Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Significance Assessment of Diabetes Diagnostic Biomarkers Using Machine Learning

Suominen Hanna; Lenskiy Artem; Hossain Md Zakir; Cui Ran; Nolan Christopher J; Daskalaki Elena

A Significance Assessment of Diabetes Diagnostic Biomarkers Using Machine Learning

Suominen Hanna
Lenskiy Artem
Hossain Md Zakir
Cui Ran
Nolan Christopher J
Daskalaki Elena
Katso/Avaa
SHTI-284-SHTI210657.pdf (154.5Kb)
Lataukset: 

doi:10.3233/SHTI210657
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2022091258503
Tiivistelmä
Diabetes can be diagnosed by either Fasting Plasma Glucose or Hemoglobin A1c. The aim of our study was to explore the differences between the two criteria through the development of a machine learning based diabetes diagnostic algorithm and analysing the predictive contribution of each input biomarker. Our study concludes that fasting insulin is predictive of diabetes defined by FPG, but not by HbA1c. Besides, 28 other fasting blood biomarkers were not significant predictors of diabetes.
Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste