Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Decidability and Periodicity of Low Complexity Tilings

Kari Jarkko; Moutot Etienne

Decidability and Periodicity of Low Complexity Tilings

Kari Jarkko
Moutot Etienne
Katso/Avaa
Publisher's pdf (614.2Kb)
Lataukset: 

SPRINGER
doi:10.1007/s00224-021-10063-8
URI
https://link.springer.com/article/10.1007%2Fs00224-021-10063-8
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2022012710547
Tiivistelmä

In this paper we study colorings (or tilings) of the two-dimensional grid Z(2). A coloring is said to be valid with respect to a set P of n x m rectangular patterns if all n x m sub-patterns of the coloring are in P. A coloring c is said to be of low complexity with respect to a rectangle if there exist m, n is an element of N and a set P of n x m rectangular patterns such that c is valid with respect to P and vertical bar P vertical bar <= nm. Open since it was stated in 1997, Nivat's conjecture states that such a coloring is necessarily periodic. If Nivat's conjecture is true, all valid colorings with respect to P such that vertical bar P vertical bar <= nm must be periodic. We prove that there exists at least one periodic coloring among the valid ones. We use this result to investigate the tiling problem, also known as the domino problem, which is well known to be undecidable in its full generality. However, we show that it is decidable in the low-complexity setting. Then, we use our result to show that Nivat's conjecture holds for uniformly recurrent configurations. These results also extend to other convex shapes in place of the rectangle. After that, we prove that the nm bound is multiplicatively optimal for the decidability of the domino problem, as for all epsilon > 0 it is undecidable to determine if there exists a valid coloring for a given m, n is an element of N and set of rectangular patterns P of size n x m such that vertical bar P vertical bar <= (1 + epsilon)nm. We prove a slightly better bound in the case where m = n, as well as constructing aperiodic SFTs of pretty low complexity. This paper is an extended version of a paper published in STACS 2020 (Kari and Moutot 2020).

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste