Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel Covid-19 and Pneumonia Classification Method based on F-transform

Ozyurt Fatih; Tuncer Turker; Subasi Abdulhamit; Dogan Sengul

A novel Covid-19 and Pneumonia Classification Method based on F-transform

Ozyurt Fatih
Tuncer Turker
Subasi Abdulhamit
Dogan Sengul

Tätä artikkelia/julkaisua ei ole tallennettu UTUPubiin. Julkaisun tiedoissa voi kuitenkin olla linkki toisaalle tallennettuun artikkeliin / julkaisuun.

Elsevier
doi:10.1016/j.chemolab.2021.104256
URI
https://www.sciencedirect.com/science/article/pii/S0169743921000241
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042822786
Tiivistelmä

Nowadays, Covid-19 is the most important disease that affects daily life globally. Therefore, many methods are offered to fight against Covid-19. In this paper, a novel fuzzy tree classification approach was introduced for Covid-19 detection. Since Covid-19 disease is similar to pneumonia, three classes of data sets such as Covid-19, pneumonia, and normal chest x-ray images were employed in this study. A novel machine learning model, which is called the exemplar model, is presented by using this dataset. Firstly, fuzzy tree transformation is applied to each used chest image, and 15 images (3-level F-tree is constructed in this work) are obtained from a chest image. Then exemplar division is applied to these images. A multi-kernel local binary pattern (MKLBP) is applied to each exemplar and image to generate features. Most valuable features are selected using the iterative neighborhood component (INCA) feature selector. INCA selects the most distinctive 616 features, and these features are forwarded to 16 conventional classifiers in five groups. These groups are decision tree (DT), linear discriminant (LD), support vector machine (SVM), ensemble, and k-nearest neighbor (k-NN). The best-resulted classifier is Cubic SVM, and it achieved 97.01% classification accuracy for this dataset.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste