Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting adaptive expertise with rational number arithmetic

Hannula-Sormunen Minna M.; McMullen Jake; Lehtinen Erno; Siegler Robert S.

Predicting adaptive expertise with rational number arithmetic

Hannula-Sormunen Minna M.
McMullen Jake
Lehtinen Erno
Siegler Robert S.
Katso/Avaa
Publisher´s pdf (409.6Kb)
Lataukset: 

John Wiley & Sons Ltd.
doi:10.1111/bjep.12471
URI
https://bpspsychub.onlinelibrary.wiley.com/doi/10.1111/bjep.12471
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021120158356
Tiivistelmä

Background. Adaptive expertise is a highly valued outcome of mathematics curricula. One aspect of adaptive expertise with rational numbers is adaptive rational number knowledge, which refers to the ability to integrate knowledge of numerical characteristics and relations in solving novel tasks. Even among students with strong conceptual and procedural knowledge of rational numbers, there are substantial individual differences in adaptive rational number knowledge.
Aims. We aimed to examine how a wide range of domain-general and mathematically specific skills and knowledge predicted different aspects of rational number knowledge, including procedural, conceptual, and adaptive rational number knowledge.
Sample. 173 6th and 7th grade students from a school in the southeastern US (51% female) participated in the study.
Methods. At three time points across 1.5 years, we measured students’ domaingeneral and domain-specific skills and knowledge.Weused multiple hierarchal regression analysis to examine how these predictors related to rational number knowledge at the third time point.
Result. Prior knowledge of rational numbers, general mathematical calculation knowledge, and spontaneous focusing on multiplicative relations (SFOR) tendency uniquely predicted adaptive rational number knowledge, after taking into account domain-general and mathematically specific skills and knowledge. Although conceptual knowledge of rational numbers and general mathematical achievement also predicted later conceptual and procedural knowledge of rational numbers, SFOR tendency did not.
Conclusion. Results suggest expanding investigations of mathematical development to also explore different features of adaptive expertise as well as spontaneous mathematical focusing tendencies.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste