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ABSTRACT

The aim of  the present set of  studies was to explore primary school children’s Spontaneous 
Focusing On quantitative Relations (SFOR) and its role in the development of  rational 
number conceptual knowledge. The specific goals were to determine if  it was possible 
to identify a spontaneous quantitative focusing tendency that indexes children’s tendency 
to recognize and utilize quantitative relations in non-explicitly mathematical situations 
and to determine if  this tendency has an impact on the development of  rational number 
conceptual knowledge in late primary school. To this end, we report on six original empirical 
studies that measure SFOR in children ages five to thirteen years and the development of  
rational number conceptual knowledge in ten- to thirteen-year-olds. SFOR measures were 
developed to determine if  there are substantial differences in SFOR that are not explained 
by the ability to use quantitative relations. A measure of  children’s conceptual knowledge of  
the magnitude representations of  rational numbers and the density of  rational numbers is 
utilized to capture the process of  conceptual change with rational numbers in late primary 
school students. Finally, SFOR tendency was examined in relation to the development of  
rational number conceptual knowledge in these students.

Study I concerned the first attempts to measure individual differences in children’s 
spontaneous recognition and use of  quantitative relations in 86 Finnish children from the 
ages of  five to seven years. Results revealed that there were substantial inter-individual 
differences in the spontaneous recognition and use of  quantitative relations in these tasks. 
This was particularly true for the oldest group of  participants, who were in grade one 
(roughly seven years old). However, the study did not control for ability to solve the tasks 
using quantitative relations, so it was not clear if  these differences were due to ability or 
SFOR. Study II more deeply investigated the nature of  the two tasks reported in Study 
I, through the use of  a stimulated-recall procedure examining children’s verbalizations 
of  how they interpreted the tasks. Results reveal that participants were able to verbalize 
reasoning about their quantitative relational responses, but not their responses based on 
exact number. Furthermore, participants’ non-mathematical responses revealed a variety of  
other aspects, beyond quantitative relations and exact number, which participants focused 
on in completing the tasks. These results suggest that exact number may be more easily 
perceived than quantitative relations. As well, these tasks were revealed to contain both 
mathematical and non-mathematical aspects which were interpreted by the participants as 
relevant.

Study III investigated individual differences in SFOR 84 children, ages five to nine, from 
the US and is the first to report on the connection between SFOR and other mathematical 
abilities. The cross-sectional data revealed that there were individual differences in SFOR. 
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Importantly, these differences were not entirely explained by the ability to solve the tasks 
using quantitative relations, suggesting that SFOR is partially independent from the ability 
to use quantitative relations. In other words, the lack of  use of  quantitative relations on 
the SFOR tasks was not solely due to participants being unable to solve the tasks using 
quantitative relations, but due to a lack of  the spontaneous attention to the quantitative 
relations in the tasks. Furthermore, SFOR tendency was found to be related to arithmetic 
fluency among these participants. This is the first evidence to suggest that SFOR may be a 
partially distinct aspect of  children’s existing mathematical competences. 

Study IV presented a follow-up study of  the first graders who participated in Studies I and 
II, examining SFOR tendency as a predictor of  their conceptual knowledge of  fraction 
magnitudes in fourth grade. Results revealed that first graders’ SFOR tendency was a unique 
predictor of  fraction conceptual knowledge in fourth grade, even after controlling for 
general mathematical skills. These results are the first to suggest that SFOR tendency may 
play a role in the development of  rational number conceptual knowledge.

Study V presents a longitudinal study of  the development of  263 Finnish students’ rational 
number conceptual knowledge over a one year period. During this time participants 
completed a measure of  conceptual knowledge of  the magnitude representations and the 
density of  rational numbers at three time points. First, a Latent Profile Analysis indicated 
that a four-class model, differentiating between those participants with high magnitude 
comparison and density knowledge, was the most appropriate. A Latent Transition Analysis 
reveal that few students display sustained conceptual change with density concepts, though 
conceptual change with magnitude representations is present in this group. Overall, this 
study indicated that there were severe deficiencies in conceptual knowledge of  rational 
numbers, especially concepts of  density.

The longitudinal Study VI presented a synthesis of  the previous studies in order to 
specifically detail the role of  SFOR tendency in the development of  rational number 
conceptual knowledge. Thus, the same participants from Study V completed a measure of  
SFOR, along with the rational number test, including a fourth time point. Results reveal that 
SFOR tendency was a predictor of  rational number conceptual knowledge after two school 
years, even after taking into consideration prior rational number knowledge (through the use 
of  residualized SFOR scores), arithmetic fluency, and non-verbal intelligence. Furthermore, 
those participants with higher-than-expected SFOR scores improved significantly more 
on magnitude representation and density concepts over the four time points. These 
results indicate that SFOR tendency is a strong predictor of  rational number conceptual 
development in late primary school children.

The results of  the six studies reveal that within children’s existing mathematical competences 
there can be identified a spontaneous quantitative focusing tendency named spontaneous 
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focusing on quantitative relations. Furthermore, this tendency is found to play a role in 
the development of  rational number conceptual knowledge in primary school children. 
Results suggest that conceptual change with the magnitude representations and density 
of  rational numbers is rare among this group of  students. However, those children who 
are more likely to notice and use quantitative relations in situations that are not explicitly 
mathematical seem to have an advantage in the development of  rational number conceptual 
knowledge. It may be that these students gain quantitative more and qualitatively better 
self-initiated deliberate practice with quantitative relations in everyday situations due to an 
increased SFOR tendency. This suggests that it may be important to promote this type of  
mathematical activity in teaching rational numbers. Furthermore, these results suggest that 
there may be a series of  spontaneous quantitative focusing tendencies that have an impact 
on mathematical development throughout the learning trajectory.
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1.	 INTRODUCTION

A bored child asks their parent, “Are we there yet?” A university student is budgeting their 
study time and asks, “Will I finish in time for the movie tomorrow?” A parent is serving dessert 
to a set of  siblings and is greeted with the perennial response, “That’s not fair!” None of  
these statements or questions is inherently mathematical, and yet in each instance there are 
available mathematical cues and features of  the situation that could be used to more clearly 
answer the question or explain the situation. The bored child may be told, “We’re almost there”, 
“We’re one hour away”, or even “We’re halfway there.” Differences in the use of  mathematical 
aspects interred in these different responses may be important for understanding differences 
in the development of  mathematical skills. A large part of  practice with mathematical 
reasoning and skills does not happen in formal learning situations (Bransford et al., 2009). 
Beneficial experiences and practice with mathematical reasoning often occurs during 
everyday situations, such as those described above (Hannula & Lehtinen, 2005; Lobato, 
Rohdehamel, & Hohensee, 2012). Unlike the math classroom, everyday situations rarely 
involve someone providing guidance towards the relevant mathematical aspects that 
are present (Gunderson & Levine, 2011). Thus, it is on the individual to recognize the 
relevance of  the mathematical aspects in these situations alone. The tendency to recognize 
mathematical aspects of  a situation varies substantially between individuals in situations that 
are not explicitly mathematical (Hannula, 2005; Hannula & Lehtinen, 2001; 2005; Lehtinen 
& Hannula, 2006; Lobato, 2012). A higher tendency to recognize mathematical aspects as 
relevant may provide more opportunities for these individuals to practice mathematical 
reasoning, benefiting the development of  formal mathematical skills. 

Returning to the previous example of  answers to the question, “Are we there yet?”, the 
present dissertation is particularly concerned with the answer, “halfway”. This answer relates 
the total length of  the journey to the time/distance that has already passed. That this answer 
was provided in a situation in which the mathematical features were not inherently salient, 
suggests that the person who provided this answer must have recognized the relevance 
of  the quantitative relations on her own, that is to say, spontaneously, and used these 
quantitative relations in formulating her response. Thus, it can be said that providing this 
answer required the person to first spontaneously focus on quantitative relations. 

Mathematics educators around the world are increasingly under pressure to teach complex 
and difficult content to students, and mathematical skills are increasingly seen as an 
important demarcation of  a successful education (Ananiadou & Claro, 2009; NCTM, 2000). 
Despite this, children and students continue to struggle with a number of  mathematical 
competences across the learning continuum. Learning rational numbers is one particularly 
difficult topic that has received increased attention in the past few years (NMAP, 2008) and 
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large-scale evaluation studies show that students’ understanding of  fractions at the end of  
primary school strongly predicts their later learning of  more advanced mathematical content 
(Siegler et al, 2012). A growing body of  research has aimed to investigate difficulties in the 
development of  the number concept – as students move from reasoning about natural 
numbers, expanding to reasoning about integers, rational, and real numbers (Christou 
& Vosniadou, 2012; Merenluoto & Lehtinen, 2004; Vamvakoussi & Vosniadou, 2004; 
2010). In particular, details of  the difficulties students and adults face with learning and 
reasoning about rational numbers can be found throughout the literature on mathematical 
cognition and education (Confrey, Maloney, Nguyen, Mojica, & Myers, 2009; Durkin & 
Rittle-Johnson, submitted; Hallet, Nunes, & Bryant, 2010; Iuculano & Butterworth, 2011; 
Jordan et al., 2013; Mazzocco & Devlin, 2008; Meert, Grégoire, & Noël, 2010; Merenluoto 
& Lehtinen, 2004; Ni & Zhou, 2005; Obersteiner, Van Hoof, Van Dooren, & Verschaffel, 
2013; Siegler, Fazio, Bailey, & Zhou, 2013; Vamvakoussi, Christou, Mertens, & Van Dooren, 
2011; Vamvakoussi, Van Dooren, & Verschaffel, 2012; Vamvakoussi & Vosniadou, 2004; 
Van Hoof, Lijnen, Verschaffel, & Van Dooren, 2013; Van Hoof, Verschaffel, Van Dooren, 
2013). The difficulty with rational numbers arises from uncertain origins, as young children 
show diverse competences with pre-mathematical, quantitative relations (Boyer, Levine, & 
Huttenlocher, 2008; Duffy, Huttenlocher, & Levine, 2005; Frydman & Bryant, 1988; Jeong, 
Levine, & Huttenlocher, 2007; Mix, Levine, & Huttenlocher, 1999; Singer-Freeman & 
Goswami, 2001; Sophian, 2000; Sophian, Harley, & Martin, 1995; Spinillo & Bryant, 1999; 
Wing & Beal, 2004), which have been viewed as precursors to reasoning about rational 
numbers (Boyer & Levine, 2012; Confrey et al., 2009; Lesh, Post, & Behr, 1988; Sophian, 
2007). One explanation for the disconnect between early competences with quantitative 
relations and later difficulties with rational numbers is the influence of  a bias towards 
reasoning about natural number even when dealing with rational numbers (Ni & Zhou, 
2005; Obersteiner et al., 2013; Vamvakoussi et al., 2012; Van Hoof  et al., 2013). Much of  the 
evidence surrounding students difficulties with reasoning about rational numbers suggests 
the over-extension of  natural number knowledge to rational numbers. Evidence suggests 
that overcoming this bias, which leads to the successful understanding of  rational numbers, 
requires radical conceptual change (Merenluoto & Lehtinen, 2002; 2004; Vamvakoussi & 
Vosniadou, 2004; 2010; Vosniadou & Verschaffel, 2004). 

Despite the increase in knowledge about difficulties with rational number concepts, two 
limitations hamper previous studies. First, there is little evidence of  the actual development 
of  conceptual knowledge of  rational numbers. In particular, while there is some evidence 
detailing general cognitive predictors of  fraction knowledge (Jordan et al., 2013), little 
evidence exists that highlights actual conceptual change with rational numbers over time or 
the different level of  difficulties students face with this development. Furthermore, some 
studies have investigated secondary students’ development of  rational and real number 
concepts (e.g. Merenluoto & Lehtinen, 2004). However, there is little evidence on primary 
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school students, who are first learning about rational number concepts. The second 
limitation is that, until now, there has been little evidence on the developmental antecedents 
of  rational number conceptual knowledge. As well, the existing studies on early reasoning 
about quantitative relations and other processes related to formal rational number concepts 
have solely used tasks in which the participants were aware of  the mathematical nature 
of  the tasks (e.g. Boyer at al., 2008; Jordan et al., 2013). The success of  previous studies 
in identifying the role of  individual differences in Spontaneous Focusing On Numerosity 
(SFON) in mathematical development (Hannula & Lehtinen, 2005) suggests that further 
investigations may reveal a similar tendency that could be relevant for the study of  the 
development of  rational number conceptual knowledge. 

Therefore, the present dissertation aims to investigate whether individual differences in 
children’s spontaneous focusing on quantitative relations are related to the conceptual 
development of  rational numbers. This is done by first determining if  it is possible to 
capture individual differences in children’s spontaneous focusing on quantitative relations. 
As well, the present dissertation aims to identify if  there is a connection between the 
spontaneous recognition and use of  quantitative relations and the development of  rational 
number conceptual knowledge. 

The present doctoral dissertation is made up four main sections providing a theoretical 
and methodological framework for and a summary of  the six original empirical articles. 
First, the following theoretical sections detail existing research on a) the development of  
reasoning about quantitative relations in connection with the development of  rational 
number skills (e.g. Boyer & Levine, 2012), b) the nature of  the development of  rational 
number conceptual knowledge is explained from the perspective of  a conceptual change 
approach (Vosniadou & Verschaffel, 2004), and c) the contribution of  spontaneous 
quantitative focusing tendencies, in particular, Spontaneous Focusing On Numerosity 
(SFON) to the development of  mathematical skills is described (e.g. Hannula & Lehtinen, 
2005). Second, the methodology of  the present works is detailed. Third, the six empirical 
studies are summarized with regard to the aims of  the dissertation as a whole. Finally, a 
discussion of  the main findings, theoretical and practical implications, and challenges for 
future research is presented.

1.1	 The Development of  Reasoning about Quantitative Relations

Beginning in infancy and throughout early childhood, humans express the ability to 
compare and relate two or more quantities to each other (Dehaene, Izard, Spelke, & 
Pica, 2008; Feigenson, Carey, & Spelke, 2002; Feigeson, Dehaene, & Spelke, 2004; Odic, 
Libertus, Feigenson, & Halberda, 2013). These early competences with reasoning about 
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quantitative relations have been documented in a number of  studies on early childhood 
mathematical cognition (e.g. Boyer et al., 2008). These early competences are expected to 
be related to later formal knowledge of  rational numbers (Boyer & Levine, 2012; Confrey 
et al., 2009; Lesh et al., 1988; Mazzocco & Delvin, 2008; Sophian, 2000). In the present 
study, quantitative relations are defined as the relationship between two or more objects, 
sets, or symbols based on some quantifiable aspect(s). Thus, quantitative relations can refer 
to a number of  relations found in a child’s everyday environment (Frydman & Bryant, 
1988; Gallistel & Gelman, 1992; Resnick, 1992; Sophian, 2000; Van Dooren, De Bock, 
Hessels, Janssens, & Verschaffel, 2005; Wynn, 1992). These relations can include a) exact or 
approximate proportional relations or ratios, represented by both continuous and discrete 
quantities, b) additive and multiplicative relations, including formal and informal arithmetical 
relationships, and c) exact numerical ratios, such as fractions. 

Infants have been shown to recognize the halfway point in objects, showing surprise when 
unsupported objects do not fall under the sway of  gravity (McCrink & Wynn, 2007). The 
system of  approximate number found in infants and even non-human animals, has features 
of  relational reasoning, both in terms of  the mental number line’s logarithmic scale and 
the weber ratio found in magnitude comparisons (e.g. Dehaene et al., 2008). Beyond these 
innate capacities, children in early childhood also show a number of  capabilities to solve 
tasks using quantitative relations (e.g. Boyer et al., 2008). A number of  studies have detailed 
early primary school age children’s ability to match proportional mixtures of  juice and water, 
especially those represented by continuous quantities (Boyer et al., 2008; Boyer & Levine, 
2012; Duffy et al., 2005; Jeong et al., 2007). Spinillo and Bryant (1999) found that six-
year-olds were similarly able to match continuous proportional quantities, though discrete 
proportional relations were only able to be handled by seven-year-olds.  However, four-year-
olds have also been found to be able to match proportionally sized shapes and proportional 
matched sets (Sophian, 2000; Sophian et al., 1995). Likewise, Mix and colleagues (1999) 
determined that four- and five-year olds were able to calculate simple arithmetic problems 
with fractional pieces of  a foam circle. Finally, Frydman and Bryant (1988) found that five-
year-old children could cope with different unit sizes of  pieces of  candy to give fair shares. 

These early competences with quantitative relations are expected to be related to later 
fraction knowledge. Piaget argued that it is not until relatively late that children are able to 
reason about proportional relations (Piaget & Inhelder, 1951/1975). However, a number 
of  studies indicate that this is too simplistic of  an understanding of  children’s proportional 
reasoning, as different aspects of  proportional reasoning develop separately (Lesh et al., 
1988). As well, the gradual increase in the ability to reason about the different aspects of  
proportional relations has been suggest to lead to formal mathematical concepts such as 
rational numbers (Boyer & Levine, 2012, Lesh et al., 1988 Mix et al., 2002). Confrey and 
colleagues (2009) propose in their recent review that partitioning and splitting objects into 
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equal groups is a core feature of  rational number reasoning and, while key to its development, 
is underrepresented in curricula world-wide. The early act of  sharing, particularly the 
regrouping of  objects into new units (many-as-one) is argued as the foundational to the 
development of  the concept of  fractions. Sophian (2000) as well argues that early abilities 
to perceive quantitative relations in or between objects may lay the foundation for the later 
understanding of  fractions. Thus, an explicit connection between the early competences 
and formal fraction learning would help lessen the difficulties children experience when 
learning about rational numbers.

Confrey and colleagues (2009) outline the connection between different aspects of  
quantitative relational reasoning and the development of  a wide-range of  skills with 
relational aspects in formal mathematics., such as ratio, fractions, and decimals However, 
a more parsimonious model may be more beneficial for considering the connections 
between early reasoning about quantitative relations and the development of  conceptual 
knowledge of  rational numbers. Resnick (1992) outlines a framework for development of  
mathematical reasoning by focusing on the nature of  the objects which can be reasoned 
about mathematically, from the earliest levels of  intuitive reasoning about informal non-
exact “protoquantities”, up to the notion of  operations as entities with features that can 
be reasoned about independent of  specific numbers. In this framework, Resnick attempts 
to make the connection between children’s existing informal competences with pre-, or 
proto-, mathematical aspects and the related formal mathematical ideas. This is of  particular 
interest when considering children’s own self-initiated activities with mathematical aspects 
of  everyday situations. While Resnick focuses on reasoning about arithmetic and natural 
number operations, she points out that this framework is also useful for considering other 
mathematical topics. Thus, the framework outlined by Resnick is applied to the progression 
from early reasoning about quantitative relations leading up to conceptual knowledge of  
rational numbers (see Figure 1). 

At the most basic level in Resnick’s model is the mathematics of  protoquantities, which have 
no explicit quantitative value, but consist of  vague quantitative notions, such as “many” 
or “more”. In fact, this level can be seen as inherently relational, as Resnick notes, 
protoquantitative reasoning involves the “direct perceptual comparison of  objects or 
sets of  different sizes” (1992; pg.  412). While, this level of  reasoning directly relates to 
many aspects of  mathematics, notably absent from these comparison are exact quantities, 
which are necessary for, among other things, the equal partitioning that is a key precursor 
of  rational number knowledge (Confrey, 2009).  While it is possible that key relational 
boundaries, in particular half, may be used in reasoning at this level, as has been found in 
infant habituation studies (e.g. McCrink & Wynn, 2007), the explicit identification of  these 
mathematical features, as such, is not possible (cf. Spinillo & Bryant, 1999)
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Figure 1. The development of quantitative relations and rational number knowledge. Based on 
model from Resnick (1992): From protoquantities to operators: Building mathematical competence 
on a foundation of everyday knowledge.

Resnick (1992) argues the next level of  reasoning is the mathematics of  quantities. This is 
the first level that involves explicit quantities, which are used in reasoning about physical 
material. Reasoning at this level involves the concrete application of  the arithmetical 
operations, such as increasing, decreasing, combining, and partitioning objects using exact 
quantities. In this way, the quantities level contains the mathematical aspects referred to as 
quantitative relations in the present dissertation; the materials or objects used in the present 
study can be reasoned about as quantified physical material, not requiring the sole use of  
abstract numbers (though reasoning with formal numerical operations is possible on these 
tasks, it is not necessary). Importantly for the development of  rational number knowledge, 
aspects of  proportional reasoning with physical objects, which has been found in young 
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children, also occur at this level. For instance, it is here that children are able to make the 
connection between the same part-whole relationship across different quantities or units 
(e.g. Boyer & Levine, 2012).

The next level of  development defined by Resnick, the mathematics of  numbers, is where 
numbers begin to act as “nouns”, or “conceptual entities that can be manipulated and 
acted upon” (pg. 414). In terms of  the development of  rational numbers, this level would 
encompass the first skills and processes with symbolic fractions and decimals, where 
fractions and decimals are symbolic entities that can be acted upon and reasoned about 
independent of  physical material. However, at this level, fractions and decimals may be seen 
more as special types of  counting numbers that are static entities having own magnitudes, 
which are tied to them in a constrained manner. Thus at this level, ½ is not the relationship 
of  1 part to 2, but merely represents the magnitude of  one-half  of  1 (halfway between 0 
and 1 on the number line). In this way, many features of  natural numbers can be attached 
to fractions and decimals, often in a supportive manner (Nunes & Bryant, 2008). It may be 
possible to solve basic problems and possess routine skills with fractions and decimals at 
this level. However, it is also at this level that the natural number bias would cause problems 
with reasoning about fractions and decimals, through the over use of  natural number 
features when reasoning about rational numbers (Ni & Zhou, 2005).

Thus, only in moving into the mathematics of  operations level of  reasoning do fully 
mathematically correct concepts of  rational numbers appear. At this level, it is possible 
to reason about operations themselves, as operations themselves become “nouns” which 
“can be reasoned about, not just applied” independent of  specific numbers (Resnick, 1992, 
pg. 414). Similarly, at this level, rational numbers can become entities to be reasoned about, 
as they are understood to represent the mathematical relations inherent in fractions (the 
relation between numerator and denominator) and decimals (the relation between place-
value and terms). Thus, at this level, rational numbers become more than just whole numbers 
with non-whole values, as in the previous level, but mathematical objects that have specific 
features that are partially distinct from natural numbers (e.g. Vamvakoussi & Vosniadou, 
2004). Thus, just as the concepts of  arithmetic operations (e.g. commutativity, associativity, 
etc.) can be understood at this level, being that operations are now objects to be reasoned 
about, the new concepts of  rational numbers (e.g. magnitude representations, density, etc.) 
can be understood at this level, being that rational numbers are now objects to be reasoned. 
However, reaching this level is not a simple progression as described by Resnick, but instead 
requires radical change in the conception of  the nature of  number (Merenluoto & Lehtinen, 
2004; Vamvakoussi & Vosniadou, 2004).

There are two main developmental aspects to this framework which are relevant for the 
present dissertation. First, children do not move uniformly from one level up to the next 
for all aspects of  mathematics (Resnick, 1992). Thus, it is possible to be at the level of  the 



20	 Introduction

mathematics of  operations with natural numbers, but this level may actually coincide with 
the mathematics of  numbers for rational numbers. So that, while children may be able to 
reason about the arithmetic operations with whole numbers, for example the commutativity 
of  addition, this does not at all indicate that they are able to see fractions and decimals as 
the inherently relational objects they are (e.g. Siegler et al., 2013). It is precisely this feature 
of  the development of  mathematics that can cause disconnect between reasoning about 
natural numbers and reasoning about rational numbers that requires conceptual change (e.g. 
Merenluoto & Lehtinen, 2004). Also relevant for the present dissertation is the notion that 
the lower levels are not completely eliminated from use after moving to a higher level. As 
Resnick (1992, pg. 418) points out, “In passing to a higher layer of  mathematical reasoning, 
the earlier layers are not discarded, but remain part of  the individual’s total knowledge 
system.” This is particularly relevant for the discussion of  spontaneous quantitative focusing 
tendencies. It is possible that the tendency to pay attention to quantitative relations in concrete 
situations (at the mathematics of  quantities level) which are not explicitly mathematical may 
be related to the development of  formal mathematical skills and knowledge. 

1.2	 The Natural Number Bias and Conceptual Change with 
Rational numbers

Preschool-aged children already can already reason about quantitative relations, included 
proportional relations (e.g. Boyer & Levine, 2012). Despite this, students and adults have a 
number of  difficulties with reasoning about formal mathematical relations, especially with 
rational numbers. The natural number bias is presumed to be one cause of  the difficulties 
with conceptual change with rational numbers, and is described as the inappropriate 
overuse of  natural number features when reasoning about rational numbers (Ni & Zhou, 
2005; Vamvakoussi & Vosniadou, 2010). The origins of  the natural number bias remain 
a matter of  controversy (Ni & Zhou, 2005). The natural number bias has been argued 
to arise from a number of  environmental and biological sources. A number of  studies 
have revealed the early existence of  a tendency to use counting numbers inappropriately 
in response to proportional problems (Boyer at al., 2008; Jeong et al., 2007; Spinillo & 
Bryant, 1999). These results suggest that even though early competences with proportional 
reasoning exist, children often have trouble moving past the bias towards using counting 
numbers in their reasoning when it is possible to use counting numbers. It is possible 
that discrete representations cause more difficulties than continuous representations of  
quantitative relations because counting numbers are more easily recognized with discrete 
representations (e.g. Spinillo & Bryant, 1999).

The natural number bias may likewise be influenced by other representational issues, 
including innate capacities and cultural tools. For examples, despite the mental number line 
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initially having a continuous nature (e.g. Dehaene et al., 2008), some evidence suggests that 
individual magnitudes on the mental number line are subsequently represented as discrete 
quantities (Feigenson et al., 2004; Gallistel & Gelman, 1992). However, definitive evidence 
of  the discreteness of  initial magnitude representations is lacking (Vamvakoussi et al., 
2012). What is certain is that cultural tools, especially language, and everyday experience 
consistently nurture the discrete nature of  natural numbers (Andres, Di Luca, & Presenti, 
2008; Carey, 2004), while offering little support for reasoning about relational concepts 
(Greer, 2004). The discrete representation of  numbers that remains ubiquitous throughout 
childhood and early school years may cause difficulties in coming to understand the dense 
nature of  the rational number line. 

In general, it appears that aspects of  relational reasoning and reasoning about counting or 
natural numbers interact in complex ways throughout the early development of  mathematical 
and pre-mathematical skills and processes. This interaction likewise has a complex effect on 
learning about rational numbers in formal mathematics, seemingly being both a blessing 
and a curse. So that, on the one hand students are able to apply natural number concepts 
correctly in reasoning about rational numbers, when they are appropriate (Nunes & Bryant, 
2008), while on the other hand, children, and even adults, also tend to overuse concepts 
of  natural number that are incompatible with rational number (Merenluoto & Lehtinen, 
2004; Obersteiner et al., 2013; Vamvakoussi & Vosniadou, 2004; Vamvakoussi et al., 2012; 
2013). What is clear from all of  this, is that a great deal of  study of  the development of  
formal knowledge of  rational numbers, beginning already in early childhood documenting 
relational reasoning, is needed to make sense of  this complexity.

Fractions and decimal learning has been long established as a difficult topic for students. 
Proportional reasoning, including rational numbers, has been described by Lesh and 
colleagues (1988) as “the capstone of  children’s elementary school arithmetic … [and] the 
cornerstone of  all that is to follow.” Indeed, recent evidence suggests that rational number 
knowledge is an important indicator of  skills with more advance mathematical topics such 
as algebra (Siegler et al., 2013). While students difficulties with rational numbers occurs at 
both the procedural and conceptual level (Hallett et al., 2010; Rittle-Johnson, Siegler, & 
Alibali, 2001), conceptual knowledge of  rational numbers has been found to be a stronger 
predictor of  later learning (Hallett et al., 2010) Difficulties with learning rational numbers 
concepts have often been viewed through the lens of  learning theories of  conceptual change 
(Merenluoto & Lehtinen, 2004; Stafylidou & Vosniadou, 2004; Vamvakoussi & Vosniadou, 
2004; Vosniadou & Verschaffel, 2004). The conceptual change view of  learning rational 
numbers suggests that learning about concepts of  fractions and decimals requires radical 
change in the underlying concept of  number. This expansion of  the concept of  number 
from natural, counting numbers to rational numbers is not a smooth linear process, but 
involves significant representational and conceptual shifts in what constitutes a number and 
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what are the fundamental features of  number (Merenluoto & Lehtinen, 2004; Vamvakoussi 
& Vosniadou, 2004; 2010). Thus, the development of  rational number conceptual knowledge 
from natural number knowledge exhibits key elements of  the theoretical framework of  
conceptual change (Vosniadou, 1994)  

One possible way to operationalize the fraction and decimal concepts that must be re-
conceptualized for a mature mathematical understanding of  rational numbers is as, a) 
magnitude representations b) density, and c) operations (Stafylidou & Vosniadou, 2004; Van 
Hoof  et al., 2013; Vamvakoussi & Vosniadou, 2004). In the present dissertation, since the 
focus is on the first phases of  learning about rational numbers, only magnitude representations 
and density concepts will be addressed. The concept of  magnitude representations of  rational 
numbers captures the aspects of  the symbolic representations of  rational numbers that 
determine their magnitudes (Meert et al., 2010; Schneider & Siegler, 2010). Previous 
cross-sectional studies have revealed the importance of  the density of  rational numbers 
in developing a fully mathematical understanding of  rational numbers (Merenluoto & 
Lehtinen, 2004; Stafylidou & Vosniadou, 2004; Vamvakoussi et al., 2011; Vamvakoussi & 
Vosniadou, 2004; 2010). Density concepts make up a key part of  the understanding of  the 
structure of  the set of  rational numbers. 

A number of  previous studies have documented students’ and adults’ difficulties with 
reasoning about the magnitude representations of  rational numbers and have identified 
the existence of  the natural number bias in the representation of  magnitudes of  fractions 
and decimals (DeWolf  & Vosniadou, submitted; Durkin & Rittle-Johnson, submitted; 
Merenluoto & Lehtinen, 2004; Ni & Zhou, 2005; Obersteiner et al., 2013; Schneider & 
Siegler, 2010; Stafylidou & Vosniadou, 2004; Vamvakoussi et al., 2012; Van Hoof  et al., 
2012). Students face a number of  difficulties with learning about fractions and decimal 
magnitudes; natural number magnitudes are directly perceived by symbolic representations, 
as well they can only be represented by one term. While with natural numbers a magnitude 
is represented by one and only one term (e.g. 1=1), one rational number magnitude can be 
represented by an infinite number of  terms (e.g. 0.5=0.50=1/2=2/4=etc.). As well, unlike 
natural numbers, rational numbers cannot be automatically perceived. 

Determining a fractions’ magnitude requires understanding that the fraction represents a 
ratio between the two terms that make up the fraction. Less mathematically correct concepts 
of  the magnitude representations of  fractions may involve thinking about the two terms 
in a fraction as separate integers (Stafylidou & Vosniadou, 2004; Vamvakoussi et al, 2012; 
Van Hoof  et al., 2012). So that, in determining the magnitude of  a fraction, those with a 
non-mathematically correct conception of  a fraction, may focus only on the magnitude 
of  the numbers which make up the numerator and denominator. This conception of  
fraction magnitude lacks the understanding that fractions represent the relation between 
the two terms. This component based approach to the representation of  fractions leads 
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to the mistake of  identifying fractions with smaller component terms as having a smaller 
magnitude, or vice-versa, even if  this is not true. For example, one common evaluation of  
fraction magnitudes that reflects this component based approach is stating, for example, 
that 1/3 is less that 1/6, since 3 is less than 6. Surprisingly, some evidence suggests that this 
component based judgment of  fraction magnitude may persist at an intuitive level, even 
among highly educated adults. For example, even mathematics experts display evidence of  
the natural number bias in reaction time studies of  their judgments of  the magnitudes of  
fractions (De Wolf  & Vosniadou, submitted; Obersteiner et al., 2013; Vamvakoussi et al., 
2012). 

Magnitude representations of  decimals also run counter to features of  natural number 
(Durkin & Rittle-Johnson, submitted; Vamvakoussi et al., 2012). Decimal numbers do not 
follow the easily perceived feature of  natural number that dictates that more digits means 
a larger magnitude (e.g. 65 > 7). Thus when faced with decimals that defy this feature 
of  natural number, such as 0.65 and 0.7, students often have difficulties overcoming the 
natural number bias to recognize that in fact 0.7 is larger than 0.65, despite containing 
less terms (Vamvakoussi et al., 2012). Recent evidence suggests however that students’ 
conceptions of  the magnitude representations of  decimals are even more varied, with 
some conceptions suggesting a misappropriation of  fraction concepts to decimal concepts 
(Durkin & Rittle-Johnson, submitted), so that some students show the opposite bias in 
interpreting a decimal’s magnitude, determining that those decimals with more terms are 
automatically smaller than those with fewer terms. This mistake may stem from the feature 
of  fractions that a larger denominator decreases the magnitude, and therefore including 
a smaller place-value in a decimal indicates a smaller magnitude. Similar to judgments of  
fraction magnitudes, evidence suggests that the mathematically incorrect interpretation 
of  decimal magnitudes persists on an intuitive level even into adulthood, as evidenced by 
reaction times (e.g. Vamvakoussi et al., 2012)

Understanding the concept of  the density of  rational numbers is one of  the most difficult 
aspects of  learning about fractions and decimals (e.g. Vamvakoussi & Vosniadou, 2010). 
Unlike natural numbers, which have a fixed order and always have a successor term, it is 
impossible to define the next rational number in a sequence and there are always an infinite 
number of  rational numbers between any two rational numbers. The conceptual change 
needed for coming to understand these features of  rational numbers is particularly difficult 
as the natural number sequence has been a part of  most children’s mathematical conception 
from an early age, strengthening the natural number bias towards a discrete representation 
of  the number line (Andres et al., 2008; Ni & Zhou, 2005). So that, throughout a child’s 
early mathematical experiences the number sequence has always been presented as a fixed, 
ordered, and discrete object. In contrast, there is no fixed sequence to rational numbers, 
with no successor being identifiable, and they are densely ordered. Even after many years 
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of  instruction and use of  rational numbers, many students and adults fail to develop a 
mathematically mature understanding of  how rational numbers are densely ordered 
(Merenluoto & Lehtinen, 2004; Vamvakoussi & Vosniadou, 2004; 2010; Vamvakoussi et 
al., 2011; Van Hoof  et al., 2013). Indeed, students display a conception of  the number 
line as being discrete in some instances, even when recognizing its dense nature in other 
cases (Vamvakoussi et al., 2011). It appears that when holding these inconsistent views 
of  the discrete or dense nature of  the number line, students often have more difficulties 
with expressing the dense nature of  fractions than decimals. These results suggest that 
conceptual change is needed to transverse the divide between natural numbers’ discrete 
nature, through an incoherent conception of  the nature of  the number line, which includes 
both discrete and dense features, to a coherent understanding of  the dense nature of  the 
number line (Vamvakoussi & Vosniadou, 2010).

A number of  studies have detailed the lack of  understanding students and adults have 
of  concepts of  the magnitude representations and density of  rational numbers (e.g. 
Vamvakoussi & Vosniadou, 2010). These difficulties often are a result of  the inappropriate 
application of  natural number concepts to rational number reasoning. The incongruent 
nature of  supplementing natural number knowledge with newly learned rational number 
knowledge, due to fundamental differences in the nature of  these types of  numbers, 
presents a fundamental challenge in learning this material (Merenluoto & Lehtinen, 2004). 
While a number of  studies have been successful in documenting non-mathematically 
correct conceptions of  rational numbers, there is little evidence on the developmental 
trajectory of  the conceptual knowledge of  rational numbers (cf. Durkin & Rittle-Johnson, 
submitted). Since in all of  these studies at least some proportion of  the participants have 
possessed mathematically correct conceptions of  rational number, it can be expected that 
students have different levels of  success in developing mathematically correct concepts of  
rational numbers (Siegler, Thompson, & Schneider, 2011). Despite this, few studies have 
been able to capture differences in individuals’ development. Most importantly, despite 
evidence suggesting that there is, early on, some ability to reason about quantitative relations 
that may be related to the later learning of  formal rational number concepts (e.g. Confrey 
et al., 2009), there is little evidence indicating early or concurrent causes of  individual 
differences in developmental trajectories with rational number knowledge. Filling the gaps 
in the research literature on the nature of  the development of  rational number concepts and 
its antecedents is one of  the major aims of  the present set of  studies. 

1.3	 SFON and spontaneous quantitative focusing tendencies

It is apparent that a large part of  mathematical development lies outside of  situations in 
which mathematical aspects are made explicit (Bransford et al., 2009). In other words, a 
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great deal of  the situations in which it is possible, and even necessary, to use mathematics 
occur outside of  formal mathematical learning situations. In these non-formal situations, it 
is often the case that the recognition and use of  mathematical skills must be done without 
any outside guidance, on ones’ own. Studying the necessary sub-processes triggering the use 
of  mathematical skills is therefore crucial for how mathematical skills develop (Hannula, 
2005; Hannula & Lehtinen, 2005). The tendency to recognize the mathematical aspects 
of  these non-explicitly mathematical situations may not be equally strong in individuals. 
These inter-individual differences in the tendency to recognize and utilize mathematical 
aspects may have important consequences on the development of  mathematical skills. It is 
therefore extremely relevant for understanding of  differences in mathematical development 
to investigate these types of  mathematical attentional tendencies, referred here to as 
spontaneous quantitative focusing tendencies.

The investigation of  spontaneous quantitative focusing tendencies involves measuring the 
unguided recognition and use of  mathematical aspects of  a situation that is not explicitly 
mathematical (Hannula, 2005; Hannula-Sormunen, in press). One such spontaneous 
quantitative focusing tendency, introduced by Hannula and Lehtinen (2001; 2005), that has 
been the subject of  extensive investigation in the study of  young children’s mathematical 
competences, is Spontaneous Focusing On Numerosity (SFON). Individual differences in 
SFON have been found in studies around the world using a number of  different measures 
with participants from the age of  three years old until adulthood (Edens & Potter 2013; 
Hannula et al., 2009; Hannula & Lehtinen, 2001; 2005; Hannula, Lepola, Lehtinen, 2010; 
Hannula, Mattinen, & Lehtinen, 2005; Hannula, Räsänen, & Lehtinen, 2007; Kucian et 
al., 2012; Poltz et al., 2013). SFON can be said to index inter-individual differences in the 
unguided recognition and use of  exact number in non-explicitly mathematical situations.

The isolation of  SFON as a measurable construct has been detailed in a number of  studies 
by Hannula and colleagues (2001; 2005; 2007; 2010). Their evidence suggests that, when 
not guided towards these features, it cannot be assumed that all children or adults recognize 
with the same frequency or sensitivity the aspect of  number as a salient or relevant feature 
of  situations. Individual differences in SFON tendency have been found to be a domain 
specific predictor of  mathematical, but not reading, development (Hannula & Lehtinen, 
2005; Hannula et al., 2010). In particular, SFON tendency in four-year-olds has been found 
to predict mathematical skills one year later (Hannula & Lehtinen, 2005). These mathematical 
skills subsequently predicted SFON tendency one year later, suggesting the reciprocal 
development of  SFON tendency and mathematical skills, each encouraging further growth 
in the other. Furthermore, SFON tendency in kindergarten was found to be a domain 
specific predictor of  mathematical achievement in second grade (Hannula et al., 2010). So 
that, even after taking into account prior general cognitive ability measured by a non-verbal 
IQ test, SFON tendency predicted general mathematical skills, but not reading ability. As 
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well, these studies suggest that SFON is not entirely explained by enumeration skills, general 
attentional ability, or the ability to follow directions (Hannula & Lehtinen, 2005; Hannula 
et al., 2007; Hannula et al., 2010). An experimental study among kindergarteners suggests 
that SFON tendency can be enhanced through specific interventions, which have been 
successful in enhancing both SFON tendency and subsequent development of  enumeration 
skills (Hannula et al., 2005). This study also confirmed that SFON as measured in laboratory 
tasks was related to the spontaneous use of  exact number in everyday situations, further 
supporting the claim that SFON tendency is a general tendency to recognize and utilize 
numerosities in a variety of  task contexts (see also Hannula, 2005). 

Spontaneous quantitative focusing tendencies, such as SFON, may tap into qualitative and 
quantitative differences between individuals in the spontaneous use of  mathematical aspects 
in everyday situations. These differences in the unguided attention to mathematical (or pre-
mathematical) aspects may have significant impact on the development of  the related formal 
mathematical content. Those who have a higher tendency to spontaneously focus on certain 
mathematical aspects of  a situation may gain more self-initiated deliberate practice with 
this aspect (Ericsson, 2006), contributing to more successful learning outcomes. In studies 
on the development of  expertise in fields such as music or chess there are fundamental 
differences in the amount and type of  deliberate practice obtained by those who become 
experts. In many situations, coaches or teachers may be necessary (and available) to point 
out the opportunity for the developing expert to practice certain skills. However, it has been 
found that future experts are also able to recognize, without external guidance, possibilities 
in everyday situations to practice their skills (Ericsson & Lehman, 1996). Those who are 
more successful in learning mathematical concepts and skills may be gaining qualitatively 
better and quantitatively more self-initiated practice with mathematical skills, through a 
stronger tendency to spontaneously focus on these aspects.

Deliberate practice, as defined within the study of  expertise, has a number of  features that 
distinguish it from what could be called non-deliberate practice (Ericsson, 2006; Ericsson 
& Lehman, 1996). One defining feature of  deliberate practice is that it occurs at the edge 
of  a budding expert’s competence. Thus, at an early age, when first learning to play the 
piano, practicing and mastering the different musical scales may be extremely relevant for 
the development of  expertise with piano playing. However, after a few more years of  study, 
the relevance of  practicing these basic skills will diminish, as more advance skills develop 
and require mastery. The same type of  progression in spontaneous quantitative focusing 
tendencies may influence the development of  mathematical competences all along the 
learning trajectory. 

The recent finding that SFON tendency at the age of  6 years has been found to predict 
conceptual knowledge of  rational numbers at the age of  12 years old is of  particular interest 
to the present dissertation (McMullen, Hannula-Sormunen, & Lehtinen, in preparation). 
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These results suggest that spontaneous quantitative focusing tendencies may be relevant 
for the study of  conceptual change with rational numbers. In particular, SFON tendency 
in early primary school may promote exploration with features of  natural numbers, which 
leads to a conceptual understanding of  the number system that helps overcome the natural 
number bias when learning about rational numbers. However, the same study found that 
concurrent SFON tendency was not significantly related to rational number conceptual 
knowledge at the age of  12. So while, at an early age, individual differences in SFON play 
a significant role in the development of  mathematical skills, including enumeration skills 
and later rational number knowledge (Hannula & Lehtinen, 2005; McMullen, Hannula-
Sormunen,  & Lehtinen, in preparation), individual differences in self-initiated practice with 
counting and enumeration alone may have a diminished effect on developmental differences, 
as mathematical topics increase in complexity. 

When viewed from the perspective of  the development of  expertise, these results do 
not necessarily indicate that over time spontaneous quantitative focusing tendencies lose 
effectiveness in explaining individual differences in conceptual development of  rational 
numbers. Instead, it is expected that a more mathematically advanced spontaneous 
quantitative focusing tendency increases in importance as mathematical topics taught in the 
classroom become more advanced. It might be that a spontaneous quantitative focusing 
tendency that supports self-initiated deliberate practice with quantitative relations becomes 
more important for the development of  rational number knowledge, as enumeration 
processes become more habitual and well-developed. Thus, the present dissertation details 
a number of  studies that investigate Spontaneous Focusing On quantitative Relations 
(SFOR), and the role of  SFOR tendency in the development of  rational number conceptual 
knowledge.
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2.	 RESEARCH QUESTIONS/AIMS

As has been shown, more evidence is needed to better understand individual differences 
in the development of  rational number conceptual knowledge. Not only is there a need 
to understand more clearly the actual development of  conceptual change with rational 
numbers, but both theoretical and pedagogical pursuits are more well-informed with 
a clearer understanding of  the development of  differences in the learning of  rational 
numbers (NMAP, 2008; Siegler et al., 2013). Early reasoning about quantitative relations can 
be expected to be related to later rational number knowledge (e.g. Boyer & Levine, 2012). 
However, up until now, studies of  quantitative relations have focused on what children can 
do, when explicitly guided to do so. Previously, the investigation of  not just what children 
can do, but what children actually do in non-explicitly mathematical situations suggests 
that spontaneous quantitative focusing tendencies are relevant for the development of  
mathematical skills (e.g. Hannula & Lehtinen, 2005). Therefore, the present study aims to:

a) 	delineate spontaneous focusing on quantitative relations as a distinct aspect of  task 
performance  

b) 	examine the development of  rational number conceptual knowledge in late primary 
school children, and 

c) 	explore the relationship between SFOR tendency and the development of  rational 
number conceptual knowledge.

The present work therefore is made up of  three cross-sectional and three longitudinal studies 
including children from the ages of  five to thirteen years old. Studies I-III aim to examine 
the spontaneous recognition and use of  quantitative relations, as a part of  children’s existing 
mathematical competences. Studies IV-VI aim to investigate the role of  SFOR tendency in 
relation to the development of  rational number conceptual knowledge. 

Along with these more general goals, each study had more specific aims. Study I attempted 
to measure children’s spontaneous recognition and use of  quantitative relations in two 
mathematically unspecified tasks. This study focused on the individual and age related 
differences among young children from the ages of  five to eight. Study II expanded on the 
previous study and examined how children’s spontaneous recognition and use of  quantitative 
relations was related to their verbalizations of  reasoning in solving the same tasks, allowing 
for the examination of  the goal-directed nature of  the spontaneous recognition and use 
of  quantitative relations in these tasks. Finally, Study III aimed to replicate the findings 
of  Study I in a new sample of  children in the USA. This study also aimed to provide 
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evidence that individual differences in SFOR could not be entirely explained by the ability 
to use quantitative relations on the tasks. Finally, this study hoped to identify whether SFOR 
tendency was related to other more general mathematical skills. 

Study IV was the first study that aimed to connect SFOR tendency with rational number 
conceptual knowledge. In particular, this study aimed to investigate if  SFOR tendency in 
first grade was related to conceptual knowledge of  fractions in fourth grade. This would 
allow for the determination of  whether SFOR may play a role in the development of  rational 
number knowledge. Study V examined in detail the conceptual change process with rational 
numbers in third to sixth grade students. This study aimed to identify the developmental 
of  rational number concepts in these students, and to determine if  there were individual 
differences in the conceptual change with these concepts. Study VI aimed to synthesize 
the findings of  Studies I-V and present a longitudinal investigation of  the contribution of  
SFOR tendency to the development of  rational number conceptual knowledge among late 
primary school children. This final study provided the strongest evidence indicating how 
SFOR tendency might influence the development of  mathematical skills.
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3.	 METHODS

For the studies presented within this work, a mixture of  longitudinal and cross-sectional 
methods was used. This allowed for the study of  the role of  SFOR tendency on the 
development of  rational number conceptual knowledge, and as well static age-related and 
individual differences in SFOR and its relation to mathematical skills. The six studies that make 
up this doctoral dissertation are based on data from two research projects focused on children 
from primary school and early childhood education. The ability to look at SFOR across a wide 
age-range was particularly valuable in identifying how pre-existing cognitive tendencies may 
affect formal learning. Furthermore, the studies emanated from data collected from Finland 
and the USA allowing for the investigation of  SFOR in multiple national contexts. All data 
was collected in schools or day-care centers that the participants attended, during normal times 
of  attendance. All studies were conducted at the Centre for Learning Research (University of  
Turku, Finland) together with Minna M. Hannula-Sormunen and Erno Lehtinen as a part 
of  the Academy of  Finland funded DEMAS project on the mathematical development of  
children in early childhood and the Academy Professor project of  Erno Lehtinen. In addition, 
the current dissertation was funded by the Multidisciplinary Doctoral Programme of  Research 
on Learning Environments (OPMON) and the Academy of  Finland. 

3.1	 Participants

Studies I, II, and IV
The original cross-sectional sample used in Studies I and II, included children from three day-care 
centers and three schools from socio-economically representative areas of  a city in southwest 
Finland (ca. 180,000 inhabitants). Parent permission was sought for all eligible children; of  the 
95 written consent forms sent to parents, nine children were excluded from the study due to 
previously diagnosed learning impairments, a non-Finnish home language, or parent refusal. 
Thus, the data collection included 86 participants (43 girls) completing measures of  SFOR and 
other mathematical skills. Children were between the ages of  4 years and 5 months and 8 years 
and 4 months, at the time of  the first testing, and belonged to three different educational groups, 
kindergarten (n = 31; MAGE = 5 years; 6 months), pre-school (n = 27; MAGE = 6 years; 9 months), 
or grade one (n = 28; MAGE = 7 years; 9 months).1 Parental educational attainment for the sample 
was representative of  adults between the ages of  25-49 in Finland.

1	 In Finland, children begin formal schooling (“first grade”) in the fall of  the year they turn 7-years-old. 
Children can attend an optional pre-schooling year (“preschool”) with 700 h of  preschool education 
covering all main areas of  children’s academic skill development starting in the fall of  the year they turn six. 
Before this, children can go to kindergarten (“kindergarten”), which focuses more on supporting children’s 
overall development rather than their specific academic skills.
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Study IV consisted of  follow-up measures for those students in grade one at the time of  
the original testing. Two participants could not be located and one student was not included 
in the final measures because he/she had previously repeated a grade. Thus, there were 
25 children included in the final sample who were from the ages of  7 years and 2 months 
to 8 years and 4 months (M= 7y; 8m) at the time of  initial testing. As well as completing 
the measures of  SFOR and mathematical skills in first grade as a part of  Studies I and II, 
these participants completed a test of  fraction conceptual knowledge in the fourth grade. 
Participants’’ math grades were also collected from the fall term of  fourth grade.

Study III
This cross-sectional sample of  children from a mid-size city (ca. 125,000) in the southeast 
United States included 84 kindergarten to third grade children from one economically 
and socially diverse school. After approval from the ethical board of  the University of  
Turku, the School Board, and school, parental approval was received for the  children. The 
participants (42 female) were between the ages of  5 years and 8 months and 9 years and 8 
months old (M=7 years, 9 months; SD=13.7 months). Participants were grouped according 
to their grade-level for analysis: Kindergarten (n=23; MAGE=6y; 4m), First Grade (n=20; 
MAGE =7y; 3m), Second Grade (n=21; MAGE =8y; 4m), and Third Grade (n=20; MAGE =9y; 
2m). Participants had no diagnosed learning, neurological, or attentional impairments. 
Participants all completed SFOR tasks, tasks measuring guided focusing on quantitative 
relations, and measures of  general mathematical skills. 

Studies V and VI
Participants in Studies V and VI were 263 students (141 female) from two economically and 
socially diverse primary schools in southwest Finland. After parents gave permission for their 
child’s participation, all participants were informed about the nature of  the study, and could 
refuse to participate or stop at any point during testing. At the start of  the study, students were 
in 3rd to 5th grade, between the ages of  9 years and 2 months and 12 years and 2 months (M 
= 10y; 8m, SD = 10.3m) . All participants completed a SFOR task, the rational number test, 
and measures of  mathematical and reasoning skills. For Study VI, 42 students were unable 
to complete all three follow-up measures, and were excluded from the final analysis. Neither 
excluded group differed from their peers on initial rational number knowledge.

3.2	 Assessments of  SFOR

The development of  SFOR tasks was highly informed by the previous development of  
tasks that measure spontaneous focusing on numerosity (Hannula, 2005; Hannula & 
Lehtinen, 2005). SFOR tasks aim to measure a general tendency to focus on quantitative 
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relations in situations that are not explicitly mathematical, including everyday situations. Key 
to the measurement of  SFOR then is the fact that the participants should not be guided 
towards the mathematical aspects in the tasks, it can then be said that if  they use these 
aspects in completing the tasks it was done spontaneously. Thus, the tasks should not have 
an explicit mathematical nature and should have multiple aspects, both mathematical and 
non-mathematical, that can be used to successfully complete the task. Before and during 
participation in the tasks, no mention can be made of  quantitative or mathematical aspects. 
Either SFOR tasks should be presented before any other measures in a test battery, or 
there should be non-mathematical tasks prior to the presentation of  SFOR tasks. During 
testing, there should be no discussion of  any aspects of  the tasks, nor should participants 
be given explicit feedback. Thus, the researcher should not lead participants either towards 
or away from the mathematical aspects of  the tasks. Thus, instructions should remain open 
and neutral, and no explicit feedback should be given. Finally, only a small number of  trials 
should be used when measuring a spontaneous quantitative focusing tendency, in order to 
preserve the spontaneous nature of  participants’ actions.

In order to determine if  the differences in the use of  quantitative relations are due to 
differences in spontaneous attentional processes and not due to differences in mathematical 
ability, the skills required to use quantitative relations successfully should be well within the 
competences of  the participants. In other words, all participants could solve the tasks using 
quantitative relations when explicitly asked to do so (Hannula, 2005; Hannula & Lehtinen, 
2005). 

Scoring of  SFOR tasks for Studies I-IV was based on video analysis of  participants’ 
utterance and actions in the task situations. Participants were scored as spontaneously 
responding based on quantitative relations if  they gave the same total amount of  bread or 
rice, having negotiated the different sizes of  the material (e.g. a spoon three times the size 
of  another). Thus, in order to respond with the same amount of  material, the participants 
must have taken into account that the different unit sizes of  the different sets, determined 
the quantitative relationship between these two units and sets, and calculated the correct 
response. If  children made any mention of  quantitative relations (e.g. “Cause one of  these is 
equal to two of  those”), they were also scored as responding based on quantitative relations, 
no matter the amount of  bread or rice given. 

In Studies I and II, the participants’ responses using exact number were also coded, those 
in which they matched exactly the number of  pieces of  bread or spoonfuls of  rice that 
the experimenter gave. A similar criterion was used for verbal responses that used exact 
number phrases or words. In these studies, the stimulated-recall interviews were also used to 
determine participants’ interpretations of  the tasks. After completing the SFOR tasks, the 
same exact tasks were repeated, but participants were asked to explain how they determined 
how much material to give. Participants’ responses were coded with regard to their use of  
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quantitative relational, exact number, or non-mathematical verbal responses. Furthermore, 
non-mathematical responses were analyzed to determine what other aspects participants 
found relevant in these tasks.

For Study VI, SFOR task was paper and pencil based and conducted in a whole class 
setting. Testing always occurred during a non-mathematical lesson, so as not to give a hint 
to students that the task may be mathematical in nature. This task represents the first time 
a spontaneous quantitative focusing tendency was measured in a group setting, presenting 
particular challenges for reliable assessment. One key feature of  the testing situation was 
that participants must be strongly encouraged to think of  the tasks as not having one correct 
answer, as the classroom setting may cause participants to think of  the tasks in a more 
traditional manner. However, the success of  these tasks suggests that SFOR measures can 
be presented at the group level, which presents more opportunities for both future studies 
of  SFOR and the creation of  a diagnostic tool for reliably measuring SFOR.

In the picture explanation task, participants’ spontaneous relational responses were 
scored on a three-point scale based on an analysis of  their written and drawn responses. 
Participants received two points if  they described the exact multiplicative relation 
between the two groups of  objects or if  their drawing reflected the correct multiplicative 
transformation for all three sets. Participants received one point if  they described a 
non-exact multiplicative relation (e.g. “they multiplied.”) or if  their drawings reflected 
consistent, but incorrect, multiplicative changes in the correct direction (e.g. all sets 
increased by a factor of  two, when the correct relation was multiplied by three). For any 
other response participants received no points.

One of  the more important considerations in developing tasks measuring spontaneous 
quantitative focusing tendencies is the delineation of  these tendencies from the requisite 
skills (e.g. Hannula & Lehtinen, 2005). First, it is important to develop tasks which fall 
well within the cognitive, attentional, and memory capabilities of  the participants. So 
that, if  there are differences in participants responses, it is not due to these other more 
general capabilities, but a result of  differences the spontaneous recognition and utilization 
of  the mathematical aspects. One method for confirming that SFOR tasks are within 
participants’ capabilities is to directly measure participants’ ability to solve the tasks using 
the mathematical aspects when explicitly guided to do so. In Study III, the bread and 
rice tasks were repeated with explicit instructions to use quantitative relations for those 
children who did not use quantitative relations in their responses in the spontaneous 
conditions. In Study VI, after the spontaneous version of  the task, participants were 
asked to describe, using multiplicative relations, how the objects changed. The use of  
guided versions of  these tasks allow for the confirmation that differences in performance 
on the SFOR tasks was due to differences in SFOR, and not differences in ability to solve 
the tasks using quantitative relations.
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3.3	 Measures of  conceptual knowledge of  rational numbers

One goal of  the present dissertation was to validate an instrument that measures students’ 
conceptual knowledge of  rational numbers. While there is a wealth of  knowledge detailing 
students’ and even adults’ deficiencies with rational number knowledge (e.g. Merenluoto & 
Lehtinen, 2004), there are few diagnostic tools that measure this lack of  knowledge (cf. Van 
Hoof  et al., 2013). In particular, the aim was to create a measure that could capture a large 
range of  individual differences in late primary students’ conceptual knowledge, allowing 
for a longitudinal analysis of  SFOR tendency effects on this knowledge. The first version 
of  the test was created as a part of  an earlier study of  our research group (Lundman, 2009; 
McMullen, Hannula-Sormunen & Lehtinen, in preparation). Some of  the task were similar 
to tasks used in studies of  Martinie (2007), Merenluoto and Lehtinen (2004), Stafylidou & 
Vosniadou (2004), and Vamvakoussi & Vosniadou (2004). The version used in this study 
was developed on the basis on the detailed analysis of  students’ responses to the items of  
the original test version. The rational number test was designed especially in consideration 
of  capturing the process of  conceptual change with rational numbers undergone (or not) 
when first transitioning from conceptions of  natural numbers to rational numbers. Thus, 
the Rational Number Test (RNT) used in part in Study IV, and fully in Studies V-VI, was 
used as a measure of  rational number conceptual knowledge focusing on two aspects of  
rational numbers that require substantial conceptual change: magnitude representations and 
the density of  fractions and decimals.  

A number of  studies (Durkin & Rittle-Johnson, submitted; Obersteiner et al., 2013; 
Vamvakoussi et al., 2012; Van Hoof  et al., 2013) have found that when reasoning about 
rational numbers using natural number conceptions, certain problems cause particular 
difficulty. Thus, the RNT include items that aimed to capture these mathematically challenging 
conceptions. Fraction items involved comparing and ordering fractions in which the total 
magnitude and the component terms were incongruent, e.g. 3/4 compared with 5/8; a 
common mistake is to judge the fraction with the larger terms to have a larger magnitude. 
Decimal items involved comparing and ordering decimals in which the number of  terms 
and the total magnitude were incongruent, e.g. 0.7 compared with 0.65; a common mistake 
is to judge those decimal numbers which have more terms as having a larger magnitude.

Likewise, difficulty with understanding the dense nature of  rational numbers has been 
detailed in both students and adults (Merenluoto & Lehtinen, 2004; Vamvakoussi & 
Vosniadou, 2004; 2010). Density items included asking participants to state whether there 
were any numbers (and if  so, how many) between either two fractions or two decimals; a 
common conceptual misunderstanding is that rational numbers, like natural numbers, are 
discrete in nature with no numbers between any two numbers. Responses were categorized 
by their level of  mathematically correct conceptions. Two points were given for responses 
that indicated a mathematically correct conception of  the density of  rational numbers, one 
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point was given for responses that recognized that there were some numbers between the 
two fractions or decimals, and no points were given for responses that stated that there are 
no numbers between the given fractions or decimals. Other density items involved asking 
participants to identify the largest or smallest possible fraction. While problems requiring 
declarative knowledge of  conceptions of  density may be more difficult than multiple-choice 
versions of  those problems (Vamvakoussi & Vosniadou, 2010), the use of  short answer 
items can capture a broader range of  responses than multiple choice and can allow for 
a more detailed mapping of  the development of  conceptual change with the concept of  
density. 

Test-retest effects are a concern when there are multiple administrations of  achievement 
test. One way to lessen these effects is to not use exactly the same items in the different 
administrations. Therefore, for each instance of  RNT testing the numbers were slightly 
altered. However, the concepts that were the target of  the different questions were taken 
into account, so that the items were equally able to captured the participant’s’ concept of  
number across the different administrations. 

3.4	 Statistical Analysis

The different statistical analyses that were used in the studies presented in this dissertation 
can be found in Table 1. The majority of  the statistical analysis was conducted in the statistical 
package SPSS (versions 17-19). The latent variable mixture models were conducted using 
Mplus 7.0 (Muthén & Muthén, 1998-2012)

Table 1. Statistical analyses used in different studies.

Statistical Analysis Study Purpose

Analysis of Variance
Paired T-tests III Comparison of relational responses in 

spontaneous and guided tasks
ANOVA/ANCOVA/Repeated
measures ANOVA

I-IV, VI SFOR group comparisons

Latent variable mixture models
Latent Profile Analysis V Classification by rational number knowledge
Latent Transition Analysis V Longitudinal modeling of rational number knowledge

Linear Regression analysis
Calculating Residualized Scores VI Isolation of SFOR and rational number knowledge
Linear regression model VI Predictors of rational number knowledge
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Analyses of  variance were conducted in most studies, after testing for the normality of  
the data2. Paired sample t-tests were used in Study III to determine whether there were 
significant differences in the use of  relational responses in the spontaneous version of  the 
bread and rice tasks versus the guided versions of  these tasks. For studying group level 
differences, ANOVA’s were used in Studies I-III, mostly to compare age-related differences 
in SFOR, ANCOVA’s were used in Studies III and IV to measure how SFOR tendency 
was related to arithmetic skills (Study III) and fraction conceptual knowledge (Study IV). 
Repeated measures ANOVA’s were used in Study VI to track differences in rational number 
conceptual knowledge between two with a high SFOR tendency and a low SFOR tendency 
across time points. Post-hoc comparisons were used in Studies I-III to examine specific age-
group and SFOR-group differences.

Latent variable mixture models, in particular Latent Profile Analysis (LPA) and Latent Transition 
Analysis (LTA), were used to estimate the most appropriate model for classifying students’ 
conceptual knowledge of  rational numbers in Study V. LPA models were estimated for each 
administration of  the test independently, while the LTA model was estimated across all four 
time points. The use of  latent variable mixture models, especially latent transition analysis, 
in capturing processes of  conceptual change has been successful with other concepts 
including mental models of  the earth (Straatemeier, van der Maas, & Jansen, 2008) and 
floating and sinking concepts (Schneider & Hardy, 2013). However, the present study is 
the first to report on these methods use with modeling conceptual change with rational 
numbers.

The use of  latent variable analyses works best when it is substantiated by a theoretical 
framework that allows for the evaluation of  models based on both statistical and theoretical 
grounds (Nyland, 2007; Nylund, Asparouhov, & Muthén, 2007). Both types of  latent 
variable models were estimated with Mplus 7.0 (Muthén & Muthén, 1998-2012) using a 
maximum likelihood with robust standard errors estimation method (MLR). This approach 
to estimate better handles missing data. The LPA and LTA were carried out using mixture 
and longitudinal mixture models, using a 1000 random start values in the first step and 100 
random start values in the second step to ensure the validity of  the final solution (Geiser, 
2013). 

Model fit was evaluated using both information criteria (AIC, BIC, Entropy) and significance 
testing (BLRT), as suggested by Nylund and colleagues (2007). AIC (Akaike Information 
Criterion) and BIC (Bayesian Information Criterion) take into account both model fit and 
parsimony (Geiser, Lehmann, & Eid, 2006). Both AIC and BIC can only be used to compare 
two or more competing models and for both, a lower value describes better model fit. 
AIC values typically increase with model complexity, while BIC values tend to prefer more 

2	 Some variables in Study VI were found to be slightly skewed and thus results of  the ANOVAs were also 
confirmed using non-parametric tests.
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simple models, suggesting that they should be used simultaneously. Entropy values signify 
the certainty of  an estimation, and higher values approaching 1 indicate more certainty. 
The BLRT (Parametric Bootstrapped Likelihood Ratio Test; Nyland, 2007) estimates the 
models’ log-likelihood difference distributions and can be used to determine if  the k-class 
solution is a better model than the k-1-class solution, which is indicated by a significant test 
value (p < .05). Taken together with an evaluation of  the appropriateness of  a model, these 
tests and measures can inform on choosing a model over another. It is also important to 
consider interpretability when choosing the most appropriate classification system for LPA 
models (Lanza & Collins, 2008). For example, models that contain multiple classes with 
very low membership should be avoided if  possible (Geiser, 2013). Thus, a mixture of  both 
substantive theory and model fit criteria and tests is the best means for identifying the most 
appropriate LPA model for a sample.

Linear regression models were used in Study VI to a) isolate SFOR scores and rational number 
knowledge at Time 1, through residualized scores, and b) determine the effects of  SFOR 
on rational number knowledge at time 4. Residualized scores can be used to separate out 
the variance in one variable that is explained by a second variable that is closely correlated 
(Cohen, Cohen, West, & Aiken, 2003; as cited in Hallett, Nunes, & Bryant, 2010). Thus, 
when two variables are highly related, it is possible to remove the co-variation between these 
two variables using residualized scores. Residualized scores are calculated by regressing the 
dependent variable on an independent variable, then finding the difference between the 
dependent variable value predicted by the regression equation and the observed dependent 
variable value. Thus, a positive residualized score would indicate that the observed 
dependent variable was higher than what would be expected based on the independent 
variable score. A negative residualized score would indicate that the observed dependent 
variable was lower than what would be expected based on the independent variable score. 
For example, a residualized SFOR score is the difference between their actual SFOR score 
and the SFOR score that is predicted by the regression equation and their rational number 
test score. Thus, the residualized SFOR score would indicate a participant’s SFOR score 
above or below what would be expected based on their rational number knowledge. After 
confirming non-multicollinearity of  the predictor variables, a linear regression model was 
also calculated using these residualized scores in order to look at the impact of  SFOR and 
prior knowledge of  rational numbers on later rational number knowledge.
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4.	 OVERVIEW OF THE EMPIRICAL STUDIES

4.1	 Study I

McMullen, J., Hannula-Sormunen, M. M., & Lehtinen, E. (2013). Young children’s 
recognition of  quantitative relations in mathematically unspecified settings. Journal of  
Mathematical Behavior, 32(3), 450–460. doi:10.1016/j.jmathb.2013.06.001

This article reports on the cross-sectional findings from the study of  86 Finnish-speaking 
children from the ages of  4.5 to 8 years old. The aim of  this study was to identify if  there 
were inter-individual and age-related differences in the spontaneous recognition and use of  
quantitative relations. The tasks used in this study were the first to attempt to measure the 
spontaneous use of  quantitative relations in situations that were not explicitly mathematical.

Participants were 86 Finnish-speaking children (43 female) with no diagnosed learning 
impairments from two day-care centers and three schools. Participants were in either 
kindergarten (n=31), pre-school (n=27), or first grade (n=28). Spontaneous recognition 
of  quantitative relations was assessed individually through two videotaped tasks, which 
were not explicitly mathematical. In both tasks children play fed stuffed animals either 
proportionally sized pieces of  foam bread or with proportionally sized spoons of  rice. 
Participants’ responses could be based on quantitative relations (giving the same amount of  
bread or rice while taking into account the size of  the pieces of  bread or spoons of  rice), 
exact number (giving the same number of  pieces of  bread or spoons of  rice), or other 
non-mathematical aspects (matching neither amount nor number of  pieces or spoons). 
No mention of  the quantitative or mathematical nature of  the tasks was made to children 
before or during their participation.  

The results revealed inter-individual differences in the spontaneous recognition and use 
of  quantitative relations on both the bread and rice tasks. Overall, 31% of  participants 
were found to have used quantitative relations on at least one trial for the bread task and 
27% did so for at least one trial on the Rice task. In particular, individual differences were 
found in the oldest age group made up of  children in first grade; 50% of  first graders used 
quantitative relations on at least one trial on the bread task, and 39% did so on the rice task. 
Furthermore, first graders responded based on quantitative relational significantly more 
than kindergarteners or preschoolers on both bread and rice tasks. 

This study suggested that these tasks were able to capture individual differences in spontaneous 
recognition of  quantitative relations. However, it was not clear from these results whether 
the inter-individual differences in relational responses on these tasks was due to differences 
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in SFOR, or if  differences in the ability to solve the tasks using quantitative relations was the 
cause of  differences in responses. As well, more detailed analysis of  participants’ responses 
was necessary to further validate these measures as containing multiple mathematical – 
quantitative relations and exact number – and non-mathematical aspects. Finally, this study 
was unable to make a connection between spontaneous recognition of  quantitative relations 
and formal mathematical skills. Thus, an analysis of  participants’ explanations of  their 
strategies for solving the tasks was conducted using stimulated recall interviews (Study II). 
As well, a replication study was conducted using the same tasks, but also including measures 
of  participants’ ability to solve the tasks using quantitative relations (Study III). Finally, a 
follow-up study of  the oldest participants in this sample was conducted, measuring their 
math achievement and fraction conceptual knowledge three years later (Study IV).

4.2	 Study II

McMullen, J., Hannula-Sormunen, M. M., & Lehtinen, E. (2011). Young children’s 
spontaneous focusing on quantitative aspects and their verbalizations of  their quantitative 
reasoning. In Ubuz, B. (Ed.). Proceedings of  the 35th Conference of  the International Group for the 
Psychology of  Mathematics Education (pp. 217-224). Ankara, Turkey: PME

In this article, we report on the same sample of  86 Finnish-speaking children as in Study 
I. The aim of  this study was to more deeply investigate the nature of  the Bread and Rice 
tasks as measures of  the spontaneous recognition of  quantitative relations. To that end, we 
compared children’s spontaneous relational responses to their explicit verbalizations of  how 
they interpret the bread and rice tasks. 

This study utilizes the same spontaneous recognition tasks (Bread and Rice) from study I. 
As well, stimulated-recall interview tasks were conducted, which were a part of  the second 
session of  tasks that the children completed. In the stimulated recall tasks, children were 
again presented with the same material as in the original Bread and Rice tasks. However, 
before the child gave the bread or rice to his/her stuffed animal they were stopped and 
asked. “How do you know what to give…?”. Children’s responses were assessed as being 
based on a) quantitative relations, b) numerosity, or c) non-mathematical aspects, including 
no explanation. As well, participants’ non-mathematical responses were categorized based 
on the content of  their responses.

A 2x2x3 ANOVA [Task type x Response x Age] indicated that there were differences in 
the frequency of  spontaneous responses based on quantitative relations and verbalizations 
based on quantitative relations. Participants used quantitative relations on the Bread and Rice 
tasks roughly as often as they reported using quantitative relations on the stimulated-recall 
tasks. However, there were differences in the frequency of  verbalizations based on exact 
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number and spontaneous responses based on exact number. Participants were much more 
likely to respond based on numerosity on the original Bread and Rice tasks than in their 
verbalizations on the stimulated recall versions of  the tasks. Children’s non-mathematical 
responses revealed that, besides relational and numerical aspects, participants’ used non-
mathematical aspects in the responses including: the manner of  giving, the location of  the 
material, the materials’ (non-quantitative) size or shape, and the nature of  the bread or rice.

The inclusion of  verbalization measures in the study of  spontaneous quantitative focusing 
tendencies was an attempt to investigate the validity of  the Bread and Rice tasks. Results 
suggests that the aspects of  exact number in these tasks may be more easily recognized and 
utilized than quantitative relations, as children were unlikely to verbalize their reasoning 
based on exact number. However, it is possible that those participants who more likely use 
quantitative relations in these unguided situations may be more able to verbalize about their 
mathematical reasoning in general. Finally, this study confirmed that these tasks can also be 
considered non-mathematical, with a number of  non-mathematical aspects being seen as 
salient to participants. 

4.3	 Study III and IV 

McMullen, J., Hannula-Sormunen, M. M., & Lehtinen, E. (in press). Spontaneous focusing 
on quantitative relations in the development of  children’s fraction knowledge. Cognition and 
Instruction. 

This paper reports on two studies (III and IV) with the aims of  identifying SFOR as a 
distinct aspect in early primary school children’s mathematical competences and exploring 
the impact of  SFOR tendency on later rational number knowledge. 

Study III
In this cross-sectional study, we aimed to replicate our findings from Study I regarding the 
spontaneous use of  quantitative relations on the Bread and Rice tasks. Furthermore, we 
aimed to determine whether the individual differences found in the spontaneous use of  
quantitative relations were due to differences in the ability to use quantitative relations or 
if  they were due to differences in SFOR. Finally, we aimed to determine whether SFOR 
tendency was related to existing mathematical competences, in this case symbolic arithmetic 
skills. 

Participants of  Study III were 84 English-speaking kindergarten to third grade children 
from a medium size city in the state of  Florida. The spontaneous recognition of  quantitative 
relations was assessed through the use of  the English-language versions of  the bread and 
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rice tasks. Furthermore, those children who did not use quantitative relations in their 
responses on the bread or rice tasks were subsequently asked to complete these tasks again; 
only this time they were explicitly asked to give the same amount of  bread or rice as the 
researcher. Thus, these children participated in versions of  the bread and rice task in which 
their attention was explicitly guided to the quantitative relations between the different sets 
of  bread or spoons of  rice. Finally, children also completed the Woodcock-Johnson III 
Math Fluency test, as a measure of  their symbolic arithmetic skills. 

Results revealed that there were substantial individual differences in participants’ SFOR, 
and that these differences could not be entirely explained by the ability to use quantitative 
relations. For example, while just over half  of  the kindergarteners were able to reliably 
use quantitative relations in the guided version of  the tasks, only 13% of  them did so in 
the spontaneous versions. As well, while almost all first graders were able to reliably use 
quantitative relations in the guided versions, only half  did so in the spontaneous tasks. In 
second and third grade the differences in the spontaneous and guided use of  relations was 
not as substantial. Finally, SFOR tendency was related to arithmetic skills (d = 0.26). Those 
children identified as having SFOR tendency (at least half  of  spontaneous responses being 
based on quantitative relations) were found to have significantly higher arithmetic skills than 
those who only used quantitative relations in the guided condition.

Study IV
Participants in this longitudinal follow-up study were 28 first grade students from Study I, 
who participated in the follow-up study three years later in fourth grade. The aims of  study 
IV were to explore the long-term effects of  SFOR tendency on later fraction knowledge. 
We expected that the differences in SFOR in first grade would predict later conceptual 
knowledge of  fractions, even after controlling for general mathematical skills in first grade. 
This assumption arose from the idea that those children who displayed a higher SFOR 
tendency would gain more self-initiated practice with quantitative relational aspects of  their 
everyday environment, leading to more well-developed conceptual knowledge of  rational 
numbers, including fractions.

The SFOR measures used in this study were the Bread and Rice tasks reported in Study I, 
and were completed in the spring of  the participants’ first year of  school (Mage = 7y, 8m; 
SD= 3.5m). Children also completed measures of  non-symbolic arithmetic and number 
sequence elaboration in first grade. In the spring of  fourth grade, students completed a 
test of  fraction conceptual knowledge (elaborated further in Studies V and VI). Finally, 
participants’ grades in mathematics were also collected from their teachers. An ANCOVA 
revealed that performance on the Rice task in first grade predicted later fraction knowledge 
after taking into account prior math skills. However, neither tasks predicted later math 
grades.
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These studies provide evidence that SFOR tendency is a relevant new concept for the study 
of  mathematical development. In other words, these studies indicate that it is possible to 
distinguish SFOR tendency as a distinct variant in children’s mathematical competences that 
is not entirely explained by skill, which describes their tendency to spontaneously recognize 
and utilize quantitative relations in reasoning about situations that are not explicitly 
mathematical. SFOR tendency predicts conceptual knowledge of  fractions, even while not 
predicting overall math achievement. That this connection was found over a three-year 
period suggests that SFOR tendency may play a role in the conceptual development of  
rational numbers. 

4.4	 Study V 

McMullen, J., Laakkonen, E., Hannula-Sormunen, M. M., & Lehtinen, E. (2014). Modeling 
the developmental trajectories of  rational number concept(s): A latent variable approach. 
Learning and Instruction. doi:10.1016/j.learninstruc.2013.12.004

Study V investigated the development of  rational number conceptual knowledge from 
the perspective of  conceptual change theory. In particular, we aimed to capture the 
developmental of  conceptual change with rational numbers using latent variable mixture 
models, in particular, latent profile analysis (LPA) and latent transition analysis (LTA). This 
would give insight into the difficulties students have with learning rational number concepts.

The participants of  this follow-up study were 263 third to fifth grade students from two 
schools in southwest Finland. Students completed a test of  rational number knowledge 
three times over the yearlong period. The first testing was prior to their regular fraction 
and decimal courses in winter 2012 (Time 1), then after their fraction and decimal course 
in spring 2012 (Time 2), and finally prior to their fraction and decimal course the following 
year in winter 2013 (Time 3). The rational number test measured conceptual knowledge of  
magnitude representations and the density of  rational numbers.

Model fit results of  the Latent Profile Analysis (LPA) revealed that a 4-class model was 
most appropriate for classifying participants’ responses at all three time points separately. 
This model was able to differentiate between those students who had mathematically 
correct conceptual knowledge of  the magnitude representations of  rational numbers from 
those who had mathematically correct knowledge of  concepts of  the density of  rational 
numbers. Overall, participants had poor conceptual knowledge of  rational numbers, though 
a limited number were successful in the magnitude representation items (roughly 10% of  
participants). An extremely small amount (roughly 5%) were successful on both magnitude 
representation and density items at any time point, suggesting that conceptual knowledge 
with density is very rare among this age-group. The Latent Transition Analysis results 
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revealed that very few students displayed sustained conceptual understanding with density 
concepts. However, some participants who had an initial understanding of  magnitude 
representations were found to develop a mathematically correct conception of  density as 
well. Overall, the LTA revealed little conceptual change with rational numbers for either 
magnitude representations or density.

This study confirmed the difficulty students have with the conceptual understanding of  
rational numbers. In particular, few students either sustainably displayed or developed a 
fully mathematical understanding of  the concepts surround the density of  fractions or 
decimals. Results also revealed that conceptual knowledge of  magnitude representations 
was necessary, but not sufficient, for conceptual change with density concepts. These results 
suggest that more studies on the development of  rational number knowledge are needed to 
determine causes and possible boons for supporting the radical conceptual change that is 
needed for an understanding of  rational numbers.

4.5	 Study VI

Lehtinen, E., McMullen, J., & Hannula-Sormunen, M. M. (submitted). Students focusing 
on quantitative relations as a predictor of  the long-term development of  conceptual 
understanding of  rational numbers.

The goal of  this 1.5-year longitudinal study was to determine the contribution of  SFOR 
tendency to the development of  rational number knowledge in late primary school students. 
We expected that differences in SFOR could also be identified in older students, as it was 
identified in younger children. We also expected that SFOR tendency would predict the 
development of  rational number conceptual knowledge. In particular, we expected that 
those students with a higher SFOR tendency would be more successful in the development 
of  rational number conceptual knowledge than their peers with a lower SFOR tendency. 
Furthermore, we expected the predictive strength of  SFOR tendency to not be dependent 
on prior knowledge of  rational numbers, non-verbal intelligence, or arithmetic skills.

Participants were from the same sample of  students as in Study V, totaling 263 third to fifth 
graders. Participants completed the rational number test (RNT) described in Study V a total 
of  four times over the course of  1 year and 4 months. Times 1-3 were the same as in Study 
V, in addition to a fourth time point after students’ regular fraction and decimal courses in 
spring 2013 (Time 4). In addition to the RNT, participants also completed a SFOR task 
at Time 1 The SFOR task was a picture explanation and production task, in which the 
students were asked to describe how sets of  objects had been transformed (possibilities 
included shape, color, exact number, and multiplicative relations) and separately asked to 
draw how a second set would turn out based on the previous trial. As well, a task measuring 
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guided focusing on quantitative relations was used to confirm that participants were able to 
solve the tasks using quantitative relations. Finally, participants completed measures of  non-
verbal intelligence (Raven’s Progressive Matrices) and arithmetic skill (Woodcock-Johnson 
III – Math Fluency) at Time 2.

First, SFOR scores were isolated from rational number knowledge at Time 1 using 
residualized scores. SFOR tendency strongly predicted rational number knowledge at Time 
4, even after controlling for prior knowledge of  rational numbers, non-verbal intelligence, 
and arithmetic fluency. Furthermore, those participants with SFOR scores that were higher 
than would be expected based on their rational number knowledge had greater learning 
gains over the four time points for both magnitude representation (d=0.12) and density 
concepts (d=0.22). In fact, only those students with higher-than-expected SFOR scores 
showed any development with rational number density concepts.

These results confirm the contribution of  SFOR tendency to the development of  rational 
number conceptual knowledge. In particular, those students who more readily recognize 
the relevance of  quantitative relations in situations that are not explicitly mathematical, and 
subsequently use these relations in their problem solving, have significantly greater gains in 
rational number conceptual knowledge during their normal lessons on rational numbers. 
That only those participants with a higher-than-expected SFOR tendency improved 
in density conceptual knowledge suggests that SFOR tendency may have an impact on 
successful conceptual change with rational numbers.
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5.	 MAIN FINDINGS AND DISCUSSION

The first aim of  the present dissertation was to determine if  it was possible to delineate, 
theoretically and methodologically, children’s spontaneous focusing on quantitative 
relations (SFOR) as an aspect of  task performance that is partially distinct from the ability 
to reason about quantitative relations. The second major goal of  the present dissertation 
was the investigation of  the process of  conceptual change with rational numbers in third 
to fifth grade students.. The third aim of  the present dissertation was to determine the 
relationship between children’s SFOR tendency and the development of  rational number 
conceptual knowledge. The theoretical framework was based on the role of  spontaneous 
quantitative focusing tendencies – such as spontaneous focusing on numerosity (SFON) 
– in the development of  mathematical competences and the need for radical conceptual 
change in the development of  rational number knowledge. Specifically, the aim was to 
link the differences in self-initiated practice with quantitative relations embodied by SFOR 
tendency with the development of  rational number conceptual knowledge. In doing so, a 
number of  tasks were identified that were successful in documenting individual differences 
in SFOR in children from the ages of  5 to 13 years old. These tasks captured differences 
in the unguided recognition and use of  quantitative relations in situations that were not 
explicitly mathematical, which could not be explained by the ability to solve the tasks using 
these relations when explicitly guided to do so. Furthermore, latent variable mixture models, 
especially Latent Profile Analysis (LPA) and Latent Transition Analysis (LTA), were used to 
model students’ conceptual knowledge of  the magnitude representations and the density 
of  rational numbers. Most importantly, the unique contribution of  SFOR tendency to the 
development of  rational number conceptual knowledge was determined.

Based on these studies, it can be determined that there indeed exists an attentional 
process that is referred to as Spontaneous Focusing On quantitative Relations (SFOR), 
which is a part of  children’s existing mathematical competences. SFOR is defined as 
the spontaneous (i.e. undirected) focusing of  attention on quantitative relations and 
the use of  these relations in situations that are not explicitly mathematical. There are 
substantial individual differences in SFOR among primary school children, which cannot 
be explained by their ability to reason about and use quantitative relations. The expression 
of  SFOR tendency is used to describe a child’s general tendency to spontaneously focus 
on quantitative relations in a wide variety of  contexts. It is hypothesized that SFOR 
tendency indicates the amount of  spontaneous practice with the reasoning and use of  
quantitative relations in everyday situations. SFOR tendency was found to be a unique 
contributor to the development of  rational number knowledge. The impact and relevance 
of  SFOR has been detailed in both cross-sectional and longitudinal designs in the present 
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set of  studies, indicating that SFOR tendency is an important aspect of  mathematical 
skills and development.

One goal of  the present studies was to determine the methodological feasibility of  
measuring SFOR. This requires tasks that capture individual differences in the spontaneous 
attention to and use of  quantitative relations and not differences in general attention, ability 
to use quantitative relations, or other cognitive means. Specific findings from individual 
studies provide more details on the nature of  SFOR tendency in both younger and older 
primary school students. Findings from Study I reveal differences in the spontaneous 
recognition and use of  quantitative relations and exact number, when both were possible 
solution methods. This suggests that the natural number bias may be related to spontaneous 
quantitative focusing tendencies. The large differences in the verbalizations of  quantitative 
relations and exact number found in Study II suggest that exact number may be more easily 
recognized than quantitative relations, suggesting that those who used quantitative relations 
on these tasks were more explicit in their actions.. Evidence from Study III indicate that the 
Bread and Rice tasks were able to capture SFOR, in a way that task performance was not 
entirely explained by the ability to use quantitative relations on the tasks. So that, even after 
excluding the students who were unable to use quantitative relations on the guided versions 
of  these tasks, there remained substantial inter-individual differences in the spontaneous 
use of  these relations. This suggests these SFOR tasks did not exceed children’s procedural 
or mathematical skills. Thus, Study III was the first study that was able to confirm the 
existence of  SFOR as an aspect of  children’s mathematical competences.

The second set of  studies presented in this dissertation also provided a number of  
specific conclusions regarding the nature of  conceptual change with rational numbers 
and SFOR tendency’s impact on this developmental process. Study IV revealed for the 
first time that there was a relationship between early SFOR tendency and later fraction 
knowledge. These results support the conclusion that those children with a higher SFOR 
tendency were more likely to be successful with learning rational numbers, even though 
they were not more successful in  mathematics class in general than their peers. Study V 
reported on one of  the first longitudinal studies of  the development of  rational number 
conceptual knowledge. These findings capture the process of  conceptual change with the 
number concept, though the use of  Latent Transition Analysis, highlighting the particular 
difficulty children had with sustaining conceptual change with density concepts, along 
with establishing the necessity of  grasping magnitude representations before successful 
conceptual change with density concepts can occur. The most convincing evidence of  the 
contribution SFOR to rational number conceptual development came in Study VI, where 
SFOR tendency, even after controlling for prior knowledge, predicted rational number 
conceptual knowledge after two school years of  courses on fractions and decimals. This 
study also suggested that the impact of  SFOR tendency on the development of  rational 
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number conceptual knowledge may be particularly important during periods in which 
no explicit fraction or decimal instruction occurs. Put together, these studies reveal that 
SFOR tendency, throughout primary school, has a significant impact on success with 
learning rational number concepts.

5.1	 Theoretical implications

The present set of  studies has implications for current theories on the development of  number 
concepts and mathematical skills, including processes of  conceptual change with rational 
number and the role of  spontaneous quantitative focusing tendencies in the development 
of  mathematical skills. This work provides further evidence to suggest that conceptual 
change theories are relevant for the development of  rational numbers and proposes a model 
of  the early developmental stages of  these processes. Importantly, it expands the scope of  
study of  these development processes and the factors that influence them to include the 
measurement of  differences in the spontaneous use of  mathematical aspects in situations 
that are not explicitly mathematical, potentially included everyday situations. The empirical 
part of  this work confirms that there are substantial difficulties in learning about rational 
number concepts. However, some 10 to 13 year olds display successful conceptual change 
with magnitude representations and even a few do so with density concepts. Finally, these 
children who are successful in developing conceptual knowledge of  rational numbers seem 
to be the same students who are more likely to spontaneously focus on quantitative relations 
in non-explicitly mathematical situations. It is proposed that those with a higher SFOR 
tendency are more likely to recognize opportunities to acquire practice and experience with 
relational aspects in their everyday life. This increase in self-initiated deliberate practice with 
quantitative relations could account for the developmental advantage these students have in 
learning rational number concepts. 

A number of  studies have been able to detail the difficulties students and adults face when 
reasoning about rational number concepts that are incongruent with reasoning about 
natural numbers (e.g. Merenluoto & Lehtinen, 2004; Vamvakoussi & Vosniadou, 2004; 
2010; Obersteiner et al., 2013). The gap between concepts of  natural number and rational 
number are so large, that it has been argued that substantial conceptual change is needed 
in order for this to happen. Surprisingly, until now, there has been little evidence of  how 
the process of  conceptual change with rational number actually occurs. The present studies 
confirm the difficulties students face when learning about the magnitude representation 
and density of  rational numbers. As well, the clear stages of  development that made up the 
model suggest that the framework theory of  conceptual change is relevant for considering 
difficulties in learning about rational numbers (Vamvakoussi & Vosniadou, 2004; Vosniadou 
& Verschaffel, 2004). It was also discovered that there are clear differences in the development 
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of  the different concepts of  rational number. In particular, understanding magnitude 
representations seems to be a necessary, but not sufficient, precursor to understanding 
density concepts. This suggests that it is not sufficient to consider rational number concepts 
as a monolithic set of  knowledge that develops in a synchronous manner, but instead there 
may be a clear path through the different sub-concepts leading to a fully mathematically 
mature conception of  rational numbers.

Hannula and Lehtinen (2005) have previously been successful in detailing the role of  
the spontaneous attention to and use of  exact number in non-guided situations in the 
development of  early mathematical skills (see also, Hannula, 2005; Hannula-Sormunen, 
in press; Hannula et al., 2010). The present study was successful in expanding this 
approach to the study of  SFOR. Thus, it can be argued that in investigating children’s 
mathematical reasoning with quantitative relations, it is also necessary to consider that 
not all children pay attention to these relations with equal frequency, when they are not 
explicitly guided to do so. That these differences have been found in multiple cultural 
contexts, across a wide age range, and using different representations of  quantities 
(continuous and discrete) suggests that SFOR tendency may be a fairly robust. Given 
the variety of  quantitative relational aspects of  the environment, it would be important 
to determine which features of  quantitative relations are most salient to children and 
adults in their everyday surroundings and how these relate to formal mathematical 
concepts, especially those dealing with rational numbers. The identification of  these 
features may shed more light on how SFOR tendency impacts individual differences 
with rational numbers.

Figure 2. Role of spontaneous focusing tendencies on the development of mathematical skills. 
Modified from Ericsson, 2006.
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Those who become experts in fields such as music or sports are more likely to notice 
opportunities to practice newly acquired competences than their non-future-expert 
counterparts (Ericsson & Lehman, 1996). Likewise, it is expected that those children who 
have a higher SFOR tendency may more readily recognize situations in which quantitative 
relational aspects may be relevant or useful for their actions. Those students with a higher 
sensitivity to aspects involving quantitative relations may acquire a greater amount of  
self-initiated deliberate practice with quantitative relations, leading to more successful 
development of  rational number conceptual knowledge. The existence of  SFOR tendency 
suggests that there may be a progression of  spontaneous quantitative focusing tendencies, 
including SFON and SFOR tendencies, which increases with mathematical complexity 
(Figure 2). This progression of  focusing tendencies may share characteristics with features 
of  the progressive nature of  deliberate practice (Ericsson, 2006). Thus, just as budding 
experts are always practicing skills that are at the edge of  their competences, increasing in 
complexity and difficulty, the progression of  spontaneous quantitative focusing tendencies 
may increase with mathematical complexity as children acquire more advanced knowledge 
of  mathematics. 

One possible explanation for the mechanism of  influence that this practice offers for 
the development of  rational number conceptual knowledge is that it helps overcome 
the natural number bias (Ni & Zhou, 2005). Some have argued that natural number bias 
may have developmental roots in the ubiquitous nature of  natural number in cultural 
representations of  number from an early age (e.g. Vamvakoussi et al., 2012). The practice 
acquired from a higher SFOR tendency may lead past solely paying attention to exact 
number when other or more advanced mathematical aspects, such as quantitative relations 
are present. This may lessen the impact of  the ubiquity of  natural number in everyday 
activities, leading to an easier expansion of  the number concept when learning about 
rational numbers. Those children with a high SFOR tendency may gain quantitatively 
more practice with quantitative relations, leading to more variation in experience with 
these aspects, which support easier abstraction of  these aspects into formal mathematical 
concepts of  rational numbers (Ohlsson & Lehtinen, 1997). Not only does a higher SFOR 
tendency suggest quantitatively more practice with these concepts, but this practice 
with reasoning about everyday relations may also be qualitatively better. Practice with 
approximate non-exact quantitative relations, such as dealing with portions of  journeys 
or other continuous quantities, is rarely found in classroom situations, but is common 
in everyday situations. SFOR tendency may be particularly beneficial in allowing the 
acquisition of  experience in reasoning with these non-exact approximate relations outside 
of  the classroom. Greater experience with non-exact approximate relations may provide 
especially strong support for learning concepts of  density in recognizing that not all 
quantities fit neatly into common fractions or decimals.
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When considering Resnick’s (1992) developmental stages, SFOR tendency may act as a 
bridge between the upper levels of  mathematics of  numbers and operations and the lower 
level of  the mathematics of  quantities. As has been shown in the present dissertation, 
those students with a higher SFOR tendency were improved more with their conceptual 
knowledge of  relational numbers. Thus, it may be that those who more readily recognize 
opportunities to reason about quantitative relations at the quantities level, as indexed by 
SFOR tendency, may be afforded a substantial boon when making the transition from 
mathematics of  numbers to mathematics of  operations when reasoning about rational 
numbers. For example, it may be that those who are more likely to recognize the proportional 
relations of  a sharing situations (with unequal unit sizes) may gain more relevant experience 
with reasoning about these aspects at the mathematics of  quantities level, supporting them 
when learning about common fractions (e.g. ½ = 2/4) at the mathematics of  operations 
level. However, the proposed connection between different levels in Resnick’s model that 
may be afforded by SFOR tendency requires more evidence and cannot be truly identified 
in the scope of  the present dissertation.

Previously, little evidence has been presented that documents the development of  rational 
number conceptual knowledge or developmental predictors of  the development of  this 
knowledge. More than anything, the present study indicates that individual differences in 
developmental trajectories of  learning rational number concepts exist and these may not 
only be explained by differences in what children and students can do, but also differences 
in how often they focus on mathematically relevant aspects of  their environment and 
use their mathematical skills in action. This expands the scope of  explanatory factors for 
developmental differences in conceptual change with rational numbers to include SFOR 
tendency, impacting both the prediction of  developmental difficulties with rational numbers, 
and practical, educational implications for the teaching of  rational numbers.

5.2	 Practical implications

The present study has practical implications for the diagnostics of  early mathematical 
difficulties and the later teaching of  rational numbers. Until now, studies of  children’s early 
quantitative relational reasoning have dealt with situations that are obviously mathematical 
(e.g. Boyer et al., 2008; Frydman & Bryant, 1988). However, relying on assessments of  
young children’s reasoning about quantitative relations that merely measure what they 
can do ignores the fact that there may also be differences in the frequency with which 
they spontaneously use quantitative relations that have crucial influence on their formal 
mathematical development. The difficulties students face with learning rational number 
concepts, despite displaying the ability to reason about quantitative relations at an early age, 
suggests that the early warning signs of  future learning difficulties with rational numbers 
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would be beneficial for teachers and educators. Measuring children’s SFOR tendency may 
be one further way to capture early causes of  difficulties with learning formal mathematical 
concepts. Those children who display a low SFOR tendency may benefit from extra support, 
even though they are proficient with formal mathematical reasoning about quantitative 
relations. Thus, considering measures of  SFOR to be a diagnostic tool may help capture 
unexplained differences in developmental differences not captured by traditional measures. 
A low SFOR tendency might indicate, not necessarily a lack of  knowledge, but a lack of  
understanding of  the applicability of  quantitative relational concepts to everyday situations. 
This lack of  recognition of  the salience of  mathematical aspects of  everyday situations 
has been argued to be a key weak spot in mathematical curricula (Verschaffel, Greer, & De 
Corte, 2000), and enhancing SFOR tendency is a strong candidate for filling this gap with 
regards to rational number teaching. 

Encouraging students to explore everyday situations in search of  opportunities to use 
quantitative relations could be a strong boon for teachers in lessening learning difficulties 
with fractions and decimals. Previous research has found that interventions aimed at 
enhancing SFON tendency, were not only successful in increasing children’s spontaneous 
focusing on numerosity, but subsequently lead to greater gains in enumeration skills (Hannula 
et al., 2005). This suggests that training spontaneous quantitative focusing tendencies 
may have a far-reaching influence on children’s mathematical development. Providing 
encouragement for recognizing opportunities to apply quantitative relational reasoning 
in real-world situations may not only increase SFOR tendency, but lead to improvements 
in reasoning about rational numbers. As mathematical topics increase in abstraction, it 
becomes even more necessary to provide deeply meaningful real world situations in which 
these aspects can be found (Lehtinen & Hannula, 2006; Lobato, 2012). Developing SFOR 
tendency may be a key component in creating a richly connected body of  mathematical 
knowledge that accepts the world as a fundamentally mathematical place (Hatano & Oura, 
2012; Lobato, Ellis, & Munoz, 2003), which may afford the everyday opportunities needed 
to acquire a rich, diverse, meaningful set of  experiences with quantitative relations upon 
which a mathematically correct conception of  rational numbers can be built. The individual 
differences in SFOR tendency that are exposed in the present set of  studies indicates that 
some children may already be acquiring these mathematically rich experiences, leading to 
more successful conceptual change with rational numbers. Increasing SFOR tendency in all 
students, especially those with a lower SFOR tendency, may increase the chances of  them 
developing more mathematically correct conceptions of  rational numbers.

Teaching about rational numbers should be built upon early reasoning about quantitative 
relations, such as equal-partitioning (Confrey et al., 2009). In particular, developing curricula 
that encourages reasoning about quantitative relations in a variety of  non-formal situations 
could benefit the abstraction of  rational number concepts. A curriculum which highlights 
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opportunities to recognize and utilize non-traditional quantitative relations in everyday 
situations (as opposed to the more common ones such as one-half) could encourage students’ 
spontaneous use of  approximate quantitative relations. Creating such a link between these 
everyday situations and formal mathematical content could help emphasize the continuous 
nature of  quantitative relations and could be particularly beneficial for aiding the conception 
of  the density of  rational numbers. Students’ inability to successfully model mathematical 
concepts in real-world situations suggests that this sort of  approach to math teaching would 
be necessary, even beyond rational number topics (Verschaffel et al., 2000). While it seems 
that the natural number bias in intuitive judgments never fully disappears (Obersteiner et al., 
2013; Vamvakoussi et al., 2013), supporting children’s SFOR tendency may provide more 
experience with overcoming this bias to reason about quantitative relations in situations 
when aspects of  exact number are also present. Thus, SFOR enhancement as a supplement 
to the traditional curriculum would possibly improve the possibilities for successful learning 
of  formal rational number concepts when they arise in the curriculum.

5.3	 Limitations and challenges for future studies

The studies that make up the present dissertation represent the first attempts to conceptualize 
and measure SFOR and should be recognized as such. Further validation of  the instruments 
used to measure SFOR, more replication of  the studies, and continued refinement and 
expansion of  the measures is still necessary to fully legitimatize SFOR in the mathematical 
development canon. The present set of  studies provides a framework and justification for 
the further development of  these research avenues, with particular holes appearing that 
should guide future studies. There are three main limitations to the present set of  studies, 
which impact the conclusions that can be drawn. First, there are a number of  issues with 
the tasks designed to measure SFOR. Second, there are issues with the use of  the term of  
quantitative relations. Finally, there are a number of  limitations in the design of  the studies, 
which demand consideration for the future study of  SFOR.

There are a number of  issues to consider related to the tasks used to measure SFOR. The 
strength of  the combination of  Studies I and III is that they present a direct replication 
of  the Bread and Rice tasks in a second country. These findings, put together, indicate that 
individual differences in SFOR tendency appear in multiple contexts and that the variation 
in SFOR is similar in these two contexts. However, only having two tasks to measure 
SFOR in these studies limits the conclusions that can be drawn. In fact, the present set of  
studies only reports on three different tasks measuring SFOR across an age range of  eight 
years. Such a limited number of  tasks risks the possibility that there may not be a general 
attentional tendency that can be referred to as SFOR, instead the individual differences 
in task performance found in these studies could be a result of  idiosyncratic features of  
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these specific tasks. However, that these tasks had similar relationships with rational number 
knowledge (Studies IV and VI) suggests that there may be some commonality to them. 
Nonetheless, future studies that both continue the replication of  these tasks and involve 
more measures of  SFOR are necessary. In particular, measures of  SFOR that include 
different types of  quantitative relations, including approximate continuous relations, are 
necessary for understanding what types of  quantitative relations can be grouped within this 
term.

The Bread and Rice tasks, themselves, are also in need of  serious reconsideration. While 
these tasks were very successful in eliciting responses based on quantitative relations and 
exact number, it is problematic that relatively few participants in Studies I-IV utilized non-
mathematical aspects in their responses. These findings suggest that the mathematical 
nature of  the Bread and Rice tasks may be fairly apparent, leading to a distinction between 
spontaneous focusing on quantitative relational aspects and solely focusing on numerosity, 
but not non-mathematical aspects. However, based on the interview results from Study II, 
there is some evidence that some participants clearly saw the tasks as non-mathematical 
aspects, focusing on, for instance, the qualitative shape of  the pieces of  bread (e.g. “It looks 
like a party hat!”). This limitation, however, did not seem to be an issue with the Teleportation 
task used in Study VI, which contained a number of  non-mathematical aspects upon 
which a number participants focused. Nonetheless, in future studies measuring SFOR in 
younger children, more open tasks, which also contain relevant non-mathematical aspects, 
are necessary to more closely examine how children use quantitative relations in situations 
which are not explicitly mathematical.

Another issue regarding the Bread and Rice tasks that requires further attention in 
subsequent tasks in the nature of  the quantitative relations used in the tasks. Despite that 
the majority of  studies involving early reasoning about quantitative relations deal with 
proportional relations, the bread and rice tasks involve relations between two sets in which 
the overall amount is the same, and only the unit size differs. Thus, the Bread and Rice tasks 
do not involve proportional reasoning. The use of  SFOR tasks which involve proportional 
relations with young children would give a clearer picture of  how the use of  the more simple 
form of  quantitative relations in the Bread and Rice tasks influenced the results of  Studies 
I-IV. One important consideration in the use of  proportional relations is the possibility that 
variation in overall amount between sets may more obviously guide participants’ attention 
to the mathematical, and possibly relational, aspects of  the tasks. However, it is necessary to 
carefully design the tasks so that they do not make too obvious the proportional relations 
and mathematical aspects. 

Along with these limitations based on the SFOR instruments, there are more theoretical 
limitations surrounding the use of  the term quantitative relations. Further studies should 
take seriously the consideration as to whether SFOR, which makes use of  the term 
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quantitative relations, is a single spontaneous quantitative focusing tendency that captures the 
whole range of  these relations. It would be important to determine exactly what types 
of  quantitative relations make up SFOR, including proportional relations, multiplicative 
relations, and additive relations. It is necessary to investigate whether SFOR is truly a 
general quantitative relational tendency or if  it is better explained as a number of  partially 
independent focusing tendencies, which involve different aspects of  quantitative relations. 
Furthermore, it is important to determine if  there are differences in the ease of  recognition 
of  the different types of  quantitative relations, which could inform pedagogical practices. 
As well, determining which aspects of  quantitative relations are more strongly related to 
rational number knowledge would not only further help target pedagogical interventions, 
but also expose more understanding of  the nature of  conceptual change with rational 
numbers. Looking at SFOR tendency longitudinally would be necessary to determine if  
there are different aspects of  quantitative relations that are more relevant at different points 
in time, and determine the stability of  SFOR tendency across time (e.g., Hannula et al., 2010). 
Furthermore, it would be important in looking at the interaction between SFOR tendency 
and quantitative relational reasoning and rational number knowledge to determine if  there 
existed a similar reciprocal developmental pattern as was found with SFON tendency and 
counting skills (Hannula & Lehtinen, 2005). 

Finally, there are a number of  limitations in the design of  the present set of  studies that 
should be taken into consideration when planning future studies of  SFOR. One major 
concern involving the conclusions of  the present set of  studies is the small sample sizes in 
the studies in early primary school (Studies I-IV), with age groups in the different studies 
only having around 20 to 30 participants. While, the cross-sectional approach used in 
these studies allowed for a wide-angle look at SFOR tendency in a number of  different 
ages, it lessened the possibility to capture, within age groups, more substantial individual 
differences. In particular, Study IV only reports on a small cohort of  students; since this 
study provides the only evidence of  early SFOR tendency being related to later fraction 
learning, a replication with a larger sample size is needed to fully substantiate these claims. 
Furthermore, this study only found a connection between the Rice task and later fraction 
knowledge, while there was no predictive influence of  the Bread task. A larger sample, with 
larger statistical power, would allow for the determination of  whether this effect was due to 
low power or an accurate representation of  this relationship. 

Despite our expectation that SFOR tendency would be related to SFON tendency, no 
age-appropriate SFON measures were included in these studies (see Hannula & Lehtinen, 
2005). While SFON tendency is inherently connected with SFOR tendency on these tasks, 
not having separate measures of  SFON and SFOR limits the understanding of  how these 
spontaneous quantitative focusing tendencies are related. Measurement of  the development 
of  these two tendencies across time in younger children would provide more insight into 
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not only the development of  focusing tendencies, but also may shed more light on how 
these tendencies impact larger developmental trends related to, for example, the natural 
number bias.

The present set of  studies provides a strong case for the importance of  SFOR tendency 
in the development of  rational number conceptual knowledge. However, no evidence 
can be presented on the origins of  the individual differences in SFOR tendency or how 
SFOR tendency could be engaged in the classroom. Understanding the antecedents of  
SFOR tendency would allow for a better understanding of  its role in the development 
of  mathematical skills. Furthermore, determining the developmental causes of  SFOR 
tendency will help better inform on how it can be enhanced in the classroom environment. 
The creation of  pedagogical tools based on SFOR tendency is a crucial potential outcome 
of  these studies and looking at predictors of  SFOR tendency is necessary for the creation 
of  these tools. Thus, the developmental factors that lead to differences in SFOR tendency 
should be examined. Early, seemingly innate, recognition of  both approximate and exact 
number have been identified, and even shown to impact later mathematical skills (Mazzocco, 
Feigenson, & Halberda, 2011; Starr, Libertus, & Brannon, 2013). Investigating processes 
related to the approximate number system, which being based on a logarithmic scale, is 
inherently relational (Dehaene et al., 2008), could indicate whether there are individual 
differences at this basic representational level that impact SFOR tendency. The ubiquity 
of  early number and quantitative relation recognition suggests that the investigation of  
developmental influences may be important for understanding the development of  
individual differences in SFOR tendency. 

Not only is the present set of  studies unable to identify possible developmental antecedents 
of  SFOR tendency, they are also unable to make firm conclusions regarding SFOR tendency’s 
influential mechanisms on the learning of  rational numbers. In situ, observational evidence 
of  SFOR in everyday situations is necessary for the determination of  how SFOR tendency 
may affect the development of  rational number knowledge. The role of  SFOR tendency 
in mathematical development has been found to be substantial, though it is unclear exactly 
what this role looks like.. Only experimental evidence will allow for a more substantial 
indication of  SFOR tendency’s influence on mathematical development.

In general, the present set of  studies is a useful first step in determining the nature of  
SFOR tendency and its role in mathematical learning, especially learning of  rational number 
concepts. Ultimately, however, it is apparent that a number of  aspects of  these studies 
should be re-considered when approaching new investigations of  SFOR. Furthermore, a 
number of  important questions regarding the nature of  SFOR tendency and its role in the 
development of  mathematical skills cannot be addressed in this set of  studies. Nonetheless, 
the results reported here suggest that these future studies are a fruitful pursuit.
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