Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

On Kolmogorov quotients

Pirttimäki T

On Kolmogorov quotients

Pirttimäki T
Katso/Avaa
Final draft (254.6Kb)
Lataukset: 

URI
http://www.novsu.ru/RuFiDiM_V/
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042822316
Tiivistelmä

Every topological space has a Kolmogorov quotient that is obtained
by identifying points if they are contained in exactly the same open
sets. In this survey, we look at the relationship between topological
spaces and their Kolmogorov quotients. In most natural examples
of spaces, the Kolmogorov quotient is homeomorphic to the original
space. A non-trivial relationship occurs, for example, in the case of
pseudometric spaces, where the Kolmogorov quotient is a metric space.
The author's interest in the subject was sparked by study of abstract
model theory, specically the paper [1] by X. Caicedo, where Kolmogorov quotients are used in a topological proof of Lindström's theorem. We omit the proofs in this extended abstract; a full version [2]
with detailed proofs is in preparation.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste