Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 1. Kirjat ja opinnäytteet
  • Pro gradu -tutkielmat ja diplomityöt sekä syventävien opintojen opinnäytetyöt (kokotekstit)
  • Näytä aineisto
  •   Etusivu
  • 1. Kirjat ja opinnäytteet
  • Pro gradu -tutkielmat ja diplomityöt sekä syventävien opintojen opinnäytetyöt (kokotekstit)
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Parkinsonin taudin tunnistaminen elektroenkefalogrammista koneoppimisteknologian avulla

Suuronen, Ilkka (2022-05-18)

Parkinsonin taudin tunnistaminen elektroenkefalogrammista koneoppimisteknologian avulla

Suuronen, Ilkka
(18.05.2022)
Katso/Avaa
Suuronen_Ilkka_opinnayte.pdf (932.8Kb)
Lataukset: 

Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.
avoin
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2022053141099
Tiivistelmä
Tässä tutkielmassa perehdytään koneoppimisteknologian käyttöön Parkinsonin tautia sairastavien ja terveiden koehenkilöiden EEG-tallenteiden erottamisessa toisistaan. EEG:n käyttö Parkinsonin taudin biomarkerina on herättänyt kiinnostusta, ja aiemmassa koneoppimisteknologiaa käyttävässä tutkimuksessa on saavutettu lupaavia tuloksia. Aiemmassa tutkimuksessa ei ole kuitenkaan tutkittu systemaattisesti EEG:n mittaamiseen käytettävien elektrodien lukumäärän vaikutusta luokittelutarkkuuteen, joka on tämän tutkielman yhteydessä toteutetun koneoppimispohjaisen EEG-analyysin ensisijainen tutkimuskysymys. Analyysin aineisto koostuu kolmella eri yliopistolla (Iowan yliopisto, New Mexicon yliopisto ja Turun yliopisto) kerätyistä, yhdistetyistä EEG-aineistoista. Aineistot on esikäsitelty PREP-esiprosessointiputken avulla, ja piirteenekstraktointiin on käytetty tyypillisten EEG-analyysin mukaisten taajuuskaistojen (delta, theta, alpha1, alpha2, beta) näyteentropia -metriikoita. Aineiston luokitteluun on käytetty logistista regressiomallia. Elektrodien lukumäärän vaikutusta mallin saavuttamaan luokittelutarkkuuteen on tutkittu käyttämällä budjetoitua ja ryhmäperustaista, ahnetta eteenpäinhakualgoritmia piirteenvalintaan. Keskeisenä havaintona huomattiin, että luokittelu onnistuu kymmenellä elektrodilla lähes yhtä hyvällä tarkkuudella (0.72) kuin käyttämällä täyttä elektrodivalikoimaa. Toissijaisesti huomattiin, että luokittelu käyttäen koehenkilöiden silmät auki mitattua EEG:tä onnistuu merkittävästi paremmin kuin käyttäen silmät kiinni mitattua EEG:tä. Lisäksi havaittiin, että elektrodien sijainnilla ei vaikuta olevan erityisen suurta merkitystä. Tämän tutkielman tulosten valossa voi olla aiheellista jatkaa tutkimuksia pienillä elektrodivalikoimilla.
Kokoelmat
  • Pro gradu -tutkielmat ja diplomityöt sekä syventävien opintojen opinnäytetyöt (kokotekstit) [9200]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste