Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Low Power Multi-Class Migraine Detection Processor Based on Somatosensory Evoked Potentials

Shoaran M; Coppola G; Taufique Z; Bin Altaf MA; Zhu BZ

A Low Power Multi-Class Migraine Detection Processor Based on Somatosensory Evoked Potentials

Shoaran M
Coppola G
Taufique Z
Bin Altaf MA
Zhu BZ
Katso/Avaa
A_Low_Power_Multi-Class_Migraine_Detection_Processor_Based_on_Somatosensory_Evoked_Potentials.pdf (1.822Mb)
Lataukset: 

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
doi:10.1109/TCSII.2021.3066389
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2022012710656
Tiivistelmä
Migraine is a disabling neurological disorder that can be recurrent and persist for long durations. The continuous monitoring of the brain activities can enable the patient to respond on time before the occurrence of the approaching migraine episode to minimize the severity. Therefore, there is a need for a wearable device that can ensure the early diagnosis of a migraine attack. This brief presents a low latency, and power-efficient feature extraction and classification processor for the early detection of a migraine attack. Somatosensory Evoked Potentials (SEP) are utilized to monitor the migraine patterns in an ambulatory environment aiming to have a processor integrated on-sensor for power-efficient and timely intervention. In this work, a complete digital design of the wearable environment is proposed. It allows the extraction of multiple features including multiple power spectral bands using 256-point fast Fourier transform (FFT), root mean square of late HFO bursts and latency of N20 peak. These features are then classified using a multi-classification artificial neural network (ANN)-based classifier which is also realized on the chip. The proposed processor is placed and routed in a 180nm CMOS with an active area of 0.5mm(2). The total power consumption is 249 mu W while operating at a 20MHz clock with full computations completed in 1.31ms.
Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste