Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Reliable Weighted Feature Selection for Auto Medical Diagnosis

Amin Majd; Golnaz Sahebi; Hannu Tenhunen; Juha Plosila; Masoumeh Ebrahimi

A Reliable Weighted Feature Selection for Auto Medical Diagnosis

Amin Majd
Golnaz Sahebi
Hannu Tenhunen
Juha Plosila
Masoumeh Ebrahimi
Katso/Avaa
Final draft (740.2Kb)
Lataukset: 

doi:10.1109/INDIN.2017.8104907
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042718507
Tiivistelmä

Feature selection is a key step in data analysis. However, most of the existing feature selection techniques are serial and inefficient to be applied to massive data sets. We propose a feature selection method based on a multi-population weighted intelligent genetic algorithm to enhance the reliability of diagnoses in e-Health applications. The proposed approach, called PIGAS, utilizes a weighted intelligent genetic algorithm to select a proper subset of features that leads to a high classification accuracy. In addition, PIGAS takes advantage of multi-population implementation to further enhance accuracy. To evaluate the subsets of the selected features, the KNN classifier is utilized and assessed on UCI Arrhythmia dataset. To guarantee valid results, leave-one-out validation technique is employed. The experimental results show that the proposed approach outperforms other methods in terms of accuracy and efficiency. The results of the 16-class classification problem indicate an increase in the overall accuracy when using the optimal feature subset. The accuracy achieved being 99.70% indicating the potential of the algorithm to be utilized in a practical auto-diagnosis system. This accuracy was obtained using only half of features, as against an accuracy of 66.76% using all the features.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste