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ABSTRACT 

Cardiac troponin (cTn) I and T are the recommended biomarkers for the diagnosis and 
risk stratification of patients with suspected acute coronary syndrome (ACS), a major 
cause of cardiovascular death and disability worldwide. It has recently been 
demonstrated that cTn-specific autoantibodies (cTnAAb) can negatively interfere with 
cTnI detection by immunoassays to the extent that cTnAAb-positive patients may be 
falsely designated as cTnI-negative. The aim of this thesis was to develop and 
optimize immunoassays for the detection of both cTnI and cTnAAb, which would 
eventually enable exploring the clinical impact of these autoantibodies on cTnI testing 
and subsequent patient management. 

The extent of cTnAAb interference in different cTnI assay configurations and the 
molecular characteristics of cTnAAbs were investigated in publications I and II, 
respectively. The findings showed that cTnI midfragment targeting immunoassays 
used predominantly in clinical practice are affected by cTnAAb interference which 
can be circumvented by using a novel 3+1-type assay design with three capture 
antibodies against the N-terminus, midfragment and C-terminus and one tracer 
antibody against the C-terminus. The use of this assay configuration was further 
supported by the epitope specificity study, which showed that although the 
midfragment is most commonly targeted by cTnAAbs, the interference basically 
encompasses the whole molecule, and there may be remarkable individual variation at 
the affected sites. In publications III and IV, all the data obtained in previous studies 
were utilized to develop an improved version of an existing cTnAAb assay and a 
sensitive cTnI assay free of this specific analytical interference. 

The results of the thesis showed that approximately one in 10 patients with suspected 
ACS have detectable amounts of cTnAAbs in their circulation and that cTnAAbs can 
inhibit cTnI determination when targeted against the binding sites of assay antibodies 
used in its immunological detection. In the light of these observations, the risk of 
clinical misclassification caused by the presence of cTnAAbs remains a valid and 
reasonable concern. Because the titers, affinities and epitope specificities of cTnAAbs 
and the concentration of endogenous cTnI determine the final effect of circulating 
cTnAAbs, appropriately sized studies on their clinical significance are warranted. The 
new cTnI and cTnAAb assays could serve as analytical tools for establishing the 
impact of cTnAAbs on cTnI testing and also for unraveling the etiology of cTn-related 
autoimmune responses. 
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TIIVISTELMÄ 

Akuutti sepelvaltimotautikohtaus (ACS, engl. acute coronary syndrome) on 
maailmanlaajuisesti merkittävä kuolleisuuden ja työkyvyttömyyden aiheuttaja. 
Sydänperäiset troponiinit (cTn, engl. cardiac troponin) I ja T ovat biomarkkereita, joita 
suositellaan ACS-potilaiden diagnosointiin ja riskiarviointiin. Hiljattain on kuitenkin 
osoitettu, että cTn:a tunnistavat autovasta-aineet (cTnAAb, engl. cTn-specific 
autoantibody) voivat negatiivisesti häiritä cTnI:n detektioon käytettäviä 
immunomäärityksiä; jopa siinä määrin, että cTnAAb-positiiviset potilaat voidaan 
virheellisesti luokitella cTnI-negatiivisiksi. Väitöstutkimuksen tavoitteena oli kehittää 
ja optimoida cTnI- ja cTnAAb-määrityksiä, jotka lopulta mahdollistaisivat autovasta-
aineiden kliinisen merkityksen arvioimisen. 

Ensimmäisessä julkaisussa tutkittiin cTnAAb-häiriön suuruutta erilaisissa cTnI-
määrityskonfiguraatioissa ja toisessa cTnAAb:iden molekulaarisia ominaisuuksia. 
Havainnot osoittivat, että cTnI-molekyylin keskiosan tunnistavat immunomääritykset, 
joita kliinisessä käytössä olevat määritykset pääasiassa ovat, kärsivät cTnAAb-
häiriöstä, ja että häiriö voidaan välttää uudentyyppisellä 3+1-määrityksellä. Tässä 
määrityksessä hyödynnetään kolmea cTnI:n N-terminukseen, keskiosaan ja C-
terminukseen sitoutuvaa sitojavasta-ainetta ja yhtä C-terminukseen sitoutuvaa 
leimavasta-ainetta. Tällaisen määrityskonfiguraation käyttöä tuki myös cTnAAb:iden 
epitooppikartoitus, jonka perusteella cTnAAb-häiriö kattaa koko cTnI-molekyylin, 
vaikka autovasta-aineet tavallisimmin sitoutuvat cTnI:n keskiosaan. Lisäksi tulokset 
osoittivat, että cTnAAb:iden spesifisyydessä voi olla merkittävää yksilöllistä 
vaihtelua. Tietojen perustella kolmannessa julkaisussa kehitettiin parannettu versio 
aikaisemmin julkaistusta cTnAAb-määrityksestä ja neljännessä herkkä, cTnAAb-
häiriöstä vapaa cTnI-määritys. 

Väitöskirjatyön tulokset osoittivat, että ACS-epäillyistä potilaista noin joka 10:nnellä 
on verenkierrossaan havaittavia määriä cTnAAb:ita ja että cTnAAb:t voivat estää 
cTnI:n määrittämisen, kun ne sitoutuvat samoihin kohtiin cTnI:n immunodetektioon 
käytettävien vasta-aineiden kanssa. Näin ollen on mahdollista, että cTnAAb-häiriö 
johtaa tällaisten potilaiden virheelliseen luokitteluun. Koska cTnAAb:iden tiitterit, 
sitomisvoimakkuudet ja epitooppispesifisyydet sekä endogeenisen cTnI:n pitoisuus 
yhdessä ratkaisevat cTnAAb:iden lopullisen vaikutuksen, niiden kliinisestä 
merkityksestä tarvitaan lisätutkimuksia suuremmilla potilasaineistoilla. Kliinistä 
merkitystä selvitettäessä uudet cTnI- ja cTnAAb-määritykset voivat toimia tärkeinä 
analyyttisinä työkaluina. 
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1 INTRODUCTION 

Acute coronary syndrome (ACS) is a major cause of cardiovascular death and 
disability worldwide. While timely diagnosis and appropriate therapy are paramount 
for improving the clinical outcomes of ACS patients, rapid rule-out is equally 
important for reducing the burden on emergency health care; patients with chest pain 
and/or other symptoms suggestive of ACS represent a substantial proportion of all 
acute medical admissions, corresponding to 15-20 million admissions each year in 
Europe and the United States (US) (Mueller, 2013). However, only one in three 
patients will be diagnosed with ACS (Mueller, 2013; Conrad and Jarolim, 2014). 
Therefore, the early identification of ACS in a large and heterogeneous patient 
population represents one of the greatest diagnostic challenges in emergency 
medicine. 

The determination of circulating cardiac troponin (cTn) I and T along with the 
evaluation of patient symptoms and electrocardiographic abnormalities currently 
constitute the cornerstone in the triage of suspected ACS patients (Thygesen et al., 
2012a). Since the introduction of the first cTn immunoassays at the end of the 1980s 
and the beginning of the 1990s, several generations of research and commercial assays 
have been validated and routinely used. However, only the latest advances in cTn 
assay technology have enabled the targeted analytical sensitivities and precisions 
which in turn have enabled the measurement of cTn concentrations in healthy 
individuals and hence, the detection of ever smaller myocardial injuries. At the same 
time, the ACS-specificity of cTn testing has decreased and the effect of various 
confounders has inherently become more significant. While there is now better 
understanding of the analytical and clinical scenarios influencing cTn results, it has 
been recognized that some of the former recommendations for the development and 
clinical use of cTn assays may need re-evaluation. 

The following literature review offers an overview of the clinical use of cTns in ACS 
diagnosis and risk stratification emphasizing the analytical and clinical issues 
governing cTnI detection. The main focus of the thesis is on circulating cardiac 
troponin specific autoantibodies (cTnAAb) that have been reported to negatively 
interfere with cTnI assays by blocking the binding sites of antibodies used in its 
immunological detection. 
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2 REVIEW OF THE LITERATURE 

2.1 Acute coronary syndrome 
ACS refers to any group of clinical symptoms caused by primary myocardial 
ischemia, i.e. insufficient blood flow to the heart muscle resulting from total or 
subtotal coronary artery occlusion. It comprises the diagnoses of unstable angina (UA) 
and myocardial infarction (MI). In UA, the ischemia is not sufficiently severe to cause 
myocyte necrosis and a diagnostic electrocardiogram (ECG) does not show persistent 
ST-segment elevation. In MI, the intensity and duration of ischemia is sufficient to 
cause necrosis and, based on the ECG findings, a patient is diagnosed with either non-
ST-segment elevation MI (NSTEMI) or ST-segment elevation MI (STEMI). The 
Universal Definition of MI, however, is wider and encompasses any amount of 
necrosis in the setting of ischemia, which for MIs are additionally classified into five 
subtypes largely according to their pathophysiology (Thygesen et al., 2007; Thygesen 
et al., 2012a). Of these types, type 1 or spontaneous MI is related to ACS (Pierpont 
and McFalls, 2009; Newby et al., 2012; Sandoval et al., 2014). Because UA and 
NSTEMI are both forms of ACS without ST-segment elevation, they can be referred 
to together as NSTE-ACS. The classification of ACS is summarized in Figure 1. (Van 
de Werf et al., 2008; Hamm et al., 2011; Jneid et al., 2012; O'Gara et al., 2013.) 

 

Figure 1. Clinical classification of ACS. 
 

2.1.1 Pathophysiology  

The root cause of ACS is coronary atherosclerosis. Atherosclerosis is a complex 
inflammatory process characterized by a thickening of the arterial wall due to the 
accumulation of atherosclerotic plaques comprising inflammatory cells, connective-
tissue elements, lipids and debris. These plaques contain a necrotic core that is 
separated from the lumen of the artery by a fibrous cap, which may become thin and 
vulnerable over time. When such a vulnerable or unstable plaque ruptures, it exposes 

ACS
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Detectable myocardial necrosis
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No detectable myocardial necrosis

No ST-segment elevation in ECG

STEMI

ST-segment
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NSTEMI

No ST-segment
elevation in ECG
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its thrombogenic components to the circulation, which promotes platelet aggregation 
and activates coagulation cascade. Pronounced atherosclerosis of the coronary arteries, 
i.e. coronary artery disease (CAD), may cause ischemic symptoms when plaques grow 
large enough to obstruct blood flow to such an extent as to result in myocardial 
underperfusion or when plaque disruption with resulting intraluminal thrombus blocks 
the blood flow to the heart. (Gotlieb, 2005; Hansson, 2005; Van de Werf et al., 2008; 
Hamm et al., 2011; Pant et al., 2013.) 

ACS is the result of rupture, fissuring, erosion or dissection of an unstable plaque and 
subsequent thrombus formation causing partial or complete occlusion of the infarct-
related artery, or distal embolization. This etiology differs from that of MI type 2, 
which is associated with ischemia secondary to either increased oxygen demand or 
decreased supply, such as in coronary spasm, coronary embolism, anemia, arrhythmias 
and hypertension. After the onset of ischemia, cell death is not immediate but takes 
time to develop. Complete necrosis of the cardiomyocytes at risk requires 2-4 hours or 
longer depending on the presence of collateral circulation to the ischemic zone, 
persistent or intermittent coronary artery occlusion, the sensitivity of myocytes to 
ischemia, pre-conditioning, and individual demand for oxygen and nutrients (Alpert et 
al., 2000; Thygesen et al., 2007). In the minority of ACS patients, the thrombus 
completely occludes the culprit vessel resulting in STEMI whereas in most of the 
patients, the thrombus is partially obstructive or only transiently occlusive resulting in 
NSTE-ACS (Yeh et al., 2010). Despite their similar pathogeneses, NSTEMI and UA 
differ in severity – with no detectable myocyte necrosis, the manifestation of ischemia 
is labeled UA. However, some experts have hypothesized that with the increased use 
of extremely sensitive and specific immunoassays for biomarkers of myocardial 
damage, the diagnosis of UA will eventually disappear eliminating the need for the 
concept of ACS (Braunwald and Morrow, 2013; Mueller, 2013). 

2.1.2 Clinical presentation and diagnosis 

Typical symptoms of ACS include various combinations of chest, upper extremity, 
jaw or epigastric discomfort with exertion or at rest, lasting for at least 20 min. The 
discomfort is often diffuse with radiation to the left arm. It may be accompanied by 
other symptoms such as dyspnea, diaphoresis, nausea or syncope. However, these 
signs are not specific to ACS and can be misdiagnosed as gastrointestinal, 
neurological, pulmonary or musculoskeletal disorders, for example. Additionally, 
atypical presentations of ACS are common especially in the elderly, in women and in 
patients with diabetes (Canto et al., 2002; Culić et al., 2002). As over 50% of patients 
with severe chest pain do not have ACS and approximately one in three ACS patients 
do not present with chest pain (Conrad and Jarolim, 2014), the accurate and rapid 
diagnosis of suspected ACS is essential both for the timely administration of 
appropriate treatment and for recognizing other cardiac and noncardiac causes of 
ASC-type symptoms. 
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The initial patient evaluation includes history and physical examination, 12-lead ECG 
and measurement of cardiac biomarkers. Despite the fact that a dynamic change in 
cardiac biomarker values, preferably cTns, is a prerequisite for an MI diagnosis 
according to the Universal Definition of MI (Table 1) (Thygesen et al., 2012a), the 
role of serial biomarker testing in daily practice is very different for STEMI and 
NSTEMI as summarized in Figure 2 (Van de Werf et al., 2008; Hamm et al., 2011; 
Jneid et al., 2012; O'Gara et al., 2013). STEMI necessitates immediate reperfusion 
therapy and is diagnosed based on clinical findings and ECG; biomarkers whose 
concentrations are generally larger than in NSTEMI play a useful prognostic and 
adjunct confirmatory role but the treatment should not be delayed to wait for the 
biomarker results. In contrast, NSTEMI diagnosis is based on serial biomarkers; the 
diagnosis stipulates that a rising and/or falling biomarker with at least one value 
exceeding the 99th percentile of the healthy reference population is seen in an 
appropriate clinical setting. As a dynamic change is required to distinguish acute 
myocardial necrosis from a chronic biomarker elevation, samples should be drawn on 
admission and 3-6 h later. Additional samples are needed if further ischemic episodes 
occur or, when the onset of the initial symptoms is unknown. Although the Universal 
Definition of MI does not provide guidance on the magnitude of the required change, 
the National Academy of Clinical Biochemistry (NACB) has recommended a relative 
change of ≥20% from the elevated baseline value to be suggestive of an MI (Morrow 
et al., 2007). However, a rising or falling pattern is not absolutely necessary to meet 
the diagnosis, if a patient with a high pre-test risk of MI presents late after the onset of 
symptoms (Thygesen et al., 2012a). If an increased cTn value with or without a 
dynamic pattern is encountered in the absence of evidence of myocardial ischemia, a 
careful search for other possible etiologies of cardiac damage should be undertaken. 

Table 1. Universal Definition of MI (type 1) (adapted from Thygesen et al., 2012a; Tehrani and Seto, 
2013). 
 

Detection of a rise and/or fall of cardiac biomarker values (preferably cTn) with at least one value 
above the 99th percentile reference limit and with at least one of the following: 

 Symptoms of ischemia 
 New ST-segment change or LBBB 
 New pathologic Q wave on ECG 
 Imaging evidence of new loss of viable myocardium or wall motion 
 Identification of an intracoronary thrombus by angiography or autopsy 

LBBB, left bundle branch block 
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Figure 2. Flowchart for triage and evaluation of a suggestive ACS patient (adapted from Hamm et al., 
2011). 
 

2.1.3 Treatment 

As a result of improved diagnostic and management strategies, the survival of MI 
patients has notably improved (Yeh et al., 2010). In STEMI, the cornerstone of acute 
management is reperfusion therapy with primary percutaneous coronary intervention 
(PCI) or thrombolysis to limit the extent of cardiomyocyte death by re-establishing 
normal coronary blood flow in the shortest time possible, which is then complemented 
with adjunctive medical therapy (e.g. antiplatelet/anticoagulant therapy). In NSTE-
ACS, appropriate therapy is selected based on risk stratification. All patients should 
receive conservative pharmacological therapy (e.g. anti-ischemia and antiplatelet/ 
anticoagulant therapy) to provide relief of ischemia and to prevent the recurrence of 
adverse ischemic events, and high-risk patients should additionally be considered for 
revascularization. (Van de Werf et al., 2008; Hamm et al., 2011; Jneid et al., 2012; 
Hanson et al., 2013; O'Gara et al., 2013.) 

2.2 Biomarkers of myocardial damage 
In the past 60 years, biomarkers of myocardial damage have undergone a progressive 
evolution (Table 2) and the criteria for an MI diagnosis have developed accordingly. 
The first international guidelines for the diagnosis were established in 1979 by the 
International Society and Federation of Cardiology (ISFC) and the World Health 
Organization (WHO) (Bernard et al.). In these guidelines, the diagnosis of MI was 
based on a consensus of two of the following: clinical history, ECG findings and 
temporal changes in serum enzymes (due to the heterogeneity of clinical symptoms, 
the fact that the ECG is frequently equivocal, and because biomarkers available at the 
time were not specific for myocardial injury). The discovery of cTns towards the end 
of the 1980s and in the beginning of the 1990s (Cummins et al., 1987; Katus et al., 
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1989), and their subsequent approval for diagnostic use by the US Food and Drug 
Administration (FDA) changed this situation. Based on evidence obtained with the 
new assays, NACB first promulgated the need to incorporate blood cTn measurements 
into MI diagnosis (Wu et al., 1999) and shortly after, a Joint Committee of the 
European Society of Cardiology (ESC) and the American College of Cardiology 
(ACC) was convened to re-evaluate the established MI definition (Alpert et al., 2000). 
As a result, any detectable amount of necrosis caused by ischemia was labeled as MI, 
and cTns became the recommended biomarkers. These criteria are currently known as 
the Universal Definition of MI and have been revised twice after expanding the Joint 
Committee to include representatives from the American Heart Association (AHA) 
and World Heart Federation (WHF) (Thygesen et al., 2007; Thygesen et al., 2012a). 

Table 2. Biomarkers of myocardial damage in chronological order (adapted from Ladenson, 2012; 
Lewandrowski, 2014). 
 

Time Biomarker Ultimate destiny 

1950s AST Obsolete 

1960s Total CK 
Obsolete, except when used in conjunction with CK-MB in limited 
applications 

1970s 
LDH isoenzymes Obsolete 

CK-MB isoenzymes, 
enzyme activity assay 

Obsolete, replaced by CK-MB mass immunoassay 

1980s Myoglobin Never widely used, largely obsoleted after the introduction of cTns 

1980s 
CK-MB isoenzyme, 
mass immunoassay 

Largely obsoleted after the introduction of cTns, previous gold 
standard 

1990s cTnI, cTnT 
Conventional, sensitive-contemporary and high-sensitivity assays 
in use 

AST, aspartate aminotransferase; CK, creatine kinase; CK-MB, CK muscle-brain fraction; LDH, lactate 
dehydrogenase 
 

The initial evaluation of suspected ACS patients using cTn measurements not only 
serves a diagnostic purpose but may also be used for risk stratification and therapy 
guiding (Morrow et al., 2001; Steg et al., 2009). A high cTn concentration correlates 
with a more severe degree of CAD and a larger infarct size (Lindahl et al., 2001; 
Wong et al., 2001; Licka et al., 2002; Steen et al., 2006). Hence, higher cTn levels 
help identify those ACS patients who are most likely to benefit from more aggressive 
therapy, such as early invasive procedures. 

Although cTn release has excellent specificity for cardiac injury, the introduction of 
progressively more sensitive cTn assays has demonstrated that myocardial damage is 
not specific to ACS. These non-ACS related conditions leading to elevated cTn can be 
divided into causes related to secondary myocardial ischemia (MI type 2), diseases not 
associated with myocardial ischemia, and conditions where the exact mechanisms are 
uncertain or multifactorial (see Table 3). It is important to understand that because 
cTn elevations in most of these situations are also associated with an increased risk of 
an adverse outcome, the detection of elevated cTn levels in the absence of ACS should 
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prompt a careful search for the underlying cause and when possible, the initiation of 
cause-specific treatment (Alcalai et al., 2007; Kavsak et al., 2012; Wang et al., 
2012b). Differentiating between ACS and non-ACS events is challenging. In 
particular, diagnosing MI type 2 in patients presenting to an emergency department 
has caused confusion among clinicians; the same diagnostic criteria as for MI type 1 
should be used for patient evaluation but little is known about the best treatment 
strategies (Pierpont and McFalls, 2009; Newby et al., 2012; Giannitsis and Katus, 
2013; Alpert et al., 2014; Sandoval et al., 2014). Thus, better protocols for clarifying 
the etiology of cTn releases are warranted while in the meantime, it remains important 
to interpret laboratory data in the clinical context in which they are found. (Agzew, 
2009; Thygesen et al., 2010; Giannitsis and Katus, 2013; Marini et al., 2013.) 

Table 3. Different causes of elevated cTn (adapted from Thygesen et al., 2010; Thygesen et al., 2012a; 
Tehrani and Seto, 2013). 
 

Damage related to primary myocardial ischemia (MI type 1) 
 Rupture of an atherosclerotic plaque 
 Intraluminal coronary artery thrombus formation 

Damage related to secondary myocardial ischemia (MI type 2) 
 Tachy- or bradyarrhythmias 
 Aortic dissection or severe aortic valve disease 
 Hypertrophic cardiomyopathy 
 Severe respiratory failure 
 Severe anemia 
 Hypertension 
 Coronary spasm 
 Coronary embolism or vasculitis 
 Coronary endothelial dysfunction without significant CAD 

Damage not related to myocardial ischemia 
 Cardiac contusion 
 Cardiac incisions 
 Pacing or defibrillator shocks 
 Rhabdomyolysis with cardiac involvement 
 Myocarditis 
 Cardiotoxic agents, e.g. anthracyclines 

Multifactorial or indeterminate myocardial damage 
 Heart failure 
 Stress cardiomyopathy 
 Severe pulmonary embolism or pulmonary hypertension 
 Sepsis and critically ill patients 
 Renal failure 
 Severe acute neurological diseases, e.g. stroke 
 Infiltrative diseases, e.g. amyloidosis 
 Extreme exertion 
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2.3 Cardiac troponin I 
The contractile apparatus of skeletal and cardiac muscle cells contains thin actin 
filaments and thick myosin filaments organized in sarcomeres. The sliding of these 
filaments along each other forms the molecular basis for striated muscle contraction, 
and is regulated by a troponin (Tn) complex and tropomyosin (Tm). The ternary Tn 
complex, which is attached periodically along the thin filament, is composed of three 
different subunits with specific functions: inhibitory TnI, Tm-binding TnT and Ca2+-
binding TnC. Upon muscle contraction, electrical stimulation increases the 
intracellular Ca2+ concentration. This leads to complex conformational changes in the 
Tn structure followed by the movement of TnI and Tm on the thin filament, which 
eventually enables the adenosine triphosphate driven interaction between actin and 
myosin, and subsequent development of muscle contraction. When Ca2+ is pumped 
back into the sarcoplasmic reticulum, the conformational changes are reverted and the 
muscle relaxes. TnI and TnT, but not TnC, exist as unique, recognizable isoforms in 
myocardium. Thus their cardiac forms, cTnI and cTnT, found in the circulation can 
serve as highly specific and sensitive indicators of recent or persistent cardiomyocyte 
damage. The diagnostic utilities of cTnI and cTnT are comparable but due to the tight 
patent restrictions, cTnT assays are commercially available from only two 
manufacturers (Roche Diagnostics and Radiometer). Although many of the analytical 
and clinical issues governing cTnI detection apply also to cTnT, the cTnT molecule 
and its determination were not included in this thesis. (Bandman, 1992; Farah and 
Reinach, 1995; Katrukha, 2013.) 

2.3.1 Expression and structure 

Human TnI is expressed in three isoforms encoded by separate genes: slow- and fast-
twitch skeletal troponin (skTn) I, and cTnI (Wade et al., 1990; Bhavsar et al., 1996; 
Tiso et al., 1997). Compared to the skeletal isoforms, cTnI exhibits approximately 
40% sequence homology and is larger (209 amino acids, aa, 24 kDa) due to an 
additional 30-membered N-terminal peptide (Bhavsar et al., 1996; Apple et al., 
2012a). Slow-twitch skTnI is predominantly expressed during embryonic and fetal 
development of the human heart and completely substituted with cTnI by the ninth 
month after birth (Saggin et al., 1989; Bhavsar et al., 1991; Sasse et al., 1993), while 
cTnI is expressed in neither normal nor diseased skeletal muscle (Bodor et al., 1995; 
Sacks, 1999). 

The cTnI molecule consists of five domains presented in Figure 3. The cardiac-
specific N-terminal domain (aa 2-32) includes an acidic part, a proline helix and a part 
carrying two serine residues in positions 23 and 24 (Holroyde et al., 1979; Mittmann 
et al., 1990; Ferrières et al., 2000; Howarth et al., 2007). The phosphorylation of these 
serine residues decreases the Ca2+ sensitivity of cardiomyocytes, presumably by 
decreasing the affinity of cTnI to TnC (al-Hillawi et al., 1995; Howarth et al., 2007). 
The IT-arm (aa 42-136) is composed of two α-helices (H1 and H2) connected by a 
short linker (Takeda et al., 2003). It is the least flexible part of the cTnI molecule and 



Review of the Literature 

19 
 

has a structural role proving contact with both TnC and cTnT, and orientating cTnI in 
the Tn complex. The structure of the inhibitory domain (ID) (aa 137-148) has not been 
definitely resolved probably due to its flexible nature. This domain binds to actin in 
the absence of Ca2+ preventing actin-myosin interactions in unstimulated muscle cells 
(Farah et al., 1994; Dong et al., 2003; Takeda et al., 2003; Kobayashi et al., 2009). 
The regulatory domain (RD) (aa 149-160) contains a short α-helix (H3) and interacts 
with TnC at high Ca2+ concentrations (Li et al., 1999; Wang et al., 2002). This 
interaction with Ca2+-saturated TnC dissociates the mobile domain (aa 163-210), 
which includes an α-helix (H4) and an unresolved C-terminal part (Takeda et al., 
2003; Galinska-Rakoczy et al., 2008; Galinska et al., 2010; Wang et al., 2012a), from 
actin upon stimulation and, therefore, serves as a Ca2+-sensitive molecular switch in 
muscle contraction (Farah et al., 1994; Perry, 1999). The models proposed for the Tn 
complex function and regulation have been reviewed elsewhere in detail (Katrukha, 
2013; Sheng and Jin, 2014). 

 

Figure 3. A schematic presentation of the cTnI molecule (Katrukha, 2013). The bars represent the five 
cTnI domains, whose secondary structures are described in the middle. The wavy curve in the secondary 
structure symbolizes a proline helix whereas barrels and short arrows represent α-helices and β-strands, 
respectively. Interaction sites with the other molecules of the contractile apparatus are indicated with 
ovals. Republished with permission of Consultants Bureau Enterprises; permission conveyed through 
Copyright Clearance Center, Inc. 
 

2.3.2 Release characteristics and forms in circulation 

The vast majority of cTnI is bound to the thin filaments of myocytes while only a 
minor fraction, around 2% to 8%, exist free in the early-releasable cytosolic pool, 
eventually representing a precursor pool of sarcomere assembly (Adams et al., 1994; 
Bleier et al., 1998; Higgins and Higgins, 2003; Agewall and Giannitsis, 2014). 
Although the mechanisms by which cTnI is released into the circulation are not fully 
understood, the prevailing view is that cTnI is only released after irreversible 
myocardial damage; primarily after necrosis but presumably tiny amounts can also be 
released by apoptosis and normal cardiomyocyte turnover (Figure 4) (Narula et al., 
1996; James, 1998; Missov and De Marco, 1999; Anversa et al., 2002; Bergmann et 
al., 2009; Wu and Christenson, 2013). Consequently, myocyte necrosis causes cell 
membrane disruption and cTnI leakage into the extracellular space. Via local 
microvascular and lymphatic drainage, cTnI then enters the systemic circulation where 
it can be detected in a few hours from the onset of ischemic symptoms. It is assumed 
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that the initial cTnI increase originates from the rapid release of the cytoplasmic 
fraction, which is subsequently followed by the gradual breakdown of myofibrils. The 
latter is believed to explain the prolonged presence of cTnI in blood (4-7 days) despite 
the presumably short half-life of the protein (hours) (Morrow et al., 2007; Dunn et al., 
2011). 

 

Figure 4. Irreversible myocardial damage and cTnI release (adapted from Hickman et al., 2010). Loss of 
cell membrane integrity initially releases the free cTnI in the cytoplasm, which is followed by sustained 
release due to the gradual degradation of contractile proteins. 
 

Contrary to the hypothesis presented above, with modern assays cTnI can be detected 
in the majority of MI patients already during the first hours of ischemia and in patients 
without any subsequent evidence of irreversible myocardial damage e.g. in 
participants of extreme sports (Vilela et al., 2014). In the latter group, cTnI typically 
disappears from blood substantially faster than in MI patients, i.e. they lack the 
sustained release. Therefore, it has been proposed that the cytoplasmic pool can also 
be released during reversible cardiomyocyte damage (Bergmann et al., 2009; White, 
2011; Wu and Christenson, 2013). The proposed release mechanisms include cellular 
release of proteolytic cTnI degradation products (Gao et al., 1997; Feng et al., 2001; 
van der Laarse, 2002), increased cellular wall permeability due to myocardial stretch 
or ischemia (Hessel et al., 2008), and formation and release of membranous blebs 
(Hickman et al., 2010). Because it is difficult to isolate and ascertain the contribution 
of micronecrosis and other mechanisms, cTnI in blood does not unequivocally define 
the underlying mechanism for its release. 

In peripheral circulation, cTnI is present both as free and complexed forms. In MI, 
cTnI has mainly been found in the binary cTnI-TnC complex, with smaller amounts of 
the ternary cTnI-cTnT-TnC complex and free cTnI (Katrukha et al., 1997; Wu et al., 
1998; Giuliani et al., 1999; Labugger et al., 2003). Additionally, cTnI is susceptible to 
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progressive proteolytic degradation in necrotic myocytes, in the circulation and in 
collected blood (Katrukha et al., 1998; Morjana, 1998; McDonough et al., 2001; Law 
et al., 2005). In particular, the N- and C-terminal parts of the molecule are less stable 
compared to the cTnI midfragment (aa 30-110) protected by TnC binding. 
Furthermore, the cTnI molecule undergoes various posttranslational modifications. It 
has been demonstrated that approximately 50% of the cTnI in the blood of MI patients 
is phosphorylated; particularly serine residues at positions 23 and 24 but there are 
many additional cTnI phosphorylation sites whose functional roles are not yet 
thoroughly understood (Katrukha et al., 1999; Labugger et al., 2000; Katrukha, 2013; 
Sheng and Jin, 2014). Other possible posttranslational modifications of cTnI include 
oxidation and reduction of two cysteine residues at positions 80 and 97 (Vallins et al., 
1990; Katrukha et al., 1999). Hence, a number of different molecular cTnI forms are 
found both in cardiac tissue and in the circulation. It is suspected that the proportion of 
the forms may be time dependent and disease-specific (Katrukha et al., 1997; Wu et 
al., 1998; Labugger et al., 2000; Colantonio et al., 2002; Cobbaert et al., 2008; Hessel 
et al., 2008). Because the pronounced heterogeneity of cTnI can affect cTnI 
recognition by assay antibodies selected for its immunological detection, and because 
our knowledge of the exact nature of these forms is rather limited, the current cTnI 
assays are designed to recognize all of the different forms equally. 

2.4 Immunoassays for cardiac troponin I 
The first investigational cTnI immunoassay using polyclonal antibodies was described 
in 1987 (Cummins et al.). Five years later, cTnI-specific monoclonal antibodies (Mab) 
were developed (Bodor et al., 1992; Larue et al., 1992) closely followed by the release 
of the first commercial assays by Sanofi Pasteur (Larue et al., 1993) and Dade Behring 
(Adams et al., 1993). Of these, Dade Behrings’s automated cTnI assay became widely 
used in clinical practice. The early cTnI assays aimed at matching the clinical 
performance of CK-MB. Since then, assays have evolved substantially, and the latest 
generation of cTnI assays are 200- to 500-fold more sensitive than the investigational 
and commercial assays initially described in the early 1990’s (Panteghini, 2013). This 
development has been especially propelled by the first Universal Definition of MI 
(Alpert et al., 2000) which inspired assay manufacturers to improve cTn assays to 
reach the total precision (coefficient of variation, CV) of 10% at the 99th percentile of 
a healthy reference population. Lately, the guideline-recommended assay performance 
has been achieved. 

In contrast to conventional assays, the new higher sensitivity cTnI assays have enabled 
the optimal discrimination between low cTnI levels and analytical noise, and reliable 
measurement of values in the region of the 99th percentile of a healthy population. 
Although no universally agreed nomenclature of cTn assays exists, in a scorecard 
concept an assay needs to meet two basic criteria to be considered high-sensitivity 
(Apple, 2009). First, the CV at the 99th percentile must be ≤10%. Second, cTn must be 
measureable above the assay’s limit of detection (LoD) for at least 50% (and ideally 
95%) of healthy individuals. The majority of modern assays, i.e. sensitive-
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contemporary assays, lack these features; they meet the recommended analytical 
precision at a higher concentration than the 99th percentile and are typically able to 
quantitate cTn in <10% of healthy individuals (Apple et al., 2012b). Sensitive-
contemporary assays can be categorized into three groups based on the CV of the 99th 
percentile – not acceptable (>20%), clinically usable (10-20%) and guideline 
acceptable (<10%). According to the evidence-based data, both clinically usable and 
guidance acceptable cTn assays can be used in clinical practice without significant 
misclassification of MI patients (Apple et al., 2005; Kupchak et al., 2006; Jaffe and 
Apple, 2010). The major drawback of this naming system, however, is that it does not 
consider the actual clinical performance that may vary between differently configured 
cTnI assays (Venge and Lindahl, 2013).  

A number of manufacturers currently provide immunoassays for cTnI measurement 
and although most of them follow the International Federation of Clinical Chemistry 
and Laboratory Medicine (IFCC) recommended quality specifications for cTn 
immunoassays (Panteghini et al., 2001; Jaffe, 2011; Apple et al., 2012b), the 
remaining dissimilarities between methods continue to result in noninterchangeable 
cTnI results. This lack of standardization restricts comparison of cTnI values between 
laboratories and research reports. Therefore, the assay characteristics including 
decision limits must be separately determined for each assay before its clinical 
implementation. The analytical characteristics of commercially available cTnI assays 
are listed in Table 4. 
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2.4.1 Sensitive-contemporary and high-sensitivity assays 

The new generation of sensitive-contemporary and high-sensitivity cTnI assays has 
enabled the reliable detection of minor cTnI elevations, and thus improved the 
diagnostic and prognostic accuracy of cTnI assays (Keller et al., 2009; Keller et al., 
2011; Mills et al., 2011; Kavsak et al., 2012). The benefits of using sensitive assays 
instead of their conventional counterparts have been most evident in the early hours 
after symptom onset and in challenging subgroups such as elderly patients or patients 
with pre-existing CAD (Reiter et al., 2011; Reiter et al., 2012). It has been 
demonstrated that the rule-in and rule-out can be established within 2-3 h from 
symptom onset but even an 1 h approach and the obviation of the need for serial 
testing in selected patients have been proposed (Keller et al., 2011; Reichlin et al., 
2011; Reiter et al., 2011; Than et al., 2012; Cullen et al., 2013). Earlier decision 
making should result in earlier treatment and/or discharge of patients with consequent 
improvement of patient outcomes and potentially significant economic impact on 
acute care. Although both sensitive-contemporary and high-sensitivity cTnI assays are 
superior to conventional cTnI assays, it remains unknown whether high-sensitivity 
assays provide a diagnostic advantage over sensitive-contemporary assays (de Lemos, 
2013). 

The increased sensitivity for detecting myocardial injury, however, is linked with the 
reduced specificity for identifying ACS. As cTnI can be detected in a greater number 
of non-ACS patients with acute and chronic conditions, concern regarding the 
application of higher sensitivity cTnI assays in a population with a lower MI 
prevalence, in particular, has been voiced (Reichlin et al., 2009; Keller et al., 2011; 
Gassenmaier et al., 2012; de Lemos, 2013). The lower specificity may result in 
unnecessary hospital admissions, misdiagnoses, initiation of potentially detrimental 
therapies and poorer clinical outcomes for patients. In order to maintain the ACS-
specificity of the assays, the use of higher cutoff values than the 99th percentiles and 
adaptation of different algorithms have been proposed (Apple and Morrow, 2012; 
Gassenmaier et al., 2012; Kavsak et al., 2012; Than et al., 2012; Cullen et al., 2013). 
Nevertheless, because an increase in cTnI levels is not specific for the etiology of 
cardiac cell death, the clinician's responsibility in interpreting cTnI results in the 
clinical context where they are found increases. On the other hand, the increased 
sensitivity of cTnI assays provides a new tool for studying normal and altered 
myocardial function and for population screening of subclinical diseases. However, 
until further data and instructions are available about cTnI testing in non-ACS 
settings, measuring cTnI levels to diagnose or to determine a prognosis for any of 
these conditions is not recommended. 

Diagnostic algorithms based on cTnI changes, or deltas, have been shown to improve 
diagnostic specificity of cTnI for the MI diagnosis. Serial testing is especially 
important for the interpretation of low level positive results, and it has been suggested 
that the serial changes detected with sensitive cTnI assays in an individual patient may 
be of greater value than the use of population based reference values (Jaffe, 2006; Wu 
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and Jaffe, 2008; Apple et al., 2009; Wu et al., 2009; Hickman et al., 2014). It is, 
however, important to note that also acute cardiac conditions other than MI such as 
myocarditis, sepsis, heart failure and renal failure may produce substantial temporal 
cTnI changes. While the NACB-recommended relative change of 20% was 
empirically selected as a value that would exceed the analytical variation of 
conventional assays (Morrow et al., 2007), conjoint biological and analytical variation 
of more sensitive cTnI assays seems to be much higher. In recent reports, the short- 
and long-term biological variation of cTnI has been in the range of 3%-37% and 3%-
117%, respectively, and acceptable specificities and positive predictive values have 
been obtained with notably higher relative changes ranging from 50% to 250% 
(Kavsak et al., 2010; Eggers et al., 2011; Keller et al., 2011; Reichlin et al., 2011; 
Mueller et al., 2012; Thygesen et al., 2012b; Nordenskjöld et al., 2013; Wu and 
Christenson, 2013). Furthermore, because substantial relative changes are common in 
low cTnI levels despite small absolute increases, the use of absolute change values has 
recently been introduced. Compared to the use of relative changes this concept has 
provided higher diagnostic accuracy, although its implementation has not yet been 
unequivocally settled (Kavsak et al., 2010; Keller et al., 2011; Reichlin et al., 2011; 
Haaf et al., 2014). In both relative and absolute delta approaches, the decision limits 
have to be estimated individually for each assay and for different time windows 
keeping in mind the intended use (Apple and Morrow, 2012). ESC currently proposed 
using a relative change of ≥20% at 3 h in patients with the initial cTnI value above the 
99th percentile and a relative change of ≥50% in patients with the initial cTnI value 
below or close to the 99th percentile (Hamm et al., 2011; Thygesen et al., 2012b). 
However, these criterions based on such small concentration changes seem small in 
comparison with the limited data available, and further studies and statistical testing 
are needed. 

2.4.2 Challenges  
 

Although the analytical sensitivities and precisions of currently available cTnI assays 
have substantially improved in comparison to the previous assay generations, 
numerous other factors confound the immunological detection of cTnI and the use of 
cTnI assays in clinical practice. Firstly, cTnI assays just like any other immunoassays 
are prone to a variety of analyte-independent preanalytical and analytical problems 
that can lead to the detection of falsely high or low cTnI concentrations (Selby, 1999; 
Tate and Ward, 2004; Sturgeon and Viljoen, 2011; Lippi et al., 2013). Exogenous 
errors such as calibration errors, reagent deterioration and analyzer malfunction should 
be detected by appropriate quality control systems whereas sample-dependent 
endogenous errors such as hemolysis, fibrin clots and interferences from heterophilic 
antibodies, rheumatoid factor, human anti-animal antibodies (HAAA) and 
complement are more difficult to identify. Heterophilic antibodies, rheumatoid factor 
and HAAA affect almost all immunoassays to some extent and their effect can be 
minimized by using blocking antibodies, recombinant antibody fragments and 
humanized antibodies, for example (Selby, 1999; Tate and Ward, 2004; Sturgeon and 
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Viljoen, 2011; Bolstad et al., 2013). In addition to these, cTnI assays can be affected 
by some analyte-dependent interferences such as heparin, which due to its negative 
charge may attract the positively charged cTnI at physiological pH (Gerhardt et al., 
2000; Stiegler et al., 2000; Speth et al., 2002); ethylenediaminetetraacetic acid 
(EDTA), which may dissociate Ca2+ from TnC and thus change the conformation of 
complexed cTnI (Katrukha et al., 1997; Uettwiller-Geiger et al., 2002); and cTnAAbs, 
which will be discussed in detail in Chapter 2.5. All of these are inherently more 
critical at low cTnI concentrations detected by the new generation of higher sensitivity 
assays (Morrow and Antman, 2009; Thygesen et al., 2012b; Korley and Jaffe, 2013; 
Panteghini, 2013). Thus, it has become necessary to re-evaluate the effects of different 
preanalytical and analytical factors on cTnI testing (Morrow and Antman, 2009). This 
was recently highlighted by Pfäfflin (2009) who reported that a novel high-sensitivity 
cTnI assay has unexpectedly high prevalence of heterophilic antibody interference 
(3%) compared to the 0.05% prevalence reported for conventional assays. 

Due to the molecular heterogeneity of the cTnI molecule, its homology with other cTn 
and skTn isoforms, and its interactions with other Tn subunits and interfering 
molecules, one of the main challenges in cTnI detection and in cTnI assay 
standardization is assay antibody selection. The selection is guided by IFCC, which 
recommends the use of antibodies whose epitopes are located in the stable 
midfragment of cTnI and are not affected by complex formation and posttranslational 
modifications (Panteghini et al., 2001). Although most of the assays target 
midfragment epitopes and measure approximately the same molecular entity, different 
sets of capture and detection antibodies display variable immunoreactivity and even 
loss of reactivity against various cTnI forms and/or are differently affected by various 
preanalytical and analytical factors. Such variability in immunoreactivity leads to 
altered signal generation with different sandwich-type cTnI immunoassays and, 
eventually, unequivalent cTnI results (Wu et al., 1998; Katrukha et al., 1999). 

Another major issue contributing to the lack of standardized cTnI assays is the use of 
different calibration materials and methods. Standardization is based on metrological 
traceability through a reference measurement system (Figure 5) (Panteghini, 2009). 
This chain begins with a primary reference method, which assigns quantity values to a 
primary reference material. The primary reference material is needed to calibrate a 
higher-order reference assay, which in turn is used to establish values to matrix-based 
secondary reference materials. The secondary reference materials are then used by 
manufacturers to assign values for their own calibrators. In collaboration with the 
National Institute of Standards and Technology (NIST), the AACC cTnI 
Standardization Committee began cTnI standardization efforts by examining a number 
of candidate primary reference materials, from which a native cardiac troponin 
complex (ITC) purified from human heart was chosen (Bunk et al., 2000; Christenson 
et al., 2001; Bunk and Welch, 2006). This cTnI material was designated as NIST 
standard reference material (SRM) 2921. Highly purified SRM 2921, however, does 
not seem to be fully representative of the endogenous cTnI found in patients’ 
circulation, and consequently, the use of SRM 2921 as a common calibrator in 
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commercial systems has not improved the comparability of cTnI measurement results 
(Christenson et al., 2006). One example of the differences between SRM 2921 and 
endogenous cTnI is the better stability of endogenous cTnI in the plasma of ACS 
patients than that of spiked SRM 2921 suggesting that the modification processes of 
cTnI might already be completed for native cTnI while not for SRM 2921 (Cobbaert et 
al., 2008). Nevertheless, the non-commutability of SRM 2921 is acceptable when 
considering its intended use as a primary reference material, i.e. it will not be used 
directly for assigning values for the working calibrators of field assays (Christenson et 
al., 2012). Instead, this is planned to be accomplished by a panel of three cTnI-
positive serum pools (Tate et al., 2002; Tate et al., 2010). Additionally, the 
development of a non-commercial enzyme-linked immunosorbent assay (ELISA) to 
be used as the higher-order reference procedure with specificity for the midfragment 
epitopes of cTnI, aa 41-49 and 83-93 was recently initiated (Noble et al., 2010) as well 
as a Western Blot method to characterize the secondary reference samples (He et al., 
2011). Despite the continuous efforts on cTnI standardization for more than a decade, 
the process of conforming uniformity and easy comparison between measurement 
methods remains an unmet target. It has also been suspected that it will never be 
achieved unless common antibodies are selected for all cTnI assays (Panteghini, 2005; 
Jaffe et al., 2006; Apple, 2012; Salvagno et al., 2014). Moreover, the poor correlation 
observed among the large majority of cTnI assays does not allow for correction factors 
that would adequately harmonize cTnI results (Apple et al., 2012b). 

 
Figure 5. Reference measurement system suggested for cTnI assays (adapted from Panteghini et al., 
2008; Panteghini, 2009). RP-LC, reversed-phase liquid chromatography. 
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Until recently, cTnI assays were not sufficiently sensitive and precise to determine the 
99th percentiles of healthy individuals. Therefore, the use of lowest concentrations 
measurable with a 10% CV was adopted as an alternative approach (Apple et al., 
2002). Hence, an additional problem related to the use of cTnI assays is that although 
the current generation assays can reliably determine the 99th percentile cutoff values 
and the use of the 99th percentiles in clinical practice has been shown to optimize the 
sensitivity and specificity of the assays (Keller et al., 2009; Keller et al., 2011; Mills 
et al., 2011), a range of differently derived cutoff values are still randomly employed 
resulting in inconsistency in MI diagnosis. According to the second Cardiac Marker 
Guideline Uptake in Europe (CARMAGUE) study performed after the publication of 
the second Universal Definition of MI in 2007, the majority of laboratories used either 
the 10% CV (41.1%) or the 99th percentile (37.9%) as the decision limit (Collinson et 
al., 2012b). Moreover, the 99th percentile for the cTnI assay used should ideally be 
established in each laboratory by an appropriately powered study. However, as most 
laboratories do not have the required resources, the 99th percentile values are generally 
adopted from the manufacturers’ package inserts and peer-reviewed publications. 
Unfortunately, there is very little consistency in reference sample selection, which 
may have a dramatic impact on the 99th percentiles obtained (Apple et al., 2012b; 
Koerbin et al., 2013). Thus far, the majority of reference interval studies have relied 
on community-based general population cohorts of putatively healthy individuals 
identified by screening checklists without performing a physical examination, ECG or 
laboratory testing. Because it has been recently demonstrated that a more stringent 
selection of reference population decreases the derived 99th percentile with higher 
sensitivity assays (Collinson et al., 2012a; Koerbin et al., 2013), universal guidelines 
on how to establish the correct 99th percentile according to age, sex, ethnicity and the 
number of study participants required in each category are clearly needed. Although 
using gender-specific and age-adjusted cutoff values, for example, is still under 
debate, new criteria was recently introduced (Apple et al., 2012a; Sandoval and Apple, 
2013) proposing that a minimum of 300 individuals per group are needed to 
appropriately determine the cutoff and that more thorough screening (e.g. with ECG) 
is necessary to detect any underlying cardiac conditions. Implementing more stringent 
selection rules will, however, greatly increase the cost of performing a normal range 
study. Therefore, providing samples from well characterized healthy subjects for all 
assay manufacturers to establish their 99th percentile against a common reference 
population with fixed size and clinical characteristics has been proposed (Newby et 
al., 2012; Korley and Jaffe, 2013; Wu and Christenson, 2013). 

To summarize the goals of cTnI assay development discussed thus far, the ideal 
characteristics of cTnI assays suitable for routine clinical practice are listed in 
Table 5. 
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Table 5. Ideal characteristics of cTnI assays. 
 

High-sensitivity  

No difference in recognizing various cTnI forms found in the circulation 

No cross-reaction with structurally related proteins 

No susceptibility to preanalytical and analytical factors  

Rapid turnaround time (<60 min) 

Simple to perform and cost-effective 

 

2.5 Cardiac troponin specific autoantibodies 
The presence of autoantibodies is the consequence of breakdown of self-tolerance 
towards the corresponding autoantigens. Autoantibodies are an important serological 
feature of autoimmune diseases but they are also found in cancer, during massive 
tissue damage and even in apparently healthy subjects (Lleo et al., 2010). cTnAAbs 
were initially discovered due to their negative interference in cTnI assays. Bohner et 
al. (1996) first attributed false-negative cTnI results to the presence of cTnI-specific 
cTnAAbs in one patient who had undergone elective coronary artery bypass graft 
(CABG). In this patient, no cTnI was detected after surgery even though his post-
operative cTnT and CK-MB increased as expected. Additionally, the authors were 
unable to recover cTnI spiked into his pre-operative samples unless the samples were 
depleted of IgG. Therefore, the falsely low cTnI results were suspected to be caused 
by circulating IgG with high affinity for cTnI. A few years later, Eriksson et al. (2003; 
2005a) associated decreased cTnI recoveries seen in blood samples of apparently 
healthy individuals and noncardiac and cardiac patients to an intrinsic factor that was 
later identified as cTnAAbs. Their results also indicated that these autoantibodies can 
mask the cTnI release in MI patients, especially when the amount of cTnI present is 
low (Eriksson et al., 2003; Eriksson et al., 2005b; Eriksson et al., 2005c). Severe 
underestimations of endogenous cTnI were recently demonstrated using five 
conventional cTnI assays in MI patients with cTnI-specific cTnAAbs, even to the 
extent that these patients were falsely designated as cTnI-negative in relation to the 
recommended cutoffs (Tang et al., 2012). Although cTnI measurements do not 
independently rule in or rule out MI, cTnAAbs may have a remarkable effect on acute 
patient care e.g. by delaying the initiation of treatment. 

Currently the mechanisms for the appearance and maintenance of cTnAAbs are not 
known. As cTns are predominantly localized inside cardiomyocytes, it is possible that 
an autoimmune reaction can be triggered in response to any initial cardiac injury and 
subsequent exposure to these previously concealed self-antigens following e.g. 
inflammation, ischemia, extreme physical endurance training, cardiac incision, or a 
toxic agent. Therefore, the presence of cTnAAbs in apparently healthy individuals as a 
consequence of silent cTn release is not surprising. However, the recent demonstration 
of low but measurable cTn concentrations in most individuals seems to be 
incompatible with this hypothesis and the vast majority of cardiac patients do not 
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develop cTn-specific autoimmunity regardless of their exposure to the cTn leakage 
(Pettersson et al., 2009; Düngen et al., 2010; Lindahl et al., 2010). As the 
autoimmunity seems to appear only in some individuals, it is likely that genetic and 
non-genetic susceptibility factors are involved in initiating the formation of cTnAAbs. 
In other words, something more than cTn release is needed for a breakdown in self-
tolerance. When autoimmune response is initiated, any subsequent cTn leakage may 
serve as a booster, which can increase cTnAAb titers in blood and improve affinity of 
formed autoantibodies (Leuschner et al., 2008; Pettersson et al., 2009; Lindahl et al., 
2010). 

Detailed data on the molecular characteristics of human cTnAAbs are scarce. 
According to Eriksson et al. (2003; 2004), cTnI-specific cTnAAbs most commonly 
target the midfragment of the cTnI molecule, i.e. the IFCC-recommended target for 
antibodies used in cTnI assays, and especially to the C-terminal region of the 
midfragment. Furthermore, the authors were able to partly circumvent cTnAAb 
interference by designing a novel 2+1-type cTnI assay using two capture antibodies 
against the midfragment and C-terminus of the cTnI molecule (epitopes at aa 41-49 
and 190-196, respectively), and one detector antibody against the C-terminus (epitope 
at aa 137-148, according to the manufacturer, but was recently corrected be 169-178) 
(Eriksson et al., 2005c; Vylegzhanina et al., 2013). The assay failed to eliminate 
cTnAAb interference completely, and it is, therefore, likely that the interference is 
even more heterogeneous than the authors first suspected. In fact, a more recent 
epitope screening of cTnI-specific autoantibodies showed that the interference 
encompasses the entire cTnI molecule (Adamczyk et al., 2009a), and contrary to the 
first results of Eriksson and her co-workers, the strongest cTnAAb responses were 
now seen against the epitopes at the N- and C-terminal regions of cTnI. 

In addition to being able to interfere with cTnI detection by immunoassays designed 
according to the IFCC-recommended midfragment approach, the presence of 
cTnAAbs may also have either a stabilizing effect on the half-life of circulating cTnI 
leading to detectable persistent elevations not correlating with the patients’ clinical 
status, which can be seen as false-positive cTnI results, or may directly induce chronic 
myocardial damage leading to continuous cTnI leakage (Plebani et al., 2002; 
Pettersson et al., 2009; Lindahl et al., 2010; Michielsen et al., 2011; Wong et al., 
2014). Although less explored, the link between cTnI elevations and cTnAAb-
positivity is intriguing as persistent low cTnI levels have been shown to predict long-
term cardiac mortality (Eggers et al., 2007). The possible clinical significance of 
cTnAAb is discussed greater detail in Chapter 2.5.2. 

2.5.1 Detection of cardiac troponin specific autoantibodies 

Although the exact etiology of cTnAAbs is not understood, their occurrence in cardiac 
patients as well as in apparently healthy individuals has been demonstrated by various 
methods as summarized in Table 6. Despite the fact that the majority of the published 
methods are immunoassays for detecting IgG class autoantibodies, they vary 
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substantially in specificity and sensitivity due to the use of different antigens and 
assay formats. Directly coated cTnI or cTnT surfaces, which is the common approach 
used in traditional serology assays, are utilized in many of the assays while others use 
antigen-binding capture surfaces and limit the error due to nonspecific binging of 
other human antibodies by correcting the results with sample-specific backgrounds 
obtained without antigen addition. Unlike the other assays, the cTnAAb assay 
employed also in this thesis (Eriksson et al., 2005a; Pettersson et al., 2009) uses ITC 
as a target molecule and therefore, cannot differentiate between cTnI-specific and 
cTnT-specific autoantibodies. Furthermore, the assay sensitivities cannot be 
determined because there are no defined standards, and various criteria have been used 
for defining cTnAAb-positivity. Even though the cTnAAb prevalences listed cannot 
be directly compared between different reports, cTnAAbs can be found in a high 
proportion (up to 20%) of individuals with or without cardiac diseases. 
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2.5.2 Pathophysiological and clinical relevance 

The existence of circulating autoantibodies against various heart-specific antigens is 
well established and accumulating evidence suggest that humoral and/or cellular 
autoimmune responses play a pivotal role in the etiology of cardiac diseases, 
particularly in myocarditis, DCM and heart failure (Okazaki and Honjo, 2005; Caforio 
et al., 2008; Lappé et al., 2008; Wehlou and Delanghe, 2009; Kaya et al., 2010). 
Because autoantibodies are generally capable of causing direct cellular damage by 
inducing apoptosis, complement activation and cell-mediated cytotoxicity, heart-
reactive antibodies may have an active role in the etiology of cardiac diseases. 
Alternatively, these autoantibodies may merely reflect the ongoing myocardial 
damage and protein release with no causal association with cardiac pathology. In both 
cases, heart-specific autoantibodies including cTnAAbs could serve as biomarkers of 
the underlying disease processes. Because unraveling the mechanisms and 
implications of heart-specific autoimmune responses and roles of heart-specific 
autoantibodies could aid the development of new approaches for therapy and risk 
stratification of cardiac diseases, they have been increasingly studied. 

2.5.2.1 Mouse	models	

Recent studies on mice have associated cTnI-specific cTnAAbs and T cells with 
cardiac inflammation and dysfunction suggesting a direct role for cTnI-specific 
autoimmunity in the pathogenesis of cardiac diseases. In 2001, it was first reported 
that programmed cell death-1 (PD-1) receptor deficient mice develop severe DCM 
with production of high-titered autoantibodies against a heart-specific, 30-kDa protein 
that was subsequently identified as cTnI (Nishimura et al., 2001; Okazaki et al., 
2003). Further studies by this group demonstrated that the administration of cTnI-
specific Mabs to wild-type mice induced cardiac dilatation and dysfunction (Okazaki 
et al., 2003). The authors suggested that the observed cardiac phenotype is caused by 
the chronic stimulation of Ca2+ influx in cardiomyocytes, because cTnI, in contrast to 
cTnT, was not restricted to the cytoplasm but also found on the surface of mouse 
ventricular myocytes and because cTnI-specific Mabs were found to augment the 
voltage-dependent L-type Ca2+ current. 

Soon after, it was reported that the immunization of wild-type mice with cTnI induces 
a robust autoimmune reaction encompassing both humoral and cellular responses 
leading to severe myocardial inflammation, fibrosis, cardiac dysfunction and increased 
mortality (Göser et al., 2006). Although comparable levels of autoimmune responses 
were induced by cTnT, cTnT-immunized mice did not develop the symptoms of 
cardiac disease. It was speculated that this is because cTnI-specific cTnAAbs and T 
cells can bind to the target protein on the surface of cardiomyocytes whereas cTnT-
specific cTnAAbs and T cells cannot. Additionally, cTnI-immunized mice later 
developed high titers of autoantibodies to cardiac myosin which indicates that primary 
myocardial injury with the release of other cardiac proteins may broaden the immune 
response and aggravate autoimmune-mediated cardiac damage. Furthermore, the 
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authors demonstrated that pre-immunization with cTnI before chronic ligation of the 
left anterior descending coronary artery increased infarct size and post-infarct fibrosis 
and inflammation. Later, Volz et al. (2011) showed in wild-type mice that these 
deleterious effects endured beyond the early period, as late as 6 months after MI, and 
also exacerbated ischemia/reperfusion injury. These results indicate that the presence 
of cTnI-induced autoimmune response might render patients more vulnerable to 
prospective myocardial injury. 

A similar phenotype as seen with cTnI immunization was also obtained by transferring 
stimulated cTnI-specific T cells to wild-type mice (Kaya et al., 2008). This 
observation suggests that the initiation of the inflammatory process in myocardium 
followed by fibrosis and alteration of heart function is primarily T-cell dependent 
which is supported by the notion that mice administered with cTnI-specific Mabs 
showed no inflammation (Okazaki et al., 2003). The authors also identified two 
pathogenic mouse cTnI sequences, aa 105-122 and 131-148, which are responsible for 
disease induction. On the other hand, one study demonstrated that relatively mild 
cardiac damage and cTnI release in the acute phase of experimental coxsackievirus B3 
induced myocarditis may lead to the development of cTnAAbs (Latva-Hirvelä et al., 
2009). However, the presence of cTnAAbs was not associated with more severe 
myocarditis or decreased contractibility of the heart when compared to cTnAAb-
negative mice. 

2.5.2.2 Humans	

The possible clinical consequences of circulating cTnAAbs have been studied also in 
humans. Two studies on NSTE-ACS patients demonstrated that the presence of 
cTnAAbs may lead to a higher and longer cTnI release (Pettersson et al., 2009; 
Lindahl et al., 2010) but otherwise the role of cTnAAbs has remained controversial. 
One study on MI patients indicated that cTnI-specific cTnAAbs may have a negative 
effect on the recovery of cardiac function; cTnAAb-positive patients did not show any 
significant improvement in left ventricular function after an ischemic event while 
cTnAAb-negative patients did (Leuschner et al., 2008). Another study suggested a 
potential protective effect of cTnAAbs as cTnI-specific cTnAAbs were associated 
with improved survival of patients with DMC (Doesch et al., 2011). This surprising 
finding was in accordance with the group’s previous study on DCM patients with 
advanced heart failure, where cTnI-specific cTnAAbs at baseline were associated with 
a lower therapeutic benefit of immunoadsorption therapy (Doesch et al., 2009). Most 
of the published studies, however, have not found a significant association between 
the presence of circulating cTnAAbs and adverse outcome in cardiac patients 
(Shmilovich et al., 2007; Miettinen et al., 2008; Düngen et al., 2010; Lindahl et al., 
2010). 

The only study on cTnI-specific cellular-based autoimmune responses indicated that 
these could contribute to the pathogenesis of DCM (Lappé et al., 2011). The authors 
demonstrated a greater likelihood of identifying a cellular proliferative response 
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against cTnI in stable DCM patients, in up to one-fifth of the patients, than in healthy 
controls. Additionally, they did not identify any significant correlations between the 
presence of cTnI-specific cTnAAbs and a positive cellular response, which challenges 
the idea of using cTnAAb measurements to detect the presence of potentially 
pathogenic autoimmunity. 

The low number of cTnAAb-positive patients and adverse end points in these 
publications prevent us from making any definite conclusions on the impact of 
circulating cTnAAbs. Furthermore, autoantibodies present only one part of the 
immune response, and further studies on cellular responses are clearly required. 
Therefore, the role of humoral and cellular cTn-responses remains to be elucidated 
through larger clinical trials and adequate follow-up times. Without combined 
information, it is difficult to assess whether cTnAAbs represent a primary cause, a 
secondary response to ongoing myocardial injury caused by other processes, or 
predisposition to the development of cardiac disease. The discrepancy between the 
reports may also be related to the nature of the epitopes targeted by cTnAAbs; the 
results do not differentiate between cTnAAb subsets and potentially there are only 
some cTnI sequences which have clinical effects while others do not, as has been 
previously shown in mice (Kaya et al., 2008). 
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3 AIMS OF THE STUDY 

The primary aim of this thesis was to develop and optimize immunoassays for cTnI 
and cTnAAb determination which could then be used in the future to explore the 
clinical impact of circulating cTnAAbs on cTnI testing and to unravel the etiology of 
cTn-related autoimmune responses. A secondary objective was to obtain detailed data 
on the prevalence and molecular characteristics of cTnAAbs. 

More specifically, the aims in the original publications were: 

I To study the extent of cTnAAb interference on different cTnI assay 
configurations and to identify antibody combinations minimally affected by 
cTnAAbs. 

II To investigate the molecular characteristics of human cTnAAbs. 

III To validate an optimized cTnAAb assay and to determine the prevalence of 
cTnAAbs in consecutive chest pain patients presenting to an emergency 
department, i.e. in the population where cTnI assays are typically applied 

IV To validate a sensitive cTnI assay free from cTnAAb interference. 
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4 SUMMARY OF MATERIALS AND METHODS 

A summary with some additional information is presented here while the details of the 
materials and methods used in this study are described in the original publications 
I-IV. 

4.1 Samples 
The various sample panels used in publications I-IV are described in Table 7. 
Additional heparin plasma and serum samples were obtained from chest pain patients 
admitted to Central Ostrobothnia Central Hospital (Kokkola, Finland) and from 
apparently healthy volunteers at the Department of Biotechnology, University of 
Turku (DBUT) (Turku, Finland) in 2010-2013. All samples were collected according 
to normal laboratory routines with informed consent of the participant. Clinical 
patients were treated according to routine hospital protocols, and the retrospective 
evaluation and clinical endpoints used in publication III are illustrated in the original 
paper. The study protocols were conducted in accordance with the Declaration of 
Helsinki as revised in 1996 and approved by the local ethics committees. 

Table 7. Sample panels used in the original publications I-IV. 
 

Collection place Collection time Study population Sample matrix Publication 

S:t Görans 
Hospital, DBUT 

2007-2008 

1,105 noncardiac 
patients and 
apparently healthy 
individuals 

Heparin plasma, 
serum I 

58 Scandinavian 
hospitals (FRISC-
II trial) 

1996-1998 
210 NSTE-ACS 
patients 
(admission) 

EDTA plasma I 

DBUT 2010-2011 
20 apparently 
healthy individuals 

Serum II 

9 Finnish hospitals 1998-2000 

28 NSTE-ACS 
patients (admission 
and 3-month 
follow-up) 

Serum II 

Turku University 
Hospital 

2000-2001 
510 patients with 
ACS symptoms 
(admission) 

EDTA plasma III 

European and 
North American 
hospitals (GUSTO-
IV trial) 

1999-2000 
250 NSTE-ACS 
patients 

Serum IV 

Labquality 
(NORIP study) 

 
159 apparently 
healthy individuals 

Serum IV 

FRISC, Fragmin and Fast Revascularization during Instability in Coronary artery disease; GUSTO, 
Global Utilization of Strategies to Open Occluded Arteries; NORIP, Nordic Reference Interval Project 
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4.2 Antibodies 

4.2.1 Monoclonal antibodies and antibody fragments 

All Mabs except 8I7 (International Point of Care, Toronto, Canada) were kindly 
provided by HyTest Ltd (Turku, Finland). Recombinant antigen-binding fragments 
(Fab) 4C2 and MF4 of correspondingly named Mabs were cloned from the hybridoma 
cell lines of HyTest Ltd, and Fab 9707 from the hybridoma cell line of Medix 
Biochemica (Kauniainen, Finland). A summary of antibodies used in publications 
I-IV, their antigens and their epitopes are presented in Table 8. 

Table 8. Antibodies and their binding sites used in the original publications I-IV. 
 

Code Form Antigen Binding site Publication(s) 

P4-14G6 Mab cTnI aa 1-15 II 

23C6 Mab cTnI aa 15-25 II 

M18 Mab cTnI aa 18-28 I 

4C2 Mab/Fab cTnI aa 23-29 I, II, III, IV 

228 Mab cTnI aa 26-35 I, IV 

M155 Mab cTnI aa 26-35 II, III, IV 

10F4 Mab cTnI aa 34-37 II 

19C7 Mab cTnI aa 41-49 I, II, IV 

247 Mab cTnI aa 65-74 II 

560 Mab cTnI aa 83-93 I, II, IV 

8E10 Mab cTnI aa 86-90 I, II 

415 Mab cTnI aa 104-119 II 

84 Mab cTnI aa 117-126 II 

M46 Mab cTnI aa 130-145 II 

581 Mab cTnI aa 143-152 II 

441 Mab cTnI aa 148-158 II 

8I7 Mab cTnI aa 169-178 I, II, III, IV 

625 Mab cTnI aa 169-178 II 

267 Mab cTnI aa 169-178 I 

472 Mab cTnI aa 182-191 II 

9707 Fab cTnI aa 190-196 I 

MF4 Mab/Fab cTnI aa 190-196 I, II, III, IV 

P45-10 Mab cTnI aa 195-209 II 

7B9 Mab TnC Unknown II 

3D3 Mab Human IgG Constant region I, II, III, IV 

2C11 Mab Human IgG1 Constant region II 

3C7 Mab Human IgG2 Hinge region II 

5G12 Mab Human IgG3 Hinge region II 

5C7 Mab Human IgG4 Constant region II 
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A corrected Mab 8I7 epitope was obtained from a recent publication (Vylegzhanina et 
al., 2013) while other epitope specificities were obtained from the manufacturers’ 
package inserts (the 8I7 epitope of 137-148 reported by the manufacturer was used in 
the original publications I-III). The manufacturers declare no cross-reaction with 
skTnIs for other cTnI-specific antibodies used except for Mabs M46 (<10%), 267 
(<10%) and 472 (<50%). In 2013, however, Mab 8I7 was reported to recognize the 
mixture of slow- and fast-twitch skTnI (data was not shown) (Vylegzhanina et al., 
2013). 

4.2.2 Labeling with lanthanide chelate and biotin 

Tracer Mabs were labeled with a 25- to 75-fold molar excess of intrinsically 
fluorescent 9-dentate α-galactose europium chelate (von Lode et al., 2003) 
(Radiometer/Innotrac Diagnostics Oy, Turku, Finland or DBUT) (I-IV). Capture 
Mabs were biotinylated with a 10- to 30-fold molar excess of biotin isothiocyanate 
(DBUT) (I-IV) or with a 200-fold molar excess of biotin-caproylhydrazine (Sigma, St. 
Louis, MO, US) (I). The labeled Mabs were separated from free chelate or biotin by 
gel filtration using Tris-buffered saline with azide (TSA) (50 mmol/L Tris-HCl, 
pH 7.75, 150 mmol/L NaCl and 0.5 g/L NaN3) for elution. Capture Fabs were site-
specifically biotinylated with 95 µmol/L maleimide-PEO2-biotin (Thermo Fisher 
Scientific, Waltham, MA, US) (I and IV) during protein purification and finally 
transferred to TSA. All europium labeled or biotinylated antibodies were stabilized 
with bovine serum albumin (BSA) (1 g/L). 

4.3 Other reagents 
Human ITC from HyTest Ltd was used for spiking in analytical recovery experiments 
(I, II and IV), for cTnI assay calibration (I and IV), and as a target molecule in 
cTnAAb assays (I-IV). Standards were prepared by diluting ITC into TSA containing 
75 g/L BSA. The cTnI concentration of the ITC stock reported by the manufacturer 
was used to assign the cTnI concentrations of the dilutions. 

Normal capacity streptavidin (SA) plates were purchased from Kaivogen Oy (Turku, 
Finland) (I-IV). High capacity sulphydryl(SH)-SA plates were produced as described 
earlier (Ylikotila et al., 2006) (I). 

4.4 Antibody-coated spots 
A schematic representation of antibody-coated spots used in publication IV is shown 
in Figure 6. Biotinylated capture antibodies, 33 mg/L of each Fab 4C2, Mab 19C7 
and Fab MF4 in TSA containing 10 g/L glycerol, were printed (150 droplets of 
~250 pL/spot, room temperature, 70% humidity) onto the bottom of SA-coated 
microtiter wells using Nano-Plotter NP 2.1 (GeSiM, Grosserkmanndorf, Germany). 
After an 1-h incubation in a closed humidity chamber and washings, 40 µL of 
Insulating Layer II buffer solution (ILII) (Innotrac Diagnostics Oy) supplemented with 
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62.5 mmol/L Tris (pH 8.5) were added into the wells and the wells were dried 
overnight at +35°C. 

 

Figure 6. Schematic presentation of the antibody-coated spots used in the original publication IV. A spot-
type binding surface concentrates the sandwich formation to coincide more closely with the excitation 
beam of the fluorometer, which results in a 5- to 7-fold increase in assay sensitivity compared to the 
commonly used whole well approach (Ylikotila et al., 2005; Ylikotila et al., 2006; Välimaa et al., 2008). 
 

4.5 Immunoassays 

4.5.1 Cardiac troponin I 

Epitope maps of the investigational and commercial cTnI assays used in publications I 
and IV is shown in Figure 7. 

Excitation 
340 nm 

Emission 
615 nm 

Capture Mab/Fab 

Tracer Mab 

ITC 
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Figure 7. Epitope map of antibodies used in the four commercial and the seven investigational cTnI 
assays used in the original publications I and IV (adapted from I). The bar next to the assay name 
represents the linear amino acid sequence of cTnI. The antibody epitopes are marked with shorter lines 
below the cTnI sequence with respective amino acid locations and antibody codes (*, tracer; #, Fab). 
 

4.5.1.1 Commercial	assays	

Three conventional midfragment targeting commercial assays, AxSYM first-
generation cTnI assay (Abbott Laboratories, Abbott Park, IL, US), AccuTnI second-
generation assay (Beckman Coulter, Brea, CA, US) and Liaison cTnI assay (Byk-
Sangtec Diagnostica, Dietzenbach, Germany), were used in publication I. According 
to the manufacturers, the analytical sensitivities were 300, 10, and 5 ng/L for AxSYM 
cTnI, AccuTnI, and Liaison cTnI, respectively. One high-sensitivity midfragment 
targeting assay, Architect hs-cTnI assay (Abbott Laboratories), was used in 
publication IV. The LoB and LoD of Architect hs-cTnI assay were 0.5 and 
1.0-1.2 ng/L, respectively, and the 99th percentile among healthy individuals was 
14-23 ng/L (Apple et al., 2012b; Koerbin et al., 2012). 

4.5.1.2 Investigational	assays	

In the regular whole well approach used in cTnI assays 1-6, biotinylated capture 
antibodies (12.5-200 ng) were first added to SA- or SH-SA-coated microtiter wells in 
25 µL of Kaivogen buffer solution (KBS) (Kaivogen Oy) and incubated for 1 h at 
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room temperature. After washing, 20 µL of standard or sample and 100 ng of the 
europium labeled tracer in 20 µL of ILII were added into the wells. The wells were 
then incubated for 30 min at +36°C, 900 rpm in EMS incubator/shaker (Thermo 
Electron Corporation/Labsystems, Helsinki, Finland). Finally, the washed wells were 
dried and fluorescence was measured in time-resolved mode directly from the surface 
with Victor X4 Multilabel Counter (Perkin-Elmer/Wallac, Turku, Finland). In the 
spot-type approach used in cTnI assay 7, 20 µL of standard or sample and 75 ng of the 
europium labeled Mab 8I7 in 10µL of Innotrac Aio! buffer solution (Innotrac 
Diagnostics Oy) were added into the antibody-coated spot wells. The wells were then 
incubated for 3 h at +36°C, 1800 rpm before the washing and fluorescent 
measurement. 

Analytical recoveries were determined by measuring cTnI from the unspiked and ITC-
spiked (cTnI assays 1-6: 30,000 ng/L cTnI; cTnI assay 7: 10-50,000 ng/L cTnI) 
aliquot of each sample after incubating them for 1 h at +4°C. With cTnI assays 1-6, 
ITC-specific fluorescence signals were directly compared to the fluorescence signal of 
similarly spiked TSA-BSA (I). With cTnI assay 7, analytical recoveries were 
calculated by comparing the ITC-specific cTnI concentration obtained to the known 
amount of spiked cTnI (IV). 

Analytical performance was determined only for cTnI assays 1, 3, 6 and 7. With cTnI 
assays 1, 3 and 6, sensitivities were estimated based on the standard curves (nonlinear 
fitting, concentration corresponding to 3SD of blank) (I). With cTnI assay 7, LoB, 
LoD and total precision were determined according to CLSI Guidelines EP17-A2 and 
EP-A5, and dilution linearity was assessed by serially diluting samples up to 1/243 
with analyte-free (cTnI concentration <LoB) sample pool (IV). In addition, the 
stability of endogenous cTnI was assessed with cTnI assay 7 by measuring analyte 
concentrations from aliquoted cTnI-containing samples after additional thawing and 
freezing (-20°C) cycles and after incubating them at +4°C or at room temperature. 

4.5.2 Comparing capture efficiencies of cardiac troponin I assays 

In publication I, the differences observed in the calculated cTnI values of NSTE-ACS 
patients were further investigated by comparing the relative capture efficiencies of 
cTnI assays 1 and 6 to standards and cTnI-containing samples. First, 20 µL of standard 
or sample and 20 µL of ILII were added on the capture surfaces of assay 1 and 
assay 6, respectively. After a 30 min incubation period (+36°C, 900 rpm), the solution 
with unbound analyte was transferred to a second set of assay 6 and assay 1 capture 
surfaces, respectively, and incubated for another 30 min. Bound cTnI was detected 
from both surfaces by incubating tracer antibodies in 40 µL of ILII for 30 min before 
washing and fluorescence measurement. 
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4.5.3 Determining the binding sites of cardiac troponin specific 
autoantibodies 

In publication II, the binding sites of cTnAAbs on the cTnI molecule were determined 
by comparing the analytical recoveries in cTnAAb-positive samples to the recoveries 
in cTnAAb-negative samples. The fluorescence signals were measured from the 
unspiked and ITC-spiked (30,000 ng/L cTnI) aliquots of each sample with sandwich-
type immunoassays using various cTnI-specific Mabs as a capture and the common 
TnC-specific Mab as a tracer. First, 300 ng of the biotinylated capture antibody in 
25 µL of KBS was immobilized in SA-coated microtiter wells and incubated for 
approximately 1 h at room temperature. Meanwhile, the sample aliquots were 
incubated for 1 h at +4°C. After washing the wells, 20 µL of sample and 100 ng of the 
europium labeled Mab 7B9 in 20 µL of ILII were added. The wells were then 
incubated for 1 h at +36°C, 900 rpm before washing and fluorescence measurement. 
Finally, sample specific recoveries for different capture epitopes were calculated by 
comparing the ITC-specific fluorescence signal of each sample to the mean signal of 
cTnAAb-negative samples. 

4.5.4 Cardiac troponin specific autoantibodies 

A schematic representation of the cTnAAb assay design and a summary of different 
assay versions used in publications I-IV are represented in Figure 8 and Table 9, 
respectively. Samples were first diluted 5-fold with ILII and the fluorescence signal 
was measured from each prediluted sample with and without ITC-addition 
(30,000 ng/L cTnI). After binding the possible cTnAAbs to an added ITC complex 
(1 h, +4°C), 30 µL of sample and 200 µL of assay buffer were added into triplicate SA 
wells preimmobilized with biotinylated capture antibodies. The wells were incubated 
for 1 h at +36°C, 900 rpm and washed. Subsequently, europium labeled tracer 
antibody was added into the wells in 200 µl of assay buffer and the wells were 
incubated for another 1 h at +36 °C, 900 rpm. Finally, fluorescence was measured in 
time-resolved mode from the surface of washed and dried wells. Autoantibody 
positivity was defined as ≥0 (I) or ≥100 (II, III and IV) counts above background (no 
ITC added) when the T-test gave a P value <0.05. 
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Figure 8. Schematic representation of the cTnAAb assay design used in the original publications I-IV 
(adapted from III). cTnAAbs were first bound to an added ITC complex. The formed ITC-cTnAAb 
complexes were subsequently captured on microtiter well with cTnI- and/or TnC-specific antibodies. 
Finally, the bound cTnAAbs were detected with labeled anti-human IgG tracer. 
 
Table 9. The cTnAAb assay versions used in the original publications I-IV. 
 

Publication(s) Name 
Capture 
antibodies 

Tracer 
antibody 

Assay buffer 

I, II, III  Old* 
150 ng Mab 4C2, 
150 ng Mab MF4 

40 ng Mab 3D3 KBS 

II 
Total IgG, 
IgG1, IgG2, 
IgG3 or IgG4 

100 ng Mab 4C2, 
100 ng Mab MF4, 
100 ng Mab 7B9 

50-150 ng Mab 
3D3, 2C11, 
3C7, 5G12 or 
5C7 

KBS, 10 mg/L native 
mouse IgG, 5 mg/L 
denaturated mouse IgG 

III, IV New 
150 ng Mab M155, 
150 ng Mab 8I7 

40 ng Mab 3D3 KBS, 27 g/L NaCl 

*(Eriksson et al., 2005a; Pettersson et al., 2009) 

4.6 Statistical analysis 
The analyses were performed with STAT View 5.0 (SAS Institute, Gary, NC, US) (I), 
SAS 9.2 (SAS Institute) (I), PASW Statistics 18 (SPPS Inc, Chicago, IL, US) (II and 
III), IBM SPSS Statistics 21 (IBM, Armonk, NY, US) (IV) or Analyse-it 2.30 for 
Microsoft Excel (Analyse-it Software Ltd, Leeds, United Kingdom) (IV). In all 
statistical tests, two-sided P values <0.05 were considered statistically significant. The 
statistical analysis methods and tests are specified in the original publications I-IV. 

cTnI/TnC-specific capture Mab

Anti-human IgG tracer Mab

cTnAAb
ITC
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5 SUMMARY OF RESULTS AND DISCUSSION 

5.1 Troponin-specific autoantibody interference in 
different cardiac troponin I assay configurations 

Presently, most cTnI-assay manufacturers follow the IFCC recommendation and use 
antibodies binding to the midfragment of the cTnI molecule (Jaffe, 2011; Apple et al., 
2012b). Because the midfragment is also most frequently targeted by cTnAAbs 
(Eriksson et al., 2004; Eriksson et al., 2005c), we hypothesized that such cTnI assays are 
likely to suffer from cTnAAb interference and that this interference can be counteracted 
by selecting the assay antibodies differently. In publication I, cTnI assays 1-6 using 
different epitopes across the cTnI molecule were constructed to study the extent of 
cTnAAb interference in different assay configurations and to identify antibody 
combinations that would be minimally affected by cTnAAbs. The analytical recoveries 
of 1,105 hospitalized noncardiac patients and apparently healthy individuals were first 
determined with the midfragment targeting cTnI assay 1. Based on these results, two 
study groups with lowered recoveries were identified: low recovery (LR) group (<10%, 
n=49) and medium recovery (MR) group (10%-20%, n=17). A normal recovery (NR) 
group (n=66) was randomly chosen from the remaining samples. Subsequently, the 
samples were analyzed with the old cTnAAb assay and cTnI assays 2-6. 

All LR, all MR and 24 NR samples were cTnAAb-positive with the cTnAAb signals 
of each study group differing significantly from each other (P<0.001) (Figure 9A). 
Median (25th-75th percentiles) signals in the LR and MR groups were 13,301 
(7,444-24,845) and 2,690 (1,297-3,583) counts, respectively, whereas half of the 
cTnAAb-positive samples in the NR group had cTnAAb signals ≤100 counts. The 
reverse correlation between the study groups demonstrated that the low recoveries 
obtained with cTnI assay 1 resulted from cTnAAb interference. However, when the 
sample recoveries of cTnI assays 1-6 were directly calculated from the signals of 
similarly spiked TSA-BSA, the median recoveries of the NR group (44%-125%) 
differed notably between the assays studied. This is typical for matrix effects 
stemming from differences in immunoreactivity of the assay antibodies in the buffer-
based standards and test samples, whereas the variation around the medians 
conceivably characterizes sample-specific interferences shortly discussed in Chapter 
2.4.2. To correct the results for the matrix effects, they were normalized with the 
medians of the NR group set to 100% (the original recovery divided by the median 
recovery of the NR group and multiplied by 100%). After the normalization, the 
negative interference of LR and MR samples clearly decreased when alternative 
epitope combinations deviating from the IFCC-recommended midfragment approach 
were used (Figure 9B). Compared to the median of the NR group (100%), the 
medians of cTnI assays 1-6 were 9%, 26%, 32%, 53%, 58%, and 103% in the LR 
group, and 35%, 76%, 78%, 83%, 65%, and 102% in the MR group, respectively. 
Differences between the study groups remained highly significant (P<0.001) in cTnI 
assays 2-5 but not in assay 6 (P=0.165). 
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Figure 9. cTnAAb signals (A) and normalized analytical recoveries (B) in 132 individuals without known 
cardiac conditions divided into three study groups according to the recoveries obtained with midfragment 
targeting cTnI assay 1 (adapted from I). All cTnAAb-negative samples have been given a cTnAAb signal 
of 1. Whiskers represent minimum and maximum signals; boxes represent 25th percentile, median, and 
75th percentile; and black squares represent means. 

LR MR NR

100

101

102

103

104

105

106

 

 

S
pe

ci
fic

 s
ig

n
al

 fr
om

 c
T

nA
A

b 
as

sa
y 

(c
o

un
ts

)

cTnI assay 1 cTnI assay 2 cTnI assay 3 cTnI assay 4 cTnI assay 5 cTnI assay 6

0

25

50

75

100

125

150

175

 

 

 LR
 MR
 NR

 

A
n

a
ly

tic
a

l r
e

co
ve

ry
 (

%
)

A

B



Summary of Results and Discussion 

49 
 

The analytical recovery tests showed that the epitope selection had a profound effect 
on the degree of negative cTnAAb interference which confirmed and elaborated the 
conclusions of previous reports (Eriksson et al., 2004; Eriksson et al., 2005c). 
However, highly purified ITC used in the recovery studies is not truly representative 
of the endogenous cTnI found in the circulation (Christenson et al., 2006; Cobbaert et 
al., 2008). Therefore, three of the investigational assays were chosen for more detailed 
characterization with clinical samples obtained from 210 (140 cTnAAb-negative, 70 
cTnAAb-positive) NSTE-ACS patients. cTnI assays 1 and 3 were selected to represent 
antibody configurations of current state-of-the-art assays, whereas cTnI assay 6 was 
selected because of its apparent lack of cTnAAb interference. Their performance was 
compared to the performance of three conventional commercial kits. 

The analytical sensitivities of cTnI assays 1, 3 and 6 were 300, 60 and 20 ng/L, 
respectively. Because patients with a cTnI concentration lower than the analytical 
sensitivity of the assay in question were excluded, the final analyses were completed 
with 108 cTnAAb-negative and 53 cTnAAb-positive samples. Figures 10A and 10B 
show the scatter plots of the cTnI concentrations of these patients measured with cTnI 
assays 1 and 6 with assay 3 as a reference. cTnI assays 1 and 3 performed similarly, 
whereas with assay 6 the majority of cTnAAb-positive samples stood out from the 
scatter because of the higher cTnI values detected with cTnI assay 6. The mean (SD) 
concentrations of cTnI assays 1, 3 and 6 were 2,770 (3,050), 2,410 (3,140) and 1,130 
(1,730) ng/L in the cTnAAb-negative cohort, and 2,210 (2,640), 2,490 (3,270) and 
4,150 (6,400) ng/L in the cTnAAb-positive cohort, respectively. Similar scatter plots 
were obtained when the investigational assays were compared to AxSYM cTnI, 
AccuTnI and Liaison cTnI assays. Comparison to AccuTnI assay is shown here as an 
example (Figures 10C and 10D). It shows that cTnI assay 3 and AccuTnI performed 
similarly, whereas the scatter profile between assay 6 and AccuTnI was highly similar 
to the one seen between cTnI assays 6 and 3. 
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Figure 10. Original cTnI concentrations in 108 cTnAAb-negative (●) and 53 cTnAAb-positive (○) 
NSTE-ACS patients with cTnI assays 1 (A) and 6 (B) using cTnI assay 3 as a reference, and similarly 
with cTnI assays 3 (C) and 6 (D) using the commercial AccuTnI assay as a reference (adapted from I). 
 

Although cTnI assays 1, 3 and 6 were calibrated against the same tissue-derived cTnI 
preparation, the cTnI concentrations of the cTnAAb-negative patients with cTnI 
assay 3 were on average 0.7-fold and 2.8-fold the concentrations with assays 1 and 6, 
respectively. Again, to correct the obtained cTnI results for the matrix effects and to 
enable a comparison of the effects of cTnAAbs in the cTnAAb-positive cohort, the 
data were normalized against the cTnI values obtained with assay 3 for the cTnAAb-
negative cohort using the following regression equations: ln cTnI assay 1_normalized 
= -0.036 x (ln cTnI assay 1)2 + 1.29 x ln cTnI assay 1 - 0.51 and cTnI assay 
6_normalized = 2.19 x cTnI assay 6 + 0.11. When the original cTnI values with 
assay 3 were compared to the normalized cTnI values with assays 1 and 6, the cTnI 
concentrations (mean, SD) in the cTnAAb-positive cohort were not significantly 
different (P=0.878) between cTnI assays 1 (1,820; 2,630 ng/L) and 3 (2,490; 
3,270 ng/L), but the concentration with assay 6 (9,190; 14,000 ng/L) was 5.0- and 
3.7-fold higher (P<0.001) than in the other two assays. In other words, cTnI assay 6 
enabled significantly higher cTnI recognition in cTnAAb-positive patient samples.  
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Further investigation of underlying causes for the differences observed in calculated 
cTnI concentrations was performed by comparing the relative capture efficiencies of 
cTnI assays 1 and 6. After preincubation on cTnI assay 6 capture surface, assay 1 
detected only 4%-5% of the ITC-derived fluorescence signal while in the reverse 
situation, assay 6 detected almost 40% of the ITC. Similarly, for cTnI-containing 
patient samples, assays 1 and 6 detected 16%-31% and 48%-83% of the cTnI, 
respectively. For the endogenous cTnI, the difference in the recoveries between the 
assays was much smaller than for ITC demonstrating that these surfaces recognize the 
standard in a highly different manner. This conceivably stems from the different 
epitope specificities, affinities and formats of chosen antibodies, all of which also 
determine the achievable analytical sensitivity for the assay. Thus, the results 
emphasize the well-known complexity of cTnI assay standardization. 

The findings of this substudy established that the cTnAAb-associated interferences are 
seen in investigational and commercial midfragment targeting cTnI assays. The 
interferences, however, can be circumvented by using the novel 3+1-type antibody 
configuration (cTnI assay 6) with three capture antibodies against the N-terminus, 
midfragment and C-terminus and one tracer antibody against the C-terminus. In 
essence this means that significant cTnI concentration underestimations are seen in 
individual cTnAAb-positive samples when using midfragment targeting cTnI assays 
in relation to this assay. In the light of our results, the risk for clinical misclassification 
brought up in previous reports remains a valid and reasonable concern (Eriksson et al., 
2003; Eriksson et al., 2005b; Eriksson et al., 2005c; Tang et al., 2012). 

This substudy was limited to a comparison of measured cTnI values within the ranges 
considered analytically reliable with all the included assays. Therefore, very low cTnI 
concentrations could not be investigated and a sensitive assay of the novel 3+1-type 
design was later developed (see Chapter 5.5). Additionally, not all individual samples 
behaved similarly with respect to cTnAAb interference; the changed antibody 
configuration had a stronger effect on the interference in some samples than others. 
This finding indicated that in addition to cTnAAb titers, the epitope specificities of 
cTnI-specific autoantibodies can vary between individuals and, thus, affect the degree 
of the interference observed. Therefore, the fine-specificity of circulating cTnAAbs 
called for more precise characterization. 

5.2 Characterization of cardiac troponin specific auto-
antibodies 

5.2.1 Epitope specificity 

After establishing cTnAAbs as an important analytical confounder in state-of-the-art 
cTnI assays, our purpose in the second substudy (II) was to explore more precisely the 
cTnI epitope specificity and IgG subclass distribution of these autoantibodies. To 
avoid the problems resulting from the use of spiked TSA-BSA as a reference sample, 
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the epitope specificity of cTnAAbs was determined by comparing the analytical 
recoveries in 10 cTnAAb-positive individuals to the recoveries in 10 cTnAAb-
negative individuals chosen based on the results obtained with the old cTnAAb assay. 
The signal recoveries were measured from these 20 apparently healthy subjects with 
19 sandwich-type immunoassays using various cTnI-specific antibodies for capturing 
and the same TnC-specific antibody for detecting. 

The mean analytical recovery in cTnAAb-positive samples for all 19 epitopes was 
89% whereas the mean recovery values for single cTnI epitopes ranged from 37% to 
211% (Figure 11A). The lowest mean recoveries were obtained for epitopes on the 
midfragment and N-terminal parts of the C-terminus. Additionally, considerable 
variation in individual recoveries of cTnAAb-positive samples was seen: the minimum 
and maximum recoveries for single epitopes ranged from 4% to 92% and from 78% to 
309%, respectively. Although the effects of other sample interferences could not be 
ruled out from these results, the variation around the mean recoveries (mean value of 
SDs, SD) was notably lower in cTnAAb-negative individuals (14%, 6%) than in 
cTnAAb-positive individuals (36%, 19%). Therefore, the comparison between the 
site-specific recoveries of three cTnAAb-positive subjects shown in Figure 11B 
primarily demonstrated that interindividual variation differs between epitopes.  
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Figure 11. Analytical recoveries for different cTnI sites (adapted from II). A) ITC recoveries in 10 
cTnAAb-positive samples. Whiskers represent minimum and maximum signals; boxes represent 25th 
percentile, median, and 75th percentile; and black squares represent means. B) An example of site-specific 
ITC recoveries in three cTnAAb-positive individuals. 
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The analytical recovery tests of this substudy confirmed the previously published 
observation (Eriksson et al., 2004) that the midfragment of the cTnI molecule is most 
frequently targeted by cTnAAbs but also demonstrated that cTnAAb interference 
extends to the flanking termini, especially towards the C-terminus. Although some 
cTnI epitopes may be less prone to cTnAAb interference, the results showed that none 
of the studied sites completely escape it and that the area most affected by the 
interference may vary between different individuals. In addition to being able to block 
the binding of assay antibodies, the observed >100% recoveries implied that cTnAAbs 
may also stabilize the analyte or enhance the affinity of assay antibodies against their 
binding sites. However, the extremely high recoveries in this substudy may be related 
to the recognition of the cTnI-TnC complex, which is naturally susceptible to 
conformational changes. Furthermore, these findings explained why low cTnAAb 
interference is seen with the novel 3+1-type cTnI assay design using four carefully 
selected epitopes, and verified our preliminary assumption that the cTnI-specific 
interference is even more heterogeneous than initially reported. 

5.2.2 IgG subclass distribution 

In the second part of publication II, admission and 3-month follow-up samples from 
28 NSTE-ACS patients from a substudy (Pettersson et al., 2009) of 81 patients with 
known cTnAAb statuses determined using the old cTnAAb assay were analyzed with 
total IgG assay detecting all IgG subclasses and four subclass-specific assays detecting 
IgG subclasses 1-4 exclusively. Based on the total IgG results, the patients were 
categorized into two study groups: the first group included 14 cTnAAb-negative 
patients, and the second group 14 cTnAAb-positive patients at 3-month follow-up. 

As illustrated in Table 10, all 14 patients selected for the cTnAAb-negative group 
were determined cTnAAb-negative by the total IgG assay at both sampling points. In 
the 14 patients selected for the cTnAAb-positive groups, six were positive at 
admission and eight turned positive at follow-up using the total IgG assay. The 
specific signals of these IgG-positive samples ranged from 105 to 69,502 counts 
(median 2,111 counts, 25th-75th percentiles 881-14,838 counts). None of the samples in 
the cTnAAb-negative group were IgG1 and IgG2 positive, but four admission and five 
follow-up samples were weakly positive for IgG3 and/or IgG4 (specific signal 
125-794 counts, median 242 counts, 25th-75th percentiles 129-334 counts). Although 
all IgG subclasses 1-4 were observed in the cTnAAb-positive group (specific signals 
101-115,579 counts, median 620 counts, 25th-75th percentiles 274-6,247 counts), IgG4 
had the highest prevalence and was detected in eight admission and 11 follow-up 
samples. Additionally, three admission and 10 follow-up samples were positive 
simultaneously for 2-4 subclasses while seven admission and four follow-up samples 
were positive only for one subclass. The specific signals were also generally higher at 
follow-up compared to admission levels indicating higher cTnAAb titers and/or 
improved binding affinity (Figure 12). Differences in specific signal levels between 
sampling points were statistically significant (P<0.05) with all assays except the IgG3-
specific assay (P=0.249). 
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Table 10. Prevalence (n) of cTnAAb-positive samples with total IgG and four subclass-specific assays in 
two study groups at admission and 3 months’ follow-up. 
 

 cTnAAb-negative (n=14) cTnAAb-positive (n=14) 
Assay specificity Admission 3 months Admission 3 months 

Total IgG 0 0 6 14 

IgG1 0 0 1 9 

IgG2 0 0 3 6 

IgG3 0 4 2 5 

IgG4 4 3 8 11 
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Figure 12. cTnAAb signals in admission (Adm) and 3-month follow-up (3m) samples from 14 cTnAAb-
negative (A) and 14 cTnAAb-positive (B) NSTE-ACS patients (adapted from II). The cTnAAb-negative 
samples have been given a specific signal of 50 counts (the lowest positive signal divided by two). 
Whiskers represent minimum and maximum signals; boxes represent 25th percentile, median and 75th 
percentile; and black squares represent means. 
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Because some patients of the cTnAAb-positive group became positive between 
sampling points and specific signals with all five IgG assays were generally higher 
three months after the index event, the results confirmed that cTn leakage from 
cardiomyocytes during a primary ischemic injury may induce an autoimmune 
response leading to cTnAAb formation (Leuschner et al., 2008; Pettersson et al., 
2009; Lindahl et al., 2010). Alternatively, the leakage may serve as a booster of 
previous immunization, which can both increase cTnAAb titers in circulation and 
improve the affinity of formed autoantibodies. However, due to the way the two study 
groups were compiled, the cTnAAb-positive group represented patients predisposed to 
cTnAAb formation and thus the observations do not mean that a cTnI leakage alone is 
sufficient to initiate cTn-related autoimmune responses. 

In the cTnAAb-positive group, all IgG subclasses were detected and 46% of 
individual samples were positive for multiple subclasses, which in turn further 
increases the heterogeneity of human cTnAAbs. Because the frequency of cTnAAb-
positive samples observed with certain IgG assays is related to assay sensitivity, which 
cannot be determined in autoantibody assays due to the lack of defined standards, 
direct comparison between these frequencies was not possible and the results were 
partly discrepant. However, it was noteworthy that IgG4, which is generally the least 
frequent of the four IgG subclasses, was the most commonly detected cTnAAb in this 
substudy. Because repeated antigenic stimulation is known to promote IgG4-type 
antibody formation, the appearance of IgG4-type cTnAAbs suggested that longer-term 
cTn leakage may have occurred in cardiac patients before the acute event. This finding 
is in accordance with the current belief that low levels of circulating cTn are found in 
virtually all individuals. It is also interesting that IgG4 is generally considered to be a 
benign and nonpathogenic antibody with positive effects in some allergic reactions 
(Nirula et al., 2011). Another feature of IgG4-type antibodies is that they may have a 
high affinity for various animal IgGs, such as mouse IgG, via their constant regions 
rather than their antigen-binding sites (Kawa et al., 2008; Ito et al., 2010). If IgG4-
type cTnAAbs bind to animal IgGs used as immunoassay reagents, then in addition to 
blocking specific cTn epitopes, they could potentially interfere with cTn 
immunoassays nonspecifically. 

5.3 Improved immunoassay for cardiac troponin specific 
autoantibodies 

The methodology used in all our cTnAAb assays has been specifically developed for 
the recognition of IgG-type antibodies. Therefore, IgM-type antibodies that are 
predominant in primary immune responses were not studied within the scope of this 
thesis. Additionally, because ITC is used as a target molecule, the results obtained 
with the assays do not differentiate cTnI- and cTnT-specific autoantibody positivity 
whereas error due to nonspecific binding of other human antibodies is taken into 
account. Sample-specific backgrounds fluctuate substantially between individuals 
(Eriksson et al., 2005a) and when high, they may limit cTnAAb detection. Therefore, 
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the main purpose of the cTnAAb assay update described in publication III was to 
reduce the occasionally spurious sample backgrounds. The approach selected was to 
use alternative capture antibodies to immobilize the cTn-bound autoantibodies. Based 
on the previous epitope specificity results, we chose the new assay capture epitopes 
that were less affected by cTnAAbs than the epitopes of the old assay (see Chapter 
5.2.1). On the other hand, this may at the same time provide detection of cTnAAbs of 
different fine specificity. The method validation was performed by using the old assay 
as a reference. 

Sample-specific backgrounds (n=510) were significantly lower for the new cTnAAb 
assay (median 1,225 counts, 25th-75th percentiles 973-1,635 counts) than for the old 
assay (median 2,693 counts, 25th-75th percentiles 2,104-4,043 counts) (P<0.001). 
When backgrounds from the same samples were compared, the new assay gave on 
average 29% lower signals than the old assay. In addition, net signals of cTnAAb-
positive samples (n=35) were significantly higher for the new assay (median 
5,076 counts, 25th-75th percentiles 1,953-17,754 counts) than for the old assay (median 
3,921 counts, 25th-75th percentiles 1,326-11,909 counts) (P<0.001). On average, the 
signals from the same samples were 40% higher for the new assay than for the old 
assay. 

Because of the lower backgrounds and higher signal levels, the new cTnAAb assay 
described in this substudy was more sensitive than the old cTnAAb assay. Due to the 
increased sensitivity and/or the different epitope specificity of the used cTnI capture 
antibodies, the new assay detected 27% more cTnAAb-positive patients than the old 
assay (P=0.013) while the overall concordance between the two assays was good. 
From 510 suspected ACS patients, the new assay detected 12 new cTnAAb-positive 
individuals whose net signals were 103-448 counts. However, two patients who were 
weakly positive with the old cTnAAb assay (net signals 166-203) were not detected 
with the new assay. This discrepancy may have been a result of the low cTnAAb titers 
and/or affinities of these samples because low specific signals do not necessarily differ 
statistically enough from background signals as the signals slightly vary from run to 
run. The discrepancy may also have originated from the above mentioned differences 
in the fine specificities of the two cTnAAb assays. 

5.4 Autoantibody prevalence in a heterogeneous patient 
cohort with suspected myocardial infarction 

The prevalence of cTnAAbs had not been previously evaluated in a clinically relevant 
patient cohort where cTn assays are typically applied. Therefore, in publication III we 
determined the prevalence of cTnAAbs in a heterogeneous cohort formed by 510 
consecutive ACS patients presenting to an emergency department with suspected MI 
in parallel with the validation of the new cTnAAb assay. We studied the association 
between the observed cTnAAb status and the previous cardiac conditions possibly 
leading to cTn leakage, and the association between the observed cTnAAb status and 
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the outcome in 12 months. The baseline characteristics of the patients are described in 
detail in the original publication III. 

The cTnAAb prevalences in both cTnAAb assays in the different diagnostics groups 
are presented in Table 11. Of the whole study cohort, 7% and 9% of patients were 
cTnAAb-positive with the old and new assay, respectively. For each assay, no 
statistically significant differences in the prevalences were identified between MI and 
other patients, or STEMI and NSTEMI patients. The overall prevalences of this 
substudy were in accordance with the previous reports presented in the literature 
review (3%-15% in similar cohorts, see Chapter 2.4.1), and demonstrated that 
approximately one in ten patients who present to a hospital with suspected MI have 
detectable amounts of cTnAAbs in their circulation. The high prevalence of cTnAAbs 
emphasizes the need for larger scale studies regarding the impact of cTnAAbs on cTnI 
testing. 

Table 11. Prevalences of cTnAAbs in different diagnostic groups with the old and new cTnAAb assay. 
 

 cTnAAb-positive with the old assay cTnAAb-positive with the new assay 
Patients n (%) n (%) 

All (n=510) 37 (7.3) 47 (9.2) 

Non-MI (n=343) 26 (7.6) 32 (9.3) 

MI (n=167) 11 (6.6) 15 (9.0) 

STEMI (n=70) 3 (4.3) 5 (7.1) 

NSTEMI (n=97) 8 (8.2) 10 (10.3) 

 

In this study population, the history of previous cardiac conditions (hypertension, 
CAD, MI, revascularization and heart failure) was not associated with the presence of 
cTnAAbs, and the presence of cTnAAbs did not correlate with the 12-month outcome 
(reinfarction, revascularization, heart failure and all-cause mortality) (results presented 
in publication III). Thus, this substudy did not provide new information about the 
reasons for the initiation of cTnAAb-related autoimmune responses or their clinical 
significance. Larger cohorts are needed to reliably study these associations in patients 
who develop cTn autoimmunity. 

5.5 Sensitive cardiac troponin I assay free from cardiac 
troponin specific autoantibody interference 

The Universal Definition of MI emphasizes the need for reliable detection of minor 
cTn elevations and changes in these. This calls for effective measures to reduce the 
false positive or negative effects due to preanalytical and analytical interferences in 
cTn assays. As cTnAAbs can have a decidedly inhibiting effect on cTnI detection, 
their effects at lower cTnI concentrations presently reachable by contemporary-
sensitive and high-sensitivity assays need to be investigated. To enable such a study, 
we developed in publication IV a sensitive cTnI assay free from cTnAAb interference. 
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The new assay was based on the previously presented assay design employing three 
separate capture antibodies for the N-terminus, midfragment and C-terminus and one 
tracer antibody for the C-terminus, on the epitope shown to be virtually unaffected by 
cTnAAb. Antibody-coated spots were used to achieve higher analytical sensitivity. 

The calibration curve (y=79.28x) of the developed cTnI assay 7 is presented in 
Figure 13A. The curve was linear up to 50,000 ng/L (R2=0.992) and no high-dose 
hook effect was seen even with 1,000,000 ng/L. Dilution linearity of endogenous cTnI 
was evaluated with serially diluted samples (255-53,639 ng/L cTnI) by linear 
regression analysis, and the assay was linear (R2=0.980-0.996) throughout the 
measured cTnI range (7.0-53,693 ng/L). Using the CLSI criteria, the LoB and LoD of 
the assay were 1.4 and 2.9 ng/L, respectively. Total imprecision was determined by 
running sample pools (n=8, 1.0-732 ng/L cTnI) in triplicate once a day for 20 days 
(Figure 13B) using two different spotting batches. The ideal accuracy goal of 
10% CV was not reached but with both batches, 20% CV was achieved at 10 ng/L. 
The assays with total precisions up to 20% at the 99th percentile of healthy population 
are perfectly usable for MI diagnosis (Apple et al., 2005; Kupchak et al., 2006; Jaffe 
and Apple, 2010). The high variability of the cTnI assay 7 was presumably caused by 
the non-uniformity of the antibody-coated spots. Large scale production with 
optimized spotting techniques in combination with complete automation of the assay 
protocol would likely result in substantially improved assay precision. 
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Figure 13. Calibration curve and total precision of cTnI assay 7 (adapted from IV). A) Calibration curve 
(●) and within-assay precision profile (○) illustrate the means of six replicate reaction wells. B) Total 
precision profiles for two spotting batches (● and ○) were measured with eight cTnI sample pools. 
 

The resistance to cTnAAb interference of cTnI assay 7 was ascertained with the small-
scale recovery study over a wide range of cTnI concentrations in comparison with the 
midfragment targeting cTnI assay 3 (Figure 14). Increasing amounts of ITC 
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(10-50,000 ng/L cTnI) were added into five samples, two of which were cTnAAb-
negative and three cTnAAb-positive with the new cTnAAb assay. In the two 
cTnAAb-negative samples, both assays showed good recoveries over the whole 
measurement range. In the three cTnAAb-positive samples measured with cTn 
assay 3, ITC amounts up to 1,000 ng/L remained below the analytical sensitivity of the 
assay (60 ng/L). Individual recoveries with each of these samples increased from the 
smallest to the highest detectable analyte concentration and the mean recovery was 
28% while being 85% for the cTnAAb-negative samples. In the three cTnAAb-
positive samples measured with cTnI assay 7, all ITC amounts added were detectable 
and recoveries were high over the studied range. The mean recoveries were 100% and 
119% for the cTnAAb-positive and cTnAAb-negative samples, respectively. The 
comparison demonstrated that in cTnAAb-positive samples, cTnI levels can be 
seriously underestimated with state-of-the-art assays affected by cTnAAb interference 
to the extent that the early cTnI release is not recognized. A repeated measurement 
3-6 h after admission may conceivably pick up the ACS-related cTnI increase but in 
some cTnAAb-positive samples, even high cTnI concentrations can be severely 
blunted. 

 

Figure 14. Means of measured cTnI values in two ITC-spiked cTnAAb-negative individuals (●), and 
measured cTnI values separately in three ITC-spiked cTnAAb-positive individuals (○) (adapted from IV). 
 

Because the tracer antibodies used in our 3+1-type assay designs bind to the C-
terminus of the cTnI molecule, the more stable midfragment alone is not recognized. 
Therefore, the stability of endogenous cTnI after drawing blood was studied with cTnI 
assay 7 using 10 samples containing 16-26,158 ng/L cTnI. After 1, 3 and 5 freeze-
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thaw cycle(s), the median (25th-75th percentiles) recoveries from the original cTnI 
values were 104% (89%-123%), 101% (65%-118%) and 107% (79%-130%), 
respectively. The corresponding values after incubating the samples for one day or one 
week at +4°C were 103% (83%-117%) and 102% (77%-123%), and at room 
temperature 102% (77%-109%) and 71% (61%-98%), respectively. Differences 
between the studied conditions were not statistically significant (P=0.051) 
demonstrating surprisingly good analyte stability. Nevertheless, longer storage at 
room temperature seemed to decrease the detected cTnI concentrations. One limitation 
of this stability study was that we did not have fresh samples to include in the study. 
However, when compared to freshly analyzed samples, only minor losses of 
immunoreactivity of clinical samples incubated for 24h at room temperature were 
previously reported with 2+1-type cTnI assay (Radiometer) also unable to generate 
signal from the midfragment (Eriksson et al., 2005c; Hedberg et al., 2006). 

Of 250 patients analyzed for the method comparison, 34 (14%) were cTnAAb-positive 
with the new cTnAAb assay. Because cTnI assay 7 was expected to suffer less from 
cTnAAb interference than the midfragment targeting Architect hs-cTnI assay, the 
comparison was limited to cTnAAb-negative samples with cTnI concentrations 
exceeding the LoDs of both assays (n=160). Although the correlation was good 
(Spearman r=0.958, P<0.001), a considerable systemic bias was seen between the 
absolute cTnI concentrations measured with the two assays; Architect hs-cTnI assay 
gave on average 7-fold higher cTnI concentrations than the new assay. Deming 
regression yielded a slope (95% confidence intervals) of 0.20 (0.17-0.22) and y-
intercept of 1.65 (0.78-2.52) ng/L (Sy|x=0.21 ng/L) (Figure 15A). The mean relative 
difference (95% limits of agreement) with Bland-Altman agreement was 134% (70%-
198%) (Figure 15B). The systemic bias conceivably stems partly from the use of 
different antibodies but also from the differences in calibration and standard material 
(our cTnI standards 5; 50; 500; 5,000 and 50,000 ng/L gave with Architect hs-cTnI 
only 3; 16; 154; 1,820 and 30,169 ng/L, respectively, unpublished data). Similar 
biases have been previously obtained by comparing the above mentioned 2+1-type 
cTnI assay to the midfragment targeting AxSYM first-generation cTnI assay and the 
midfragment targeting AccuTnI second-generation assay (Hedberg et al., 2006) but 
also by comparing the midfragment targeting Liaison cTnI assay to AccuTnI second-
generation assay (Pagani et al., 2004). Again, the observed difference highlights the 
complexity of cTnI standardization. The relative difference in the method comparison 
study was reasonably constant over the whole cTnI range. 
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Figure 15. Method comparison with cTnAAb-negative (●) and cTnAAb-positive (○) samples (adapted 
from IV). A) With cTnAAb-negative samples, Deming regression equation (solid line) was 
y=0.20x+1.65. B) With cTnAAb-negative samples, the mean difference [(Architect hs-cTnI - cTnI 
assay 7) / mean cTnI] was 134% (solid line) and 95% limits of agreement were 70% and 198% (dashed 
lines). 
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Although the method comparison was limited to the cTnAAb negative samples, the 
results from those cTnAAb-positive samples with cTnI concentrations above the LoDs 
of both assays (n=30) were included in Figure 15. Four of the samples with low cTnI 
values clearly deviated from the scatter of the cTnAAb-negative samples because of 
the higher cTnI values with cTnI assay 7 than with Architect hs-cTnI assay which 
implies that cTnAAbs might have an impact on cTnI testing. However, the small 
number of cTnAAb-positive samples whose cTnI values were at the reliable ranges of 
both assays prevented making any final conclusions. Significantly larger patient 
cohorts would be needed to address this question. 

The reference population included 159 apparently healthy individuals (50% females). 
The samples had been grouped so that there were 65 samples from individuals 31-
50 years of age, 47 samples from individuals 51-70 years of age, and 47 samples from 
individuals >70 years of age. Of all individuals, 28 (18%) had a measured cTnI 
concentration above the LoD of cTnI assay 7 and 16 (10%) were cTnAAb-positive 
with the new cTnAAb assay (Figure 16). As previously mentioned, the recent criteria 
for reference interval studies recommends that a minimum number of 300 individuals 
are needed to appropriately determine the 99th percentile and more thorough screening 
(e.g. with ECG) of sample donors is warranted to detect any underlying cardiac 
conditions (Apple et al., 2012a; Sandoval and Apple, 2013). Therefore, due to the 
small number of apparently healthy individuals and their poor clinical 
characterization, we refrained from 99th percentile calculations. In addition, the 
developed cTnI assay did not meet the goal proportion of 50% measurable from a 
healthy reference population; therefore, it could not be classified as a high-sensitivity 
assay. Yet, the proportion of analytically reliable concentrations with cTnI assay 7 was 
comparable to the most sensitive contemporary and point-of-care assays; in a recent 
publication, the proportion was more than 6% only for one contemporary and one 
point-of-care cTnI assay (Apple et al., 2012b). 
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Figure 16. Distribution of measured cTnI values in apparently healthy individuals (n=159) (adapted from 
IV). The circulating cTnI values were higher in cTnAAb-positive (circles) than in cTnAAb-negative 
(columns) samples (median 8.5 ng/L vs. <LoD). 
 

Interestingly, the proportion of measurable cTnI values was significantly higher in the 
cTnAAb-positive group (13/16) than in the cTnAAb-negative group (15/143) 
(P<0.001). The median of measured cTnI concentrations (25th-75th percentiles) for the 
cTnAAb-positive group was 8.5 (3.4-28) ng/L, the highest concentrations reaching up 
to 100-200 ng/L, whereas the median for the cTnAAb-negative groups was <LoD. 
Although the impact of circulating cTnAAbs on the patient outcome has remained 
controversial (Shmilovich et al., 2007; Leuschner et al., 2008; Miettinen et al., 2008; 
Düngen et al., 2010; Lindahl et al., 2010; Doesch et al., 2011), the presence of 
cTnAAbs has been associated with chronically elevated cTnI concentrations (Plebani 
et al., 2002; Pettersson et al., 2009; Lindahl et al., 2010) and persistent cTnI 
elevations in turn with higher mortality during long-term follow-up (Eggers et al., 
2007). Therefore, the high cTnI concentrations in apparently healthy cTnAAb-positive 
individuals raise new questions about the etiology of cTnAAbs. The higher 
concentrations may result from a cTnAAb-associated persistent injury or reflect a 
longer half-life on circulating cTnI-cTnAAb complexes. 

Mab 8I7 used in cTnI assay 7 as a tracer was recently reported to recognize skTnIs 
(Vylegzhanina et al., 2013). Therefore, employing it for cTnI detection together with 
antibodies lacking cTnI-specificity could result in falsely high cTnI values in cases of 
increased skTnI. Alternatively, when Mab 8I7 is paired with antibodies having high 
cTnI-specificity, increased skTnI concentration could result in falsely low cTnI values 
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due to the competition between cTnI and skTnI for 8I7 binding. Although our 
preliminary data with cTnI assay 7 indicates no such problems, this warrants for 
further investigation.  

Although the developed cTnI assay facilitates sensitive and reliable cTnI detection in 
the presence of circulating cTnAAbs, the assay is not suitable for routine clinical 
practice in its present form because of the long assay time. The presented 3+1-type 
assay must be developed further to enable fast and automated cTnI detection while 
maintaining the achieved analytical sensitivity or even improving it. 
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6 CONCLUSIONS 

Due to their unique specificity and sensitivity for myocardial injury, cTnI and cTnT 
are the recommended biomarkers for the diagnosis and risk stratification of patients 
with suspected ACS. Since the introduction of the first immunoassays for cTn 
detection towards the end of the 1980s and the beginning of the 1990s, the analytical 
sensitivities and precisions have progressively improved. This course has been driven 
by the first Universal Definition of MI that challenged assay manufacturers to develop 
better cTn assays to reach the total precision of ≤10% at the 99th percentile cutoff 
value determined from healthy individuals. The newest generation of sensitive-
contemporary and high-sensitivity cTn assays has recently enabled the measurement 
of cTn levels in healthy individuals and, thus, more rapid and accurate detection of 
MI. Because low cTn values achievable with these assays are inherently more 
susceptible to various analytical confounders, it is important that the low-end accuracy 
of the assays is ascertained by minimizing preanalytical and analytical problems 
leading to false-positive and false-negative results. 

Circulating cTnAAbs that are commonly found in individuals with or without cardiac 
diseases can negatively interfere with cTn detection using cTnI immunoassays 
designed according to the IFCC-recommended midfragment approach, to the extent 
that cTnAAb-positive patients may be falsely designated as cTnI-negative. In order to 
establish the clinical impact of these autoantibodies, new immunoassays for cTnI and 
cTnAAb determination were developed based on the cTnAAb characteristics 
discovered during this study. 

The main conclusions based on the original publications are presented below: 

I  The analytical recovery tests and additional studies with NSTE-ACS patient 
samples demonstrated the notable interference of circulating cTnAAbs in 
representative midfragment targeting cTnI assays used in clinical practice. 
This particular analytical interference can be avoided by using the novel 3+1-
type cTnI assay design with three capture antibodies against the N-terminus, 
midfragment and C-terminus and one tracer antibody against the C-terminus. 

II  The epitope specificity and IgG subclass distribution of cTnAAbs 
demonstrated that these autoantibodies are extremely heterogeneous. The 
midfragment of cTnI is most frequently targeted by cTnAAbs but the 
interference extends to the flanking termini, encompassing basically the whole 
cTnI sequence. There seems to be also remarkable individual variation at the 
affected sites. Thus, it is not surprising that multiple assay antibodies are 
needed to circumvent the cTnAAb-associated interferences in cTnI detection. 
Furthermore, the IgG substudy showed that cTnAAb formation may be 
triggered or boosted in acute cardiac events. 
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III  In this publication, an improved version of an existing cTnAAb assay was 
developed. The new cTnAAb assay detected more cTnAAb-positive patients 
than the old cTnAAb assay, yet with good overall concordance between the 
assays. Moreover, nearly one in 10 patients who presented to the emergency 
department with suspected ACS had cTnAAbs in their circulation which could 
not be explained by the history of previous heart conditions. 

IV  A new sensitive cTnI assay based on the above presented 3+1-type assay 
design and antibody-coated spots was developed. It enables reliable cTnI 
detection in the presence of cTnAAbs even at low cTnI concentrations 
detectable by the commercial cTnI assays at clinical use. 

In conclusion, the findings of this thesis showed that circulating cTnAAbs are 
common in patients with suspected ACS and that cTnAAbs can inhibit cTn detection 
when targeted against the binding sites of antibodies used in its immunological 
detection. Therefore, the risk of clinical misclassification due to cTnAAbs remains a 
valid and reasonable concern. As the impact of cTnAAbs on cTnI testing is 
multifaceted, i.e. affected by the titers, affinities and epitope specificities of these 
highly heterogeneous autoantibodies and by the concentration of endogenous cTnI, 
significantly larger patient cohorts are needed to establish the frequency of cTnAAb-
related erroneous cTnI results that may have an effect on patient management. In this 
the developed cTnI and cTnAAb assays could serve as important analytical tools. 
Results from these studies could then be used to address the question whether the 
analytical effect of cTnAAb needs to be acknowledged in the design of future cTnI 
assays. And more specifically, if common assay antibodies will be selected for all 
cTnI assays, it is presumable that compromises between various analytical 
confounders have to be made and thus objective data to support the final decisions are 
of great importance. Furthermore, the new assay can help unravel the etiology of cTn-
related autoimmune responses and their clinical significance. 
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