Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 1. Kirjat ja opinnäytteet
  • Pro gradu -tutkielmat ja diplomityöt sekä syventävien opintojen opinnäytetyöt (kokotekstit)
  • Näytä aineisto
  •   Etusivu
  • 1. Kirjat ja opinnäytteet
  • Pro gradu -tutkielmat ja diplomityöt sekä syventävien opintojen opinnäytetyöt (kokotekstit)
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Text analysis of handwritten production deviations

Kangas, Kaarina (2021-06-14)

Text analysis of handwritten production deviations

Kangas, Kaarina
(14.06.2021)
Katso/Avaa
Thesis Kaarina Kangas.pdf (1.097Mb)
Lataukset: 

Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.
avoin
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021061738440
Tiivistelmä
Companies want to understand the latest trends and summarize product status or
public opinion based on social media data. Because data is rich and very diverse,
there has been a need to create automated and real-time opinion polling and data
mining. This need has contributed to the huge popularity of text analysis and at
the same time the development and use of it is being applied to more and more
industries. Not just for evaluating consumer feedback, for example.
Natural language processing (NLP) is a subfield of linguistics, computer science,
and artificial intelligence which is focused to enable computers to understand and
interpret human language. Its goal and strength is specifically to program computers
to process and analyze large amounts of natural language. NLP technology can
extract data accurately from text and classify and organize data. Using machine
learning methods makes text analysis much faster and more efficient than manual
word processing. The methods can be used to reduce labor costs and speed up the
processing of texts without compromising on quality.
The main focus of the thesis is to study the textual material received from the client
and to develop a prediction model based on it using natural language processing
(NLP) techniques. As a research strategy has been used a case study. The obtained
text data, sentences about 9000, are from the period 2016/11-2018/9 from the production deviations observed in the welding and assembly process. Text sentences,
i.e. user comments, were available at all stages from the detection of a deviation to
its solution. This study has focused on the first observational comment written on
the deviation. Based on them, a predictive model has been trained that can predict
based on the given first comment, what can be the root cause of the deviation.
The research material has been analyzed using both traditional machine learning
methods and more advanced deep learning methods, pre-trained FinBERT and multilingual BERT. The accuracy of the model has been a key measure of the superiority
of the model. The result was a reliable prediction model that can be used to predict
when a deviation falls into class 100 (missing part) or class 200 (other deviations).
The best accuracy of the traditional machine learning model was 85.7 % and of the
transformer model was 82.6 %. The most common word in the all Finnish sentences
was "puuttua" in different forms.
Kokoelmat
  • Pro gradu -tutkielmat ja diplomityöt sekä syventävien opintojen opinnäytetyöt (kokotekstit) [9137]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste