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Abstract

In 1859, Charles Darwin published his theory of evolution by natural se-
lection, the process occurring based on fitness benefits and fitness costs
at the individual level. Traditionally, evolution has been investigated by
biologists, but it has induced mathematical approaches, too. For exam-
ple, adaptive dynamics has proven to be a very applicable framework to
the purpose. Its core concept is the invasion fitness, the sign of which
tells whether a mutant phenotype can invade the prevalent phenotype.
In this thesis, four real-world applications on evolutionary questions are
provided. Inspiration for the first two studies arose from a cold-adapted
species, American pika. First, it is studied how the global climate change
may affect the evolution of dispersal and viability of pika metapopula-
tions. Based on the results gained here, it is shown that the evolution
of dispersal can result in extinction and indeed, evolution of dispersal
should be incorporated into the viability analysis of species living in frag-
mented habitats. The second study is focused on the evolution of density-
dependent dispersal in metapopulations with small habitat patches. It
resulted a very surprising unintuitive evolutionary phenomenon, how a
non-monotone density-dependent dispersal may evolve. Cooperation is
surprisingly common in many levels of life, despite of its obvious vulner-
ability to selfish cheating. This motivated two applications. First, it is
shown that density-dependent cooperative investment can evolve to have
a qualitatively different, monotone or non-monotone, form depending on
modelling details. The last study investigates the evolution of investing
into two public-goods resources. The results suggest one general path by
which labour division can arise via evolutionary branching. In addition to
applications, two novel methodological derivations of fitness measures in
structured metapopulations are given.
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Tiivistelmä

Vuonna 1859 Charles Darwin julkaisi teoriansa luonnonvalinnan kautta
tapahtuvasta evoluutiosta, joka prosessina perustuu yksilöiden kokemiin
kelpoisuusetuihin ja -haittoihin. Perinteisesti evoluutiota ovat tutkineet
biologit, mutta sitä voidaan tutkia myös matemaattisesti. Esimerkiksi
adaptiivinen dynamiikka on osoittautunut erittäin käyttökelpoiseksi tähän
tarkoitukseen. Adaptiivisen dynamiikan keskeisin käsite on kelpoisuus.
Kelpoisuuden merkki kertoo, pystyykö aluksi pieni mutanttipopulaatio
kasvamaan ja mahdollisesti syrjäyttämään vallitsevan populaation. Tässä
väitöskirjassa on esitetty neljä reaalimaailman sovellusta evolutiivisista
kysymyksistä. Innoitus kahteen ensimmäiseen tutkimukseen saatiin kylmiin
oloihin sopeutuneesta Amerikan piiskujäniksestä. Ensimmäisessä työssä
tarkasteltiin, miten ilmastonmuutos voi vaikuttaa muuttoliikkeen evoluu-
tioon ja piiskujänismetapopulaation elinkykyyn. Tulosten perusteella voi-
daan sanoa, että muuttoliikkeen evoluutio voi johtaa sukupuuttoon. Tämä
tulisi ottaa huomioon, kun arvioidaan sirpaloituneissa elinympäristöis-
sä elävien lajien elinkelpoisuutta. Toinen tutkimus keskittyi populaatio-
tiheydestä riippuvan muuttoliikkeen evoluutioon pienilaikkuisessa meta-
populaatiossa. Tuloksena oli varsin yllättävä epäintuitiivinen ilmiö, jossa
populaatiotiheydestä riippuva muuttoliike voi kehittyä epämonotoniseen
muotoon. Yhteistyö on yleistä monella elämän tasolla huolimatta siitä,
että se on alttiina itsekkäiden huijareiden hyväksikäyttölle. Tämä motivoi
kahta viimeistä sovellusta, joista ensimmäinen koskee yhteistyön evoluu-
tiota. Työssä näytetään, miten populaatiotiheydestä riippuva yhteistyö
voi kehittyä kvalitatiivisesti erilaiseen muotoon, monotoniseen tai epä-
monotoniseen muotoon, riippuen mallinnuksen yksityiskohdista. Viimei-
sessä tutkimuksessa tarkastellaan kahden julkishyödykeresurssin tuotta-
misen evoluutiota. Tulokset osoittavat yleisen tavan, miten työnjako voi
kehittyä evolutiivisen haarautumisen kautta. Lisäksi väitöskirjassa on
johdettu kaksi uutta menetelmää kelpoisuuden laskemiseksi rakenteisissa
metapopulaatioissa.
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Theses

With the knowledge gathered during this thesis project the claims below
are being set.

– Evolution of dispersal should be incorporated into the viability anal-
ysis of species living in fragmented habitat.

– In a changing environment, evolution of dispersal may drive vulner-
able species to extinction or save them.

– Density-dependent dispersal may evolve to a non-monotone state.
Thus, one should be cautious when building models, in which mono-
tone density-dependent dispersal is preassumed.

– Contradicting the intuition, density-dependent cooperation may evolve
to a hump-shaped form.

– Modelling details may have a significant impact on qualitative results
obtained.

– Labour division can emerge due to evolution by natural selection in
a public-goods game with two resources.

– Nature provides a huge variety of evolutionary questions that can
be studied mathematically, and in specific with adaptive dynamics.
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Statistics, Professor Juhani Karhumäki for excellent working facilities and
environment. I thank Professor Marko Mäkelä, the leader of the Ap-
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Part I

General Theory
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Chapter 1

Introduction

Charles Darwin published his theory on evolution by natural selection in
1859 (Darwin, 1859). Today, we understand that evolution not only in-
terweaves with ecology everywhere, but it will also continue as long as life
exists. Selectional pressures are always present. Furthermore, evolution-
ary processes occur in multiple levels, from genes and cells, organisms like
plants and animals, to social structures. Eventually, in process of time,
Darwin and his theory have got the acknowledgement deserved. Only,
Alfred Russel Wallace and his contribution (e.g., Wallace, 1855) into evo-
lution theory is often left in a shadow. Later, Darwin’s evolution theory,
Mendelian genetics and systematics were joined in a modern evolution-
ary synthesis generated by many evolutionary biologists, including Ernst
Mayr (Mayr, 1942) and Ronald Fisher (Fisher, 1930). However, still not
everyone accepts the theory.

The theory of evolution by natural selection is rather simple. It is
based on only few assumptions. Individuals have a phenotype, which af-
fects their survival or reproductive success. Phenotypes, or traits, are in-
heritable. In a population there is variation of phenotypes, i.e. individuals
are different. Furthermore, individuals reproduce on average more than
just to replace themselves. Due to limited resources, individuals struggle
for their survival and not everyone manages to reproduce before dying.
The most fitted individuals in the present environment are able to survive
better and to produce on average more offspring than other individuals.
This leads to a change in the phenotype frequencies as well as in the trait
frequencies within the population. This process is known as adaptation.
Although evolution by natural selection can be observed as a change in
phenotype frequencies at the population level, the actual process occurs
at the individual level based on the fitness benefits and fitness costs of the
individual.

3
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4 CHAPTER 1. INTRODUCTION

Understanding evolution and its numerous levels affects how we con-
ceptualize the world around us, and ourselves as part of the world. Thus,
it is important to comprehend and to obtain more knowledge on evolu-
tion. This is especially true when new selection pressures are introduced
by man (e.g., Palumbi, 2001). That occurs often unintentionally. For ex-
ample pesticide use or drug treatment can select for resistant strains of
pests or pathogens.

Although evolution might be perceived as a research field for biologists,
it can be, and indeed, it has been studied also mathematically. For exam-
ple, adaptive dynamics (Metz et al., 1996; Geritz et al., 1997, 1998) has
proven to be a very applicable and powerful framework for the purpose.
Mathematical modelling can provide general insights on ecological and
evolutionary processes and reveal unintuitive phenomena, which might be
left in obscure otherwise. Theoretical approaches become especially im-
portant, when experimental studies are enormously difficult or costly to
be realized, or when such studies are totally impossible or unethical to
execute.

In the next chapter (Chapter 2), first, different approaches to model
population dynamics are described. Second, a concept of a metapopu-
lation is explained, i.e., how local populations can be connected via mi-
gration. Third, adaptive dynamics and its basic concepts are presented.
In the subsequent chapter (Chapter 3), the main results of the attached
original articles and manuscripts are covered.
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Chapter 2

Methods

The evolutionary play takes place in the ecological theatre (Hutchinson,
1965). Obviously, the scenery must be well described to be able to follow
the act. However, there is no manuscript for the actual play. What occurs
depends always on many factors and especially, what kind of mutant phe-
notypes appear, i.e., which actors are present in each scene. In specific,
evolution by natural selection is shaped by the fitness benefits and fitness
costs of the individuals present. That implies that the ecological model for
the population dynamics needs to incorporate the essential characteristics
of the individuals constituting the population.

In this chapter different approaches to build a scenery, i.e., to model
population dynamics are described. A concept of a metapopulation, how
local populations can be connected via migration, is introduced. Even-
tually, the core idea of the evolutionary play is explained. That is, the
framework of adaptive dynamics and its basic concepts are presented.

2.1 Population dynamics

Mathematical models try to capture the main features of the system they
are to describe. It is not always obvious what to include and what to
exclude. Certainly, a model should not be as complex as the real-world
system. The more complicated model, the more difficult it will be to anal-
yse. Furthermore, results gained from a simplified model might provide
more general interpretations, and more insightful aspects of the system.
Indeed, modellers are always balancing between real world complexity and
mathematical tractability.

Population models can be categorized at least in three different ways.
First, phenomenological and mechanistic models, second, continuous and
discrete time models, and third, deterministic and stochastic models.

5
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6 CHAPTER 2. METHODS

A phenomenological model contains characteristics of a population,
but most often lacks interpretation on the individual-level processes. On
the contrary, a mechanistic model (Schoener, 1986) is derived from the as-
sumptions on individuals and their processes, e.g., birth and death events,
that occur at a very basic level. As we know, natural selection occurs at
the individual level instead of a group or a population level. Therefore,
when asking evolutionary questions, it is essential that the population dy-
namics are derived from the first principles (Geritz and Kisdi, 2012), i.e.,
from individual level processes. However, compared to phenomenological
models, mechanistic models often turn out to be much more complex and
more difficult to investigate analytically or even numerically.

Population models can be categorized based on different approaches
with respect to time, such as continuous-time and discrete-time models.
The features of reproduction or breeding season dynamics often deter-
mine the type of the model. Here, models defined in discrete-time, in
continuous-time and in semi-discrete time are introduced.

Many population models are described with a system of differential
equations and initial values. Such models are deterministic. The word
deterministic refers that the state of the system can be determined at any
time in a future, if its state is known at least in one time point. However,
the world is rather stochastic in nature. Stochasticity can be included into
the population models too, for example by using Markov chains or other
stochastic processes.

2.1.1 Discrete-time population dynamics

Consider individuals within a population, which breed only at a certain
time of year or only once in some other major period of time. Then, a
natural way to describe the population dynamics would be a difference
equation, a discrete time model

Nt+1 = f(Nt) (2.1)

where Nt is the population size (density) at time t and the function f(N)
describes the population growth depending on the population size. It is
often assumed that Nt ∈ Rn.

One famous discrete-time model is from 1202 by Leonardo Pisano,
commonly known as Fibonacci (Sigler, 2002). He modelled reproducing
rabbit pairs with a mechanistic approach (see Table 2.1). Assume that
rabbits are born as juveniles. Juveniles mature to become adults in one
time step. A pair of adult rabbits reproduces for ever and gets two off-
spring (one pair) in each time step. Initially, there is a newborn rabbit
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2.1. POPULATION DYNAMICS 7

pair at time t = 0. It matures and becomes an adult pair at time t = 1.
Then the adult rabbit pair reproduces. There will be the adult pair and a
newborn pair at time t = 2. The first adult pair reproduces again and the
newborn pair matures and becomes an adult pair. Hence, at time t = 3
there are two adult pairs and one newborn pair. The process continues
similarly, see Table 2.1.

Table 2.1: Mechanistic model by Fibonacci.
time adult pairs newborn pairs total pairs

0 0 1 1
1 1 0 1
2 1 1 2
3 2 1 3
4 3 2 5
5 5 3 8
6 8 5 13
...

...
...

...

The initial population sizes counted in rabbit pairs at time t = 0 and
t = 1 are obviously equal to one, N0 = N1 = 1. The total population
size Nt+1 = At+1 + Jt+1. Since At+1 = Nt and Jt+1 = At, the following
recursion is obtained

Nt+1 = Nt + Nt−1, for t = 1, 2, 3, . . . (2.2)

The model results in the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

2.1.2 Continuous-time population dynamics

Consider individuals within a population, which have no special breeding
season. Individuals can breed at any time of a year. This is true for many
species, e.g., for humans as well as for yeasts. Time as such does not affect
the dynamics, only population size matters. Then, population dynamics
are autonomous, and can be described by a continuous-time model. In
practice this often means a (system of) differential equation(s)

dN(t)

dt
= f(N), (2.3)

where N(t) ∈ Rn is the vector of population densities at time t and the
function f represents the growth rate. Continuous-time models are widely



“Seppanen˙thesis.rev2” — 2014/1/17 — 14:37 — page 8 — #22

8 CHAPTER 2. METHODS

used. One famous example is the logistic growth model

dN(t)

dt
= rN

(
1 −

N

K

)
, (2.4)

where r is the intrinsic growth rate and K is the carrying capacity. Note,
that written like this, the logistic model is phenomenological. However, a
similar form of the model can be derived with the mechanistic approach
too (Geritz and Kisdi, 2012). Then, the model parameters obviously stand
for different characteristics.

Referring to one of the model derivations (e.g., Geritz and Kisdi, 2012),
let us assume, that there are M sites, e.g., territories. With a population
size N , the proportion of empty sites is 1 − N/M . Birth can occur only
into empty sites, or alternatively, an offspring landing on an occupied site
dies. Birth and death per capita rates are β and µ, respectively. Then,
population dynamics follow

dN(t)

dt
= βN(1 − N/M) − µN. (2.5)

This is the logistic equation, if we substitute r = β − µ and K = β−µ
β

M .

2.1.3 Semi-discrete-time population dynamics

Naturally, breeding hardly ever occurs strictly in a discrete or in a conti-
nous manner in time. Furthermore, there might be other significant pro-
cesses, which should be incorporated into the model, and which change
along the year. Such processes could include resource availability or sur-
vival due to weather conditions. Therefore, a compromise between the
two extreme types of modelling might be an appropriate approach. Fol-
lowing Ghosh and Pugliese (2004), Pachepsky et al. (2008) and Singh and
Nisbet (2007), we call such intermediate form of models with the name
“semi-discrete”.

Consider individuals within a population experiencing a sequence of
“phases” or seasons throughout the year in which the population dynam-
ical forces vary. Time within a year (or any other major period, e.g.,
census period) is measured by τ ∈ [0, 1]. A population census occurs at
the beginning of each year (τ = 0). Within each season, the population
experiences a more-or-less fixed constellation of forces, but the set of forces
changes at discrete points of time. The boundaries between behavioural
“seasons” are marked by τi, 0 < τ1 < τ2 < · · · < 1. Within-season dynam-
ics are governed by a system of differential equations, a continuous time
model. The initial value for each season dynamics is calculated using the
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2.2. METAPOPULATION DYNAMICS 9

end value from the previous season dynamics by another set of equations.
These are the discrete (instant) events (e.g. birth) connecting different
seasons (Geritz and Kisdi 2004, see also Eskola and Geritz, 2007; Eskola
and Parvinen, 2007, 2010).

The above description becomes clear in the next example. Time within
a year is denoted by τ , and years by t. Consider a population consisting
of adults A and juveniles J . Breeding occurs at time τ = 0. The initial
values for adults and juveniles are then

{
At+1(0) = At(1)
Jt+1(0) = f(At+1(0))At+1(0)

(2.6)

We may assume A0(0) = A0 for the very first breeding event in the popu-
lation. All individuals suffer from natural mortality. In addition, there is
interference between juveniles before they mature. Then, the population
dynamics follow

{
dA(τ)

dτ
= −µA

dJ(τ)
dτ

= −µJ − iJ2
(2.7)

Juveniles mature and become adults at time τ1. Thus, we write

{
A(τ1) = A(τ1−) + J(τ1−)
J(τ1) = 0

(2.8)

For the rest of the year adults still suffer from mortality

dA(τ)

dτ
= −µA. (2.9)

The next breeding event occurs in the beginning of the next year according
to (2.6).

2.2 Metapopulation dynamics

A metapopulation is an assemblage of local populations connected via
migration. The first mathematical metapopulation model was introduced
by Levins (1969, 1970). He described the dynamics of the fraction of
occupied habitat patches P based on local population extinctions c and
recolonizations b

Ṗ = bP (1 − P ) − cP. (2.10)

Levins (1969) showed that the metapopulation can persist only if the recol-
onization rate exceeds the extinction rate. Hence, dispersal or migration
between patches is a key feature in the survival of a metapopulation.
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10 CHAPTER 2. METHODS

Even though the Levins’ classical model ignored the local population
dynamics, it has provided an important conceptual base on the future
progress of the metapopulation theory (e.g., Hanski and Gilpin, 1997;
Hanski, 1999; Hanski and Gaggiotti, 2004; Gyllenberg and Hanski, 1992;
Gyllenberg et al., 1997; Gyllenberg and Metz, 2001; Metz and Gyllenberg,
2001; Parvinen and Metz, 2008). It is not surprising that the metapopu-
lation setting is receiving ever more attention as anthropogenic alteration
accelerate around the world and an increasing number of species suffer
from habitat fragmentation.

2.3 Evolution and adaptive dynamics

The word evolution is often associated with Charles Darwin, who wrote the
famous, and in the beginning controversial, theory on evolution by natural
selection (Darwin, 1859). Later, on 20th century Ernst Mayr and Ronald
Fisher among many others had an enormous influence on the conceptual
understanding of evolution (e.g., Mayr, 1942, 1963; Fisher, 1930).

Evolution by natural selection involves variation in individual’s pheno-
types. Phenotypes are heritable and affect individual’s survival or repro-
ductive success. Individuals produce more offspring than necessary just
to replace themselves. Due to the resource or other limitations all of them
cannot survive until reproductive age. This leads to a struggle for exis-
tence, i.e., natural selection. Over the time, proportions of phenotypes in
the population change. In time, the fittest outcompete other types leading
to adaptation.

Fitness benefits and fitness costs experienced by the individuals shape
the path of evolution for all phenotypic traits. Especially in the past, there
has been lot of debate on what level selection actually acts, between the
populations (e.g., Wynne-Edwards, 1962, 1963) or between the individu-
als within a population (e.g., Williams, 1966; Maynard Smith, 1964). In
general, it is now accepted that it is the fitness of an individual that mat-
ters. However, there are still some intriguing questions related to major
transitions in evolution (Maynard Smith and Szathmáry, 1995), in which
a new level of individuality originates. Indeed, the transitions are often
difficult to explain purely due to the fitness benefits on the lower level of
individuality (Michod and Roze, 2001) and group selection seems to be a
tempting reasoning.

There exist several methods to study evolutionary questions, e.g., pop-
ulation genetics (e.g., Fisher, 1930; Wright, 1931), quantitative genet-
ics (e.g., Hardy, 1998), adaptive dynamics (e.g., Metz et al., 1996) and
many different kinds of simulations, (e.g., Gerisch and Chaplain, 2008).
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Within this thesis project, the studies have focused only on the method-
ology of adaptive dynamics. Indeed, the framework of adaptive dynamics
(Metz et al., 1996; Geritz et al., 1997, 1998) has grown to a large set of
tools to study evolution and it has been applied for a broad range of evo-
lutionary questions. However, for future perspectives it would be worth of
effort to combine the knowledge achieved by different approaches and to
build a new synthesis to increase evolutionary understanding. Such early
steps have already been taken (e.g., Přiklopil, 2012).

One question in evolutionary dynamics is the following: can a mutant
with the strategy smut invade the resident with the strategy sres. To an-
swer the question, Metz et al. (1992) defined the invasion fitness as the
long-term exponential growth rate r of a rare mutant in the environment
set by the resident. A positive invasion fitness implies that the initially
small mutant population is able to grow and possibly replace the resident.
However, it does not imply, that replacement will happen, only that it
is possible. First, the mutant population is assumed to be initially very
small. Therefore, it may disappear simply due to demographic stochas-
ticity. Second, even though the mutant population may increase in the
beginning, the coexistence of the mutant and the resident is a possible
outcome. Third, if the resident has multiple population-dynamical attrac-
tors, it is possible that the ”resident strikes back” (Mylius and Diekmann,
2001) the mutant that has successfully started to invade. The population
dynamics may lead to an alternative attractor of the resident, in which the
invasion fitness of the mutant is negative and it cannot invade anymore.

In adaptive dynamics a few fundamental assumptions are made. First,
the resident or residents are on their population-dynamical equilibrium or
attractor when a new mutant appears. Second, mutational steps are ran-
dom and small, but not infinitesimally small. That means that a new
mutant phenotype differs only slightly from one of the prevalent pheno-
types. Third, the mutant population is initially very small compared to
the prevalent residents’ populations. That is, a mutant population has
initially no effect on residents’ population dynamics, neither directly nor
indirectly, e.g., via environmental effects such as resource usage. Later,
when and if, the mutant population has grown bigger it does have an effect
on the resident’s population dynamics.

Adaptive dynamics take an advantage of the time scale separation
method. That refers to the first assumption above, mutations occurring
so infrequently that the residents have reached their population dynamical
attractor whenever a new mutation occurs. Thus, slower evolutionary dy-
namics run on top of faster population dynamics. In practice, the invasion
fitness of a mutant is obtained in the environment where the residents are
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on their population dynamical attractor. Here, also clonal reproduction
is assumed. That assumption can be relaxed (Parvinen and Metz, 2008),
especially if the biological question requires sexual reproduction.

One may observe nature full of amazing adaptations. Indeed, re-
searchers have investigated evolutionary questions on many traits. Es-
pecially, in metapopulation setting, the traits such as dispersal (Parvinen,
1999; Metz and Gyllenberg, 2001; Gyllenberg and Metz, 2001; Gyllenberg
et al., 2002; Parvinen, 2006), local adaptation (Kisdi, 2002), specialization
(Parvinen and Egas, 2004; Nurmi et al., 2008; Nurmi and Parvinen, 2008),
reproductive effort (Ronce et al., 2000) and cooperation (Parvinen, 2011,
2013) have been studied.

2.3.1 Inclusive fitness

A notation that kin effects can shape the evolution led to a modelling
concept of inclusive fitness (Hamilton, 1964a,b). Inclusive fitness is a
biased sum of direct and indirect fitness benefits of the focal individual.
More precisely,

inclusive fitness = direct fitness + relatedness · indirect fitness.

The concept has provided great insight especially to the evolution of altru-
istic behaviour, explaining that it is not only individuals own success that
matters, but in the presence of related individuals their fitness benefits
contribute too (Ferrière and Michod, 2011).

According to the famous Hamilton’s rule (Hamilton, 1964a,b) altruistic
cooperation can evolve if Rg ·B > C, where Rg is the genetic relatedness of
the recipient to the actor, B is the additional reproductive benefit gained
by the recipient of the altruistic act, and C is the reproductive cost to the
individual performing the act. Note, that −C corresponds to the direct
benefits in the inclusive fitness formulation. The Hamilton’s rule has been
extended and applied in multiple studies (e.g., Smith et al., 2010), for a
review see West et al. (2002).

Hamilton and May (1977) showed that also dispersal can be under-
stood as altruistic trait that allows to avoid competition among relatives.
For example, Gandon (1999) has applied inclusive fitness to investigate the
evolution of dispersal. Although not all researchers agree with the con-
cept of inclusive fitness (Nowak et al., 2010), it is broadly accepted (Abbot
et al., 2011; Boomsma et al., 2011; Strassmann et al., 2011; Ferrière and
Michod, 2011; Herre and Wcislo, 2011). Furthermore, its leading idea is
linked to the unifying concept of invasion fitness (Metz et al., 1992).
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2.3.2 Invasion fitness

To study evolutionary dynamics with the framework of adaptive dynamics,
there is the special concept of invasion fitness. Invasion fitness is used
to answer the question, whether a mutant may or may not invade the
resident. Invasion fitness of a rare mutant is its long-term exponential
growth rate in the environment Eres set by the resident (or residents)
population(s) (Metz et al., 1992). We denote this fitness

r(smut, Eres), (2.11)

where smut is the strategy of the mutant.

If the actual invasion fitness is difficult to calculate, the basic repro-
duction ratio R(smut, Eres) can be practical and appropriate to use as a
proxy (Roughgarden, 1976; Diekmann et al., 1990). It is the expected
number of surviving offspring of a typical or an average mutant individual
in the population. The two measures, r and R, are connected via the
natural logarithm, so that r and ln(R) are sign equivalent (Mylius and
Diekmann, 1995).

In metapopulation models it is convenient to use the metapopulation
reproduction ratio (Gyllenberg and Metz, 2001; Metz and Gyllenberg,
2001) as a proxy for invasion fitness. The concept of Rmetapop is a clear
analogue to the basic reproduction ratio. Instead of traditional repro-
ducing generations it operates on dispersing generations. We denote this
metapopulation reproduction ratio

Rmetapop(smut, Eres). (2.12)

Naturally, invasion of a mutant population is possible only when

Rmetapop > 1, (2.13)

which is equivalent to the exponential growth rate r > 0.

In practice, we follow a mutant disperser immigrating from the disper-
sal pool onto a patch and initiating a new local clan. This clan consists
of the immigrant itself and all of its lineal descendants produced on that
patch until the clan is destroyed by local population extinction. Each
surviving generation seeds the dispersal pool with new dispersers. Thus,
the metapopulation reproduction ratio Rmetapop(smut, Eres) is defined as
the expected number of successful dispersers produced by an average local
clan initiated by a mutant using a strategy smut in the environment Eres

set by the resident.
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Metz and Gyllenberg (2001) and Gyllenberg and Metz (2001) ex-
plain how to calculate the metapopulation reproduction ratio in vari-
ous continuous-time metapopulation models. Parvinen (2006) presented
an analogous method for discrete-time metapopulation models. In the
original publication I it is explained how to extend these methods to a
semi-discrete metapopulation model (Seppänen et al., 2012). The major
methodological contribution presented in the original publication III in-
volves a continuous-time metapopulation model, which is both size and
stage structured, and how to obtain metapopulation reproduction ratio in
a such generalized case (Parvinen and Seppänen, subm).

2.3.3 Singular strategies

The fitness gradient (selection gradient) tells the expected direction of
evolution. For scalar strategies, the fitness gradient is defined as

G(sres) =
∂r(smut, Eres)

∂smut

∣∣∣∣
smut=sres

,

where smut and sres are the strategies of a mutant and the resident, re-
spectively. Specifically, in one-dimensional strategy space and for small
mutational steps, if the selection gradient is positive, invasion requires
smut > sres, and if the selection gradient is negative, invasion may occur
only when smut < sres. If mutations have larger phenotypic effects, this
does not hold anymore.

For vector strategies the fitness gradient,

G(sres) = (G1(sres), G2(sres), . . . , Gn(sres)),

is a vector consisting of derivatives with respect to each strategy compo-
nent:

Gi(sres) =
∂r(smut,1, . . . , smut,n, Eres)

∂smut,i

∣∣∣∣
smut=sres

.

Strategies for which the fitness gradient is zero are called evolutionary
singular strategies (Geritz et al., 1997, 1998; Maynard Smith, 1976, 1982;
Maynard Smith and Price, 1973; Christiansen, 1991; Eshel, 1983). Hence,
such strategies s∗ can be found by solving G(s∗) = 0. When the dimension
of the strategy space is n, we have a system of n equations Gi(s

∗) = 0,
i = 1, . . . , n. For larger n, finding singular strategies becomes, in general,
more demanding.
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Evolutionary stability

If all mutants smut 6= s∗ have negative fitness, r(smut, Eres) < 0, or equiv-
alently R(smut, Eres) < 1, no mutant strategy can invade and thus, the
singular resident strategy s∗ is uninvadable. Note, that the strategy s∗

is a local fitness maximum. The singular strategy s∗ is then called an
evolutionarily stable strategy, or ESS (Maynard Smith, 1976, 1982; May-
nard Smith and Price, 1973). Such a strategy is a possible endpoint of
evolution.

When the strategy is one-dimensional, the local condition for the sin-
gular strategy s∗ to be evolutionarily stable is

∂2r(smut, Eres)

∂s2
mut

< 0 (2.14)

In case the strategy space is multidimensional, the singular strategy s∗ is
evolutionarily stable if the corresponding Hessian matrix of the invasion
fitness is negative definite.

Convergence stability

The fact that a singular strategy is uninvadable does not necessarily imply
that it would be evolutionarily attracting. A singular strategy is evolution-
arily attracting if the repeated invasion of mutant strategies smut ≈ sres

into resident strategies sres will lead to the convergence of resident strate-
gies towards s∗ (Christiansen, 1991). For one-dimensional strategies such
convergence occurs if G(sres) < 0 for sres > s∗and G(sres) > 0 for sres < s∗

at least when sres ≈ s∗. An equivalent condition is that G′(s∗) < 0. A
monomorphically attracting singular strategy that is uninvadable, is called
continuously stable strategy (Eshel, 1983). Such a singular strategy is also
an evolutionary endpoint.

In a multidimensional case, convergence stability depends also on the
mutational variance-covariance structure of the strategy components (Leimar,
2001). The canonical equation of adaptive dynamics can be written

d

dt
s =

1

2
µNtB(s)G(s) (2.15)

where µ denotes the mutation rate, Nt denotes the population density,
the matrix B denotes the process of generating variation in strategies
through mutations, and G is the selection gradient (Dieckmann and Law,
1996; Leimar, 2001). The matrix B contains the variance of mutational
effects in its diagonal and the covariance between the mutations in other
elements. The partial derivative of the invasion fitness around the resident
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trait value indicates how much the invasion fitness increases (or decreases)
with a small mutational step in the corresponding component. That refers
to the fitness gradient, which measures the quantity and the direction of
selection, and hence, describes how fast or slowly evolution will change the
corresponding strategies. Note, that higher variance increases the rate of
evolution because it allows longer mutational steps. However, covariance
between the mutations may change the evolutionary path, and hence affect
also the convergence stability.

Evolutionary branching

A monomorphically evolutionarily attracting singular strategy is not nec-
essarily an evolutionary endpoint. An evolutionarily attracting singular
strategy can be beatable, i.e., it is not uninvadable. In that case, there
are necessarily strategy pairs near the singular strategy, that are mutually
invadable, and thus can coexist. Furthermore, the strategies of the dimor-
phic population start to diverge (see Fig. 2.3b). The singular strategy is
thus dimorphically repelling, and is therefore called as a branching point.
This holds, in specific, in one-dimensional strategy spaces, not in general.
The branching point has to be reached before the actual diversification of
strategies can take place. In a multidimensional strategy space it is again
a matter of the variance-covariance structure whether the evolutionary
branching can occur. For one-dimensional strategies, a complete classifi-
cation of adaptive dynamics behaviours around singular strategies can be
found in the article by Geritz et al. (1998).

Evolutionary suicide

Evolutionary suicide (Ferrière, 2000; Gyllenberg and Parvinen, 2001; Parvi-
nen, 2002, 2005), also called Darwinian extinction (Webb, 2003) and evo-
lution to extinction (Dieckmann et al., 1995), may occur when the selec-
tion gradient points out from a viability region. That is, evolution may
first lead to a strategy which is just on the edge, where the population
is still viable. However, a mutant with a strategy on the wrong side of
the edge may be more fitted in the present environment, and thus, able
to invade. By becoming the prevalent resident the mutant strategy drives
the whole population to extinction. Such a strategy has been called also
as a kamikaze mutant (Ferrière et al., 2004).

In order to evolutionary suicide to happen, there has to occur a bifur-
cation, where a non-extinct resident attractor disappears. Such transition
can be either continuous or discontinuous. Consider first a continuous
transition to extinction. On the boundary, where the transition occurs
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the resident has a strategy sext, and its population size is zero. A mutant
will then grow as it was in a virgin environment. This means, that exactly
those mutants that are viable without the resident can invade. The mu-
tants that are not viable cannot invade. Thus, the fitness gradient points
into the viability region, not out, and evolutionary suicide is not possi-
ble. Therefore, a necessary condition for evolutionary suicide is that the
transition to extinction is discontinuous (Gyllenberg and Parvinen, 2001).

2.3.4 Elucidation of evolutionary dynamics

There are numerous options to illustrate the evolutionary dynamics. Here,
pairwise invasibility plots, bifurcation diagrams, trait substitution sequences
and phase plane plots are shortly described.

Pairwise Invasibility Plot

In case the resident is monomorphic and the strategy is a scalar, the sign of
the invasion fitness can be shown in a pairwise invasibility plot (PIP) (Mat-
suda, 1985; Van Tienderen and De Jong, 1986). This is fairly easy and
illustrative way to represent the evolutionary outcome, e.g., Fig. 2.1. In
a PIP, horizontal and vertical axes represent the strategies of the resident
and of the mutant, respectively. In gray regions marked also with a plus
sign the mutant strategy can invade, but in white regions with minus sign
it cannot.
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Figure 2.1: Pairwise Invasibility Plots, when the intersection of the iso-
clines is a) an evolutionary stable strategy, b) monomorphically attracting
and dimorphically repelling, i.e. a branching point and c) a repelling sin-
gular strategy.

Evolutionarily singular strategies are strategies for which the fitness
gradient is zero. In the PIP, these points are identified by the intersection
of two zero-contours, one of which is the diagonal (smut = sres) and the
other is not.
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Bifurcation diagram

Yet, when the evolving strategy is a scalar and the resident is monomor-
phic, the evolutionary dynamics can be elucidated also with a bifurcation
diagram, e.g., Fig. 2.2. Typically, there is one model parameter on the
x-axis and singular strategies on the y-axis. In the bifurcation diagram,
the viability region and the type (attracting or repelling) of the viability
borders can be shown. Furthermore, the singular strategies are illustrated
differently whether they are repelling, attracting, invadable or evolution-
ary stable.

s
tr
a
te
g
y

parameter

unviability

region

Figure 2.2: A bifurcation diagram showing singular strategies and
boudaries of the viability region with respect to a parameter. Attract-
ing ESSs are shown with a black solid curve, repelling strategies with a
black dashed curve. Attracting viability boundary is shown with a gray
solid curve and repelling viability boundary with a gray dotted curve.

Trait-substitution sequence

A trait-substitution sequence (TSS) is a result of a stochastic process, in
which random mutation events and natural selection occur consecutively,
e.g., Fig. 2.3. Let the strategy space be denoted by S. Now Ŝ = S ∪ S2 ∪
S3 ∪ · · · ∪ Sn defines the space of strategy coalitions up to n coexisting
strategies. The TSS {St ∈ Ŝ|t = 0, 1, . . . } is such a sequence of strategy
coalitions, in which a strategy coalition St+1 has replaced the strategy
coalition St. The simplest case involves only monomorhic residents. Then
St = {st}, where st ∈ S. For example, the initial monomorphic resident
population has a strategy s0. A mutant with a strategy s1 appears and
invades the resident. The strategy s1 becomes the new, prevalent resident
by itself. Then a new mutant with a strategy s2 does the same, etc. This
leads to a trait substitution sequence s0, s1, s2, . . . In the presence of equal
mutational variance and the absence of mutational covariance, the typical
mutant st+1 that can replace the resident st satisfies

st+1 = st + ǫG(st), ǫ > 0
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where G corresponds to the fitness gradient, see e.g., Fig. 2.4. Note, that
St+1 and St may have common elements, but St+1 6= St. Note also, that
St+1 and St may contain different amounts of strategies present.

A trait-substitution sequence may converge to an ESS strategy, s∗

(Fig. 2.3a). Strategies may branch and the TSS may converge to a dimor-
phic evolutionarily stable strategy coalition (Fig. 2.3b). Also, evolutionary
suicide may occur (Fig. 2.3c). Theoretically, a periodic TSS is also a pos-
sible outcome (not illustrated).
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Figure 2.3: Trait substitution sequences may (a) converge to an ESS, (b)
result in evolutionary branching or (c) result in evolutionary suicide.
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Figure 2.4: A trait substitution sequence, when the evolving strategy is a
vector. Each step is taken towards the selection gradient (arrows) and t
stands for the simulation steps.

Phase plane plots

When studying more complex strategies, some traditional ways to eluci-
date evolution become less useful. An example of such complex strategy is



“Seppanen˙thesis.rev2” — 2014/1/17 — 14:37 — page 20 — #34

20 CHAPTER 2. METHODS

a vector-valued strategy, which can be used when studying joint evolution
of two single-valued life history traits, or evolution of a plastic trait like
density-dependent dispersal. In such case, by concentrating on two ele-
ments in the vector-strategy at the time and having all the other elements
fixed or determined by the focal elements, we can illustrate evolution with
phase plane plots, in which isoclines of the fitness gradients and evolution-
ary trajectories are shown, Fig. 2.5.
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Figure 2.5: Isoclines of the monomorphic fitness gradient together with
arrows illustrating the expected direction of evolutionary trajectories. In
addition to isoclines, several trait substitution sequences (TSS) are shown
in the right hand side panel. Depending on the initial strategy of the
monomorphic resident, a TSS will lead to the intersection of the isoclines,
or to the boundary of strategy space.
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Main results

In this chapter the main results are reviewed shortly. For details, the
corresponding original publications I-V can be found attached after the
part of General Theory.

3.1 Evolution of dispersal

As mentioned earlier, dispersal, i.e., movement of an individual from a
breeding site to another, is a key feature in metapopulations. Disper-
sal affects patch recolonization and naturally the viability of the whole
metapopulation (Levins, 1969, 1970). Therefore, a very intuitive evolu-
tionary question in metapopulations concerns, what selects for or against
dispersal.

As with any evolving life history trait, dispersal will be shaped by
its costs, benefits and genetic constraints. Dispersal carries energetic and
reproductive costs, a disperser is often exposed to, e.g., weather and preda-
tor, which make dispersal risky, and hence, selected against (Roff, 1977;
Gandon and Michalakis, 2001; Errington, 1946). However, dispersing may
also be beneficial. A disperser may immigrate to a habitat with better
reproductive success (Metz et al., 1983). Surprisingly, dispersal is favor-
able even in stable habitats. Hamilton and May (1977) considered an
environment with fixed number of sites, each of which can support only
one individual. Before its death each adult produces a constant number
of offspring. A fraction m will disperse, while the rest will compete at
their home site. Only a fraction π of the dispersers survive, and are dis-
tributed equally to all the sites. In this simple model, Hamilton and
May (1977) showed that evolution of dispersal leads to an evolutionarily
stable strategy m∗ = 1/(2 − π). Dispersal evolves to positive values even
with high risk (π ≈ 0). This finding seems rather unintuitive at the first

21
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glance. However, as dispersal allows to avoid competition among kin, the
result becomes more obvious. Indeed, dispersal can be understood as an
altruistic behaviour.

Unsurprisingly, numerous studies on the evolution of dispersal have
been published extending the results of Hamilton and May (1977), e.g.,
using fully Mendelian approach (Motro, 1982a,b). An interesting question
arises from the obvious conflict between the parent and the dispersing
offspring: who’s decision for emigration is it that is under selection. The
fraction of dispersing progeny is larger when the decision is made by the
parent compared that when the decision is made by the offspring (Motro,
1983). Frank (1986) put these ideas further, and generalized the mod-
elling approach applying Price’s formula for gene frequency changes (Price,
1972). Soon after, Taylor (1988) extended Frank’s results with an inclusive
fitness model.

In metapopulations, the local dynamics are linked to global dynamics
through the movement of individuals. Hence, dispersal influences both,
the local and the global dynamics. In return, both of them also contribute
to the selection processes that shape the evolution of dispersal. Numer-
ous studies concerning the evolution of dispersal in metapopulations or in
structured demes have provided great insight into the factors that select
for or against dispersal. Both, inclusive fitness approaches (e.g., Rousset
and Ronce, 2004; Jansen and Vitalis, 2007) and invasion fitness approaches
(e.g., Gyllenberg and Metz, 2001; Metz and Gyllenberg, 2001) have been
applied. The interpretation of the inclusive fitness is straightforward: it
tells whether an event is favorable or not. By using inclusive fitness, one
can obtain singular strategies, and distinguish whether they are attract-
ing or repelling. However, one cannot investigate whether an attracting
singular strategy is unbeatable or beatable, meaning one cannot claim
whether the singular strategy is an evolutionary endpoint or a branching
point. Moreover, in complex models, inclusive fitness can be very difficult
to calculate, whereas the invasion fitness, or its proxies may be easier to
calculate.

Variability between patches is one obvious factor selecting for dispersal.
If there is lack of resources in a patch, by dispersing one might find a bet-
ter place for living. Indeed, in the absence of other mechanisms, sufficient
spatiotemporal variation in density (or relatedness) is a necessary condi-
tion for dispersal (Balkau and Feldman, 1973; Teague, 1977). Hastings
(1983) investigated a metapopulation model defined in continuous time
with finitely many patches, and showed that if the population-dynamical
attractor is an equilibrium, dispersal is not favoured. The same is true also
in corresponding discrete-time metapopulation models (Parvinen, 1999).
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The spatiotemporal variation can result, e.g., from cyclic (Doebeli and
Ruxton, 1997; Parvinen, 1999) or chaotic (Holt and McPeek, 1996) deter-
ministic local population dynamics, local catastrophes (Gyllenberg et al.,
2002; Parvinen et al., 2003; Parvinen, 2006), or locally stochastic popula-
tion dynamics (Metz and Gyllenberg, 2001; Cadet et al., 2003; Parvinen
et al., 2003; Parvinen and Metz, 2008).

Two of the original publications attached here involve the evolution of
dispersal. In the original publication I, the American pika metapopulation
with a scalar-valued dispersal strategy is modelled. The second work, the
original publication II, is also inspired by pikas, but contains a more gen-
erally derived model with small local populations and density-dependent,
i.e., vector-valued dispersal strategy.

3.1.1 Evolution of dispersal in American pika metapopula-

tion

American pika (Ochotona princeps) inhabits mountainous regions in North-
ern America. It is adapted to cold temperatures and suffers in heat (Beever
et al., 2003). Hence, there have occurred speculations that global climate
change (GCC), among other anthropogenic factors, represents a threat to
American pikas.
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Figure 3.1: Singular dispersal strategies and boundaries of viability with
respect to dispersal survival. In the left panel the catastrophe rate is
population-size independent, whereas in the right panel the catastrophe
rate depends on the local population size. Adopted from Seppänen et al.
(2012).

In the original publication I, a metapopulation model for studying
pikas was derived. The model is semi-discrete, with births and immi-
gration occurring at discrete points in time, and deaths and emigration
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occurring continuously over time. To study the possible evolutionary ef-
fects of changing climate, global climate change is assumed to potentially
alter the model parameters, such as the probability of patch extinction,
dispersal costs, mortality and fecundity, e.g., Fig. 3.1.

The results show that potentially viable metapopulations nevertheless
can be destined to extinction via evolutionary suicide driven by climatic
forcing illustrated in Fig. 3.1b. Specifically, selection can drive down
dispersal rates in viable metapopulations, degrading colonization rates
and increasing extinction rates to the point where the metapopulation
crashes (Seppänen et al., 2012). Also the opposite case is possible. There
is a region in the parameter space, where a metapopulation can be very
close to its lower viability border and selection for higher dispersal rate
can take the dispersal rate away from the extinction boundary.

In this study, evolutionary extinction is shown to be a possible out-
come also in a very realistic model setting. As a conclusion it is noted that
exclusive reliance on ecological dynamics without this evolutionary per-
spective would miss the phenomenon identified here. Indeed, evolutionary
dynamics should be incorporated into the viability analysis.

3.1.2 Evolution of complex density dependent dispersal in

small patch metapopulations

Many life-history traits are density-dependent, i.e., they depend on pop-
ulation size or density. This holds for dispersal too (e.g., Matthysen,
2005). Previous studies of conditional dispersal tend to assume monotone
density-dependence in dispersal strategy (e.g., Geritz et al., 2009), or ob-
tain such as a result from theory (e.g., Gyllenberg and Metz, 2001; Metz
and Gyllenberg, 2001). For example, Travis et al. (1999) investigated the
evolution of dispersal as a linear function of local population density.

Inclusive fitness can also be used to study the evolution of such life his-
tory traits that affect metapopulation demography (Rousset and Ronce,
2004). Jansen and Vitalis (2007) studied the evolution of dispersal in a
Levins’ type metapopulation setting, and derived a fitness measure, which
can be reformulated as inclusive fitness. They assumed fast local popula-
tion dynamics compared to global (i.e. metapopulation) dynamics, which
naturally simplifies the analysis. However, this leads to some contrasting
results with other studies, e.g., concerning how catastrophe rate affects
dispersal (Gyllenberg et al., 2002). In addition, the modelling approach
cannot be generalized to study density-dependent dispersal since all local
populations are on their equilibrium.

In metapopulation models with large local populations, density-depen-
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dent dispersal is expected to evolve to a single-threshold strategy (Fig. 3.2a),
in which individuals stay in patches with local population size smaller than
the threshold value and move immediately away from patches with local
population size larger than the threshold (Gyllenberg and Metz, 2001).
In the original publication II the local population size is assumed to be
small, and there were no a priori assumptions about the particular form
that density-dependence can take.

The local dynamics is described with stochastic demographic events,
e.g., birth and death, occurring at individual level. Individuals form small
groups, which further constitute a structured metapopulation. The ab-
solute maximum for population size in a patch is K. Reproduction is
always clonal. Emigration strategy is denoted by e = (e1, e2, . . . , eK) and
immigration strategy by m = (m0,m1, . . . ,mK−1). In the case of na-
tal dispersal, en ∈ [0, 1] is the probability that an individual born in a
patch with n inhabitants will emigrate immediately after birth. In case
of adults, dispersal is not restricted to a once-in-a-lifetime event, so the
strategy en ≥ 0 is a rate, a probability to emigrate per time unit, from
a patch with n inhabitants. All emigrants enter a dispersal pool. Each
disperser encounters patches randomly at rate α, and decides to stay on
the patch with the probability mn ∈ [0, 1], where n is the local population
size in that patch.
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Figure 3.2: Density-dependent dispersal strategy may evolve (a) to a
monotone, “single-threshold” state or (b) to a non-monotone, “triple-
threshold” state (0, 0, 0, 0, 1, 0, 1, 1, 1, 1).

In this work, it was found that in a metapopulation, where patches
can support only a relatively small local population, density-dependent
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emigration can evolve also to a non-monotone, “triple-threshold” strat-
egy (Fig. 3.2b). This interesting phenomenon results from an interplay
between the direct and indirect benefits of dispersal and the costs of dis-
persal (Parvinen et al., 2012).

With the parameter values used in Figs. 3.2b and 3.3, the intuitively
expected strategy is (0, 0, 0, 0, 0, 0, 1, 1, 1, 1). As illustrated with phase-
plane plots in Fig. 3.3, isoclines of the selection gradient and thus, also
singular strategies depend on the catastrophe rate µ. Now, the point
e5 = 0 and e6 = 0 (the lower left corner) in Fig. 3.3 corresponds to the
strategy shown in Fig. 3.2a and the point e5 = 1 and e6 = 0 (the lower
right corner) in Fig. 3.3 corresponds to the strategy shown in Fig. 3.2b.
In specific, the isoclines and trajectories illustrate that the latter (“triple-
threshold”) strategy is evolutionarily attracting in panels b-f. Note that
in the TSS calculations all strategy components are freely evolving.a) µ = 0.048 b) µ = 0.055 ) µ = 0.058 d) µ = 0.065
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Figure 3.3: Phase plane plots for the strategy components e5 and e6,
while other components are constant (e1 = e2 = e3 = e4 = 0 and e7 =
e8 = e9 = e10 = 1). Direction of the selection gradient and singular
strategies (black dots) alter along the catastrophe rate µ changes. Some
sample trajectories of TSS calculations are also elucidated. Adopted from
Parvinen et al. (2012).

In the original publication II, the evolution of density-dependent dis-
persal to a non-monotone shape was explained as an interplay between
direct and indirect fitness benefits and fitness costs, comparable to inclu-
sive fitness. The fitness calculations were based on the metapopulation
reproduction ratio. As noted before, the fitness measure includes both,
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the direct and the indirect fitness benefits, but is so complicated that it is
hard to divide into the corresponding parts. To achieve some insight, the
metapopulation reproduction ratio was divided into parts Ek according to
the local population size. The measure Ek is the expected production of
mutant dispersers for a mutant clan initiated by a mutant immigrant ar-
riving to a patch with k−1 residents. As the invasion fitness, the measure
for Ek also includes both direct and indirect benefits, which again are diffi-
cult to disentangle. A quantity consisting of Ek and relatedness describing
the benefit of dispersal was investigated, see Fig. 3.4. Detailed explana-
tion is in the appendix of the original publication II. However, this does
not fully explain the observed phenomenon. The actual fitness gradient
shows correctly that the single-threshold strategy is repelling, but since
the measure is difficult to separate into direct and indirect components it
does not provide intuition in an easy manner.
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é

-0.1

-0.05

 0

 0.05

 0.1

 1  2  3  4  5  6  7  8  9  10

gradient
benefit

local pop. size, n

gr
ad

ie
n
t

ẽ

Figure 3.4: Illustration of the intuitive threshold strategy é =
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1) and the multiple threshold strategy ẽ =
(0, 0, 0, 0, 1, 0, 1, 1, 1, 1): (a) relatedness, (b) decomposition En of invasion
fitness at metapopulation-dynamical equilibrium. (c and d) Approximate
benefit of emigration and the fitness gradient. Adopted from Parvinen
et al. (2012).

This study uncovers a very surprising phenomenon concerning density-
dependent natal-dispersal. Evolutionarily attracting and stable non-mono-
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tone, multiple threshold strategies, were found. Although this type of
non-monotone strategy might be hard to detect in natural systems, the
contribution was to show a very unintuitive evolutionary phenomenon.
The general conclusion from this work is that one should be cautious
when building models on an assumption of monotone density dependence,
especially in models dealing with dispersal.

3.2 Evolution of cooperation

Plato, a great philosopher in Classical Greece, presented his ideas of justice
and ideal social structures in his most famous dialogue, The Republic,
already about 380 BC. Later, Hardin (1968) described a related problem
in ’The tragedy of the commons’. Ever since, the phenomena of altruism,
cooperation and defecting behaviour have puzzled and inspired researchers
from diverse disciplines.

Huge interest in the issue has yielded to a broad theoretical framework
based on game theory (Axelrod and Hamilton, 1981; Sigmund et al., 2001;
Nowak and Sigmund, 2005). For example, in the Prisoner’s dilemma game,
two individuals have committed a crime. In an interrogation, both have
the option to pleading guilty or not guilty. If both confess the crime, they
get two years sentence. If both deny, they get only one year in prison. If
one admits, while other one denies, the defector will be set free and the
honest one gets three years.

C D

C R(-1) S(-3)
D T(0) P(-2)

This game is obviously context independent. In more abstract descrip-
tion we say, individuals are of two types, cooperators and defectors. When
two cooperators meet, they are rewarded with a payoff R , and when two
defectors meet they are punished and the payoff is P . In an interaction
of unequal types, the payoff for the cooperator is S (sucker) and for the
defector T (temptation). It is also assumed that T > R > P > S. For
an independent individual the best strategy is to defect. However, the
dilemma arises as the payoff for mutual cooperation would yield better
outcome.

Another famous game is the Hawk-Dove game. The setting is similar
to the Prisoner’s dilemma game. There are two possible strategies, hawk
and dove, referring to aggressive behavior of the subtype. There is resource
available, and the individuals may fight for it. Aggression is costly, and C
represents the cost or damage from loosing in a fight. Hawks always fight
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for the resource, and doves don’t. When two doves meet they share the
resource in peace. This gives a payoff matrix:

Hawk Dove

Hawk B/2 - C/2 B
Dove 0 B/2

The above games occur in pairwise interactions. However, many co-
operative actions take place in bigger groups of individuals. Then public-
goods games are applicable. In a public-goods game each player can invest
independently to a common resource, which typically is multiplied with
a gain factor. In the end, all players get an equal share of the common
good. Again, a defector, who does not contribute, but receives a benefit
from other’s contribution, obviously has the greatest pay-off.

Cooperation is highly common in life, even though it is vulnerable for
defecting. This observation has puzzled researchers from many fields, and
indeed, there exist factors that select for cooperative behavior (Nowak,
2006), like kin benefits (Hamilton, 1964a,b) and reciprocity (Trivers,
1971). If same individuals meet repeatedly, and are able to remember some
past actions, direct reciprocity may lead to cooperation. For example,
Axelrod and Hamilton (1981) showed that tit-for-tat, that is imitate the
strategy of the opponent from the last round, is an evolutionary stable
strategy in a repeated prisoner’s dilemma game. Reciprocity can also be
indirect, when population follows some social norms. Same individuals
do not necessarily meet twice, but they may build good reputation by
cooperating. The evolution of cooperative behaviour may lead to complex
social structures with ever-increasing cognitive demands (Sigmund et al.,
2001; Nowak and Sigmund, 2005)

In general, cooperation can arise and be maintained when cooperators
are sufficiently likely to interact with cooperators (Sherratt and Roberts,
2012). This means that there can be various mechanisms behind the as-
sortment, such as kin selection or spatial factors. Eventually it is the level
of assortment, not so much the mechanism behind the assortment, what
actually matters. Furthermore, the evolution of cooperation is involved
in all the major transitions in evolution (Maynard Smith and Szathmáry,
1995), e.g., the origin of multicellularity and the emergence of societies.

Two of the original publications, IV and V, indeed, concern the evo-
lution of cooperation. The original publication IV studies the evolution of
density-dependent cooperation in a metapopulation with small local pop-
ulations. Finally, the publication V investigates the evolution of coopera-
tive investing in a public-goods game with two resources. There evolution
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leading to two coexisting subpopulations specialized in the production of
different resources is interpreted as labour division.

3.2.1 Evolution of density-dependent cooperation

In previous models, public goods cooperation has been assumed to be
either an on-off strategy (e.g., Hauert et al., 2006) or a quantitative but
condition-independent strategy (e.g., Parvinen, 2010, 2011). Nevertheless,
it is rather realistic to assume that individuals, higher as well as lower
organisms, are capable to sense the population density in their neighbor-
hood, and to adjust their investment to common resources based on that
information (Pai et al., 2012). The focus in the original publication IV

is on plastic, quantitative cooperation behaviour, and especially on its
evolution.

The ecological setting is described with stochastic demographic events,
e.g., birth and death, occurring at individual level. Individuals form small
groups, which further constitute a structured metapopulation. Intuitively,
one would expect plastic cooperative investments to be highest in small
groups and always to decrease when the local population size increases.
This intuition arises from the expectation that relatedness decreases as
the group size becomes bigger. Similar to the original publication II,
the metapopulation reproduction ratio includes both direct and indirect
fitness benefits, which are extremely difficult to disentangle.

The cost of cooperative investment was incorporated into the model in
two different ways, either it decreases the birth rate or increases the death
rate of the cooperator. In the first case, density-dependent cooperation
evolves to be a decreasing function of group size as intuitively expected.
In the latter case, however, the density-dependent cooperative investment
can have a qualitatively different form as it may evolve to be highest in
intermediate-sized groups (Fig. 3.5b). Contradicting the a priori intuition,
this hump-shaped cooperation is to some extent surprising.
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Figure 3.5: The emergence of plastic cooperation and its effect on the
group size distribution, when the cost of cooperation is modelled through
decreasing the birth rate (left column, a,c) or through increasing death rate
(right column, b,d). (a,b) Evolutionary dynamics of density-dependent co-
operation initiated with a total defector strategy (s = 0, thin solid line)
resulting in an evolutionary stable strategy (ESS, bold line). (c,d) Pro-
portions of different group sizes for the total defector (thin solid line) and
the ESS cooperator (bold line) in their ecological equilibrium. Compared
with the defector groups, the cooperating groups reach on average higher
sizes.

The novelty in this study is to consider cooperative investment to be
density-dependent, which is indeed a realistic assumption. Already simple
cells are able to coordinate their behaviour as a response to population
density through a mechanism called quorum sensing. This would include
regulation of gene expression levels and secretion of factors considered as
common good (Miller and Bassler, 2001; Diggle et al., 2007). An interest-
ing finding was that the form of the evolutionary stable strategy can be
qualitatively different depending on the way how the cost of cooperation
is modelled (compare Fig. 3.5a and 3.5b). Some heuristic explanation for
this difference is also provided in the original publication IV. Indeed, it is
emphasized that some details in modelling may have a significant impact
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on the results obtained. In addition, as expected, cooperative groups were
able to grow not only bigger than defector aggregates but also well beyond
the carrying capacity (Fig. 3.5b).

3.2.2 Evolution of labour division

Labour division among cooperating entities is a common pattern in living
systems and an important requisite for the development of complexity.
Increasing division of labor is widely thought to be a hallmark of modern
human culture, economics and industrialization (Cassata and Marchion-
atti, 2011; Ghiselin, 1995; Kuhn and Stiner, 2006). In economics, it is
well known that ”the division of labour is limited by the extent of the
market” (Smith, 1776; Stigler, 1951). To translate this result in a biolog-
ical context, the organism size serves as an analogy for the market size,
and indeed, it must reach a certain size before tissue differentiation is
observed (Bonner, 2003).

(Rueffler et al., 2012) identified three general factors selecting for divi-
sion of labor; positional effects, accelerating performance, and synergistic
interactions. Also task switching might be costly and hence, select for
division in labour (Goldsby et al., 2010, 2012). Furthermore, plastic de-
velopment (Gavrilets, 2010) can lead to the emergence of labour division.

The aim in the original publication V was to elucidate the emergence
of labour division in a simple probabilistic model with public-goods game.
The model was first described in its simple form by Hauert et al. (2006)
and later generalized by Parvinen (2010). In this study, the model was
generalized further assuming that there are two common resources. In
order to have functional specialization possible, two common resources
are needed. Individuals play in small randomly gathered groups. In a
game, individuals can invest on two common resources depending on their
phenotype. Resources are then shared among the players in the group.
Consumption of the two resources, when they are available, is beneficial
in reproduction. Thus, investments on cooperative act can be paid off.

In this study it is shown that evolutionary branching can generate
cooperative division of labor among subpopulations specializing in the
production of only one of the two resources (Fig. 3.6a). Also, other evo-
lutionary outcomes are possible: a strategy coalition with a generalist
cooperator and a defector (Fig. 3.6b), or a monomorphic population with
only a specialist cooperator (Fig. 3.6c). In addition, altering model pa-
rameters result in several evolutionary bifurcations generating potentially
rich evolutionary dynamics.
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Figure 3.6: Trait substitution sequences initiated with different dimor-
phic strategy coalitions near the monomorphic attracting singular strategy,
which is invadable. Dimorphic evolution may lead (a) to the coexistence
of a defector and a generalist cooperator, (b) to the coexistence of two
specialist producers (labour division), or (c) to one specialist producer
only.

3.3 Methodological derivations

The inspiration for the studies here have arisen from natural populations
and related evolutionary questions. Nevertheless, it was necessary to im-
prove the methods and theory to be able to implement the applications
and study the evolutionary problems. Within this thesis project two novel
methods have been derived, both of which are derivations of the metapop-
ulation reproduction number as a proxy for the invasion fitness.

3.3.1 Invasion fitness in a semi-discrete-time metapopula-

tion

In the original publication I, a metapopulation model in semi-discrete
time is introduced. However, there was no proxy available to calculate
the invasion fitness in that model. Thus, a proxy for invasion fitness in
a metapopulation with semi-discrete population dynamics was necessary
to derive. The idea is to calculate the expected number of dispersers
produced by a mutant clan initiated with a single mutant. First, the
probability that a mutant immigrant survives until next phase change, is
calculated. From there on, for all mutant clans, it is a book-keeping task
to calculate how many dispersers they send in each year and also how the
whole clan survives through the seasonal phases.

In our model, pikas experience a sequence of “phases” or seasons
throughout the year in which population-dynamic forces vary. Each year,
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population census occurs at time t = 0, weaning of the young occurs at
time τ1, after which the juvenile may emigrate until t = τ2. During the
early summer season (τ1 < t < τ2), all individuals suffer from mortality.
In addition, juveniles on patches both search for empty territories and
challenge adults and other juveniles for territories. All dispersers enter a
global dispersal pool and are randomly distributed among patches at a
discrete point in time, τ2. After immigration, i.e., during the late summer
season (τ2 < t < 1), local (within-patch) dynamics continue as before but
without emigration. The patch into which an immigrant arrives has age ξ
with probability p(ξ). Let PD→1(ξ) denote the probability that a mutant
immigrant to a patch of age ξ successfully survives until the census. In the
pika-model, it was necessary that the immigrant also settles to a territory
to be counted at census. The values of PD→1(ξ) are solved from a system
of differential equations. A local population in a patch goes extinct over
winter with probability µc(A(ξ)), where A(ξ) is the local adult population
size at census. Then, the mutant survives to the following year with prob-
ability 1−µc(A(ξ)). This mutant will be the ancestor of a mutant lineage
(also called a mutant clan) in this patch, currently of age ξ + 1.

Let E(ξ + 1) denote the cumulative number of emigrated mutant ju-
veniles over all coming years in the lineage established by a single mutant
ancestor. Using this notation the metapopulation reproduction ratio

Rmut =

∞∑

ξ=0

p(ξ)PD→1(ξ)(1 − µc(A(ξ)))E(ξ + 1), (3.1)

is obtained. It is the expected number of all future dispersing descen-
dants of a mutant immigrant, in an environment set by a resident in a
metapopulation-dynamical equilibrium. To obtain E(ξ + 1), a recursion
can be derived. That is explained in detail in the original publication
I (Seppänen et al., 2012).

3.3.2 Invasion fitness in a size- and stage-structured meta-

population

When a size-structured metapopulation model involves also individual
stages, e.g., juvenile and adult stages resulting from maturing or develop-
ment, there exists a generalized definition for the invasion fitness. The idea
is to calculate the expected numbers of dispersers of all different possible
types produced by a mutant clan initiated with a single mutant, and to
collect these values into a matrix. The matrix describes the production of
the next dispersing generatation, and its elements (i, j) stand for the pro-
duction of dispersing type j when the clan was initiated by an immigrant
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of type i. The metapopulation reproduction ratio is then the dominant
eigenvalue of this matrix. The calculation method was published in detail
in the case of small local populations (Parvinen and Metz, 2008). How-
ever, for a metapopulation with infinite local populations, there has been
no generalized method available.

In the original publication III, a generalized method to calculate the
invasion fitness in a metapopulation, which consists of large local popula-
tions with dynamics described in continuous time, when the metapopula-
tion is both size and stage structured, is derived (Parvinen and Seppänen,
subm).

In this work, it is proved that the metapopulation reproduction ratio is
well-defined, i.e., it is equal to 1 for a mutant with a strategy equal to the
strategy of a resident. For this class of models, such a proof has not been
previously published even for the case with only one type of individuals.
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