Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Statistical Workflow for Feature Selection in Human Metabolomics Data

Joseph Antonelli; Brian L. Claggett; Mir Henglin; Andy Kim; Gavin Ovsak; Nicole Kim; Katherine Deng; Kevin Rao; Octavia Tyagi; Jeramie D. Watrous; Kim A. Lagerborg; Pavel V. Hushcha; Olga V. Demler; Samia Mora; Teemu J. Niiranen; Alexandre C. Pereira; Mohit Jain; Susan Cheng

Statistical Workflow for Feature Selection in Human Metabolomics Data

Joseph Antonelli
Brian L. Claggett
Mir Henglin
Andy Kim
Gavin Ovsak
Nicole Kim
Katherine Deng
Kevin Rao
Octavia Tyagi
Jeramie D. Watrous
Kim A. Lagerborg
Pavel V. Hushcha
Olga V. Demler
Samia Mora
Teemu J. Niiranen
Alexandre C. Pereira
Mohit Jain
Susan Cheng
Katso/Avaa
Publisher's pdf (1.794Mb)
Lataukset: 

MDPI
doi:10.3390/metabo9070143
URI
https://www.mdpi.com/2218-1989/9/7/143
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042821861
Tiivistelmä
High-throughput metabolomics investigations, when conducted in large human cohorts, represent a potentially powerful tool for elucidating the biochemical diversity underlying human health and disease. Large-scale metabolomics data sources, generated using either targeted or nontargeted platforms, are becoming more common. Appropriate statistical analysis of these complex high-dimensional data will be critical for extracting meaningful results from such large-scale human metabolomics studies. Therefore, we consider the statistical analytical approaches that have been employed in prior human metabolomics studies. Based on the lessons learned and collective experience to date in the field, we o ff er a step-by-step framework for pursuing statistical analyses of cohort-based human metabolomics data, with a focus on feature selection. We discuss the range of options and approaches that may be employed at each stage of data management, analysis, and interpretation and o ff er guidance on the analytical decisions that need to be considered over the course of implementing a data analysis workflow. Certain pervasive analytical challenges facing the field warrant ongoing focused research. Addressing these challenges, particularly those related to analyzing human metabolomics data, will allow for more standardization of as well as advances in how research in the field is practiced. In turn, such major analytical advances will lead to substantial improvements in the overall contributions of human metabolomics investigations.
Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste