Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 1. Kirjat ja opinnäytteet
  • Pro gradu -tutkielmat ja diplomityöt sekä syventävien opintojen opinnäytetyöt (rajattu näkyvyys)
  • Näytä aineisto
  •   Etusivu
  • 1. Kirjat ja opinnäytteet
  • Pro gradu -tutkielmat ja diplomityöt sekä syventävien opintojen opinnäytetyöt (rajattu näkyvyys)
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimizing synaptic properties of Gd(1−x)CaxMnO3 memristor devices

Hynnä, Teemu (2022-04-06)

Optimizing synaptic properties of Gd(1−x)CaxMnO3 memristor devices

Hynnä, Teemu
(06.04.2022)
Katso/Avaa
Hynna_Teemu_opinnayte.pdf (5.356Mb)
Lataukset: 

Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.
suljettu
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2022041128124
Tiivistelmä
The gap between memory and processing power in traditional von Neumann architectures is enlarging, and there is a great need for new computing architectures to meet the demand of more and more data centric applications of modern day. Neuromorphic computing is a promising biology inspired computing architecture that mimics the brain and nervous system. It is a necessity to find new components that would allow this structure of synapses and neurons to be built. Memristors have been found to act like synapses, which makes them a promising component for artificial synapsis in neuromorphic computing. In this thesis I studied Gd0.3Ca0.7MnO3 (GCMO) memristive thin films and their synaptic properties. The goal of the thesis was to firstly test if these thin films could be used as a artificial synapse and secondly optimize the pulse shape if they work. I measured the spike-timing-dependent plasticity (STDP) of the thin films using two different pulse shapes and multiple different voltages. I then simulated neural networks that used synapses based on the GCMO thin films. The synapses were benchmarked based on the image recognition accuracy of the neural networks. My measurements and simulations showed that GCMO synapses are very likely to work in real world applications. The neural networks trained in this thesis are using identic synapses that are based on a single measurement result. The results are very promising, but further research is needed to mitigate the device-to-device variation. My results also show the optimal pulse shape and voltage from the ones studied. Relation between STDP parameters and accuracy was found, which will help in future optimization of the system. There is very little research published on the synaptic properties of GCMO devices, unlike other perovskite oxide thin films like Pr(1−x)CaxMnO3. There is no published STDP results for GCMO thin films. The main purpose of my thesis is to deepen the knowledge about the synaptic properties of the GCMO thin films, that could be possibly used in future applications.
Kokoelmat
  • Pro gradu -tutkielmat ja diplomityöt sekä syventävien opintojen opinnäytetyöt (rajattu näkyvyys) [4904]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste