Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting the Redshift of gamma-Ray-loud AGNs Using Supervised Machine Learning

Narendra Aditya; Larrson Johan; Nguyen Zooey; Wozniak Kamil; Miasojedow Blazej; Liodakis Ioannis; Bogdan Malgorzata; Dainotti Maria Giovanna; Nelson Trevor; Gibson Spencer James; Pollo Agnieszka

Predicting the Redshift of gamma-Ray-loud AGNs Using Supervised Machine Learning

Narendra Aditya
Larrson Johan
Nguyen Zooey
Wozniak Kamil
Miasojedow Blazej
Liodakis Ioannis
Bogdan Malgorzata
Dainotti Maria Giovanna
Nelson Trevor
Gibson Spencer James
Pollo Agnieszka
Katso/Avaa
Final draft (2.548Mb)
Lataukset: 

IOP Publishing Ltd
doi:10.3847/1538-4357/ac1748
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021120158331
Tiivistelmä
Active galactic nuclei (AGNs) are very powerful galaxies characterized by extremely bright emissions coming from their central massive black holes. Knowing the redshifts of AGNs provides us with an opportunity to determine their distance to investigate important astrophysical problems, such as the evolution of the early stars and their formation, along with the structure of early galaxies. The redshift determination is challenging because it requires detailed follow-up of multiwavelength observations, often involving various astronomical facilities. Here we employ machine-learning algorithms to estimate redshifts from the observed gamma-ray properties and photometric data of gamma-ray-loud AGNs from the Fourth Fermi-LAT Catalog. The prediction is obtained with the Superlearner algorithm using a LASSO-selected set of predictors. We obtain a tight correlation, with a Pearson correlation coefficient of 71.3% between the inferred and observed redshifts and an average Delta z (norm) = 11.6 x 10(-4). We stress that, notwithstanding the small sample of gamma-ray-loud AGNs, we obtain a reliable predictive model using Superlearner, which is an ensemble of several machine-learning models.
Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste