Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Subset of Secreted Proteins in Ascites Can Predict Platinum-Free Interval in Ovarian Cancer

Kaipio Katja; Hautaniemi Sampsa; Carroll Molly J; Carpen Olli; Page David; Kreeger Pamela K; Hynninen Johanna

A Subset of Secreted Proteins in Ascites Can Predict Platinum-Free Interval in Ovarian Cancer

Kaipio Katja
Hautaniemi Sampsa
Carroll Molly J
Carpen Olli
Page David
Kreeger Pamela K
Hynninen Johanna
Katso/Avaa
cancers-14-04291-v2.pdf (1.436Mb)
Lataukset: 

MDPI
doi:10.3390/cancers14174291
URI
https://www.mdpi.com/2072-6694/14/17/4291
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2022102462964
Tiivistelmä

Simple Summary

Identifying proteins that correlate with better or worse outcomes may help to identify new treatment approaches for advanced high-grade serous ovarian cancer. Here, we utilize a machine learning technique to correlate the levels of 58 secreted proteins in tumor ascites with the time to disease recurrence after chemotherapy, which is known clinically as the platinum-free interval. We identify several candidate proteins correlated to shorter or longer platinum-free intervals and describe model analysis methods that may be useful for other studies aiming to identify factors impacting patient outcomes. Future validation of these factors in a prospective cohort would confirm their clinical utility, whereas a study of the mechanisms that they impact may identify new therapies.

The time between the last cycle of chemotherapy and recurrence, the platinum-free interval (PFI), predicts overall survival in high-grade serous ovarian cancer (HGSOC). To identify secreted proteins associated with a shorter PFI, we utilized machine learning to predict the PFI from ascites composition. Ascites from stage III/IV HGSOC patients treated with neoadjuvant chemotherapy (NACT) or primary debulking surgery (PDS) were screened for secreted proteins and Lasso regression models were built to predict the PFI. Through regularization techniques, the number of analytes used in each model was reduced; to minimize overfitting, we utilized an analysis of model robustness. This resulted in models with 26 analytes and a root-mean-square error (RMSE) of 19 days for the NACT cohort and 16 analytes and an RMSE of 7 days for the PDS cohort. High concentrations of MMP-2 and EMMPRIN correlated with a shorter PFI in the NACT patients, whereas high concentrations of uPA Urokinase and MMP-3 correlated with a shorter PFI in PDS patients. Our results suggest that the analysis of ascites may be useful for outcome prediction and identified factors in the tumor microenvironment that may lead to worse outcomes. Our approach to tuning for model stability, rather than only model accuracy, may be applicable to other biomarker discovery tasks.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste