Näytä suppeat kuvailutiedot

Matrix representations, linear transformations, and kernels for disambiguation in natural language

Salakoski T; Jarvinen J; Boberg J; Pyysalo S; Pahikkala T

dc.contributor.authorSalakoski T
dc.contributor.authorJarvinen J
dc.contributor.authorBoberg J
dc.contributor.authorPyysalo S
dc.contributor.authorPahikkala T
dc.date.accessioned2022-10-27T11:50:18Z
dc.date.available2022-10-27T11:50:18Z
dc.identifier.urihttps://www.utupub.fi/handle/10024/155295
dc.description.abstractIn the application of machine learning methods with natural language inputs, the words and their positions in the input text are some of the most important features. In this article, we introduce a framework based on a word-position matrix representation of text, linear feature transformations of the word-position matrices, and kernel functions constructed from the transformations. We consider two categories of transformations, one based on word similarities and the second on their positions, which can be applied simultaneously in the framework in an elegant way. We show how word and positional similarities obtained by applying previously proposed techniques, such as latent semantic analysis, can be incorporated as transformations in the framework. We also introduce novel ways to determine word and positional similarities. We further present efficient algorithms for computing kernel functions incorporating the transformations on the word-position matrices, and, more importantly, introduce a highly efficient method for prediction. The framework is particularly suitable to natural language disambiguation tasks where the aim is to select for a single word a particular property from a set of candidates based on the context of the word. We demonstrate the applicability of the framework to this type of tasks using context-sensitive spelling error correction on the Reuters News corpus as a model problem.
dc.publisherSPRINGER
dc.titleMatrix representations, linear transformations, and kernels for disambiguation in natural language
dc.identifier.urnURN:NBN:fi-fe2021042720057
dc.relation.volume74
dc.contributor.organizationfi=matematiikan ja tilastotieteen laitos, yhteiset|en=Department of Mathematics and Statistics|
dc.contributor.organizationfi=PÄÄT Kieli- ja puheteknologia|en=PÄÄT Language and Speech Technology|
dc.contributor.organizationfi=PÄÄT Tietojenkäsittelytiede|en=PÄÄT Computer Science|
dc.contributor.organization-code2606100
dc.contributor.organization-code2606803
dc.contributor.organization-code2606805
dc.converis.publication-id36439162
dc.converis.urlhttps://research.utu.fi/converis/portal/Publication/36439162
dc.format.pagerange158
dc.format.pagerange133
dc.identifier.jour-issn0885-6125
dc.okm.affiliatedauthorBoberg, Jorma
dc.okm.affiliatedauthorPahikkala, Tapio
dc.okm.affiliatedauthorSalakoski, Tapio
dc.okm.affiliatedauthorPyysalo, Sampo
dc.okm.affiliatedauthorJärvinen, Jouni
dc.okm.discipline113 Computer and information sciencesen_GB
dc.okm.discipline113 Tietojenkäsittely ja informaatiotieteetfi_FI
dc.okm.internationalcopublicationnot an international co-publication
dc.okm.internationalityInternational publication
dc.okm.typeJournal article
dc.relation.doi10.1007/s10994-008-5082-6
dc.relation.ispartofjournalMachine Learning
dc.relation.issue2
dc.year.issued2009


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot