fig. 17 compare the mean color of the detected GCs in our sample and Peng et al. (2006)

with host galaxy luminosity. We find that generally, mean GC color increases with galaxy

luminosity even in GCS of isolated ellipticals. Top panel of Fig. 18 also shows this trend. Also,

for a given luminosity, mean color is generally bluer in GCS of isolated ellipticals compared

to those from dense environments. Our sample also has a bluer mean GC trend compared

with results from Cho et al. (2012) where conditions for definition of galaxy isolation are not

as stringent. The straight line is a least square fit to the data.

The second panels of Fig. 17 and Fig. 18 compare the fraction of red clusters detected

with host galaxy luminosity. As shown by Cho et al. (2012) for the ACS Virgo cluster survey,
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Figure 18: Comparison of GC properties in our sample with Cho et al. (2012) with host
galaxy luminosity. From top panel downwards, we compare mean color in (g − z)0, red
fraction detected in GCS, peak color in blue and red sub-populations (also in(g − z)0) and
peak separation with local galaxy density. Black and blue markers represent data from our
sample and Cho et al. (2012) respectively. Red and blue markers in peak color vs luminosity
plot represent red and blue peaks, with circles representing data from Cho et al. (2012) and
squares, our results

any bias towards the more centrally distributed red GCs due to the smaller area covered by

the photometry of NGC 2271 is systematically small even though NGC 2271 is approximately

twice as distant as the Virgo cluster. Our GCSs appear to have a smaller fraction of red

GCs (0.16 − 0.30) compared to the low-luminosity, low-density sample of Cho et al. (2012)

with NGC 2271, the least luminous, nearest and most extended member of our sample being

more dominated by metal-poor GCs. From the analysis of the radial distribution of GCs in

our sample, (see Section 3.2), GMOS FOV extends well to the outer regions of NGC 2271,

unlike in NGC 3962 and NGC 2865, where there seems to be a bias against GCs in the outer

regions. For the high luminosity galaxies in Peng et al. (2006) and in our sample, metal-poor
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Figure 19: Comparison of GC properties in our sample with Cho et al. (2012) and Peng et al.
(2006) with local galaxy density from Tully (1988). From top panel downwards, we compare
mean color in (g − z)0, red fraction detected in GCS, peak color in sub-population and peak
separation with local galaxy density. Black, blue and yellow markers represent data from our
sample, Cho et al. (2012) and Peng et al. (2006) respectively, with triangles corresponding
to Peng et al. (2006), circles to Cho et al. (2012) and squares to our results respectively.

clusters dominate the GCS.

Also, there is little difference in the distribution of red fraction between the low-density

sample of Cho et al. (2012) and the low luminosity galaxies in Peng et al. (2008). This

suggests that environment is not as strong a factor like luminosity in determining what

sub-population dominates the GCS.

In the third panels of Fig. 17 and Fig. 18, we compare the peak colors of the blue and red

sub-populations in the three samples with host galaxy luminosity. We perform least squares

best fits to the blue and red peaks and find that the slope of the red peaks with respect to the

galaxy absolute magnitude is steeper than that of the blue peaks in both figures. Blue peaks

increase much more slowly with increasing host galaxy absolute magnitude than red peaks in

all the three samples. In the last panels, we compare the peak separation in our sample with
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peak separations in our comparison samples as a function of host galaxy luminosity. Peak

separation is a measure of the strength of bimodality in GCS and according to Muratov &

Gnedin (2010), bimodality is strong if peak separation > 2. No clear trend is visible, even

though we observe that bimodality is strong in all the three galaxies in our sample.

In Fig. 19, we compare results in our sample with our comparison samples as a function

of local galaxy density. Easily, GCS in low-density environment and isolated ellipticals stand

out distinct from those from the dense Virgo cluster environment. Trends in variation of GC

properties are however not obvious, especially in the first three panels. For example, in the

plot of red fraction against local galaxy density, very low red fraction are observed at low

density in GCS of NGC 2271 and at comparatively high densities in VGC 2000 and 1938.

However in the last panel, strength of bimodality decreases in the under-dense environment

as local density increases though this trend is not obvious in the high density environment.

It would seem that there is a complex relationship between observable GC properties

and local galaxy environment that is not easily explained due to the rarity of true isolated

ellipticals galaxies, especially those with low luminosities though Hernández-Toledo et al.

(2008) and Niemi (2011) predicted that blue, dim, faint isolated galaxies should exist in the

field. These are yet unobserved.

Even though the peak colors of the red sub-populations in our sample are redder than

those of our comparison samples, the mean color of our GCS are slightly bluer at a given

luminosity. Thus it would appear that mean colors of GCs in isolated ellipticals are bluer

than in denser environments. Interpreting this color offset is tricky, especially with just one

color, due to the age-metallicity degeneracy. Cho et al. (2012) attempted to explain the

color offset observed between their low-density, low luminosity sample and the high-density

sample of Peng et al. (2006) using simple stellar population (SSP) models. A color offset in

(g − z) of ∼ 0.05 was observed and they tentaively concluded, based on analysis with SSP

models, that GCs in low-density environments are either younger (4age > 2 Gyr) or more
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metal-poor (4[Fe/H] ∼ 0.10 − 0.15). Comparing the mean color of our sample with that

of Peng et al. (2006), we obtain a color offset, again in (g − z), of 0.01. Thus, for a given

luminosity, mean color of GCS in isolated and dense environments are similar.

Using the SSP model of Girardi et al. (2004), we plot predicted age and color over the

metallicity range of our sample in Fig. 20. Isochrones with corresponding metallicities are

also shown. The narrow range of blue peaks and the wider distribution of red peaks from our

sample with average (g′ − i′) colors of 0.90 and 1.20 are shown as overplots of blue and red

stripes. This would suggest that the blue sub-populations were all formed from gas materials

with same degree of enrichment under similar conditions. In case of the red sub-populations,

the wider distribution of the absolute color values highlight the different extent of processing

the gas materials would undergo before onset of red cluster formation after truncation of

reionization (Griffen et al. 2010). Most GCs in massive galaxies are old objects (Brodie &

Strader 2006). Using a conservative lower limit of 8 Gyrs, we find a minimum age difference

of 1.5 Gyrs between blue and red sub-populations in the GCS of isolated elliptical galaxies.

4.2 Effects of galaxy evolution on GCS in isolated el-

liptical galaxies

Isolated ellipticals are expected to evolve passively since they are expected to have evolved

with negligible external influences since formation early in cosmic time. This is however not

a complete picture of what we see. For example, NGC 2865, a truly isolated elliptical galaxy,

is known to have had a recent minor merger. Apart from modifications to the morphology of

this galaxy, this is reflected in the GCS as a distinct, very blue, young group of GCs evenly

distributed along the plumes, such that it is no longer sufficient to describe its GCS with two

modes. Also NGC 3962 has a rather high cold gas content (2.7× 109M� Serra & Oosterloo

2010), probably the result of a cold gas accretion from the intergalactic medium or cooling
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Figure 20: (g′−i′) evolution with age at different metallicities using simple stellar population
model of Girardi et al. (2004). Metallicity is in [Fe/H] and the two stripes represent the color
ranges of the blue and red peaks in our sample. The dashed vertical lines are used to evaluate
age difference between the sub-populations assuming they are all old objects.

of hot gas component (Putman et al. 2009) and this reflects in the GCS as a small, distinct

group of very blue objects with (g′− i′) color between 0.4− 0.6. More tests would be needed

to further investigate these rather active evolution scenarios in samples of isolated ellipticals.
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Chapter 5

Summary and conclusions
Deep GMOS g′ and i′ photometry has been done on the GCS of three isolated elliptical

galaxies. The main results of this study are:

• All GCS studied have (g′− i′) color distributions better described by bimodal Gaussian

distribution rather than unimodal model with NGC 2865 showing evidence of a third

color mode.

• The peak colors of the red sub-population in all our GCS ((g′ − i′) = 1.15, 1.24 and

1.22 for NGC 3962, NGC 2865 and NGC 2271 respectively) are slightly redder than in

GCS of similar mass galaxies in different environments reported in literature.

• The blue sub-population dominates the GCS in the three isolated elliptical galaxies

studied with fractions 0.70, 0.73 and 0.84 in NGC 3962, NGC 2865 and NGC 2271

respectively. This is at odds with the hierarchical based model of Tonini (2013) where

high-red fractions are expected for isolated elliptical galaxies.

• A population of UCD candidates (resolved and unresolved) were detected in NGC

3962. Spectroscopic studies to determine their membership via radial velocities have

been scheduled in the Spring of 2013.

• Sub-populations in our sample have similar spatial distribution with results from liter-

ature with the metal-rich GCs having a more central distribution and the metal-poor

clusters showing a more extended distribution. Also, we obtained shallow, negative

mean GC color gradients in all the three galaxies studied.
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Metal poor GCs are first formed at high redshift from primordial gas alongside field

stars, they however survive the dynamic evolution of their host galaxy due to their com-

pactness. Reionization in local universe truncates GC formation. However, reionization is

inhomogenous in the local universe, propagating from dense regions to under-dense environ-

ments (Spitler et al. 2012) such that galaxies in low density environments have longer time

to synthesize more metal-poor GCs. This would account for the low fraction of red GCs

in all GCS in our sample and in most GCS in the sample of Cho et al. (2012).

From our analysis using the SSP model of Girardi et al. (2004), we obtained a minimum

age difference of 1.5 Gyrs between sub-populations in GCS of truly isolated

elliptical galaxies. This is lower than the minimum age difference of 2 Gyrs obtained

by Cho et al. (2012). This can be accounted for by the duration of reionization epoch

which we would expect to be shorter in our samples (Spitler et al. 2012) compared to denser

environments. Hence, in our sample, red GCs begin to form at relatively high redshift from

the enriched gas in the host galaxies at the end of the reionization epoch. Evidence of this is

seen in the relatively higher values of red sub-population peak values we obtained

in our analysis which can be accounted for by prolonged self-enrichment.

The most visible effects of the under-dense environment of our sample are

in the smaller age difference between the blue and red sub-populations and the

relatively higher peak (g′ − i′) colors of the metal-rich sub-population. These

features cannot be reproduced by luminosities, hence we tentatively conclude that

these are the true imprints of the under-dense environments on the GCS of isolated elliptical

galaxies. More tests, especially for low-luminosity isolated elliptical galaxies, would however

be needed to obtain more definite results. Individual evolution history of each galaxy affects

the GCS even though the galaxies are in the field.
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