Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identifying and predicting severe bronchiolitis profiles at high risk for developing asthma: Analysis of three prospective cohorts

Hasegawa Kohei; Jartti Tuomas; Dumas Orianne; Fujiogi Michimasa; Camargo Carlos A.

Identifying and predicting severe bronchiolitis profiles at high risk for developing asthma: Analysis of three prospective cohorts

Hasegawa Kohei
Jartti Tuomas
Dumas Orianne
Fujiogi Michimasa
Camargo Carlos A.
Katso/Avaa
1-s2.0-S2589537021005381-main.pdf (1.703Mb)
Lataukset: 

ELSEVIER
doi:10.1016/j.eclinm.2021.101257
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2022081153773
Tiivistelmä

Background

Bronchiolitis is the leading cause of infants hospitalization in the U.S. and Europe. Additionally, bronchiolitis is a major risk factor for the development of childhood asthma. Growing evidence suggests heterogeneity within bronchiolitis. We sought to identify distinct, reproducible bronchiolitis subgroups (profiles) and to develop a decision rule accurately predicting the profile at the highest risk for developing asthma.

Methods

In three multicenter prospective cohorts of infants (age < 12 months) hospitalized for bronchiolitis in the U.S. and Finland (combined n = 3081) in 2007-2014, we identified clinically distinct bronchiolitis profiles by using latent class analysis. We examined the association of the profiles with the risk for developing asthma by age 6 -7 years. By performing recursive partitioning analyses, we developed a decision rule predicting the profile at highest risk for asthma, and measured its predictive performance in two separate cohorts.

Findings

We identified four bronchiolitis profiles (profiles A-D). Profile A (n = 388; 13%) was characterized by a history of breathing problems/eczema and non-respiratory syncytial virus (non-RSV) infection. In contrast, profile B (n = 1064; 34%) resembled classic RSV-induced bronchiolitis. Profile C (n = 993; 32%) was comprised of the most severely ill group. Profile D (n = 636; 21%) was the least-ill group. Profile A infants had a significantly higher risk for asthma, compared to profile B infants (38% vs. 23%, adjusted odds ratio [adjOR] 2.57, 95%confidence interval [CI] 1.63-4.06). The derived 4-predictor (RSV infection, history of breathing problems, history of eczema, and parental history of asthma) decision rule strongly predicted profile A-e.g., area under the curve [AUC] of 0.98 (95%CI 0.97 -0.99), sensitivity of 1.00 (95%CI 0.96 -1.00), and specificity of 0.90 (95%CI 0.89-0. 93) in a validation cohort.

Interpretation

In three prospective cohorts of infants with bronchiolitis, we identified clinically distinct profiles and their longitudinal relationship with asthma risk. We also derived and validated an accurate prediction rule to determine the profile at highest risk. The current results should advance research into the development of profile-specific preventive strategies for asthma.

Copyright (C) 2021 The Authors. Published by Elsevier Ltd.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste