Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

RLScore: Regularized Least-Squares Learners

Antti Airola; Tapio Pahikkala

RLScore: Regularized Least-Squares Learners

Antti Airola
Tapio Pahikkala
Katso/Avaa
16-470.pdf (249.4Kb)
Lataukset: 

MIT Press
URI
http://www.jmlr.org/papers/v17/16-470.html
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042715977
Tiivistelmä

RLScore is a Python open source module for kernel based machine learning. The library provides implementations of several regularized least-squares (RLS) type of learners. RLS methods for regression and classification, ranking, greedy feature selection, multi-task and zero-shot learning, and unsupervised classification are included. Matrix algebra based computational short-cuts are used to ensure efficiency of both training and cross-validation. A simple API and extensive tutorials allow for easy use of RLScore.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste