Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improving patient identification for advanced cardiac imaging through machine learning-integration of clinical and coronary CT angiography data

Maaniitty Teemu; Knuuti Juhani; Benjamins Jan Walter; Yeung Ming Wai; Juarez-Orozco Luis Eduardo; van der Harst Pim; Klén Riku; Saraste Antti

Improving patient identification for advanced cardiac imaging through machine learning-integration of clinical and coronary CT angiography data

Maaniitty Teemu
Knuuti Juhani
Benjamins Jan Walter
Yeung Ming Wai
Juarez-Orozco Luis Eduardo
van der Harst Pim
Klén Riku
Saraste Antti
Katso/Avaa
Publisher´s PDF (800.1Kb)
Lataukset: 

Elsevier Ireland Ltd
doi:10.1016/j.ijcard.2021.04.009
URI
https://doi.org/10.1016/j.ijcard.2021.04.009
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021093048184
Tiivistelmä

Background
Standard computed tomography angiography (CTA) outputs a myriad of interrelated variables in the evaluation of suspected coronary artery disease (CAD). But an important proportion of obstructive lesions does not cause significant myocardial ischemia. Nowadays, machine learning (ML) allows integration of numerous variables through complex interdependencies that optimize classification and prediction at the individual level. We evaluated ML performance in integrating CTA and clinical variables to identify patients that demonstrate myocardial ischemia through PET and those who ultimately underwent early revascularization.
Methods and results
830 patients with CTA and selective PET were analyzed. Nine clinical and 58 CTA variables were integrated through ensemble-boosting ML to identify patients with ischemia and those who underwent early revascularization. ML performance was compared against expert CTA interpretation, calcium score and clinical variables. While ML using all CTA variables achieved an AUC = 0.85, it was outperformed by expert CTA interpretation (AUC = 0.87, p < 0.01 for comparison), comparable to ML integration of CTA variables with clinical variables. However, the best performance was achieved by ML integration of expert CTA interpretation and clinical variables for both dependent variables (AUCs = 0.91 and 0.90, p < 0.001).
Conclusions
Machine learning integration of diagnostic CTA and clinical data may improve identification of patients with myocardial ischemia and those requiring early revascularization at the individual level. This could potentially aid in sparing the need for subsequent advanced imaging and better identifying patients in ultimate need for revascularization. While ML integrating all CTA variables did not outperform expert CTA interpretation, ML data integration from different sources consistently improves diagnostic performance.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste