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Finland’s rural landscape has gone through remarkable changes from the 1950’s, due to agricultural 

developments. Changed farming practices have influenced especially traditional landscape 

management, and modifications in the arable land structure and grasslands transitions are notable. The 

review of the previous studies reveal the importance of the rural landscape composition and structure to 

species and landscape diversity, whereas including the relevance in presence of the open ditches, size 

of the field and meadow patches, topology of the natural and agricultural landscape. 

 

This land-change study includes applying remote sensed data from two time series and empirical 

geospatial analysis in Geographic Information Systems (GIS). The aims of this retrospective research is 

to detect agricultural landscape use and land cover change (LULCC) dynamics and discuss the 

consequences of agricultural intensification to landscape structure covering from the aspects of 

landscape ecology. 

 

Measurements of LULC are derived directly from pre-processed aerial images by a variety of 

analytical procedures, including statistical methods and image interpretation. The methodological 

challenges are confronted in the process of landscape classification and combining change detection 

approaches with landscape indices. Particular importance is paid on detecting agricultural landscape 

features at a small scale, demanding comprehensive understanding of such agroecosystems. 

Topological properties of the classified arable land and valley are determined in order to provide 

insight and emphasize the aspect the field edges in the agricultural landscape as important habitat. 

Change detection dynamics are presented with change matrix and additional calculations of gain, loss, 

swap, net change, change rate and tendencies are made. Transition’s possibility is computed following 

Markov’s probability model and presented with matrix, as well. Thesis’s spatial aspect is revealed with 

illustrative maps providing knowledge of location of the classified landscape categories and location of 

the dynamics of the changes occurred. 

 

It was assured that in Rekijoki valley’s landscape, remarkable changes in landscape has occurred. 

Landscape diversity has been strongly influenced by modern agricultural landscape change, as NP of 

open ditches has decreased and the MPS of the arable plot has decreased. Overall change in the 

diversity of the landscape is determined with the decrease of SHDI. Valley landscape considered as 

traditional land use area has experienced major transitional changes, as meadows class has lost almost 

one third of the area due to afforestation. Also, remarkable transitions have occurred from forest to 

meadow and arable land to built area. Boundaries measurement between modern and traditional 

landscape has indicated noticeable proportional increase in arable land-forest edge type and decrease in 

arable land-meadow edge type. Probability calculations predict higher future changes for traditional 

landscape, but also for arable land turning into built area. 
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Markov’s probability, Rekijoki valley 



1 

 

TURUN YLIOPISTO 

Matemaattis-luonnontieteellinen tiedekunta 

Maantieteen ja geologian laitos 

 

ROOSE, MEELI:  PERINTEISEN JA NYKYPÄIVÄN 

MAATALOUSMAAN KÄYTÖN MUUTOSTEN 

ARVIOINTI PAIKKATIETOMENETELMIÄ 

HYÖDYNTÄEN. 

Tapaustutkimus 1959-2005: Rekijoki, Somero, Lounais-

Suomi. 

 

Pro gradu -tutkielma, 95 sivua 

40 op 

Ympäristötiede  

Huhtikuu 2013 
 

Suomen maatalousmaisema on muuttunut huomattavasti 1950-luvulta lähtien maatalouden kehityksen 

myötä. Maataloustoimintojen muutokset ovat vaikuttaneet erityisesti perinteisen maiseman hoitoon, ja 

muutokset maatalousmaan ja niittyjen maanpeiterakenteissa ovat olleet huomattavia. Aiemmat 

tutkimukset painottavat maatalousmaiseman rakenteen tärkeyttä lajien ja maiseman monimuotoisuuden 

kannalta. Tässä tutkimuksessa tähän lukeutuvat myös avo-ojat, pelto- ja niittylaikkujen koko sekä 

luonnonmukaisen ympäristön ja maatalousmaiseman välinen topologia. 

 

Tässä maiseman muutostutkimuksessa sovelletaan kaukokartoitusmateriaalia kahdelta ajanjaksolta sekä 

paikkatietoanalyysejä. Retrospektiivisen tutkimuksen tavoite on havaita maatalousmaisemassa 

tapahtuneita maankäytön ja maanpeitteen muutoksia sekä pohtia maatalouden tehostumisen vaikutuksia 

maisemarakenteeseen maisemaekologian näkökulmasta. 

 

Tietoa maankäytön ja maanpeitteen muutoksista on saatu esikäsitellyiltä ilmakuvilta useilla metodeilla, 

kuten tilastollisilla menetelmillä ja ilmakuvatulkinnalla. Tutkimuksen metodiset haasteet liittyivät 

maisemaluokitteluun sekä muutosanalyysien ja maisemaa kuvaavien indeksien yhdistämiseen. Erityistä 

huomiota on kohdistettu maatalousmaisemaelementtien havainnoimiseen pienellä mittakaavalla, mikä 

vaatii hyvää ymmärrystä maatalousekosysteemeistä. Maatalousmaiseman reunaelementtien tärkeyttä 

lajien elinympäristöinä on painotettu maatalousmaan ja laakson topologisia ominaisuuksia 

havainnoimalla. Muutosdynamiikkaa on esitetty muutosmatriisilla sekä laskemalla luokiteltujen 

maisemaelementtien lisääntymistä, vähenemistä, lokaation vaihtumista, nettomuutosta ja 

muutosnopeutta. Muutosmahdollisuutta on arvioitu Markovin todennäköisyysmallin avulla ja esitetty 

muutosmatriisilla. Muutosten spatiaalista näkökulmaa on puolestaan tuotu esille kartoilla, jotka 

kuvaavat maisemarakennetta sekä muutosten spatiaalisuutta.  

 

Tutkimus osoittaa, että Rekijokilaakson maisemassa on tapahtunut merkittäviä muutoksia. 

Maatalousmaiseman muutos on merkittävästi vaikuttanut maiseman monimuotoisuuteen, kuten avo-

ojien lukumäärän vähentyminen ja viljeltyjen peltoalojen keskimääräisen koon pienentyminen 

todistavat.  Shannonin diversiteetti-indeksin pienentyminen kuvastaa maiseman monimuotoisuudessa 

tapahtunutta kokonaismuutosta. Niittymäinen maanpeitealue on pienentynyt lähes kolmanneksella 

metsittymisen seurauksena, minkä vuoksi perinteisen maankäytön alueena pidetty laaksomaisema on 

kokenut suuria muutoksia. Lisäksi huomattavia muutoksia on tapahtunut metsäisestä maanpeitteestä 

niityksi sekä viljelymaasta rakennetuksi alueeksi. Reuna-alueiden analysointi modernin ja perinteisen 

maiseman välillä on osoittanut viljelymaan ja metsän välisten reuna-alueiden huomattavaa suhteellista 

lisääntymistä, kun taas viljelymaan ja niittymaan väliset reuna-alueet ovat vähentyneet. 

Todennäköisyyslaskelmat ennustavat suuria perinteisen maiseman muutoksia, mutta myös viljelymaan 

muuttumista rakennetuksi alueeksi. 

 

 

 

ASIASANAT: Kaukokartoitus, Maatalousmaisema, Muutosmatriisi, Maisemareunat, Maankäyttö, 

Maanpeite, Markovin todennäköisyys, Rekijokilaakso 
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1 Introduction 

Land use and land cover changes (LULCC) are constantly altered by natural forces 

and human activities. Driving causes of LULCC are interaction of society (i.e., 

cultural preferences, tourism), economy (i.e. demand for specific products, financial 

incentives), development programs (i.e. agricultural programs, development of 

infrastructure, forestry) and biophysical processes (i.e. environmental conditions, air 

pollution, water resources) (Calvo-Iglesias et al. 2006; Nikodemus et al. 2005; Skånes 

& Bunce 1997). Important factors are also temporal dynamics such as population 

growth or succession and the dynamics of evolutionary change (Pickett & Cadenasso 

1995). To explain past patterns of landscape and forecast future patterns it is required 

to assess the driving forces behind LULCC. Scientific investigation of the causes and 

consequences of LULCC integrates both natural and social sciences (Barnsley et al. 

2001; Fu et al. 2008). 

Interest in landscape studies is encouraged by critical need to assess the impact of 

rapid, broad spatial scale changes in our surroundings (Turner et al. 2001: 1). The 

subject of terrestrial transformation detection has important role in many applications 

involving land: e.g. in assessing the rate of forestry, coastal change, urban sprawl, 

wildlife management and conservation, agricultural landscape change, and in 

modeling of natural hazards (Wijanarto 2006). Landscape ecological studies imply 

that spatial relationships are essential part of land-use planning, decision making of 

creation or protection of sustainable landscapes (Turner 1989). Comprehending the 

landscape change allows understanding the infrastructure and rural areas development 

– shaping of the surrounding regions (Tiitu 2011). The concepts and tools of 

landscape ecology have been increasingly integrated in biodiversity conservation and 

ecological restoration (Fu et al. 2008). 

 

There is available noticeable amount of studies made about agricultural and rural 

landscape, and impact of the landscape change to social-economic systems and 

biological diversity. Management of the forest and agricultural systems, where diverse 

and complex semi-natural habitats are often replaced by virtual monoculture on the 
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more intense level, emerges several aspects for agricultural landscape studies from 

ecological perspective (Skånes & Bunce 1997). Agricultural landscape structure has 

clear impact for species diversity, as loss of landscape heterogeneity is studied to be a 

key factor affecting species richness decline in Europe (Benton et al. 2003). Removal 

of the open drainage from the arable land causes landscape homogenization, as the 

number of landscape patches reduces and production area increases (Hietala-Koivu 

1999, 2002, 2003; Hietala-Koivu et al. 2004; Hovi 2012; Marja et al. 2013). Habitat 

loss and fragmentation affecting landscapes connectivity and level of isolation, is 

considered to be primary issue of modern landscape changes (Wiens 1997; Hanski 

1999; Bruun 2000; Luoto 2000; Krauss et al. 2003; Tiainen et al. 2004). The 

importance to preserve specific agricultural landscape elements such as open drainage 

has been noted (Marja et al. 2012). Landscape change studies surveying human-

modified areas are commonly integrated with more ‘natural’ neighborhood. Rekijoki 

valley’s research of the effects of traditional land management has proposed the 

combination of low coverage of trees and continued grazing to be beneficial to local 

plant species richness (Pykälä 2003; Luoto et al. 2003a). 

 

Great deal of attention has been given to wildlife-edge relationships. Kuussaari et al. 

(2007) survey applying boundaries classification, have highlighted the significance of 

semi-natural grasslands and open forest edges adjacency for species richness in 

farmland with relatively intensive agriculture. Researches concentrating on the 

agricultural land edge properties facilitate often GIS related analysis, like 

neighborhood-defined approaches of indices and functions (Roose et al. 2007). Many 

researches on field margin ecology have focused on different taxes, including 

pollinators (e.g. Lagerlöf et al. 1992; Meek et al. 2002; Kleijn & Verbeek 2002). 

Krauss et al. (2003) has paid attention on distinguishing specialist and generalist 

species, and determined that decreasing of the patch area significantly changes 

specialist species density (i.e. those which can thrive in narrow range of 

environmental condition, like some meadow species in traditional landscapes). Many 

surveys have concluded that day butterflies benefit from sufficient natural vegetation 

in the both intensive and extensive agricultural landscape, implying to the positive 

effects of natural patches in the managed landscapes for habitat diversity (Thomas & 

Hanski 1997; Pykälä 2007; Kivinen et al. 2008). Those possibly remnant vegetation 
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patches are emphasized to be crucial in agri-environmental schemes to enhance 

biodiversity in an otherwise depleted agricultural landscape (Duelli & Obrist 2003). 

Habitat area is the most important predictor of butterflies’ diversity – smaller habitat 

areas generally support fewer species (Grauss et al. 2003). Agrolandscape ecology 

must be evolved to develop and manage agriculture in a sustainable and cost-effective 

manner for future generations (Barrett 1992). 

 

In the 19
th

 century Finland’s regions serving farming practices were perceived as 

three main areas: Western Finland with its field cultivation, Eastern Finland’s slash 

and burn cultivation, and livestock production in Northern Finland. Pastures and 

arable land were made by clear-cutting, burning forests and flooding. The main 

livestock product was milk, meat and manure (i.e. fertilizer for arable land). Herd’s 

winter food was cut from natural open areas, or from burn-beaten areas (Soininen 

1974). Generally, agriculture in Finland may be divided into two main branches, 

arable farming and animal husbandry. The cow has been by far the most important 

farm animal in Finland (with climax in 1960s) and the horses were considered largely 

as working animals (Varjo 1977). Winter wheat and spring wheat have been typical 

crops of Southern Finland, where it has been the major source of bread cereal (Varjo 

1977). Improved transport communication and export caused fell in market prices of 

grain products in the world markets and in the 1930’s price of milk products increased 

rapidly. At the same time, the wood industry expanded in Finland and forest’s value 

increased (Voutilainen et al. 2012). As financial profit from milk products was in 

rose, farm practices needed to increase hay making in order to feed livestock and 

produce more milk-products (Jutikkala 1958: 433). 

The second period of land use intensification emerged in the middle of the 20th 

century as cultivation practice changed markedly: the nutrient scarcity was replaced 

by fertilization, high level acidity was eliminated with liming, moistness was balanced 

with drainage, and developing machinery and plant and animal breeding was 

introduced (Luoto 2003). The intensified agricultural practices resulted in 

overproduction of cereals and milk-products by the 1960’s, which derived to field 

reservation system, leaving fields uncultivated and reforested. In the end of 1980’s it 

was obligatory for every farmer to maintain part of the cultivated area as fallow land, 
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which was enhancing the meadow and pasture habitats during 1991-1994 (Pitkänen & 

Tiainen 2000). Agricultural reform caused the abandonment of low input land uses, 

traditional agricultural land and the natural deforestation. By the 1980’s Finnish 

agricultural practices mainly concentrated on the crop cultivation or livestock 

production. From the 1990’s to 2005 it has been noted that the area of extensive 

agricultural land has increased mostly because of arable land abandonment and 

increase in fallow land. 

Finnish rural environment has had some decline in biodiversity in past couple of 

decades (Tiainen et al. 2004). On the one hand, not-disturbed and non-plowed 

agricultural habitats contributing to the structurally diverse landscape has positive 

impact for several species. Though, it is noted that increase in such environments and 

fields transforming to forested areas, concludes to landscape homogenization and 

finally suffering of species diversity (Ihse 1995). Decline in intensive pasturing, due 

to overproduction of milk products, in 1960’s caused decline in meadow and 

pasturing area’s. The amount of ditches banks has decreased averagely all over the 

monitored area, mostly in the South-Finland (Hietala-Koivu 1999). Presence of 

ditches in agricultural landscape enhances species diversity as important elements for 

species dispersal and habitat. Since 1995, when Finland joined EU, the agro-

environmental policy has centered on the agro-environment payments part-financed 

by the EU. Through the measure under this it has been possible to influence the 

relationship between agriculture and the environment. The main change was the 

production support to area subsidies and specific environmental protection schemes 

were granted (e.g. field margins buffer zones along waterways) (Luoto 2003; Pitkänen 

& Tiainen 2000; Hyvönen et al. 2010) 

Finnish agriculture as a whole is regionally evenly dispersed. The reasons behind this 

can be found in historical, societal and political factors, and tight connections between 

agriculture and surrounding land and natural circumstances (Voutilainen et al. 2012). 

Agricultural landscape is significant part of Finnish nature, consisting approximately 

2,3 million hectares of arable land (Statistics Finland 2011: 157-159). The role of 

agriculture varies a great deal between regions (Voutilainen et al. 2012). Cultivated 

land, as the natural-based source of livelihood in Finland is distributed based on the 

climatic and geographical factors (soil, light, nutrients, acidity): in coastal zone of 100 
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km fields form one third of the whole area, in inner land 10% of the whole region and 

in northern part of Finland under 5% of the whole territory (Tiainen et al. 2004; Varjo 

1977). In southwest Finland there is almost 300 000 ha of arable land (Statistics 

Finland 2011: 157-159). The amount of farming practices has decreased almost half 

from 1990’s and significantly the average amount of land per one farm has risen from 

17 ha to 37 ha. Today fields has subsurface drainage and only in few places, fields are 

traditionally drained with parallel ditches about 1m wide and situated 10-20m apart 

(Marja et al. 2013). 

Geographic information systems (GIS) provide technological advance for ecologists, 

geographers and environmentalists for storing, analyzing and displaying spatially 

distributed data of remote sensed material in interdisciplinary investigations. The 

availability of remote imagery has made it possible to study spatial pattern over large 

areas and its change through time (Turner et al. 2001: 10). Additional tools like spatial 

statistics and global positioning systems are applied as complementary techniques 

(Farina 2007: 313). Remote sensing exists as an important observation and 

measurement tool for analysis of landscape ecological relationships and 

characteristics without disturbing the surrounding environment (Pelletier & 

Quattrochi 1991). Some of the important applications of remote sensing are 

environmental assessment and monitoring, global change detection, agriculture, 

nonrenewable and renewable natural resources, topographic mapping (Sabins 1996: 1; 

Schowengerdt 2007: 2). Using aerial photography and spatial analysis in retrospective 

studies is a precise and beneficial method of monitoring transitions of land-use and 

land-cover over a given period of time (Käyhkö & Skånes 2006; Käyhkö 2007; 

Käyhkö & Skånes 2008). 
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2 Aims of the study 

 

This study aims to identify and analyze land use and land cover changes (LULCC) in 

in Rekijoki valley area’s rural landscape composed of local settlement and 

agricultural practices distributed over 200 hectares. Land use and land cover (LULC) 

is classified over the period of 1959 and 2005, in total 46 years. Monitoring procedure 

is executed with applying fine-scale spatial categorization on the patch level; 

measuring landscape pattern, LULC dynamics and assessing featured calculations.  

 

Detailed aims of the research are the following: 

1. allocation and general pattern of changes; 

2. detects changes in edge character between arable land and valley area; 

3. probability predictions for future changes. 

 

It is assumed based on previous surveys that farming practices has reached to bigger 

extents, fields mean size has increased with overall growth in arable land ‒ 

agricultural landscape is changing towards homogenization. Also, one expects to 

detect some evidence on restoration efforts in the valley area, as the region under 

question has received instructions for additional management, including mowing or 

deforesting the valley area. Because of this, important results for the thesis outcome is 

the assumption that the managed meadows area whether has expanded or overgrown. 
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3 Concepts 

3.1 Agricultural landscape 

 

There are many different interpretations of term landscape depending on the 

phenomenon under consideration. Most landscape ecologists consider landscape 

simply as a spatially heterogeneous area whose spatial extent varies depending on the 

organisms or processes of interest (Wiens & Milne 1989; Wu & Levin 1994; Pickett 

& Cadenasso 1995). For example, from a wildlife perspective, one might define 

landscape as an area of land containing a mosaic of habitat patches (Dunning et al. 

1992). Definitions of landscapes include an area of land containing a mosaic of 

patches or landscape elements (McGarigal et al. 2002), which are the focus of the 

emerging discipline of landscape ecology (Forman & Gordon 1986: 11; Zonneveld & 

Forman 1990; Wiens et al. 1993). Landscapes are the mosaics where the mix of local 

ecosystems or land uses is repeated in similar form over a kilometers-wide area 

(Forman 1995: 13). 

 

 

Figure 1. Agricultural landscape mosaic. Numbers from 1 to 10 refer to the different elements of rural 

landscape: 1) patch 2) open ditches 3) barns 4) remnant forest patch 5) corridors between two remnants 

6) buffer zone 7) field edge 8) grassland 9) stony forested patch 10) farms area (photo: Tapio Heikkilä). 
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According to Forman (1995) landscapes are conceived as mosaics of three 

components: patches, corridors and a matrix. Patches are homogeneous, nonlinear 

area that differs from surrounding. Corridors are defined as strips of particular patch 

type differing from adjacent area and connecting patches. Agricultural landscapes 

consist of cultivated fields, field boundaries, semi-natural grasslands, built area, forest 

and stony islands in the fields (Luoto 2000; Tiainen et al. 2004). There is variety of 

elements that make up a agricultural landscape (Figure 1). The field patch is the 

smallest section of rural space and corresponds with a farming unit (Lepart & 

Debussche 1992). A farm as a conception, consist of area with main building and side 

buildings specialized to arable farming, machine-park and utilized agricultural area (at 

least one hectare) or livestock (Statistics Finland 2011: 268).  

 

Agricultural landscape creates with forests, human settlement, rivers and lakes 

(watercourses) a rich landscape mosaic (Tiainen 2004; Luoto 2000; Urban et al. 

1987). Landscape elements comprising ecological infrastructure (e.g. field margins, 

forest islands, wetlands) are important habitats for natural flora and fauna (Bengtssön-

Lindsjö et al. 1991). The ecological functions of the small habitats have become an 

important issue for discussion among plant ecologist and zoologist. It is commonly 

believed that road verges and other linear structures function as corridors for dispersal 

of grassland plant species between natural habitats in the rural landscape. Field 

margins within arable cropping systems provide a potential method of improving 

farmland biodiversity by increasing the availability of semi-natural habitats. Field 

margins are considered as non-cropped strips of land at the edge of arable fields 

(Woodcock et al. 2005). 

 

From the ecological perspective, agricultural environment is made of natural 

ecosystem, which humans have modified with agricultural activities. The position of 

agriculture from the ecological perspective may be based on the interrelationships 

between the different branches of agriculture and land use. Agriculture has 

traditionally been managed at the agroecosystem level and judged based on the crop 

yield. Olson & Francis, (1995) have defined agroecosystem as ‘integrated social, 

economic, and ecological systems designed to provide specific commodities and 

services and having hierarchical structure with multiple spatial and temporal scales’. 
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Agricultural management at the landscape level needs to be implemented based on the 

concepts of sustainability, hierarchy theory, and landscape diversity (Barrett 1992). 

The interactions among spatial elements, that is, the flows of energy, materials, and 

species among the component ecosystems form the function of landscapes (Forman & 

Gordon 1986: 11). Well-understood concepts about patch sizes, landscape 

connectivity, and edge effects must be complemented by considering ecological roles 

of the matrix and landscape ecology (Lindenmayer & Fischer 2006: 150). 

 

Agricultural landscape changes 

 

Land use change in the agricultural landscape is a complex phenomenon, and various 

types of change studies with markedly different outcomes could be identified. Change 

studies depend on the magnitude and abruptness of the change (Hobbs 2000). 

Agricultural land use involves the most dramatic and (mostly) irreversible 

transformations of land cover. According to Houghton (1991) seven broad types of 

agricultural land use change could be indentify: 1) conversion of natural ecosystems 

to croplands; 2) conversion of natural ecosystems for shifting cultivation; 3) 

conversion of natural ecosystems to pasture; 4) abandonment of cropland; 5) 

abandonment of pastures; 6) harvest of timber; 7) establishment of tree plantations. 

Arable land transformation processes occurring affects overall habitat connectivity, 

curvilinearity, circuitry, continuity, width and functions of the boundaries (Luoto 

2000). Different aspects of spatial pattern in the landscape may be important for 

processes such as the movement patterns of organisms, the redistribution of nutrients, 

or the spread of natural disturbance (Turner et al. 2001: 95). 

 

Agriculture broadly defined to include farming, fishing, grazing, and forestry plays a 

significant role in the management of land, water, and biological resources. 

Biodiversity has complex part in agricultural environment because agriculture is 

influenced tightly by natural impacts. It is obvious that potential effects of land use on 

biodiversity are most apparent in agricultural landscape. Development in agricultural 

production drives land-use changes, and thus controls the capacity of landscapes to 

preserve biodiversity. According to Skånes (1996) negative consequences follow 

when changes in land use reduce the amount and connectedness of natural areas. In a 
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managed landscape, semi-natural habitat, such as field margins, hedgerows, ponds, 

represent important areas for many species (Duelli & Obrist 2003). The most plant 

species rich habitats in agricultural landscape have been found on the margins of field 

and forest, as well field and road verges (Kuussaari & Heliölä 2004). Disappearance 

of certain landscape elements led to the formation of residual small biotopes, such as 

road verges and ditch banks (Skånes 1980). Habitat loss and fragmentation arguably 

pose the greatest threats to biological diversity (Swihart & Moore 2006).  

 

The decline of species associated with arable farmland has been well documented. 

Changes in landscape structure have been shown to have a clear impact on the 

biodiversity of invertebrates (Sepp et al. 2004; Schneider & Fry 2005), birds (Gregory 

et al. 2004). In a changing landscape where land abandonment occurs, the spatial 

distribution of species is dependent on their biological characteristics and the pattern 

of land use. Plants, carbides and spiders are used as biological types to exemplify the 

consequences of abandonment in a grassland area (Burel & Baudry 1995). The 

species composition and abundance is determined by landscape structure (Sepp et al. 

2007). Maintaining semi-natural habitats is key for preserving plant species richness 

and persistence of rare plants in agricultural landscapes (Baker 1989; Hansson & 

Fogelfors 2000; Duelli & Obrist 2003; Pykälä 2003; Luoto 2004). Compared to poor 

ecosystem, diverse ecosystem is more balanced and can withstand disturbances, like 

insects invasion (Pitkänen & Tiainen 2000). 
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3.2 Heterogeneity 

 

Simplest approach to convey spatial patterns is to ignore spatial variation and treat 

space as homogeneous (Wiens et al. 1995) (Figure 2). Accordingly, there are two 

ways to introduce spatial complexity: patch-matrix and mosaic. Spatial heterogeneity 

occurs in mosaics, where objects are aggregated, and forming distinct boundaries. A 

land mosaic may contain only patches, or may also contain corridors (Forman & 

Moore 1992; Forman 1995: 4). 

Figure 2. Spatial pattern in landscape ecological theory. Homogeneous landscape is changing to more 

heterogeneous as complexity raises. As features are added to the landscape one could discuss about 

‘patch-matrix’ and ‘mosaic’ entities. Adapted from Wiens et al. 1995. 

 

Spatial heterogeneity is termed as tendency of geographic places and regions to be 

different from each other (Longley et al. 2011: 101). Landscape is always spatially 

heterogeneous (an uneven, non-random distribution of objects), that is always has 

structure (Forman 1989: 173). Landscape heterogeneity is related to the extent to 

which a landscape viewed from the air is characterized by a diversity of 

environmental gradients or patch types. Diversity is central to holistic and cultural 

landscape studies (Antrop 2005). In heterogeneous landscape, structural complexity is 

high, when different vegetation types occur side by side offering different types of 

niches that can be used by different organisms; therefore supporting more species 
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(Lindenmayer & Fischer 2006: 146). Spatial heterogeneity has an important influence 

on a wide range of ecological patterns and processes (Schindler et al. 2007). 

Improving heterogeneity within and between arable land patches is recommended as 

key step towards ecological restoration. Fragment heterogeneity is also important part 

of habitats spatial characteristics. Greater microclimatic and vegetation variation in 

the more heterogeneous habitats allows individuals persist under severe weather 

conditions (Kindvall 1996). Spatial data exhibit an increasing range of values, hence 

increased heterogeneity, with increased distance (Longley et al. 2011: 101). 

Landscapes are heterogeneous because of interactions among the landscape elements. 

In agricultural landscapes the landscape elements such as pastures, cultivated fields, 

barns, ditches, vary markedly in structure from one another, resulting in a high degree 

of landscape heterogeneity (Zonneveld & Forman 1990). Different habitat types 

available in the heterogeneous landscape enhance species persistence to survive 

(Lindenmayer & Fischer 2006: 30). 

 

 

3.3 Landscape fragmentation 

 

An integrated view of the spatial characteristics of habitat fragments and their 

ecological consequences improves our ability to predict the outcomes of land 

conversion. In ecology, island biogeography theory and metapopulations dynamics 

support studies of habitat fragmentation (Collinge 1996). Ecological researches have 

commonly noted interpretation that the probability of local extinction increases as 

fragment size decreases, that is species richness declines as fragment area decreases 

(Collinge 1996). Landscape fragmentation is associated with three main ecosystems 

threats: loss of habitat, reduced habitat patch size, and increased isolation among 

habitat patches (Zeng & Wu 2005), which is why landscape fragmentation is 

considered to be Earth’s natural ecosystems main danger (Wilcove et al. 1986). 
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3.4 Connectivity 

 

Connectivity refers to the degree to which patches of a given natural habitat are joined 

by corridors into a network of linkages. This affects the ease with which species can 

move among vegetation patches in the landscape (Botequilha Leitão et al. 2006: 12). 

Landscape connectivity may be defined as a degree of a landscape to facilitate or 

obstruct the exchange of matter (organisms, energy, material, information) among 

landscape elements. (Wu 2013). There are several types of features that contribute to 

landscape connectivity. Linear landscape elements such as ditch banks can act as 

ecological corridors (allowing species movement) when they connect fragmented 

areas – habitat patches – to each other (Dennis & Fry 1992; Forman & Gordon 1986: 

131). Attributes of the corridors (width, length, location in the landscape) are 

influencing the use of such corridors by wildlife (Lindenmayer & Fischer 2006: 128). 

The line corridor species are highly affected by adjacent matrix characteristics, such 

as human activities, or wind and soil present (Forman & Gordon 1986: 132). 

 

Connectivity is as a measurement of how connected or spatially continuous a corridor, 

network, or matrix is (Forman & Gordon 1986: 591). Those two concepts refer to the 

structural connectivity (e.g. the fewer gaps, the higher the connectivity). Functional or 

behavioral connectivity therefore are considering how connected an area is for a 

process, like an animal moving through different types of landscape elements 

(Forman 1995: 38). Ecological studies of habitat fragmentation term the ‘corridor’ 

generally as linear landscape element composed of native vegetation which links 

patches of similar, native vegetation (Collinge 1996). Connectivity can be categorized 

in three different types: habitat connectivity, landscape connectivity, and ecological 

connectivity. Habitat connectivity is concentrated more on species, connectedness 

between patches of suitable habitat. Human perspective is perceived when one 

discusses about landscape connectivity – connectedness of landscape patterns of 

vegetation cover in the landscape. It is important to emphasize, some species perceive 

the landscape connectivity being low and other taxas connectivity being favorable. 

Higher levels of landscape connectivity as perceived by humans will not always 

directly correspond to higher levels of habitat connectivity for a given individual 

species (Lindenmayer & Fischer 2006: 121-124). Quantifying physical connections 
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linking vegetation patches, sizes and shapes of the patches assists connectivity 

researches (Schtickzelle & Baguette 2003). Lack of landscape connectivity can have 

negative impacts on assemblages: unoccupied vegetation patches (i.e., by pollinators, 

birds, plants). When landscape (matrix) provides connectivity, extinction risks 

because of foraging problems decrease (Laurance 1991). 

 

Corridors may also provide shelter, reduce water and wind erosion and enhance the 

aesthetic appeal of a landscape. Linear elements, like those for surface water 

movement (i.e. ditches in the agricultural landscape), have a concentration of weedy 

generalist species in a narrow area, and serve as a major filter to movement between 

adjacent patches, thus minimizing unwanted movements across large patches (Forman 

1995: 439). 

 

 

3.5 Edge 

 

Wherever two or more different habitat types abrupt, they form an edge, or ecotone 

(Sisk 2007: 152). Matlack (1993) has described the edge of a vegetation patch as a 

marginal zone of altered microclimatic and ecological conditions that contrasts with 

its interior. As most commonly perceived, ecotone is a ‘tension’ between two adjacent 

habitats and is generally considered as change in vegetation structure. Edges could be 

classified according by their origin – natural or human-derived (Luck et al. 1999). 

Some ecotones are created by disturbance (e.g. fire, human activities) and others 

occur as edaphic boundaries (e.g. soils, hydrology, and climate) (Johnston et al. 

1992). Agricultural landscapes often exhibit abrupt changes in land cover, i.e. sharp 

edges between areas serving as potential habitat for wildlife. Natural habitats are 

sensitive to influences from surrounding cultivated areas, such as fertilizer runoff and 

invasion of agricultural weeds. This is especially an issue for small fragments, where 

much of the fragment is exposed to edge-effects. Edge-based landscape metrics are 

effective measures of landscape fragmentation capturing important aspects of 

landscape fragmentation (Zeng & Wu 2005). 

 

An edge could be characterized considering spatial relationships with surrounding 
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landscape (Forman 1995: 86). An edge, border and boundary can have different 

meanings and functions, however considered spatially adjacent (Figure 3). 

 

 

Figure 3. Spatial relationships of boundary, border, and edges in the forest-field edge structure. The 

boundary zone incudes edges on both sides of borderline. Width (W), verticality (V), and from (F) are 

measureable parameters characterizing the boundary (adapted from Forman & Moore 1992; Forman 

1995: 86). 

 

Edge effects exist where transformed areas are adjacent to natural areas. Lindenmayer 

& Fischer (2007: 168-169) have classified edge effects broadly to biotic and abiotic 

processes. Abiotic edge effects are microclimatic, such as increased temperature or 

light, or humidity changes, altered fire ignition, and wind pronounce. Biotic factors 

affect ecological communities through boundary, like diseases, weeds and predators, 

altered levels of insect activity, altered invertebrate community composition, and 

lowered rates of fledging success among birds. Forest edges typically contain more 

shade-intolerant species than the interior (Ranney et al. 1981). More weedy vegetation 

at the edge attracts generalized animals. In managed landscapes, changes in the size 

and spatial configuration of remnant forest patches may have important ramifications 

for species that utilize these patches (Burgess and Sharpe 1981). High-contrast 

(‘hard’) edges, such as those between forests and grasslands, leads to more to more 

intense interactions, than low-contrast (‘soft’) edges, such as those between different 

grasslands (Yahner et al. 1989). 
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Edge effect is related to the matrix and other landscape units. The negative effects of 

edges on biodiversity have become well recognized (Murcia 1995). Edge-sensitivity 

species are among those at particular risk in heavily modified landscapes (Lehtinen et 

al. 2003). Several species lives on the border zone of arable land and forest, and 

through this, field’s impact may reach deep in the forest (Tiainen et al. 2004). 

Elevated nest predation is often observed in agricultural landscape where there is 

high-contrast with surrounding landscape (Andrén 1992). Important landscape 

features correlating with the distribution of bumblebee species have been found in the 

length of ecotones between agricultural land and different forest types (Roose et al. 

2007). 

 

The shape of vegetation patches and distance from the edge follows form and function 

principle. The rounded from, with a minimal perimeter-to-area-ratio, is important in 

conservation biology. In contrast, a convoluted boundary with a high perimeter-to-

area ratio is characteristics for systems with considerable interchanges of energy, 

meaterials, or organisms with the surroundings (Forman & Gordon 1986: 177). 

Changes induced by habitat edges markedly influence the ecological processes in the 

patches. Linear patches are more prone to effect than elliptical or circular ones 

(Reading et al. 1996). Geometric shape of a discrete habitat fragment influences the 

extent to which edge effects permeate the habitat interior. Shape can be described 

most simply by calculation of the perimeter/area ratio for habitat fragment. Human 

activity tends to linearize boundaries between habitats and simplify the complex 

shapes of habitat fragments (O’Neill et al. 1988). 

 

 

3.6 Traditional rural biotopes 

 

Traditional rural biotopes are areas which have been created by traditional livestock 

farming. These biotopes are used to be mowed and grazed, but occasionally also 

cleared, burned or flooded (Alanen & Pykälä 2004: 192). Traditional rural biotopes 

include various types of meadowland, moorland, wooded pastures, and areas of 

woodland cleared for shifting cultivation (Heikkilä 2011). Society has learned to 

appreciate the traditional biotopes in last decades, although disappearing of them has 
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been known for long (Haeggström et al. 1995: 107-109). In 2005-2006 there was only 

45 % (1548 ha) of the significant biotope areas managed in southwest Finland. 

Construction and eutrophication have also had a part in accelerating the disappearance 

of traditional rural biotopes (Alanen & Pykälä, 2004: 198-202; 209). 

 

 

3.7 Change detection 

 

There are many reviews of change detection methods and remote sensing technology 

for mapping and monitoring of LULCC available and each one has variations 

depending on the imagery type, final purpose, and the type of change to be 

discovered. There is a spectrum of ways to consider landscape change, ranging from 

simple and readily interpretable, to more complicated and less interpretable. Different 

change detection procedures have their own merits and no single approach is optimal 

and applicable to all cases (Lu et al. 2004). Temporal change detection task is to 

compare minimum of two time sets of imagery to identify changes. The results of a 

comparison can be, for example, polygon, line or point features of LULC, 

representing size, shape and spatial position, occurring in the temporal horizons in 

question (Feranec et al. 2007). Land cover change detection recognizes two forms: 1) 

conversion from one land cover category to another (e.g. from forest to arable land) 

and 2) modification within one category (e.g. from deciduous forest to conifer forest). 

These two forms of change have implications for the methodology used to describe 

and classify land cover. According to Coppin et al. (2004) several approaches have 

been developed for digital change detection identification by remote sensing data 

application: bi-temporal change detection methodologies (same area at two points in 

time) and multi-temporal (several time intervals with multiple imagery) trend 

analysis. 

 

Landscape ecology in not only concerned of the question that how much there is 

particular component in the landscape, but also how it is arranged and how the pattern 

has changed (Turner et al. 2001: 4). In landscape changes research, finding out 

whether the terrain’s pattern is different at time t + 1 than it was at time t, is one of the 
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main purposes. Generally said, change is alteration in the structure and function of 

ecological mosaic over time (Forman & Gordon 1986: 11). 

 

 

3.8 Transition matrix 

 

LULC datasets may be compared between time periods using geographic information 

systems (GIS) to map and measure LULCC in variety of scales. The advantage of GIS 

techniques is ability to manage different LC maps by means vectorial operations like 

”intersect” and “union”, in order to easily evaluate the amount of change (Petit & 

Lambin 2001). The most common method of examining change is to overlay maps 

representing the spatial distribution of a variable of interest at two different time 

periods. This technique is widely used within both the raster GIS environment (Lo & 

Shipman 1990) and the vector GIS environment (Ahern et al. 1990). The overlay 

method is also used to construct change maps, which are easy to interpret visually 

(Schlagel & Newton 1996). One way to summarize landscape change is to count the 

landscape, on a category-by-category basis, in which a polygon consists of changed 

cover types if certain time interval. A concise way of summarizing these tallies the so-

called change matrix, where for N cover types is an NxN matrix. When calculating 

change, an image changes from one land cover type and changes to another. This 

matrix reflects the size of the images and changes from type i to type j over time 

interval (Fichera et al. 2011). In addition, the matrix can be used to identify changes 

that are unlikely to occur (e.g. urban area changing to a forest). 

 

Scientists can analyze transition matrix at several levels. To monitor total change in 

landscape it is useful to observe two pairs of components: net change and swap, as 

well as gross gain and gross losses. The diagonal numbers of matrix indicate the 

persistence of a category. The persistence is used to compute gross gain and gross 

loss, which show the change quantity, respectively. At the most general level of 

information, the total row in change matrix lists the quantity of each category at time 

2 and the total column lists the quantity of each category at time 1. The difference 

between the two is termed net change. A lack of net change does not automatically 

indicate a lack of change on the landscape. Change can occur in such way that the 
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location of a category changes, while the quantity of category remains the same. This 

type of change consisting allocation is termed swap. Mostly, only quantity of the net 

change is documented, which makes it important to account for swap in analysis 

(Pontius 2004). 

 

Land use change from one period to another is a basis to project future changes. 

Method for modelling landscape changes is first-order Markov chain. The method is 

based on probability that a given piece of land will change from one exclusive state to 

another (Aavikson 1995). The future state of a system can be modeled on a basis of 

the immediately preceding state, by developing a transition probability matrix of land 

use change per category from time 1 to time 2. Markov chains are adaptable to many 

applications; hence they are centrally important to theoretical probability (Reddy et al. 

2009). 
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4 Methodological framework 

 

The human landscape is most common scale of research activities and the study of 

landscape change is an important component of landscape ecology. This study is 

based on the principles of the landscape ecological science and wears theories and 

models originated from this framework. 

 

 

4.1 Landscape ecological theories and models 

 

Many disciplines have contributed to the development of landscape ecology in the 

past few decades (Turner 1989; Wu & Hobbs 2007: 3; Fu et al. 2008). Contemporary 

landscape ecology is interdisciplinary science, hence relationship between organisms 

and their environment involves a myriad of biology, physiochemical, and geospatial 

process (Wu & Hobbs 2007: 271; Fu et al. 2008). Ecological concepts, theories, and 

methods come from a number of different branches of practices, including botany, 

zoology, evolutionary biology, genetics, physiology, soil science, physics, chemistry, 

geography, meteorology, climatology and remote sensing (Wu & Hobbs 2007: 280). 

Landscape ecologists represent a diversity of disciplinary backgrounds and landscape 

ecology gathers people who are interested in landscapes from different aspects – e.g. 

from the hard-core spatial ecology to the landscape history, aesthetics, and design.  

 

In landscape ecology, three landscape characteristics, structure, function, and change 

are considered (Turner 1989; Zonneveld & Forman 1990; Forman 1995: 5, Botequilha 

Leitão & Ahern 2002). Landscape ecology studies both, the fundamental ideas 

concerning those characteristics, and their application, that is, the use of these 

principles in the formulation and solving the present matters (Forman & Gordon 

1986: 11). 

 

Ecology is generally defined as the study of the interactions among organisms and 

their environments (Forman 1995: 19). In the subject as a whole, landscape ecology 

can be seen primarily as a means of dealing with spatial patterning and heterogeneity 

and building this on the foundation of ecosystem, community and population ecology 
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(Turner et al. 2001: 2; Risser et al. 1984; Urban et al. 1987; Wiens et al. 1993; Pickett 

& Cadenasso 1995). Landscape ecology is perceived as scientific underpinning for 

spatial planning and management of landscapes, particularly in human-dominated 

settings (Turner 1989). Today, the most widely used definition of landscape ecology 

is simply the study of landscapes, explicitly focused on the relationship between 

spatial pattern and ecological processes on the hand and nature-society interactions on 

the other hand over a range of scales (Pickett & Cadenasso 1995; Turner et al. 2001: 

2; Turner 2005; Wu & Hobbs 2007: 281). Socioeconomic factors, such as prices of 

agricultural or forestry products, are increasingly considered in contemporary 

landscape ecology that emphasizes the driving mechanisms and environmental 

impacts of landscape change (Turner & Gardner 1991: 10; Fu et al. 2008). Landscape 

ecology provides much of value for those wishing to conserve or manage the planet 

and its inhabitants. 

 

GIS have contributed to emerge of landscape ecology (Turner et al. 2001: 9). Remote 

sensing techniques are often used in inventory and mapping of natural capital, 

quantification of environmental characteristics, describing the flow of matter and 

energy in the ecosystem, and evaluating change and optional solutions for ecosystems 

management (Johnson 1969: 220). 

 

Theories simplify a complex reality so that one can achieve some understanding and 

make reliable predictions. Most ecological theories incorporate assumption about 

cause and effect. When pattern observed in nature matches that contained in a theory, 

one can then look in the theory to have explanation for the observed pattern. 

Landscape ecology, as any other science, searches for solutions using theories that 

contribute to generating questions. Two landscape ecological theories that are 

emphasized through recent study are hierarchy theory and percolation theory: 

 

Hierarchy theory 

 

Spatial patterns and functional processes vary with level of scale, which enhances the 

understanding of the landscape ecology by combining empirical studies at different 

levels with the concepts of hierarchy theory (Allen and Starr 1982). When landscape’s 
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spatial heterogeneity is considered, the explicit treatment of scale becomes necessary 

and hierarchies emerge (Wu 2013). Landscape ecology is the science of studying and 

improving the relationship between spatial pattern and ecological processes on a 

multitude of scales and organizational levels. Natural systems are difficult subjects 

under research and they can be handled if they show particular kind of ordering (Atlan 

1974). A landscape as a hierarchical concept is an operational system with each level 

containing levels below it. An important development of hierarchy theory has 

considered extrapolating information upscale (O’Neill 1995). This means, that the 

dynamics of the higher level cannot be represented by the same functional form as its 

components. The elements of hierarchical landscape are linked together with flows 

(e.g., movement of animals, gaps in forest stands, regional processes controlling local 

species richness), which are associated with the three main hierarchical linkages: (1) 

encompassing element at the next higher level, (2) close elements at the same scale, 

and (3) component elements at the lower level (Forman 1995: 9).  

 

Complexity is a fundamental part of the hierarchy concept. The more components that 

are included in a system, the more complex the system becomes. Hierarchy theory 

refers, how a system of discrete functional units linked at two or more scales, 

operates. Also it useful because it requires explicit characterization of scaled 

relationships that exist between pattern of interest and ecological determinants of the 

pattern (Farina 2007: 64; O’Neill et al. 1986: 4). The hierarchy theory considers a 

system as a component of the larger system, which in turn, is composed of 

subsystems. In recent study landscape classification is one example of a hierarchical 

framework. 

 

Percolation theory 

 

Originally percolation theory was formulated to study the behavior of fluid spreading 

randomly through a medium and the subject has been intensively studied in the field 

of physics. In percolation concept, the effects of structural features of landscapes (e.g. 

boundaries, corridors) are mediated by movement (Wiens 1995). Percolation theory 

has been applied in the research of landscape boundaries (Gardner et al. 1992). The 

principal advantage of percolation theory is that it provides universal laws which 
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determine geometrical and physical properties of a system (Berkowitz & Balberg 

1992). Percolation theory deals with spatial patterns in randomly assembled systems, 

like clusters in the square lattice (Stauffer & Aharony 1992: 1-2).  

 

The application of percolation theory to landscape studies has addressed a series of 

questions dealing with the size, shape, and connectivity of habitats as a function of the 

percentage of a landscape occupied by that habitat type. In the studies of landscape 

contagion effects, disturbances, forest fires, and pest outbreaks can be employed in 

view of percolation theory (Turner 1987). Percolation theory offers important insight 

into the nature of connectivity (or its inverse fragmentation) on landscapes (Gardner 

et al. 1992; Fonseca et al., 1996; Milne et al., 1996). A percolation model is a 

collection of points distributed in space, certain pairs of which are said to be adjacent 

or linked. Two basic types of percolation mechanism are conferred site percolation 

and bond percolation (Essam 1980). Site percolation involves a probability, that any 

site is open independently of the other sites, whereas bond percolation deals with 

paths, which connect certain pairs of sites (Turner et al. 2001: 18-19). Percolation 

theory has been used in assessing habitat fragmentation effects and the use of 

corridors as management tools (Wiens 1995). Percolation models describe the 

probability that an organism will move across a landscape composed of integrated 

elements as a function of relative proportions enhancing or restricting movement. In 

landscape ecology percolation theory is applied for example in preparing neutral 

models (Gardner et al. 1987). In this study percolation theory is considered in 

assessing the landscape connectivity questions and in orientating in the character of 

the forest-field boundary. 

 

Landscape models 

 

A landscape model can be defined as a conceptual tool that provides terminology and 

a visual representation that can be used to study how organisms are distributed 

through space (Lindenmayer & Fischer 2007: 36). Models provide a variety of 

valuable purposes in the researches, helping to identify problems and concepts more 

precisely and clearly, and to make predictions. However models should be regarded as 

methods to achieve a conclusion and should not be considered as goal unto 



24 

 

themselves (Turner et al. 2001: 48-49). Models may be classified and described in 

various ways: deterministic or stochastic; dynamic or static; continuous or discrete 

time; mechanistic, process-based, or empirical models (Turner et al. 2001: 67). A 

model is spatial when the variables, inputs, or processes have precise spatial locations. 

A spatial model is needed when explicit position – what is present and how it is 

arranged – is an important determinant of the process being studied (Baker 1989). 

According to Turner et al. (2001: 54) spatial models are important in following 

conditions: spatial patterns being as independent variables in the analysis; predicting 

spatial variation and change of an attribute of interest through time; question involves 

sets of processes of biotic interactions that generate pattern. 

 

Baker (1989) has categorized models of landscape changes as whole landscape model, 

distributional landscape model, or spatial landscape model, depending on the amount 

of detail included in the models. Forman (1995) has listed several spatial modeling 

types related to landscape pattern on the basis of techniques used. Some of the 

corresponding model’s ideas regarded in the basis of this study are as follows:  

neighborhood models, network models, patch and corridor simulation models, patch 

dynamic models, economic land-use models. 

 

Relationships between landscape pattern and measures of species occurrence can be 

captured by pattern-based landscape models. Common goal of such models is to 

reduce the complexity created by analyzing single species (Lindenmayer & Fischer 

2006: 35). According to Lindenmayer & Fischer (2006: 31-34) three landscape 

models are used particularly frequently: island model; patch-matrix-corridor model; 

variegation model. The islands model conceptualizes landscapes as fragments of 

habitat patches surrounded by cleared landscape – analogous to oceanic islands in a 

sea (Haila 2002: 31). In such model, islands (patches) can be defined for all species, 

boundaries of the islands are distinguished and conditions on the islands are relatively 

homogeneous. There are several other theories developed from islands theory, such as 

wildlife corridors, nested subset and notion of vegetation coverage thresholds. Matrix 

is the dominant and most extensive part of the landscape with major control over 

landscape dynamics. Patch-matrix-corridor model is an extension of the island model. 

The matrix is important, because it provides habitat, landscape connectivity and 
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native vegetation (Lindenmayer & Fischer 2006: 149). As previously described model 

has some simplifying assumptions for example not taking into account spatial 

continua of the landscape (edge effects), then variegation model is used (McIntyre & 

Barrett 2003). Variegation model takes into account small habitat elements, which 

might otherwise be classified as unsuitable habitat patches. It is used, when 

boundaries between patch types are diffused and differentiating them from the 

background matrix is not straightforward (Lindenmayer & Fischer 2006: 35). 

Elements of structural complexity that are particularly important to many species may 

be defined as “keystone structures”. These elements can be scattered trees, shrubs, 

wetlands, old logs, wetlands or many other (Tews et al. 2004). 

 

There is a broad spectrum of approaches implementing models of landscape patterns 

and processes, and linking these models to GIS data is common. Models are necessary 

for landscape studies for several reasons: experimental manipulation of large 

landscapes often cannot be performed at the appropriate scale; experiments are 

expensive and logistically difficult, because of high cost and logistical difficulty 

involved (Turner 1989; Turner et al. 2001: 49). In landscape models, it is necessary to 

have a suite of models of different levels of complexity, and to understand the 

consequences of suppressing or incorporating detail (Levis 1992: 1960). 

 

 

4.2 Landscape indices 

 

Prerequisite to the study of landscape change are metrics - measurements designed to 

quantify and capture aspects of landscape pattern (Griffith et al. 2000; McGarigal et 

al. 2002). Analysis of landscape pattern and structure can consider a large number of 

metrics and the use depends on the interest of research (Haines-Young & Chopping 

1996; Farina 2007: 315). The majority of researches use landscape metrics in 

biodiversity and habitat analysis. There are also many studies focused on relationship 

of landscape metrics with the evaluation of landscape pattern and changes therein 

(Uuemaa et al. 2009). 
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Landscape metrics attempt to capture three groups of phenomena: landscape 

configuration, composition and connectivity (Figure 4). Landscape composition refers 

to features related to the presence or amount of land cover types. Landscape 

configuration and connectivity refers to the spatial distribution of those land cover 

types and includes measures of the placement of cover types relative to one another, 

and measures of shapes (McGarigal et al. 2002). All metrics are effective in 

quantifying a certain component of spatial patterns: “patchiness”, size, shape, 

composition, juxtaposition, and arrangement of landscape units (Peng et al. 2010; 

Lindenmayer & Fischer 2006: 189-190; Lausch & Herzog 2002). 

 

 

Figure 4. Landscape mosaic containing measurable parameters. Diversity, evenness, shape and patch 

density are parameters referring to whole landscape, whereas spatial configuration within the mosaic is 

determined with connectivity, size and distribution, boundary’s properties and contrast (adapted from 

Wiens 1995). 

 

According to recent study following metrics according to the landscape pattern 

measured were chosen: area/density/edge metrics, shape metrics, and diversity 

metrics. Within each of these groups, FRAGSTATS provides spatial statistics and 

metrics at the patch, class and landscape levels (McGarigal et al. 2002).  

 

Landscape-level metrics are useful for an initial overall analysis, class-level metrics 

for a more in-depth analysis, and patch-level metrics for further detailed studies 

(Botequilha Leitão et al. 2006: 207). 
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According to Li & Reynolds (1994) spatial heterogeneity can be classified into five 

main components: (1) number of patch types; (2) proportion of each patch type; (3) 

spatial arrangement of patches; (4) patch shape; and (5) contrast between neighboring 

patches. Landscape metrics could be used for several monitoring purposes, including 

monitoring landscape structure and ecological functions. Consequently, landscape 

metrics are best understood as comparative measures of landscape condition. As each 

landscape metric provide only partial description of landscape pattern, it is efficient to 

use several metrics in combination to provide a more complete understanding of the 

pattern-process relationships under consideration. Particular attention should be given 

to the appropriateness of the map classification scheme, the scale of the landscape, 

and the digital data model (vector or raster) (Botequilha Leitão et al. 2006: 207). 

 

Metrics should be used critically, being aware of their applicability and inherent 

limitations: they are most useful when they are properly framed by theoretical 

principles (Wiens 1999). Many landscape indices are highly correlated; they quantify 

a similar or identical aspect of landscape structure. For example, at the landscape 

level patch density (PD) and mean patch size (MPS) will be perfectly correlated 

because they represent the same information. Metrics are also scale dependent, 

making it difficult to compare results from different landscapes. Interpreting the 

results needs several knowledge of the landscape ecology, as the results do not 

necessarily link to land management prescriptions (Lindenmayer & Fischer 2006). 

 

 

4.3 Issue of scale 

 

Scale is level of spatial resolution perceived or considered. The perceived pattern of a 

landscape is influenced by the scale at which the landscape is represented. 

Understanding the range and sensibility of variability in landscape due to changes in 

scale and criticism to the appropriate use of landscape is important, as it has serious 

implications for the analysis and interpretation of landscape metrics (Gergel & Turner 

2002: 101). 
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There is no single natural scale at which ecological phenomena should be studied; 

systems generally show characteristic variability on a range of spatial, temporal, and 

organizational scales (Levin 1992: 1943). Scale is important in several aspects of 

landscape ecology, from factors affecting individual organisms to continental plate 

tectonics and the evolution of floras and faunas (Turner et al. 2001: 8; Forman & 

Gordon 1986: 16). Irrespective of the landscape concept used, there are two major 

approaches to landscape ecology, reflecting differences in scale. The most common 

approach is the elucidation of the interactions among adjacent elements: fine-scale 

mechanisms. Fine scale refers to the pattern of a small area, where the differences 

between maps sizes and actual sizes are relatively low. The second approach focuses 

on the coarse-scale dynamics and behaviors of the elements as a whole. Coarse scale 

or broad scale refers to the pattern of a large area, where the differences between the 

map area and actual size is great. For example the use of satellite data enables change 

detection to be done over broad spatial scales.  

 

New technologies and research techniques, such as geographic information systems 

and electronic databases focusing on spatial patterning and dynamics, integrate these 

approaches (Pickett & Cadenasso 1995; Forman 1995: 9). For example, plot 

experiment and laboratorial works are appropriate at fine scales, but broad scale 

studies (e.g. hurricanes, volcanic eruptions, earthquakes) are more proper in computer 

environment, where replication is possible. Insights gained at one scale could not 

necessarily be translated directly to another scale, hence attention should be focused 

directly on the scale at which a phenomenon of interest occurs (Turner et al. 2001: 9). 

Since spatial scales are important, temporal scales inevitably are, too. Spatial scale is 

closely related to temporal scale for a particular phenomenon i. e.: at the microscale, 

(natural and human disturbances affecting the species), or at the macroscale, (regional 

climatic changes affecting displacement of ecosystems). Hence the landscape, with its 

heterogeneity and causative mechanisms, would be a single distinct recognizable level 

of spatial scale (Forman & Gordon, 1986: 16-17). 

 

The image interpretation element texture has important function of scale. For 

example, in a large-scale aerial photograph (e.g. 1:500, it is able to distinguish 

between branches in the canopy of a stand of trees and describe it as coarse texture. 

When, the scale becomes smaller (e.g. 1: 5000), the tree crowns might coalesce and 



29 

 

the texture becomes smoother (Jensen 2007: 137). Current studies analyses are based 

on fine-scale, supporting relatively detailed image interpretation. 

 

 

4.4 Land use/land cover classification 

 

The quantification of landscape pattern is useful for understanding the effect of 

pattern on ecological processes; and for documenting either temporal changes in a 

landscape or differences between two or more landscapes. Landscape patterns may be 

represented by categorical maps, where homogeneous patches exhibit relatively 

abrupt transition to adjacent areas (Gustafson 1998). In the studies on landscape 

patterns, the primary data mainly come from categorized maps, like vegetation, soil, 

and land use/land cover maps. There are specific challenges of using aerial 

photography, especially with respect to manual aerial photograph interpretation 

(Morgan et al. 2010).  

 

Classification as an approach carried out for studying the interaction between human 

activity and the landscape is a crucial task because how a landscape is defined, 

characterized and classified can have significant effect on a wide range of land 

management decision and to the outcomes of the study (Lindenmayer & Hobbs 2007: 

49; Farina 2007: 10). It is important to note that classification is an abstraction as it 

depicts a representation of the reality (di Gregorio & Jansen 2000b). Classification 

represents a relevant procedure in the study of the land mosaic, especially from the 

human perspective (Farina 2007: 10). Classification of landscape data is required for 

most spatial metrics to perform landscape pattern analyses (Turner et al. 2001: 133). It 

is relevant to interpret landscape patterns as precise as possible to avoid 

misclassification that causes errors in results of metrics calculations (Langford et al. 

2006). The map must be classified in a manner appropriate to the application or the 

metrics will have little meaning (Botequilha Leitão et al. 2006: 56) 

 

The important characteristics of image influencing the interpretation include scale, 

brightness and tone; image contrast, resolution and resolving power (Sabins 1996: 6-

9). Classification principles change according to purposes, scale and means of 
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investigation (e.g. interpretation of satellite imagery, field plot sampling or statistical 

methods), time and available financial resources (di Gregorio & Jansen 2002). 

Classifying landscapes as patches uses many approaches according the ones 

perceptive capacity (Farina 2007: 10), for example: structural patch (associations of 

vegetation), habitat patch (distinct plant community types), and corridor patch 

(narrow strip of land). 

 

In some researches it is important to interpret land cover relating it to land use 

(natural, modified-cultivated or artificial). Still, there are principal differences 

between land cover (LC) and land use (LU). Land cover refers to the biophysical 

cover over the surface land, including water, vegetation, bare soil, glaciers, rocks and 

artificial structures, like cultivated vegetation and infrastructures (depicts the 

materials or resources). Land use is defined in terms of human activities or economic 

function, such as agriculture, forestry and building construction that alter land surface 

processes (illustrated how a piece of land is used). Land use dynamics are indicators 

of the land cover changes (Gomarasca 2009; Ellis & Pontius 2010; Lillesand et al. 

2008: 213). Land cover may be observed directly (field work, remote observation), 

while land use monitoring is broader depending from different aspects and purposes: 

socio-economic purposes, managed or unmanaged land under observation, ownership 

issues. Ideally, land use and land cover information should be presented on separate 

maps. However, while land cover information can be directly interpreted from 

images, information about human activity on the land cannot always be inferred 

directly from land cover (Lillesand et al. 2008: 214). 

 

Physiognomic attributes are relevant for identification of LULC classes (Feranec et al. 

2007). The elements of image interpretation include: location, tone and color, shape, 

size, texture, pattern, shadow, height and depth volume, slope, aspect, site, and 

association (Jensen 2007: 131). These attributes vary depending on the study. In 

agricultural landscape studies, one have to identify and distinguish greenery, 

arrangement and share of areas of crops and agricultural land, relationships of 

grasslands with urban fabric, occurrence of dispersed cottages, permanent crops and 

natural vegetation, and irrigation channel network. Semi-natural areas characteristics 

relevant for researches are classified based on development stage and arrangement of 
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vegetation (trees and bushes), and composition density. Conventional LULC maps are 

categorical, dividing land into categories of land use and land cover (thematic 

mapping) (Ellis & Pontius 2010). 

 

Agricultural landscape consists of several types of different and distinguished 

ecosystems i.e. field, hedgerow, wood, main road, side road and farmyard. These 

ecosystems combine a cluster of ecosystems type, which are likely to find randomly 

from some other place in the landscape. The second cluster may differ from first 

cluster in means that farmyards are greater or fewer dirt roads are presenting other 

place (Forman & Gordon 1986: 8-9). These ecosystem clusters are recognized as 

landscape elements, which are usually identifiable in aerial photography and often 

each element type (i.e. woods, side road with margins, farmyard) is represented by 

one or more actual elements. 

 

The boundary of a landscape element depends of the research objectives and may 

vary based on geographic, ecological, or administrative units (e.g. a river, a rural area, 

or a county) (Wu 2013). Ecotone’s, as type of boundary, detection requires the ability 

to determine spatial change. Therefore, GIS can be used to quantify ecotone’s length, 

fractal dimension, and distribution and to determine the location of boundaries. The 

purpose of delineating boundaries on aerial photos is to differentiate dissimilar 

patches in the landscape. For linear ecotones, such as those associated with streams or 

ditches, a GIS can be used to establish buffer zones of a given radius surrounding the 

line. Ecotones may by be recognized not only by spectral reflectance, but also by 

vegetation height, texture, and pattern. Boundary distinctness in a landscape is scale 

dependent. A boundary that is distinct at one scale may be obscure when examined at 

a coarser scale (Johnston 1992). 

 

Crop-type classification is based on the premise that specific crop types can be 

identified by their image texture and tone. Successful identification of crops require 

knowledge of the developmental stages of each crop in the area inventoried. One 

presume the attributes of arable land according to the expected developmental status 

and appearance of each crop in an area throughout the year (Lillesand et al. 2008: 

235). 
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5 Study area 

 

The study area is situated in Somero municipality, southwestern Finland. Research’s 

coverage of 200 ha is part of river Rekijoki valley (Figure 5), covering part of Häntälä 

depressions and core of Talvisilta village, which lies at 60,58885°N-23,37964°E; 

60,57103°N-23,37964°E. 

 

Figure 5. Location of the Rekijoki study area in SW Finland. Source National Land Survey of Finland 

(NLS). 

Turku 

● 
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Rekijoki valley contains extensive areas designated for nature conservation, providing 

protection for threatened habitats and species. V-shaped steep slopes are dominated 

by forests and semi natural meadows, which are remnants of traditional landscape. 

There is also a prosperous agricultural production in the region. Rekijoki river valley 

is considered as unique, exceptionally wide, and connected wholeness of cultural 

historic area (Ympäristöministeriö 1992; Lehtomaa 2000a). 

 

 

5.1 Physical characteristics 

 

Rekijoki river starting from the Reksuo swamp has carved deeply through steep-slope 

(30°) valley over thousands of years forming nowadays curved shape. In Talvisilta, 

Häntälä, Saarentaan and Syvänoja village’s area, Rekijoki river and its branches 

(Aitaniitunoja, Syvänoja and Häntälänoja streams) from different directions have 

eroded the channels even to 30 m deep (Tarmio et al. 1967: 138; Ikonen et al. 2001), 

which makes the arable land up to 90 m above sea level (Lindgren 1960: 47). South-

Finland’s continental clay soil is usually about 9 m thick. In Häntälä, clay deposits are 

the thickest, maximally up to 77-80 m (Neuvonen 2006: 60; Haavisto et al. 1980: 30). 

 

The mean annual temperature in southwest Finland during the period of 1981-2010 is 

measured between 4 and 5 º C and the annual average precipitation is between 650-

700 mm (Finnish Meteorological Institute). Based on Northern growth zones, 

Rekijoki river valley is situated in south boreal growth zone. Rekijoki valley with its 

favorable location and climate is suitable area for agricultural practices compared to 

some other southern parts of Finland (Lounais-Suomen Ympäristökeskus 2008). More 

flat areas are under cultivation and valley slopes are used traditionally are pastures 

(Ympäristöministeriö 1999). 
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5.2 Flora and fauna in Rekijoki 

 

Area’s flora is influenced by vicinity of coastline and inner land species. The 

generous herbarium depends largely of the traditional land use (Lounais-Suomen 

Ympäristökeskus 2008). Even if humans haven’t consciously spread them, they are 

dependent of human made habitats, ditches verges and old mansion’s yard lawns 

(Lindgren 1960: 51; 1955: 149). Dropwort (Filipendula vulgaris), seen in vicinity of 

the stream and roadside in Talvisilta (Lindgren 1955: 150), is considered to be 

indicator of Iron Age settlement. Häntälä depressions are considered to be sort of 

nature collection over times. Unique geomorphology (landslides) and agricultural 

activity has influenced development of exceptional species. In Rekijoki valley area, 

some animal species are specialized specifically to use grass eating animals dungs as 

habitat, which are no more found in any place in Finland (Haarto et al. 2002). In the 

whole area could be found several wooded meadow species, which in near 

environment are rare, not seen even in the entire Somero municipality, like spring 

fumewort (Corydalis solida). Valley has a powerful spring-effect, which can be seen 

in massive blossoming (Alanen & Pykälä 2004: 201; Torkkomäki 1998: 18-23, 

Kotula & Pykälä 2000: 22-23). Valley’s forests are generally coniferous dominated 

and recently developed, but not typical due to slopes unusual micro-climate, soil 

composition and hundreds of years continued pasturing. The dryness and dominant 

alders or junipers are difficult to succeed in vegetating efforts (Kontula & Pykälä 

2000). In 1955, Lindgren has mentioned that wooded meadows are in low area 

proportion and deciduous trees are rare. Where there are no meadows or pastures, 

there it could be found grey alders (Lindgren 1960: 47-48). Grey alders are used as 

habitats by flying squirrel, whose population is protected in Rekijoki valley area. 

 

Beside of rich selection of plant species, the area has also remarkable population of 

butterfly species; especially threaten ones (Ympäristöministeriö 1992). Clouded 

Apollo’s (Parnassius mnemosyne) only inner land population is situated in Häntälä 

depressions (Somerma & Väisänen 1994; Hæggström 1995: 133; Lounais-Suomen 

Ympäristökeskus 2008) It hasn’t been seen in any other Finnish inner land area and 

has been protected since 1976. Clouded Apollo’s population is considered to be only 

couple of hundred (Torkkomäki 1998: 47). The overgrowing of the meadows and 
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traditional habitats is threat for butterflies’ local extinction (Nieminen 1998). The 

caterpillars feed exclusively on Corydalis plant species (Heliölä et al. 2010). On the 

upper edges of the depressions rare mushroom species are found (Vauras 1998). 

Umbrella mushroom (Macrolepiota excoriata) habituating in three different pastures 

has been in recession since 1990-s. 

 

 

5.3 Land use history of Rekijoki 

 

Human activity and cattle grazing have shaped the valley landscape and also plant- 

and animal species composition over hundreds of years. Before early civilization 

landslides have kept the depressions slopes opened. Specific to the valley landscape is 

the mosaic pattern of old forest. These remnants have remained because of the 

difficulty of passing through the area. Open meadows, semi-open pastures on the 

slopes and wooded meadows have been survived extraordinarily long especially in 

Häntälä-Talvisilta area. As a result of developments in agricultural practices in the 

middle of 20
th

 century, traditional meadows almost disappeared from South-Finland’s 

countryside and amount of pastured area decreased substantially. This phenomenon 

raised aesthetical and bucolic value for the depressions and landscape that ‘survived’ 

from this time period (Torkkomäki 1998: 6–7). In Häntälä, natural pastures have still 

been unusually largely taken care of. Flatter area is in agricultural use and depressions 

slopes are used in traditional pasturing. Area has representative dense group of 

villages. South-Somero village association gathers four villages: Häntälä, Talvisilta, 

Syvänoja and Kerkola. Talvisilta village were first mentioned in the 1490’s, which 

means it has civilization almost for 4000 years. In some places, traditional old 

buildings have remained which in turn raises the value of local cultural history 

(Ympäristöministeriö 1992; Lounais-Suomen Ympäristökeskus 2008). In Talvisilta, 

there could be still found some buildings from the 1800’s (Lounais-Someron 

kyläyhdistys). 
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5.4 Management of Rekijoki valley 

 

A traditional landscape, like all other types of cultural landscapes, helps to understand 

the local history. It is responsible to preserve old land use information and 

knowledge’s, which in future could be unexpectedly important. If traditional 

agricultural landscapes would be destroyed or disappear, species, habitat biodiversity 

and landscape, impoverishment happens (Hæggström 1995: 103). According to the 

Southwest Finland national landscape conservation report (Lehtomaa 2000b) there are 

39 nationally significant landscape conservation areas in Southwest Finland, which 

makes altogether 1613 ha. River Rekijoki valley arises clearly over others with its 788 

ha. Valley’s landscape in Häntälä and Talvisilta villages are considered to be 

regionally to be most significant part of this special landscape because of landscape 

and species diversity (Ikonen et al. 2001). Cattle grazing in Häntälä and Talvisilta 

villages have continued longer than in any Rekijoki river valley area. As stated by 

Ministry of Environment (1993), Häntälä pastures were named as historically 

representative traditional-cultural landscape, which should be maintained 

(Ympäristöministeriö 1993). In Rekijoki area, fragmentation of meadow’s community 

due to decreasing pasturing can be noticed, hence to afforestation and natural 

overgrow in the 1970’s and 1980’s (Alanen & Pykälä 2004: 200-201). 

 

In the 1990’s the national value of the site became properly recognized (Ikonen 2002: 

5). In 1995 Finnish Environmental Institute, South Somero village association, 

agricultural center Farma, Somero town, Finnish forest research institute METLA and 

Tapio Forestry have started Häntälä-Talvisilta project. The aims were to clarify and 

investigate the areas, plant and animal species and to compose nature conservation 

recommendations. On the basis of research, landowners were received instructions 

about general landscape preservation and maintenance of built village environment. 

Results of recovery were noticed already three years after forming the instructions: 

clearing the forested slopes was started and pasturing was increased from 1993-1998 

up to four times. Since 1995, when Finland joined the European Union, the area of 

grazed patches studied in Rekijoki upper course has again increased as a result of a 

support scheme for the management of seminatural grasslands (Luoto et al. 2003b). 
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Cleared depressions raised also tourism value (up to 5000 visitors per year) and 

therefore nature trail for private sector were opened in 1997 (Torkkomäki 1998: 7; 

Kontola et al. 2000: 5). In the year 2000 (Kontola et al. 2000), conservation efforts 

were considered to be exceptionally good: over half of the meadows are pastured. The 

region has couple of hundreds hectares of old meadows, which have been managed 

traditionally (Lehtomaa 2000a). Association for Traditional Rural Landscapes in 

Southwest Finland was established in 2003, which arranges voluntary management 

actions, like mowing competition in 2004 (Ikonen 2004). River Rekijoki valley 

Natura 2000 site (1209 ha) comprises the core areas of Häntälä, Talvisilta and 

Rekijoki villages, altogether 253 ha. Consequently, the landowners’ opinions, 

attitudes and awareness of the local traditional land use in the area are essential for 

both starting the management and being successful in it (Ikonen 2002: 5). 

 

By means of species protection, it should be noticed Clouded Apollo’s (Parnassius 

mnemosyne) and flying squirrel’s (Pteromys volans) position in the environmental 

protection plan, as their reproduction and habitat areas are forbidden to destroy. Land 

owner and forest stakeholders in Rekijoki have received corresponding instructions 

(Ikonen et al. 2001). As so the key management goals of traditional rural biotopes in 

Rekijoki are: appropriately managed meadows and wooded pastures; re-introduction 

of species; nature friendly forest planning in the valley area; stakeholder activity in 

the management planning. In 2012, SW Finland’s ELY-center finished report of the 

important places of flying squirrel and spring fumewort habitats. The aim was to 

monitor and to re-introduce species, like Clouded Apollo’s caterpillars source of food 

(Ikonen 2012). 

  



38 

 

6 Materials and methodology 

 

The methodological steps employed in this thesis are shown in Figure 6. The 

workflow commences with data elaboration (1), which included pre-processing of raw 

material and creating LULC (land use/ land cover) classification plan. Following step 

(2) involved database establishment consisting of aerial data vectorization, assigning 

attribute information, and performing overlay procedure. Finally, data analysis (3) 

encompassed LULC change analysis based on cross-tabulation matrix creation, 

transition analysis, landscape structural and compositional analysis using landscape 

metrics, and overlay analysis. 

 

 

Figure 6. Flowchart of the data processing. Numbers 1-3 refer to the processing steps presented in this 

thesis. Datasets are distinguished with rectangular shape ( ). Software programs used in the study 

are presented in the rounded shapes ( ); descriptions of the work step are presented in the rounded 

rectangle ( ). 

 

GIS programs put into effort were ERDAS Imagine 2011 (ERDAS 2005) (spatial data 

preparation), ArcMap 10 (ESRI 2011) (digitizing), and Fragstats 3.3 (McGarigal et al. 

2002) (analysis). 
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6.1 Aerial photos and digital data creation 

 

The study material consists of multi-temporal set of fine-scale digital panchromatic 

black-and-white aerial photographs, captured in spring 1959 and 2005, seen in Figure 

7 and metadata presented in Table 1. Images were chosen from the time period 

between May and June in order to achieve adequate interpretation in next steps of the 

research. Raw data was received from the National Land Survey of Finland. 

 

 

Figure 7 Two aerial images from 1959 and 2005. Area of interest (AOI) composes a core of two 

villages of Häntälä and Talvisilta in Rekijoki valley area, covering 200 ha. 

 

Table 1. Characteristics of the study material. 

Data Acquisition date Format Scale Source 

Aerial image 1959 raster 
1 : 10 000 National Land Survey of Finland 

Aerial image 2005 raster 1: 31 000 National Land Survey of Finland 

Reference map 2011 raster 1 : 10 000 National Land Survey of Finland 

 

The aerial images were rectified and georeferenced in image-processing software 

ERDAS Imagine in order to create digital orthophotos. Materials have been 

georeferenced into Transverse Mercator projection, with datum Finnish KKJ, using 
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Finnish base map as reference material (Table 1). Surveyed reference points were 

chosen to be features e.g, building’s roof corners and road intersections. A first-order 

polynomial and nearest-neighbor resampling technique were employed in the 

georeferencing process, and the image was resampled to a pixel resolution of 0,5 m. 

The primary area of interest was extracted for the further study process, with creating 

frame using ArcMap drawing tool (AOI in Figure 7). Landscape components were 

classified from the computer screen according to the classification plan (Table 3) 

comprising six main LULC polygon classes: arable land, forested area, open meadow, 

water body, built area, ditches, roads. Classification plan also represents sub-classes 

for selected main classes, that is arable land divided according to the land use 

(grassland, cereal, non-arable), built area distinguished based on the purpose of the 

building (barn or farm area), and other class containing three buffered linear elements 

of waterbody and roads. Visual interpretation was based on direct keys (Table 2): 

tone, texture, shape, size; as well indirect solution of identification, which is 

association. 

 

Table 2. Elements and it’s common descriptors in image interpretation process (Jensen 2007: 133). 

Element Common adjectives 

Tone  Gray tone: light (bright), intermediate (gray), dark (black) 

Texture 

 Characteristic placement and arrangement of repetitions of tone or color 

 Smooth, intermediate (medium), rough (coarse), strippled 

Shape 
 An object’s geometric characteristics: linear, curvilinear, circular, elliptical, 

radial, square, rectangular, triangular etc 

Size 
 Length, width, perimeter, area (m

2
) 

 Small, intermediate, large 

Association 

 Site: elevation, slope, aspect, exposure, adjacency to settlement, 

transportation 

 Situation: objects are placed in a particular order or orientation relative to 

another 

 Topography: there is often distinct topographic change at the boundary 

between two different landforms (Lillesand et al. 2008: 306). 

 

The classification scheme is primary based on the main objective of the study i.e., 

assessing the landscape change detection in the agricultural land and surrounding 

valley area. Minimum diameter unit of interpretation is one meter (buffered ditches).
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Table 3. Land-use nomenclature with 6 polygon classes, sub-classes, 3 line classes (first column), and 

keys (tone, texture, shape, characteristics) used in Rekijoki study area classification. Additional 

information column provides supplementary details of the class. 

 

Polygon 

classes 

Sub-

classes 
Tone Texture Additional information 

1. Arable 

land 

Grassland 
Dark, 

grey 
Coarse 

Area under cultivation; non-arable area is counted as 

difficult plot in terms of agricultural activities 

(corner, stony patch, moist area), but still in the 

vicinity of the arable land, without clear purpose, or 

having poor quality on terms of yield production. 

Cereal 

field 

Light, 

grey 
Smooth 

Non-

arable 
Dark Irregular 

2. Forest Forest Dark Coarse Area with canopies, within valley area. 

3. Meadow Meadow Grey Coarse 
Valley area with no canopies, under pasturing 

purposes. 

4. Built 

area 

Farms 

Various Irregular Buildings and surroundings. 

Barns 

5. Ditches Ditches Dark Smooth Buffer shapefile feature (diameter of 1m). 

6. Other 

Waterbody 

Grey, 

light 
Smooth 

Buffer shapefile feature (diameter 1m) and polygon. 

Main road Buffer shapefile feature (diameter 4,5 m). 

Side road Buffer shapefile feature (diameter 2,5m). 

Linear 

classes 
Sub-classes Tone Texture Additional information 

1. Ditches Ditches Dark Irregular 
Lines in the fields and on the edges of fields, 

roadsides. 

2. Roads 

Main road Light Smooth 

Linear elements comprising infrastructure and 

classified according to the size and purpose of use. 
Side road Light Smooth 

3. Edge 

Arable land – meadow 

Arable land bordering to forest or meadow. 
Arable land – forest 
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Additionally, line classification containing linear landscape elements (ditches, road 

and edge) was devised (Table 3). In order to record margins topography in arable land 

classes (grassland and cereal) and valley (meadow and forest) boundary category edge 

was classified into sub-categories considering ecological point of view. Also road 

elements carried meaningful difference in the use purposes, as it was identified in the 

fields and farm areas, as well as main roads between villages. 

 

The field patches were digitized as polygons in a way that ditches did not separate 

them into several smaller patches, unless there was not road or other type of crop 

dividing the patch. Ditches polyline were buffered, in order to calculate area covered 

by drainage. Arable land total area consisted land under agricultural practice without 

open ditches. Study area classes forest, meadow and water body are dominant only 

within study area’s valley’s environment. 

 

 

6.2. Methods of data analysis 

6.2.1 Landscape structure analysis 

 

In order to analyze the landscape patterns and their implications to ecological 

processes, landscape metrics are used. Landscape ecological indices quantifying 

landscape structure were calculated using public domain software package 

FRAGSTATS raster version 3.3 (McGarical et al. 2002), in which landscape metrics 

were computed from two levels: class level and landscape level. The cell size used for 

raster analyzes was 1x1m. Core area and border zone were defined to 0 meters. The 

core set of landscape metrics, calculated at the class and landscape level, addressing 

the principal needs of recent study and describing the landscape structure and 

associated key processes are given as in Table 4 & 5. The outputs of FRAGSTATS 

data files were in ASCII format that were manipulated using commercial spreadsheet 

application MS Excel to convert metrics to other units. However, the distance- and 

area-based metrics computed in FRAGSTATS are reported in kilometers and 

hectares, respectively. Changes at arable land and valley (i.e. forest and meadow 

class) boundaries level (forest-arable or meadow-arable) were identified from 
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manually digitized vector coverage in ArcMap 10. 

 

Table 4. Five class level indices calculated in the research. Equation and description explained by 

MCGarigal et al. 2002. 

Class 

metrics  
Equation Unit Range Description 

Class area        

 

   

 
 

      
     CA   0 

The sum of the areas of 

all patches of the 

correspond. patch type 

Class 

proportion 

                  

    
    

 
   

 
 

Percent 

(%) 
0   %LAND   100 

The percentage the 

landscape comprised of 

the correspond. patch type 

Number of 

patches 
      None NP   1 The number of patches of 

the correspond. class type 

Mean patch 

size 
    

    
 
   

  

 
 

      
  ha MPS   0 Mean patch area of the 

class type. 

Edge density    
    

  
   

 
         m/ha ED   0 

The sum of the lengths of 

all edge segments of the 
patch type, divided by the 

total area, multiplied by 

10,000. 

 

 

In means of spatial composition and configuration in current research metrics are 

grouped as composition metrics and configuration metrics as follows: class area (CA), 

class proportion (%LAND), number of patches (NP); and mean patch size (MPS), 

edge density (ED), landscape shape index (LSI), patch density (PD), Shannon’s 

diversity index (SHDI), Shannon’s evenness index (SHEI), respectively. 

 

Class area (CA) is a measure of landscape composition; specifically, how much of 

the landscape is comprised of a particular patch class. Class area has an importance in 

ecological utility, as such. For example quantitative habitat loss is resulted by habitat 

fragmentation. In landscape changes research it is important to know, how much of 

the class type exist in the landscape. Additionally, class area is basis for many of the 

landscape metrics. Area metrics quantify landscape composition in absolute terms 

(hectares) (McGarigal et al. 2002). 
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%LAND is important to compute when one needs to quantify area in relative terms: 

percentage of total landscape area. At the class level %LAND calculates the percent 

of landscape occupied by each class type (McGarigal et al. 2002). 

 

Metrics representing landscape configuration at the class level calculated in recent 

thesis are number of patches (NP) and mean patch size (MPS). Number of patches 

counts particular habitat type. Depending on the landscape context, amount of patches 

of a certain habitat type may affect a variety of ecological processes. For example, 

subdivided habitat (number of patches value of particular land cover class is 

respectively big) may be more resistant to the disturbances (e.g. disease, fire), and 

thus more likely to persist in a landscape than a patch type that is contiguous 

(Franklin & Forman 1987). The number of patches in a landscape can serve as index 

of spatial heterogeneity of the entire mosaic. A landscape with a greater number of 

patches has a finer grain: spatial heterogeneity occur at a finer resolution (McGarigal 

et al. 2002). Number of patches reveals landscape fragmentation process. If NP is too 

high it indicates that the patch class is highly fragmented (Botequilha Leitão & Ahern 

2002). 

 

Mean patch size (MPS) based on the number of patches is important tool for 

measuring landscape structure (Forman 1995). MPS calculates an area of each patch. 

Progressive reduction in the size of habitat fragments may be a key component of 

habitat fragmentation. Thus, landscape with a smaller mean patch might be 

considered more fragmented (McGarigal et al. 2002). NP and MPS should be used 

complementary since high NP and low MPS values reinforce and interpretation of a 

fragmented landscape condition (Botequilha Leitão & Ahern 2002). 
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Table 5. Five structural metrics on the landscape level calculated in recent study. Equation and 

description explained by McGarigal et al. 2002. 

Landscape 

structure 

metrics  

Equation Unit Range Description 

Landscape 

shape index 
    

       
  

   

  
 None LSI   1 

Equals the sum of the landscape boundary and 

all edge segments (m) within the landscape 

boundary involving the corresponding patch 
type, divided by the square root of the total 

landscape area (m2), adjusted by constant for a 

square standard 

Patch 

density 
   

 

 
              

Number 

per 100 

hectares 

PD > 0 The number of patches in the landscape per 100 
ha 

TE        

  

   

 meters      The sum of the lengths of all edge segments. 

Shannon’s 

diversity 

index 

               

 

   

 None SHDI   0 

SHDI=0 when the landscape contains only 1 

patch (i.e., no diversity). SHDI increases as the 
number of different patch types increases and the 

proportional distribution of area among patch 

becomes more equitable 

Shannon’s 

evenness 

index 

     
          

 
   

   
 None 0          

The observed Shannon’s diversity index divided 
by the maximum Shannon’s diversity index for 

that number of patch types. 

 

 

On the landscape level, quantification in terms of the complexity of patch shape is 

measured with landscape shape index (LSI). In determining the nature of patches, 

landscape shape index measures the complexity of patch shape compared to a 

standard shape. In raster version of FRAGSTATS, patch shape is evaluated with a 

square standard: shape index is minimum for square-shaped patches and increased as 

patches become increasingly nonsquared-shape. LSI measures the perimeter-to-area 

for the landscape as a whole (McGarigal et al. 2002). 

 

A landscape with greater patch density (PD) would have more spatial heterogeneity 

Total edge (TE) is an absolute measure of total edge length of a particular patch type 

(class level) or of all patch types (landscape level). Total amount of edge in a 

landscape plays and important role in ecological phenomena. Total class edge in a 

landscape is most critical piece of information in the study of fragmentation and 

spatial heterogeneity, as similarly the total amount of edge in the landscape. Edge 
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density (ED) standardizes edge to a per unit area basis that facilitates comparisons 

among landscapes of varying size (McGarigal et al. 2002). 

 

Diversity indices quantifying landscape structure are extensively used in a variety of 

ecological applications. The diversity of a system as measured by the number and 

types of diversity elements consist of two components: richness (the number of 

different types of classes of elements in a system) and evenness (the relative 

abundance of the different types or classes of elements) (Olson & Francis 1995: 14). 

Diversity indices influenced by richness component and applied in recent study are 

Shannon’s diversity index (SHDI). It is used as a relative index for comparing 

different landscapes or the same landscape at different times. Richness refers to the 

number of patch types present. As evenness indices correspond to the diversity 

indices, Shannon’s evenness index (SHEI) is second diversity index applied in this 

research. Evenness is expressed as the distribution of area among different patch 

types. SHEI is determined by the distribution of the amount of different land-use 

types in a landscape. LSI measures the complexity of landscape shape compared to a 

standard shape, using perimeter-area relationship. A basic arithmetic combination was 

used to compare the metric statistics to detect and locate land use and land cover 

changes (McGarigal et al. 2002). 

 

 

6.2.2 Overlay analysis and database query 

 

According to the results of manual digitizing it is aimed to compare vector LULC 

maps for 1959 and 2005. An intersect procedure determines spatial concurrence of 

landscape categories between two data layers. New data layer is generated based on 

the classification results. 

 

Overlay can be defined as a spatial operation, which combines geographic layers to 

new information. In recent research, vector overlay is performed on polygon-on-

polygon overlay. During this, the attribute data associated with each feature type is 

intersected and integrated to new composite maps. As so, three overlay maps for 

transition matrix, change detection, and Markov’s probability were produced to 
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analyze and visualize spatial dynamics and distribution of the changes. Database 

query is the process of retrieving the attribute data without altering the existing data. 

Overlay is done using Boolean and relational operators. The function is performed by 

means of a conditional statement for queries. Boolean logical operators applied 

algorithms for use of this statement. Boolean operators select data records based on 

two or more attributes – analyses of spatial coincidence of input data layers : AND – 

intersection; OR – union; XOR – exclusionary or. Relational operators =, >, < 

conducted condition for each query. Example of Boolean operators to combine more 

than two conditions as shown in the Figure 8. 

 

 

Figure 8. Venn diagrams used in this study representing Boolean operations. Adapted from Burrough 

(1986). 

 

For better evaluation of change maps representation of landscape dynamics, 

comprehensive amount of information being displayed is selected (transitional 

dynamics, Markov’s probability). 

 

 

6.2.3 Transition matrix, gross gain, gross loss 

 

Analyst module in ArcMap 10 was used to calculate cross-tabulation table as 

intention to measure the rate of land use change in two time intervals. New layer was 

produced, when two time layers were overlaid together. Map-to-map comparison 

provides a matrix of land transitions among categories. Reclassification tools and 

query selection was used to create matrix’s attributes by re-grouping the dataset. 

Patches were coded by their dynamic course type (patch was defined by its land use 

history over time). 
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Two-dimensional table consist row and columns (Table 6). Rows shows the 

categories proportions from initial time and columns represent the categories 

proportions from a subsequent time. The notation Pij ( in the matrix represents the 

transition from the i patch type in 1959 to the j patch type in 2005. The diagonal 

elements (that is, Pjj) answers to the amount of land categories that showed 

persistence of class j.The minimal area of polygon change is 0,1 ha. Result of this 

matrix reflects also the size of the images. 

 

Table 6. Land cover transition matrix. 

 Time 2 
Total time 1 Loss 

 Category 1 Category 2 Category 3 Category 4 

Time 1       

Category 1                             

Category 2                             

Category 3                             

Category 4                             

Total time 2                 1  

Gain                                   

 

 

The proportion of the landscapes Pi+ allocated by category i in 1959, is given by 

(Braimoh 2006): 

 

        
 
    (1) 

 

where n is absolute amount of categories. Likewise, the proportion of the landscape 

c+j that is occupied by category j in 2005 is notated by: 

 

        
 
    (2) 

 

The matrix is extended to calculate the gross gains and gross losses by category. The 

gross gain is derived by subtracting diagonal entries from the each category’s column 

total. The gain row shows the amount of landscape that experienced a gross gain of 

class j between 1959 and 2005. The gross loss is derived by subtracting diagonal 
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entries from the each category’s row total. The loss column indicates the proportion of 

the landscape that experienced a gross loss of class i between 1959 and 2005. 

 

 

6.2.4 Net change, swap, total change, persistence ratios 

 

The land use change is analyzed through evaluation of gains and losses by classes. 

To do that, absolute value of net change, swap, total change, and persistence ratios are 

calculated (Pontius 2004; Braimoh 2006; Manandhar et al. 2010). Net change is the 

difference between the gross gain and gross loss. The idea of swap, as a measurement 

of spatial reallocation, implies simultaneous gain and loss of the LULC category. The 

swap change equals the total change minus the net change. Equations 3 & 4 formalize 

the language of the absolute value of swap (Sj) and net change (Dj): 

 

                            (3) 

 

                                                       (4) 

 

If the gain is equal to loss (that is, net change is zero), then the swap is twice the loss 

or gain (Braimoh 2006). 

 

Total change (Cj) for each category was calculated as either the sum of the net change 

and swap or the sum of the gains and losses (Eq. 5). 

 

                                                   (5) 

 

The annual rate of change is calculated by comparing the area under LULC class 

cover in the same region at two different times. The rate of change of different classes 

was derived from the compound interest law, suggested by Reddy et al. (2009). 

 

  
                 

     
            (6) 
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Where, r is the rate of LULC change, and At1 and At2 are the categories area over 

time t1 and t2, respectively. 

 

Gain-to-persistence ratio (Eq. 7), loss-to-persistence ratio (Eq. 8), and net change-to-

persistence ratio (Eq. 9) were derived to evaluate the tendency of each LULC 

category to gain and loose from other categories: 

 

   
    

           
 (7) 

   
    

           
 (8) 

         (9) 

 

 

6.2.5 Probability of changes 

 

Theory development by Markov has been applied to model the probability of LULC 

changes cover from 1959 to 2005. Given the assigned LULC classes, a frequency 

table is developed where a count is made of the transitions from one class to another 

with a specified increment (Munsi 2010). A Markov model can be characterized by 

the transition possibility expression, which represents the conditional probability that 

the state of the system will be at the time t, given that at time the system is in state 

(Reddy et al. 2009). Generating probabilities of change between classes is 

accomplished by dividing each cell value by its row total. The result is the probability 

that a given class in date 1 will convert to another class in date 2 out of all possible 

changes (Wijanarto 2006). Markov process Equation 7 adapted from Munsi (2010): 

 

           
                                      (10) 

 

A Markov chain is a random process where the following step depends on the current 

state. 
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7 Results 

7.1 Landscape change 

 

Class level 

 

Overall results for landscape categorical classification, and changes in spatial 

configuration are presented with classified map (Figure 9).

 

Figure 9. Land cover classification according to the generalized classification scheme representing 

LULC categorical changes in time period between 1959 and 2005. Overall change in class coverage’s 

(%) is illustratively shown as diagram. Maps cover total of 200 ha in Häntälä-Talvisilta area. 
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In Rekijoki valley area, particular structural changes have been occurred in 

association with agricultural landscape in two time series. Six main LULC types 

classified were arable land, meadow, forest, built area, ditches, and other land (e.g. 

fallow, stony patch). Landscape structural and compositional metrics calculations at 

the class level are summarized in Table 7. Generally, arable land was the dominant 

LULC category during both study periods, covering 98,2 ha (49,1 %) in 1959 and 108 

ha (54,9 %) in 2005. Additionally, arable land class was divided into three sub-classes 

(Figure 10) consisting three types of agricultural management: cereal growing, 

grassland and non-arable patches (e.g. fallow land, and stony patch). Farming land 

increased altogether 9 % (9,2 ha) from 1959 to 2005. Landscape structural indices 

revealed a notable fluctuation in arable land patch number (NParable) from 118 to 51 (-

43%). Coalescence (average patch area increasing) process was evident (Figure 9 & 

10) in landscape under cultivation, indicated by MPSarable. Moreover, obvious change 

in agricultural land cover physical feature is disappearance of surface drainage class 

ditches (spatial transition presented in Figure 9) with gross loss of 82 %, which covers 

8,4 ha (CA/Changeditches). In 2005 (Figure 9), ditches are distributed mostly on the 

road-sides, and subsurface drainage system is surrounding the cultivated area. Only 

few arable land plots have been left with open drainage. 

 

Arable land statistics for sub-classes (Table 8) indicate the extent of land dedicated to 

livestock food production or pasturing (grassland) has reduced 7 %. Also numbers of 

patches (NPgrassland) have lost 77 %. Non-arable land area (CAnonarable) has decreased 

30 %, but consist almost unnoticeable amount of the total arable land, as previously. 

Fields occupied by cereals have increased 16 % (12,5 ha) in area. MPScereal has 

increased outstandingly 73 % (2,4 ha) of the patch area, as also the overall mean size 

of the field plots have raised.  

 

Due to field enlargement and loss in ditches class, edge density of arable land 

(ED/Totalarable) correspond loss of 85 % from 1959 to 2005. Also total edge 

(TE/Totalarable) has changed notably, in proportion of 81 % (Table 9). Both arable land 

sub-classes under active farming practices cereal land and grassland have gone 

through decrease in edge density (ED), 73 % and 92 %, respectively. Accordingly, 

total edge calculations, as well, indicate decrease of 64 % and 90 % in cereal and 
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grassland classes. Non-arable patches have gained 31 % in total edge, whereas 14 % 

in edge density. 

 

 

 

 

 

 

 

Figure 10. Map illustrating spatial distribution of the arable land categories and edge elements in 1959 

and 2005, Rekijoki study area of 200 ha. Arable land neighboring to meadow strip’s length has been 

decreasing from 8 km to 5,4 km; accordingly neighboring to forest has increased from 3 km to 4,6 km. 

In 2005, cereal land use type has gained and grassland has lost proportionally in arable land coverage 

(100 %) compared to 1959. 
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Table 7. Landscape structural and compositional indices for the study area in Rekijoki for the years of 1959 and 2005.Overall results of the class type changes in classified 

categories: class area (CA) in hectares, class proportion (%LAND), numbers of patches (NP), mean patch size (MPS) in hectares and edge density (ED) in meters per 

hectare. Net changes of 1959 and 2005 are presented in absolute values and in percentages (parenthesis). 

 

Table 8. Arable landscape structural and compositional indices for the study area in Rekijoki for the years of 1959 and 2005.Overall results of the classified arable land 

categories cereal, grassland, and non-arable land: class area (CA) in hectares, class proportion (%arableLAND), numbers of patches (NP), mean patch size (MPS) in 

hectares. Net changes of 1959 and 2005 are presented in absolute values and in percentages (parenthesis). Colored symbols (●●●) are spatial reference from the fig. 10. 

 

Arable land  

classes 

CA (ha) 
Change 

%arableLAND 
Change 

NP (pcs) 
Change 

MPS 
Change 

1959 2005 1959 2005 1959 2005 1959 2005 

● cereal 64,2 (65%) 76,7 (71%) 12,5 (6%) 65 71 7 36 23 -13,0 (-36%) 1,8 3,3 2,4 (73%) 

● grassland 33,0 (34%) 30,6 (28%) -2,4 (-6%) 34 28 -6 75 17 -58,0 (-77%) 0,4 1,8 0,9 (50%) 

● non-arable 1,0 (1%) 0,7 (1%) -0,3 (0%) 1 1 0 7 11 4,0 (-36%) 0,1 0,1 0,0 (0%) 

Total arable land 98,2(100%) 108,0 (100%) 9,8 (9%) 100% 100% - 118 51 -67 (-57%) 0,6 1,7 1,1 (65%) 

Categorical 

metrics 

CA (ha) 
Change 

%LAND 
Change 

NP (pcs) 
Change 

MPS (ha) 
Change 

 ED (m/ha) 
Change 

1959 2005 1959 2005 1959 2005 1959 2005 1959 2005 

Arable 98,2 108,0 9,8 (9%) 49,1 54,1 5,0 118 51 -67 (-43%) 0,6 1,7 1,1 (65%) 1582,1 239,7 -1342,4 (-85%) 

Meadow 47,0 35,0 -12 (-26%) 23,5 17,5 -6,0 27 44 17 (39%) 1,7 0,8 -0,9 (-53%) 189,8 170,2 -19,6 (-10%) 

Forest 32,9 41,3 8,4 (20%) 16,5 20,7 4,2 58 52 -6 (-10%) 0,6 0,8 0,2 (25%) 114,3 138,0 23,7 (17%) 

Farms 7,3 9,6 2,3 (24%) 3,6 4,8 1,2 27 18 -9 (-33%) 0,3 0,5 0,2 (40%) 53,2 48,5 -4,7 (-9%) 

Barns 0,4 0,2 -0,2 (-50%) 0,2 0,1 -0,1 22 4 -18 (-82%) 0,0 0,1 0,0 (60%) 7,9 2,7 -5,2 (-66%) 

Ditches 10,3 1,9 -8,4 (-82%) 5,2 1,0 -4,2 1024 122 -883 (-88%) 0,0 0,0 0,0 (0%) 1411,6 249,8 -1161,8 (-82%) 

Main road 1,4 1,7 0,3 (18%) 0,7 0,9 0,2 1 1 0 (0%) 1,4 1,7 0,3 (18%) 27,5 27,5 0 (0%) 

Side road 1,4 1,1 -0,3 (-21%) 0,7 0,6 -0,1 9 7 -2 (-78%) 0,2 0,2 0,0 (0%) 44,3 36,2 -8,1 (-18%) 

Waterbody 1,1 1,2 0,1 (8%) 0,5 0,6 0,1 1 1 0 (0%) 1,1 1,2 0,1 (8%) 54,2 53,3 -0,9 (-2%) 

Total landscape 200 200 -  100% 100% - 1287 304 -983 (-76%) 6,1 7,4 1,3 (0,2 %) 3484,9 965,9 -2519,0 (28%) 
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Table 9. Edge metrics at the arable landscape level in 1959 and 2005 of the Rekijoki River Valley. 

Overall results of the classified arable land categories cereal, grassland, and non-arable land: total 

edge (TE) in meters, and edge density (ED) in meters per hectare. Net changes of 1959 and 2005 are 

presented in absolute values and in percentages (parenthesis). Coloured symbols (●●●) are spatial 

reference from the Figure 10. 

 

Arable land 

sub-classes 

TE (m) 
Change 

ED (m/ha) 
Change 

1959 2005 1959 2005 

● cereal 103993 37513 67973 (-64%) 527,5 144,1 -383,4 (-73%) 

● grassland 203659 20472 189064 (-90%) 1047,9 87,8 -960,1 (-92%) 

● non-arable 1342 1945 602 (31%) 6,7 7,8 1,1 (14%) 

Total arable land 308995 59930 -249065 (-81%) 1582,1 239,7 -1342,4 (-85%) 

 

Next most abundant LULC class after arable land is valley area with forest and 

meadow categories. Forest area (CAforest) has consistently increased from 32,9 ha to 

41,3 ha, which makes overall gain of 20 %. Forest clumps (MPSforest) has gained 25 % 

in mean area value. Loss of several smaller forest patches is clear, as number of 

patches (N/PATCHforest) has decreased 10 %. Open area’s land cover class (meadow) 

has decreased 26 %, which makes 12 ha. Meadow area have been segmented into 

greater number of smaller patches (N/PATCHmeadow increases from 27 to 44) and 

mean patch size reveals that open areas have lost over half of the mean size of patch (-

53 %). 

 

Built area, consisting sub-classes farms and barns, have gained in total 21% of the 

area. More specifically, houses and yards of local settlement (CAfarms), have gone 

through enlargement of 24 % (2,3 ha). Markedly, growth in farms area is reflecting in 

NPfarms, as 9 smaller farm patches have been transformed to another class. The 

average size of the one farm settlement (MPSfarms) has grown 40 %. LULC class barns 

has lost half of the area (-50 %) and number of storage buildings (NPbarns) has 

decreased tremendously from 22 to 4 (-82 %). 

 

 

Landscape level 

 

Landscape level indices calculated for the time periods of 1959 and 2005 present 

study area’s compositional changes (Table 10). In 2005, Shannon’s diversity index 
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(SHDI), Shannon’s evenness index (SHEI), landscape shape index (LSI), patch 

density (PD), and total edge (TE) indicate landscape change towards homogenization, 

as all values have decreased: SHDI has varied from 1,7 to 1,6 (-6 %); SHEI from 0,7 

to 0,6 (-14 %), PD from 1107 to 596,5 (-46 %), and TE from 344088m to 96964m (-

72 %). Landscape shape index (LSI) reveals that overall configuration of the land is 

becoming less complex, as the change in index value is considerable, decrease of 70 

%. The evenness index decreases in correspondence with an increase of the number of 

patch types. 

 

Table 10. Landscape level metrics calculated for the time period of 1959 

and 2005: Shannons diversity index (SHDI); Shannon’s evenness inde 

(SHEI); landscape shape index (LSI); patch density (PD); total edge (TE). 

 

 

 

 

 

 

 

Landscape index PD is in correlation with SUMNP (Table 7), as number of patches 

have declined as well, in amount of 76 % between two time periods. 

 

 

7.2 Line elements and edge changes 

 

Infrastructure has overcome some structural changes (Table 11), as sideroads have 

reduced 51% from its total length. Mainroad going through the core of the study area 

has remained same in lenght (2,2 km), but gained 18 % (0,3 ha) in area (CAmainroad). 

Physical connectivity in the landscape by mean of human use has remained, as 

mainroad spatial location hasn’t changed, but moving between fields has decreased 

(Figure 9). Edge density of the sideroad (EDsideroad) has decreased 18 %, whereas edge 

density for main road has not changed (Table 7). Also, number of polylines of side 

road has been decreased with 2 and number of main road polylines has remained the 

same.  

Landscape 

metrics 
1959 2005 Change 

SHDI 1,7 1,6 -0,1 (-6%) 

SHEI 0,7 0,6 -0,1 (-14%) 

LSI 61,9 18,3 -43,6 (-70%) 

PD 1107,0 596,5 -510,5 (-46%) 

TE 344088 96964 -247124 (-72%)  
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Table 11. Statistics of line elements of main road, side road, and ditches: length in kilometer (km), 

number of polylines (pcs), and average length in kilometers per polyline (km). Net changes of 1959 and 

2005 are presented in absolute values and percentages (parenthesis). 

Line 

elements 

Length (km) 

Change 

Nr of polyline 

(pcs) 
Change 

Avg. length 

(km) 
Change 

1959 2005 1959 2005 1959 2005 

Ditches 105,4 19,3 -81,7 (-77,5%) 1005 122 -883 (-88%) 0,1 0,2 0,1 (50%) 

Main road 2,2 2,2 0,0 (0%) 1 1 0 (0%) 2,2 2,2 0 (0%) 

Side road 3,5 1,7 -1,8 (-51%) 9 7 -2 (-22%) 0,4 0,2 -0,2 (-50%) 

Total road 5,7 3,9 -1,8 (-32%)  10 8 -2 (-20%) 0,6 0,5 -0,1 (17%) 

 

As mentioned in previous chapter of structural statistics, ditches class has gone 

through most obvious gross loss in area. When observing line elements, the number of 

polylines in ditches class has been cut 88 %, which is from 1005 to 122. What is 

more, average length of the ditches has gained 50 % (from 100 m to 200 m), which 

could be also explained with increase of MPSarable. Changes in the topological 

relationships in the landscape are presented in the Table 12. 

 

Table 12. Statistics of edge topology: length in kilometer (km), number of polylines (pcs), and average 

length in kilometers per polyline (km). Net changes calculated for number of polylines and average 

length of 1959 and 2005 are presented in absolute values and percentages (parenthesis). Net changes 

calculated for length 1959 and 2005 consist of absolute values (bold) and percentages relative to 1) 

absolute values of the lenght and 2) net change in compositional percentage. Colours are 

spatial reference from the Figure 10. 

Edge topology 
Length (km) 

Change 

Nr of polylines 

(pcs) Change 

Avg. length 

(km) Change 

1959 2005 1959 2005 1959 2005 

Arable – 
meadow 

8,0 

(72%) 

5,4 

(54%) 

-2,6 

-33% in km 

-18% of 

composition 

36 26 -10 (-28%) 0,2 0,2 0 (0%) 

Arable – 

forest 

3,0 

(27%) 

4,6 

(46%) 

1,6 

35% in km 

+19% of 

composition 

27 37 -10 (-37%) 0,1 0,1 0 (0%) 

Total 
11,0 

(100%) 

10,0 

(100%) 
-1,0 (-9%)  63 63 0(0%) 0,2 0,2 0 (0%) 
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The overall length of valley’s edge to arable land from 1959 to 2005 has decreased 9 

%. Boundary of arable land and meadow in landscape has remained dominant (72 % 

in 1959 and 54 % in 2005), as the line element’s length has bigger value in kilometers 

compared to arable-forest line length, relatively. Though, during the study period 

arable-meadow boundary has lost 2,6 km (33 %) from the length, and the amount of 

dominance as edge type has reduced 18 %. Accordingly, arable-forest boundary has 

increased 1,6 km (35 %) in the length from 1959 to 2005, and raised its compositional 

abundance with 19 %. In 1959, the compositional distribution of the forest-arable 

boundary was ¼ of the whole length, which constituted minority from the total edge 

share. In 2005 the distribution of the length of the forest-arable and meadow-arable 

boundary of the whole length has equaled. The number of polylines of two 

topological classes have both lost almost one third of the polylines in 1959. 

 

 

7.3 Transitional changes, swap, net change, change tendencies 

 

Overlaying datasets of 1959 and 2005 resulted transition matrix, what were used to 

illustrate landscape change dynamics (Figure 11 & 12). The change detection cross-

tabulation table was produced for change dynamics monitoring between two points in 

time (Table 13). Diagonal values in the matrix represent amount of the LULC 

category which have stayed persistent between two time periods. Rows display the 

categories of an initial time 1 and the columns display the categories of a subsequent 

time 2. As so, row totals indicate the amount (ha) of category in 1959 and the 

columns amount (ha) of category in 2005. The second value in the diagonal (marked 

as italics in parenthesis) represent the category’s percentage of the persistence of the 

category’s total value in 1959 (e.g. 93 % of the amount of arable land in 1959 did not 

experienced any change and stayed the invariable in 2005). The second value found in 

each row’s off-diagonal cell, and marked as italics as well (5 values per each 

classified category) form a whole of 100 % (seen in column total 1959), which 

indicate the amount of area experiencing transition from 1959 to 2005 in percentages. 

As so, it could be interpreted, that 3,3 ha of arable land from 1959 has turned into 

built area in 2005, which makes 41 % of the total arable land in transition. The third 

number in italics below the other italic value recently explained, can be interpretative 
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by similar principle, though calculation are based on total values in transition of 

column 2005. 

 

Table 13. Transition matrix assessing observed transitions, gains and losses of six landscape 

categories in years 1959 (time 1) to 2005 (time 2). Numbers in bold are observed transitions (ha) from 

1959 to 2005, second row in italics represents transitions in terms of losses and third row transitions in 

term of gains calculated in percentages. Built area class refers to farms and barns sub-class, and other 

land class refers to waterbody and roads. 

 2005  
Total 1959 

Loss 

(in 

transition) 1959 Arable Meadow Forest Built Ditches Others 

Arable 
90,1 

(93 %) 

1,5 1,3 3,3 1,1 0,9 98,2 8,1 

19 16 41 14 10 100 17 

24 8 77 61 36 -  

Meadow 

2,8 
28,5 

(61 %) 

14,3 0,2 0,2 0,9 46,9 18,4 

15 78 1 1 5 100 38 

17 89 5 11 36 -  

Forest 

2,0 4,0 
26,6 

(81 %) 

0,0 0,1 0,2 32,9 6,3 

32 63 0 2 3 100 13 

12 63 0 6 8 -  

Built 

1,5 0,0 0,2 
5,4 

(71 %) 

0,1 0,4 7,6 2,2 

68 0 9 5 23 100 5 

9 0 1 6 16 -  

Ditches 

9,8 0,1 0,0 0,4 
0,1 

(1 %) 

0,1 10,6 10,4 

94 1 0 4 1 100 22 

58 2 0 9 4 -  

Others 

0,7 0,8 0,2 0,5 0,2 1,5 

(40 

%)- 

3,8 2,4 

29 33 8 21 8 100 5 

4 13 1 12 11 -  

Total 2005 
108,0 34,9 42,6 9,7 1,9 4,0 

200 

47,8 ha in 

transition 

(24 %) 

- - - - - - 

(152,2 ha 

persistent) 
100 

100 100 100 100 100 100 76%  

Gain 

(in 

transition) 

16,9 6,3 16,0 4,3 1,8 2,5 

47,8 ha in 

transition (24 %)  

35 13 34 9 4 5 100  

*Interpretation of the table assisted in the first chapter of the recent section. 

 

Overall persistence of the total landscape of 200 ha is 76 %, in other words 24 % of 

the study area exhibited transitions from one category to another. Spatial layout of the 
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transition matrix, representing overall change occurring in the landscape is presented 

in Figure 11. 

 

Figure 11. Map illustrating spatial distribution of the patches experiencing/not experiencing change 

between two time steps of 1959 to 2005, in Rekijoki valley study area of 200 ha. Red patches are the 

off-diagonal values and light colored patches are the diagonal values from the transition matrix. 

 

In terms of an area (%), arable land category has experienced least transitions, when 

observing its 93 % of the farmland that has remained unchanged. Forest and built area 
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follow with 81 % and 71 %, respectively. Ditches class has experienced highest 

amount of transition, as 1 % of the area stayed persistent. Spatial distribution of the 

landscape patches stayed persistent to changes is observable in the Figure 12. 

 

 

Figure 12. Map illustrating spatial distribution of the diagonal values from the transition matrix 

between two time steps of 1959 to 2005, in Rekijoki valley study area of 200 ha. Arable landscape has 

stayed persistent to the transitions in the amount of 93 % of the categories total area; second most 

persistent is forest class with its 81 %. Most transitions have experienced ditches class, with its 1 % of 

persistence of the total area of ditches category. 
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When observing loss column in the transition matrix, meadow class covers 38 % 

(18,4 ha) of the total loss in 1959. Another major losses have occurred in ditches and 

arable land classes, 22 % (10,4 ha) and 17% (8,1 ha), respectively. One can point out 

following major transformations in terms of gross loss (ha) of the categories: meadow 

to forest (14,3 ha), ditches to arable (9,8 ha), and forest to meadow (4 ha). Most 

important relative change (%) in terms of losses per category (first number in italics) 

has been found ditches dynamics into arable land (94 %), followed by meadow 

transitions to forest (78 %) and forest to meadow (63 %). Built area follows with loss 

of 68 % of its total area in 1959. 

 

Biggest gains, observed from gain row in total has occurred in arable (16,9 ha) and 

forest class (16 ha), as well as in meadow with its 6,3 ha. Accordingly, arable land 

and forest categories form 69% of the total gains in 2005. Biggest relative gains (%) 

according to the matrix (second number in italics) has occurred in forest gaining from 

meadow (89 %), meadow gaining from forest (63 %), ditches gaining from arable and 

arable gaining from ditches, 61 % and 58 % accordingly. 

 

When observing off-diagonal values categorically, arable land turned mostly into built 

class (41 %), meadow to forest class (78 %), forest to meadow class (63 %), built area 

to arable land (68 %), ditches to arable land (94 %). Others class (e.g. waterbody, 

main road, side road) has experienced areal transitions mostly to arable, meadow and 

built class, altogether in 83 % of its total transition (areal amount of change, though, 

is moderate). 

 

As dataset concluded numerous class dynamics on the patch level, it has been chosen 

to present transitional patches which covers area over 0,09 ha. Accordingly, most 

dominant changes in terms of the area (>0,09 ha) is presented in the Figure 13 & 14. 

As seen, transitions are in or adjacent to valley landscape: meadow turned into forest, 

forest turned into meadow, meadow turned into arable land, and forest turned into 

arable land. Furthermore, transition from arable land into built (farms area) is most 

visible in the arable landscape adjacent to human settlement. Also, it is noticed that 

transitions into arable land are situated mostly on the boundaries of the valley and 
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arable land: patches are more like strip-shaped and narrow, with exceptions in the 

southern part of the study area, where couple larger orange and blue patches stand out 

(meadow and forest patch turned into arable land). 

 

Figure 13. Map illustrating major (>0,09 ha) transition patches spatial distribution. Most remarkable 

dynamics from meadow to forest are indicated with yellow color, the second biggest areal change is 

colored green indicating transition from forest to meadow, third is red patches dynamics from arable 

land to built area; fourth is blue color indicating meadow dynamics to arable land; and last remarkable 

areal change is orange color indicating transition from forest to arable land. 
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Figure 14. Map locating patch-based transitional changes of the land cover classes. Each patch presented in color considers area over 0,09 ha. Yellow color 

represents areal transition from meadow to forest (A); next biggest areal change is marked green indicating transition from forest to meadow (B); third transition 

is marked with red patches indicating arable land turning into built area (C); fourth and fifth transition indicated with blue (D) and orange (E) colors are meadow 

and forest classes transforming into arable land. 
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The map presenting transition (>0,09 ha) with additional aerial image on the basis as a 

reference for visual interpretation is presented in the Figure 14. For example, it is seen 

that what in 1959 has been meadow, is forested in 2005, coded with the element A. 

Contrastingly, element B shows the area of forest in 1959 that in latter time period of 

2005 has been cleared and turned into open area (meadow). The expansion of 

anthropogenic activities is illustrated with the element C, as arable land has been 

replaced with farming building and its surroundings. Elements D and E are examples 

of arable land dynamics: larger meadow patch altered to arable farming and forest 

strips “smoothening” the arable land edge shape with transformation to field margin. 

 

Gross gain and gross loss can include several contiguous elementary changes (Table 

14). Calculations of net change, gain/loss and swap helps to decode transition matrix, 

as it might not be so apparent, how the category has changed (Pontius et al. 2004; 

Manandhar 2010). Major areal transitions have occurred in arable land, meadow and 

forest classes, beholden by total change calculation. 

 

Table 14. Categorical areal (ha) changes of the landscape. Calculations, based on total gain and loss 

determining total change (Cj), swap (Sj) and net change (Dj). Relative results (%) for swap and net 

change are calculated from total change. 

LULC 

category 
Gain Loss Total change (Cj) Swap (Sj) Net change (Dj) 

Arable 16,9 8,1 25,0 (100%) 16,2 (65%) 8,8 (35%) 

Meadow 6,3 18,4 24,8 (100%) 12,7 (51%) 12,1 (49%) 

Forest 16,0 6,3 22,3 (100%) 12,6 (57%) 9,7 (43%) 

Built 4,3 2,2 6,5 (100%) 4,4 (68%) 2,1 (32%) 

Ditches 1,8 10,4 12,2 (100%) 3,6 (30%) 8,7 (71%) 

Others 2,5 2,4 4,9 (100%) 4,7 (96%) 0,2 (4%) 

Total 47,8 47,8 95,7 (100%) 54,2 (57%) 41,5 (43%) 

 

 

According to the net change, all categories have gone through definite change. 

Furthermore, swap indicates more exact dynamics of the category. Others class (e.g., 

waterbody and roads) has gone through swap-types change in the amount of 96 %, 

which means minimum value for net change (4 %). Also built area’s swap and net 

change calculations reveals that 68 % of the built areas transitions comes from 
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swapping process and 32 % of the total built area’s change goes through net change. 

In means of area (ha) arable land has gone through swap and net change in the biggest 

amount. It is interpreted, that 35 % (8,8 ha)of the total gain in the arable land category 

in 2005 is originated from direct gain from the surrounding landscape. Meadow and 

forest change has general pattern that is characteristics for the total landscape, which 

is relatively high amount of the category (49 % and 43 %, respectively) experiencing 

net change. Ditches class transformation to another class is described in the amount of 

71 % as net change (which in this term has loss implications, as gain is relatively 

small compared to loss), though, some part (30 %) experiencing also swap-type 

change. 

 

The persistence indices (Table 15) were used to assess the persistence characteristics 

of the LULC in relation to gain, loss, and net change. When observing gain-to-

persistence value, the ditches class has highest ratio of 18. Other class as well has gp 

value over 1, which is 1,7. According to Braimoh (2006) it indicates that these two 

classes experience more gain than persistence. 

 

Table 15. Gain-to-persistence (gp), loss-to-persistence (lp), and net change-

to-persistence (np) ratios of the LULC classes. 

LULC category gp lp np 

Arable 0,2 0,1 0,1 

Meadow 0,2 0,6 0,4 

Forest 0,6 0,2 0,4 

Built 0,8 0,4 0,4 

Ditches 18 104 87 

Other  1,7 1,6 0,1 

 

 

Also, when observing loss-to-persistence ratio, ditches and other class are having 

value over 1, which are 104 and 1,6, respectively. Similarlay (Braimoh 2006), it 

indicates that these classes have high tendency to be involved in landscape 

transformation process than rest of the landscape. Whe, observing net change ratio, 

then only ditches class has value over 1, which is 87. 
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7.4 Markov’s probability, change rate 

Markov’s probability calculations are presented spatially in the map (Figure 15) and 

in the probability matrix (Table 16). 

 

Figure 15. Visualization of the Markov’s probability calculations of 1959 and 2005. Darker colors 

illustrates the major probabilities for the area to be modified into another LULC class. 

 



68 

 

Based to the present state of the class, Markov’s transition matrix allocates probability 

that a LULC class will transform to another class in future. As seen from the map 

(Figure 15), spatial configuration of the probabilities are concentrated around human 

settlement. The valley landscape has middle level of bluish colors, indicating 

moderate (0,21-0,3) or small (0,11-0,19) probabilities to change to another class in the 

future. Areas with white color (0,0-0,05) are determined to go through any noticeable 

change in the future. Most outstanding conversion probability is for ditches to arable 

land (0,95) and arable to built area (0,43). Interpretation from the map is enhanced 

with zoomed layer of ditches, so it is visible, that ditches class is filled with darkest 

color. 

 

Table 16. Markov’s probability matrix for 1959 and 2005. 

  2005 

1959 Arable Meadow Forest Built Ditches Other 

Arable 0,92 0,03 0,04 0,43 0,11 0,23 

Meadow 0,06 0,61 0,30 0,00 0,00 0,02 

Forest 0,06 0,12 0,81 0,00 0,00 0,01 

Built 0,19 0,00 0,03 0,70 0,01 0,05 

Ditches 0,95 0,01 0,00 0,04 0,01 0,01 

Other 0,18 0,21 0,05 0,13 0,05 0,38 

 

 

As seen from the diagonal values arable land and forest class has the highest values 

of resistance, 0,92 and 0,81 respectively. Built area and meadow class follow with 

the values of 0,70 and 0,61. Computed change rate comprehensively assists 

interpretation of trends of the each LULC class transitions (Table 17). 

 

Table 17. Change rate of LULC 

classes. 

Land-use class 1959-2005 

Arable 0,19 

Meadow -0,65 

Forest 0,56 

Built 0,53 

Ditches -3,70 

Other 0,09 
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Ditches class has decreased with the most intense rate (-3,70), followed by meadow 

class (-0,65). Forest and built classes are having positive values of 0,56 and 0,53, 

which can be interpreted as customary increasing rate. Rate values close to 0, like in 

arable and other classes, deflect low change of 0,19 and 0,09, respectively. 
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8 Discussion 

In a landscape, three mechanisms create the pattern: heterogeneity (e.g. landscape 

patches), natural disturbance (e.g. fire, pests) and human activity (e.g. plowing fields 

and building roads) (Forman 1995: 5). The change detection analysis provides insight 

to ecosystem functioning and stability and puts forth the land use impacts. Comparing 

data collected at different times is a traditional way of change detection. Spatial extent 

and location of change is depicted with mapping procedures in GIS. Approach to 

create categorical map was based on manual data processing, supported with 

interpretation plan. As the study contains categorical analysis characterizing rural 

landscape, classification plan composes of arable land and featuring aspects, like 

ditches, storage buildings and areas occupied by farms. In this study spatial analysis 

of the two datasets based on transition matrix is applied in order to illustrate transition 

matrix, in means of spatial distribution of the changes (Figures 11-14). 

 

Area of interest of this study represents both agricultural and natural landscape, as the 

location is in the middle of two local settlements and between valleys ‘branches’. 

Analyzes perspective is concentrated on the volume of human intervention in 

landscape: human landscape and semi-natural landscape. Human landscape consists 

of intensive agricultural land, built areas, and infrastructure. Semi-natural landscape is 

located mainly in valley area: consisting forest and open areas, influenced by 

extensive agricultural activities, like mowing and grazing, or foresting. This research 

is based on analyzing the change in landscape pattern calculating landscape metrics 

and computing transition matrix to make predictions and to apply change evaluation 

techniques. As objectives of the study were to monitor categorical changes and trends 

of the landscape change, the scale of the research was chosen to be on the patch and 

total landscape level.  

 

Procedure quantifying the landscape pattern without considering process, failures to 

deal with change analysis (Li & Wu 2004). Therefore, structural and compositional 

metrics were chosen. Combining structural statistics and transitional calculations is an 

effective way to study rural landscape modifications. 
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When classifying habitat patches of the landscape, human perception was used in 

identifying, both in agricultural and natural landscape. This approach to determine 

landscape pattern is not considering habitat requirements, movement patterns and 

other ecological attributes of the local organisms − anthropocentric classification is 

applied. The use of ecological terms, like fragmentation and connectivity, are 

considered with concepts of landscape heterogeneity. Discussion is derived on the 

broad species-specific response and requirements to landscape condition: meadow 

species prefer open-areas, species using habitat corridors (ditches) to move in the 

landscape, edge species dependent on the edge property (forest or meadow). The 

patterns of landscape element assemblages are described in terms of connectivity, 

shape, edge density and structure. Researches focus both on whole landscape matrix 

and elements in the matrix. Additionally, discussion covers the topic of anthropogenic 

landscape versus natural landscape, upholded with topological aspect. 

 

 

8.1 Agricultural landscape 

 

In this study area arable fields are ranging of very different sizes and shapes (100m
2
 

to hundreds of hectares) ranging from small individual fields surrounded by forests to 

larger, contiguous farmland. Before the mechanization, smaller plots dominated 

landscape, managed mostly with horses. After development of farming practices in 

the middle of 20
th

 century, when tractors and subsurface drainage were introduced, 

field plots average size increased. 

 

In current research, agricultural developments have had important direct and indirect 

consequences to the local cultural landscape. Relationship between change and arable 

land is affected mostly by mechanical evolution. Immediate influence is noticeable in 

ditches area’s decrease of -82% (Table 7) and decline in number of ditches elements 

of 88 % (Table 11). According to the Statistics of subsurface drainage in Finland 

(2005) in 2005 there was 82% of the arable land installed with subsurface drainage in 

southwest Finland. Also, Hietala-Koivu’s (1999) spatiotemporal study of 39 years 

(1958-1997) have determined the tremendous fall of 91% in lenght of open ditches in 
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study area situated in southwest Finland, as well. Not only the amount, but also spatial 

distribution of the drainage enhances the ease of farming. Today, open drainage is 

spatially distributed mostly on the field edges and road sides, compared to previous 

time step, when drainage had merely parallel distribution over the field. Ditches 

category has turned mostly into arable land (94% of the total ditches transition from 

1959 to 2005 is to category arable,Table 13), resulting more effective and convenient 

cultivation possibilities. From the ecological point of view, the decrease in network of 

ditches on the fields reduces both landscapes’ structural and functional connectivity. 

 

The loss in movement and habitat strips for invertebrates or small mammals has 

negative effects for arable landscapes biodiversity, as spatial connectedness of 

landscape elements has impaired. Vegetated corridors may facilitate the movement of 

plants and animals among habitat fragments (Collinge 1996). Arable land’s spatial 

heterogeneity is reduced with large-scale management, as the average patch size of 

arable land (Table 8) has gone through remarkable increase of 65%. When, exploring 

the arable land category at the crop level, average patch size of the cereal field and 

grassland has increased substantial 73 % and 50 %. Patch density calculated to arable 

land features the homogenization aspect, presenting the considerable decrease of 46 

%. Diminishing of the smaller farms and storage buildings, having aesthetical 

meaning for the local culture, reflects the revenues of the mechanization in the 

agricultural landscape change process. The category barns have decreased 

substantially 82 % in the number of buildings and big amount of the area has 

transformed to arable land. Hietala-Koivu (1999), as well, has found especially barn 

class experiencing decrease in abundance (in 1958-1997, because fewer farms keep 

cattle and old hay barns are demolished. 

 

Landscape comprises the major biophysical attributes, which influence its use. 

Steepness of the terrain and erosions may be one reason, why the Rekijoki valley area 

itself has stayed moderately or very little disturbed and therefore, low disturbance has 

become advantageous to natural diversity. Native ecosystems of forest and meadow in 

the Rekijoki study area have been transformed to agricultural field in very moderate 

amount. Such transitions occur only on the margins of the valley area, where 



73 

 

interruption to adjacent land is easier; as landscape is relatively flat and getting 

steeper to the valley, because of slopes, is difficult. 

 

River Rekijoki valley is situated in the south boreal growth zone, which makes the 

region, in terms of agricultural practice, placed in the suitable area with its longer 

growth period and climate compared to northern area in Finland. Main types of 

agricultural managing found were cereal croplands and grassland. The amount of non-

arable land (low-productive small plots adjacent to agricultural land) was not 

considerable in terms of total area. When comparing arable land under crops in 1959 

and 2005, 6 % of relative increase in area is noticed. Controversially, when observing 

grasslands amount, then it could be noticed relative decrease of 6 %. Cereal crops 

growing in SW Finland have become more popular managing type, indicated with the 

rise of almost 13 ha in total arable land dedicated to cereal crops from 64 ha to 

approximately 77 ha. More economic benefit from the landscape is gained, as the 

overall amount of crop yield per hectare has raised remarkably compared to previous 

times due to agricultural evolution, such as invention of chemical fertilizers and 

pesticides. 

 

When exploring reasons for cereal and grassland land use fluctuations, Finnish 

agricultural history leads to many explanations. First of all, traditional hay making 

and grazing decline in the middle of 20th century , explains the grasslands areal 

decrease. Still, the cereal and grassland land use in the researche’s time steps of 1959 

and 2005, may have been in systematical land use rotation (activities located also 

outside the study area’s frame), which was not discovered in fine-scale research. 

Alternatively, additional research about land use intentions (e.g. interviews) could 

have favored more advanced distinguishing of the seasonal rotation. 

 

Arable land edge density’s remarkable decrease of 85 % leads to fewer interfaces with 

the surrounding landscape. It can mean less impact to natural environments, but 

oppositely also weaker contact between habitat patches in the landscape. That is to 

say, in the study area several dispersed cultivated patches under grassland and cereal 

land have merged into one patch. When compared with previous time, arable 

landscape is more difficult to pass in terms of disappearing habitat corridors. 
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Ecologically, population’s extinction probability increases when population 

connectivity decreases (Leigh, 1981). Also, the category side road, as linear feature in 

the agricultural landscape has decreased altogether 51 % from the total length. 

Diminishing of ditches and field roads to arable land might affect local pollinator 

butterfly species dispersal between vital vegetation patches providing food and shelter 

for worms – isolation reduces capacity to carry population. Species movement 

between habitat patches is important element in metapopulation dynamics (Wiens 

1997). Though, disappearing of those linear elements providing habitat for unwanted 

species, prevents weed and pest invasion among remnant vegetation. From the 

regional habitat perspective, agricultural habitats (ditch verges and side road verges) 

have become more fragmented. Also the shape of patches within study area has 

changed more rounded shape, as identified with landscape shape index. Still, decrease 

of the human originated landscape elements, like barns and field roads, may reduce 

habitat diversity in the agricultural landscape.  

 

As landscape becomes more homogenized, it becomes simpler, compared to more 

“natural” landscapes (Forman 1995). Overall homogenization of the landscape is 

affirmed quantitatively with calculating landscape indices SHDI and SHEI (table 4.6) 

at the whole landscape level, demonstrating the decrease of 14%. LSI indicates the 

vast change towards linearized landscape, as it decreases 70%. 

 

 

8.2 Valley landscape 

 

Landscape within the valley area has greater existence of microclimatic variation due 

to its aspect and angle of slope. Rekijoki valley’s area meadows serve as maintenance 

zones for certain plant and animal species, like butterflies, specialized in this area. 

The potential of the surrounding landscape on species richness is studied by the 

coverage of trees and monitoring the area of open-areas. Increasing cover of trees has 

negative effects on total species richness and that of rare grassland species in Rekijoki 

valley (Pykälä 2000). In this study, number of the smaller forest patches is 

decreasing, thereby increasing the average size of the remaining patches. The overall 

size of natural forest have increased 20% and the number of forested patches 
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decreased from 58 to 52 (-10%), which means changes in the patterning of the forest 

category. The increase in the cover of trees after the end of grazing may be more 

detrimental to grassland plants than the lack of grazing per se (Pykälä et al. 2005). 

 

Semi-natural areas (meadows) is determined to change towards degradation and 

fragmentation: approximately 12 ha (-26 %) of meadows area has transformed mostly 

(89 % of the loss, calculated in the transition matrix) to the forest class. It is assumed 

that certain butterfly population densities are in correlation with decline in habitat 

area (Krauss et al. 2003). Valleys meadow patterning is characterized with habitat 

subdivision, also defined as ‘fragmentation process’ (Forman 1995; Botequilha Leitão 

& Ahern 2002), indicated by the increase in number of meadow patches from 27 to 44 

(39 %) and remarkable decrease in mean patch size of meadow from 1,7 ha to 0,8 ha 

(-53 %). Decreasing of the meadow’s mean patch size could be threatening both for 

the herbivorous biological diversity and invertebrates, as it is known that species 

richness if often found to be higher in large patches. Still, even those small patches 

are significant as a supplement too, as they may be used as stepping stones for species 

recolonization or species dispersal (Forman 1995: 439). Butterflies prefer open areas 

and increasing of forest environments could influence the existence negatively. Also, 

changes on spatial configuration and patterning of meadow patches in the valley have 

effects on physical connectivity. Meadow patches are getting more isolated, in due of 

forest overgrown. 

 

Forman & Gordon’s (1986: 27) landscape change principle states that when 

undisturbed, horizontal landscape structure tends progressively towards homogeneity; 

moderate disturbance rapidly increases heterogeneity, and severe disturbance may 

increase or decrease heterogeneity. The loss of native vegetation is not permanent and 

unidirectional. Devoted sustainable landscape development restores local vegetation’s 

diversity and hence relieves susception to local extinction. Many ecosystems with 

high nature values in Europe depend on the continuation of specific forms of 

extensive agricultural land use (Strijker 2005) like cattle grazing (Pykälä 2007). 

Although livestock grazing leads directly to the loss of vegetation cover, it is linked to 

encroachment of cultural local vegetation. The spatial pattern defining valley of 

meadows surrounded by shrubs and moderate forest cover is maintained by interplay 
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of sheep or cattle grazing and hay making. Meadow and forest areas with greater 

probability of transitioning to other land-uses should be taken into consideration for 

restoration effects. The loss of habitat is not definitely permanent and unidirectional 

problem. The conservation of natural and seminatural habitats, or the creation and 

maintenance of new seminatural areas, is the most promising way to enhance or 

restore species richness in agricultural landscapes (Duelli & Obrist 2003). 

Maintenance or restoration of a high diversity of vegetation types within habitat 

remnants may be essential to long term population persistence (Collinge 1996). 

Hypothetically, as the increase of the forest area would slow remarkably, there would 

be few gradual losses of meadow patches in the future. 

 

Appropriate human intervention, like mowing or animal grazing has many beneficial 

aspects for wildlife and resource maintenance, as well as visual dimension valued by 

man-kind. The ecosystem development following abandonment may provide 

opportunities for the restoration of aspects of the native ecosystem and contribute to 

the achievement of the conservation outcomes in the region. Alternatively, 

socioeconomic consequences of land abandonment may lead to reduced income from 

tourism. The compensation of grazing and mowing has been of utmost importance in 

maintaining biodiversity in Europe, where humans have long suppressed natural 

disturbances (Pykälä 2007). In general, biodiversity and aesthetic properties are 

associated with heterogeneity in a landscape. 

 

 

8.3 Edge between arable land and valley 

 

Composition distribution of the edge type revealed that, the forest edge type has 

increased tremendously compared to meadow edge type, which in turn has lost almost 

the same amount (-18 %) of the length in total composition. When in 1959 forest edge 

consisted one fourth of the total edge between arable and valley area, then in 2005,the 

amount of forest edge to arable has increased to 46 % of the total edge length. Also, it 

is interesting to note out, that in the number of polylines of the forest adjacency to 

arable land, gradual loss of 36% is indicated. It concludes to the assumption that 

spatial patterning of the different edge types has undergone considerable change 
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towards homogenization. Also Weng & Wu (2005) has noted that using edge segment 

density (number of polylines) for specific edge types is comprehensive information 

for characterizing fragmentation. 

 

The structural edge changes are dependent mostly on the dynamics from meadow to 

forest within the valley landscape, and not as much because of conversions in the 

agricultural landscape. Arable land patches locations in respect to the other LULC 

categories have stayed mostly unchanged. The shape of the valley verge monitored 

from the map seems to be less devious, which explains the overall loss of 1 km (9 %) 

from the total edge length. Linear and rounded shapes has different influences for the 

edge attributes. Patches with highly irregular, convoluted boundaries will likely have 

greater exchange of nutrients, materials, and organisms with adjacent habitats 

(Collinge 1996). More simplistic edge curves and loss in meadow edges may affect 

the ecological flow and permeability between the agricultural landscape and valley, as 

well the microclimatic conditions. From another point of view, more rounded or 

compact form with minimal appendages (i.e., minimal perimeter-to-area ratio) is 

characteristics of systems where it is important to conserve natural resources, like 

organisms (Forman & Gordon 1986: 177). Forest edge is known to have different 

ecological functions compared to open area’s edge: forest edge becomes warmer, 

preserves more humidity, influences wind velocity and light penetration with its 

higher stand (Murcia 1995). 

 

Characteristic ecotones are developed between temperate forests and cropland. The 

overlap zone or ecotone is narrow and composed mainly of intermixed species from 

both sides (Forman & Gordon 1986: 60-61). Edges of the agricultural land and single 

habitat patches in the valley area have meaningful relationship for edge species. The 

proportion of the meadow adjacent to agricultural land has decreased considerably, 

which may be concerning for population ecology (conservation biology). Populations 

of plants and animals in areas with bigger vegetational diversity may be less 

susceptible to local extinction (Kindvall 1996). Spatial scale of the changes are key 

issues associated with consideration of movement between habitats. The larger scaled 

changes may have important consequences in terms of survival for small mammals 

and flightless insect species. What constitutes loss of continuity of edge type and 
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permeability for movement from the agricultural landscape edges to natural area is 

species-specific. Forest patches buffer the valley area, with keeping the suitable 

microclimatic conditions for plants. Forest edge to arable land also ‘protects’ from 

agricultural disturbances, like chemicals and noise. For agricultural land species, it 

might mean a growth of the natural barrier, isolation from natural landscape, which in 

turn affects foraging, reproduction. 

 

Different ecosystem types (arable land adjacent to meadow/forest) could be 

investigated by extent of the the areas supporting the edge. When, for example, 

meadow edge to agricultural land has decreased, then it would also be useful to know, 

in what amount those meadow patches have been lost. Diminishing of the short strips 

of certain edge may influence markedly the total edge ecosystem. Also, Kuussaari 

(2007) has determined the significance of even small patches of semi-natural 

grasslands and open, sunny forest edges for species richness in modern farmland. 

Spatial arrangement or configuration of landscape elements are ecologically more 

important, than quantity (Forman 1995: 5). 

 

 

8.4 Change trends 

 

In means of areal coverage, forest, built and arable land classes have increasing trend 

to expand, while meadow and ditches class are indicated to have decreasing trend in 

areal growth. Change rate (-0,65) for the meadows category may be interpreted to be 

quite concerning, as it is well below under 0 compared to other categories. Ditches 

class change is considered to be one-time permanent transition, as tendency is 

extraordinary high, and spatial distribution has determined that possible changes are 

finite (the ditches remained on the sides of road and bordering fields will stay in the 

todays state). Spatial configuration of the vulnerability to future changes in the 

landscape is calculated with Markov’s probability (Table 16). 

 

It is determined that, the tension of the change probabilities is concentrated nearby 

human settlement (value is 0,43-0,95) and then in the valley area (values between the 

interval of 0,11-0,43), pointing out that, changes occurring in intensive agricultural 
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landscape are not as substantial as changes in extensive agricultural landscape. 

Extensive agricultural landscape, from the local perspective, has been part of the 

historical land-use in the study area. Depressions slopes have been used traditionally 

as pasturing area. In 1970s and 1980s, local valley structures were fragmented due to 

afforestation and natural overgrown (Alanen & Pykälä 2004: 200-201). Pasturing 

were started to be managed again in 1993-1998, supported by several regional and 

national institutions, which raised the areas of meadows coverage markedly 

(Lehtomaa 2000a). When observing the diagonal values of the Markov’s matrix, it 

could be seen, that almost all the values for the six LULC categories are well over 

0,50. When before it is mentioned the high rate and trend of the meadows category to 

decrease in coverage, then according to the probability observation, it is possible to 

evaluate with comparing the probabilities, that such concerns of meadows transitions 

has moderate trends. The exception of the value being well under 0,50 is noticed to be 

more in the other and ditches class. 

 

When speaking of the overall state of the landscape, then patch density (PD) could be 

applied to make conclusions. According to McGarigal et al. (2002) landscape with 

greater patch density (PD) would have more spatial heterogeneity. As so, Rekijoki 

study area are noticed to have tremendous decrease of 46% in patch density, which 

can be interpreted as landscape’s trend towards homogeneity. 

 

 

8.5 Implications 

 

Range of spatial and temporal complexities that characterize the magitude of edge 

effects could have been investigated with calculating the shape index for patches 

participating in edge characteristics, especially the meadow and forest patches. 

 

Historical change detection studies are dependent on availability of remote sensing 

data. This research uses two datasets from time section of 1959 and 2005. Time 

sections represent different practices in agricultural history. In means of more detailed 

results of change rates and transition probabilities, some extra datasets between those 

two time periods could have enhanced the final assumptions. Also one possibility to 
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endorse the inferences of the study would have been to choose several study area 

plots from more extent area. Nevertheless, individual regions are defined by degree of 

contrast and interaction with adjacent areas rather than by absolute size (Olson & 

Francis 1995: 8). 

 

Research is based on digitizing and accuracy of the technique is dependent on the 

correctness of the adapted classifiers. Landscape structure must be identified in 

meaningful ways before the interactions between landscape patterns and ecological 

processes can be explored (Turner 1989). The minimum grain and extent of the 

classified element was determined by the smallest landscape feature eye could 

identify from fine-scale image, 0,5x0,5 m. Aerial photos pre-preparation consisted of  

georeferencing and setting the projection. Possible inaccuracies in pre-preparation 

process were avoided with achieving the appropriate values of GCPs (ground control 

points). 

 

Transition matrix of changes has been examined in depth to discover possible 

anomalies, when observing the dynamics. As transition matrix lacks in capacity of 

discovering reallocation (Pontius et al. 2004), additional calculations of swap, net 

change and total change is made. Whereas categories’ dynamics, transition matrix 

presents also categories persistence and gains/losses. Additional calculation for 

tendencies to persist and gain/loss, help evaluating the matrix’s results. The rate of 

land use and land cover change is applied in order to calculate each categories value. 

Moreover, additional time steps during study period would have enhanced exploring 

the fluctuations in the change rate (Teferi et al. 2013). 

 

In the study of edge characteristics, methods to investigate edge dynamics in the 

surroundings of the key biotopes enhances the understanding of the boundary 

functions (Käyhkö & Skånes 2006). In current study, boundaries of agricultural 

landscape and valley area are described with length and type (i.e meadow to arable: 

forest to arable). Using the buffer analyses in zoning approach, would have added 

transitional perspective to the boundaries study, as well. 
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Scant attention should be payed on that, the recent work implies on the desktop 

methods to change detection. It is important to understand the habitat requirements of 

organisms as part of determining the impacts of landscape change on them. Field 

work and determining the species compositions with samples would have had 

contributory effect to the study. Also, classified categories of boundaries having 

ecological relevance for analyzing valley habitats quality is based on assumption 

‘how landscape pattern may relate to the given group of edge species’. Extrapolating 

accurate results of previous researches to small-scale studies remain questionable 

(McGarigal & Cushman 2002). Still, many of the background researches concentrate 

on the river Rekijoki valley area’s biodiversity and overall landscape structural 

changes in Finland. 
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9 Conclusion 

 

Landscape ecology emphasizes broad spatial scales and the ecological effects of the 

spatial patterning of ecosystems. Changes in structural complexity of land cover occur 

as a consequence of human land-use practices, which are predominantly associated 

with agricultural development.  

 

Historical land use and different agricultural production types have played an 

important role in influencing land-use pattern in Rekijoki study area. Mosaic structure 

of landscape elements has changed by the combined effect of processes. Socio-

economic constraints, like changes in the importance of other cultivation sectors (e.g. 

cereal growing) and evolution in machinery, has played important role of the 

management of agricultural landscape in Rekijoki. Intensification of agriculture is 

obvious in the most productive lands. The overall results suggest that the ecological 

value of agricultural landscapes has homogenized. What is more, it is concluded that 

significant changes in the landscape structure/pattern and habitat diversity are caused 

mostly by natural overgrowing in the valley area and larger-scale agricultural 

activities in the arable land. Traditional land use change to another state was 

highlighted with five transitions in means of large extent in the area: meadow to 

forest, forest to meadow, arable to built area, meadow to arable, and forest to arable. 

Characteristic spatial arrangement of particular landscape is dependent on the 

steepness of the valley slopes. There hasn’t been any tremendous transition from 

natural area to under agricultural land. 

 

The critical issue of landscape change is not just the area of conversion but also the 

transformation or changes in ecological ‘condition’. In ecology, habitat loss and 

isolation, caused by the process of land conversion, have been referred as ‘habitat 

fragmentation’. Forest overgrown in valley area and arable land structural changes 

towards homogenization leads to loss in connectivity and habitat for invertebrates and 

butterflies. Abundance and configuration of landscape elements revealed that 

remarkable changes were decrease in the number of open ditches, substantial 

deprivation in patch density and the landscape change towards more linearized shape. 
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Rekijoki valley landscape diversity is a function of both historical events and current 

socioeconomic and ecological interactions. 

 

Interface between two ecological communities was achieved with assigning 

topological attributes to the strips between two adjacent landscape categories of the 

edge and arable land. It is concluded that the trend towards more forested edges may 

have negative implications for the local invertebrates preferring open areas and 

permeability in the landscape matrix. However, the overall results of the edge length 

between agricultural landscape and valley area have experienced little change, which 

upholds the persistence of the traditional valley landscape adjacency to farmland. 

 

We expect that landscape beauty, here a by-product of agricultural systems, can only 

be maintained if the specific landscape elements and their overall landscape structural 

pattern also have agro-ecological functions recognized by farmers. Finally we should 

also consider how useful the knowledge of ecological processes at the landscape level 

is for design that focuses on visual dimension of the landscape. There is significant 

relationship between ecological integrity and aesthetic constraints. Changes in the 

visual dimension of the landscape resulting from forest removal are viewed positively 

by most segments of society other than farmers. 

 

As a final conclusion, it is assured that there has been a significant land cover change 

due to farming practices expansion: arable land area has increased; reduce in 

traditional agricultural activities have resulted overgrowing of the meadow patches, 

and forest edge has increased. Traditional management intervention in river Rekijoki 

valley was found to have some developments in the last decade. The restoration 

activities in the valley area, by means of cattle grazing and pasturing definitely helps 

to maintain the areal relationship between meadows and forests, in order to preserve 

traditional rural biotopes. Recognizing different landscape varying states is important 

for conservation strategies, whereas identifying which ecological processes are the 

most important for a given landscape species can be essential for developing effective 

mitigation strategies.  
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The datasets of Rekijoki valley landscape land use and land cover created during 

current study could be used in further retrospective investigations as a source of 

historical information. Underlying landscape dynamics analyses add important 

approach for management and protection plans, as it is precisely described where the 

changes have occurred. 

 

Finally, devoting much of our attention to the land uses in traditional landscapes 

consisting of rare biotopes, one can reduce the negative ecological effects caused by 

inadvertent terrain altering, to biota and landscape heterogeneity. 
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