Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Every nonnegative real number is an abelian critical exponent

Peltomäki Jarkko; Whiteland Markus A.

Every nonnegative real number is an abelian critical exponent

Peltomäki Jarkko
Whiteland Markus A.
Katso/Avaa
Final draft (356.0Kb)
Lataukset: 

doi:10.1007/978-3-030-28796-2_22
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042822083
Tiivistelmä

The abelian critical exponent of an infinite word $w$ is defined as the maximum ratio between the exponent and the period of an abelian power occurring in $w$. It was shown by Fici et al. that the set of finite abelian critical exponents of Sturmian words coincides with the Lagrange spectrum. This spectrum contains every large enough positive real number. We construct words whose abelian critical exponents fill the remaining gaps, that is, we prove that for each nonnegative real number $\theta$ there exists an infinite word having abelian critical exponent $\theta$. We also extend this result to the $k$-abelian setting.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste