Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 1. Kirjat ja opinnäytteet
  • Pro gradu -tutkielmat ja diplomityöt sekä syventävien opintojen opinnäytetyöt (rajattu näkyvyys)
  • Näytä aineisto
  •   Etusivu
  • 1. Kirjat ja opinnäytteet
  • Pro gradu -tutkielmat ja diplomityöt sekä syventävien opintojen opinnäytetyöt (rajattu näkyvyys)
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

On polynomial neural networks and experiments with relational data

Lukkarila, Ville (2022-01-07)

On polynomial neural networks and experiments with relational data

Lukkarila, Ville
(07.01.2022)
Katso/Avaa
Lukkarila_Ville_progradu.pdf (10.65Mb)
Lataukset: 

Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.
suljettu
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe202201178828
Tiivistelmä
Artificial neural networks are directed finite acyclic graphswhere a value of a node is determined as a function of its predecessor nodes. Commonly, the function relationship between a node and its predecessors is a composition of an affine transformation and a continuous function, where coefficients of the affine transformation are determined node-wise in a training process for the artificial neural network. However, exceptions to this generic definition are more than common.

In this thesis a few polynomial neural network architectures are discussed. The formal meaning of a ``polynomial'' with respect to neural networks has not been fully established, so several similar architectures are presented. The main focus will be on factorization machines and neural networks with quadratic polynomial kernel. The fundamental definitions and key results are presented based on the existing literature to make the presentation self-contained to some extent.

Finally, the performance of the neural network architectures will be compared by running computational experiments. Based on these experiments, polynomial networks and factorization machines are not necessarily superior to traditional polynomial regression or kernel methods. The superiority of one method over another appears to be dependent on the given data.
Kokoelmat
  • Pro gradu -tutkielmat ja diplomityöt sekä syventävien opintojen opinnäytetyöt (rajattu näkyvyys) [4972]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste