Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 1. Kirjat ja opinnäytteet
  • Pro gradu -tutkielmat ja diplomityöt sekä syventävien opintojen opinnäytetyöt (kokotekstit)
  • Näytä aineisto
  •   Etusivu
  • 1. Kirjat ja opinnäytteet
  • Pro gradu -tutkielmat ja diplomityöt sekä syventävien opintojen opinnäytetyöt (kokotekstit)
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ydinmenetelmä riippumattomien komponenttien analyysiin

Heinonen, Lauri (2021-06-30)

Ydinmenetelmä riippumattomien komponenttien analyysiin

Heinonen, Lauri
(30.06.2021)
Katso/Avaa
Heinonen_Lauri_opinnayte.pdf (1.627Mb)
Lataukset: 

Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.
avoin
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021070240890
Tiivistelmä
Tutkielmassa esitellään ja johdetaan uusi menetelmä, ydin-FOBI, joka on ydinmenetelmä riippumattomien komponenttien analyysiin. Lisäksi esitellään MDS-FOBI, jonka avulla FOBI-ratkaisu voidaan tuottaa pelkän havaintojen etäisyysmatriisin perusteella. Johdantona aiheeseen esitellään ja johdetaan pääkomponenttianalyysi, sen ydinversio ja moniulotteinen skaalaus sekä esitellään riippumattomien komponenttien analyysi ja johdetaan sen lineaarinen FOBI-ratkaisu. Lopuksi käsiteltyjä menetelmiä vertaillaan kolmella aineistolla.

Riippumattomien komponenttien analyysissä havaintovektorin muuttujien ajatellaan olevan riippumattomien satunnaismuuttujien lineaarikombinaatioita. Tarkoitus on palauttaa vaihtelu takaisin näihin komponentteihin. FOBI on eräs riippumattomien komponenttien ongelman ratkaisu ja se perustuu neljänsien momenttien muodostaman kurtoosimatriisin ominaisarvohajotelmaan.

Tutkielmassa esitetään tapa FOBIn laskemiseen käyttäen vain havaintojen sisätulomatriisia. Kun sisätulomatriisi korvataan ydinmatriisilla, saadaan ydin-FOBI ja kun se korvataan tietyllä etäisyysmatriisiin pohjautuvalla matriisilla, saadaan MDSFOBI. Menetelmiä tutkittaessa havaitaan, että ydin-FOBI voidaan nähdä ydinpääkomponenttianalyysinä, jonka antamiin pistemääriin sovelletaan lineaarista FOBIa.

Simuloiduilla aineistoilla tehdyssä tarkastelussa havaitaan, että ydin-FOBIn tuottamia komponentteja voidaan käyttää ryhmien erotteluun aineistosta. Toisesta aineistolla tehdystä esimerkistä havaitaan, että ydin-FOBI soveltuu myös niin sanottujen ominaiskasvojen tuottamiseen. Sopivan ydinfunktion etuna on tällöin, että se erottaa kuvista reunat melko terävästi, vaikka kuvien välillä kasvot ovatkin hieman eri paikoissa. Kolmas esimerkki taas osoittaa, että MDS-FOBIa voidaan käyttää tavallisen moniulotteisen skaalauksen lailla. Tällöin MDS-FOBIn ominaisuutena on, että se erottelee pisteet hieman tavallista moniulotteista skaalausta voimakkaammin ryhmiin.
Kokoelmat
  • Pro gradu -tutkielmat ja diplomityöt sekä syventävien opintojen opinnäytetyöt (kokotekstit) [9570]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste