Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comprehensive biomarker profiling of hypertension in 36 985 Finnish individuals

Jousilahti Pekka; Lahti Leo; Palmu Joonatan; Würtz Peter; Perola Markus; Lundqvist Annamari; Salomaa Veikko; Niiranen Teemu; Ruuskanen Matti O; Vartiainen Erkki; Havulinna Aki S; Tikkanen Emmi; Ala-Korpela Mika

Comprehensive biomarker profiling of hypertension in 36 985 Finnish individuals

Jousilahti Pekka
Lahti Leo
Palmu Joonatan
Würtz Peter
Perola Markus
Lundqvist Annamari
Salomaa Veikko
Niiranen Teemu
Ruuskanen Matti O
Vartiainen Erkki
Havulinna Aki S
Tikkanen Emmi
Ala-Korpela Mika
Katso/Avaa
Publisher's PDF (1.603Mb)
Lataukset: 

doi:10.1097/HJH.0000000000003051
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2022012710652
Tiivistelmä

Objective: Previous studies on the association between metabolic biomarkers and hypertension have been limited by small sample sizes, low number of studied biomarkers, and cross-sectional study design. In the largest study to date, we assess the cross-sectional and longitudinal associations between high-abundance serum biomarkers and blood pressure (BP).

Methods: We studied cross-sectional (N = 36 985; age 50.5 ± 14.2; 53.1% women) and longitudinal (N = 4197; age 49.4 ± 11.8, 55.3% women) population samples of Finnish individuals. We included 53 serum biomarkers and other detailed lipoprotein subclass measures in our analyses. We studied the associations between serum biomarkers and BP using both conventional statistical methods and a machine learning algorithm (gradient boosting) while adjusting for clinical risk factors.

Results: Fifty-one of 53 serum biomarkers were cross-sectionally related to BP (adjusted P < 0.05 for all). Conventional linear regression modeling demonstrated that LDL cholesterol, remnant cholesterol, apolipoprotein B, and acetate were positively, and HDL particle size was negatively, associated with SBP change over time (adjusted P < 0.05 for all). Adding serum biomarkers (cross-sectional root-mean-square error: 16.27 mmHg; longitudinal: 17.61 mmHg) in the model with clinical measures (cross-sectional: 16.70 mmHg; longitudinal 18.52 mmHg) improved the machine learning model fit. Glucose, albumin, triglycerides in LDL, glycerol, VLDL particle size, and acetoacetate had the highest importance scores in models related to current or future BP.

Conclusion: Our results suggest that serum lipids, and particularly LDL-derived and VLDL-derived cholesterol measures, and glucose metabolism abnormalities are associated with hypertension onset. Use of serum metabolite determination could improve identification of individuals at high risk of developing hypertension.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste