Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Network pharmacology modeling identifies synergistic Aurora B and ZAK interaction in triple-negative breast cancer

Yevhen Akimov; Julio Saez-Rodriguez; Jing Tang; Denes Turei; Bhagwan Yadav; Sanna Timonen; Wenyu Wang; Abhishekh Gupta; Tero Aittokallio; Krister Wennerberg; Liye He; Matti Kankainen; Prson Gautam; Agnieszka Szwajda; Alok Jaiswal; Jani Saarela

Network pharmacology modeling identifies synergistic Aurora B and ZAK interaction in triple-negative breast cancer

Yevhen Akimov
Julio Saez-Rodriguez
Jing Tang
Denes Turei
Bhagwan Yadav
Sanna Timonen
Wenyu Wang
Abhishekh Gupta
Tero Aittokallio
Krister Wennerberg
Liye He
Matti Kankainen
Prson Gautam
Agnieszka Szwajda
Alok Jaiswal
Jani Saarela
Katso/Avaa
Publisher's PDF (1.191Mb)
Lataukset: 

Nature Publishing Group
doi:10.1038/s41540-019-0098-z
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042824143
Tiivistelmä

Cancer cells with heterogeneous mutation landscapes and extensive functional redundancy easily develop resistance to monotherapies by emerging activation of compensating or bypassing pathways. To achieve more effective and sustained clinical responses, synergistic interactions of multiple druggable targets that inhibit redundant cancer survival pathways are often required. Here, we report a systematic polypharmacology strategy to predict, test, and understand the selective drug combinations for MDA-MB-231 triple-negative breast cancer cells. We started by applying our network pharmacology model to predict synergistic drug combinations. Next, by utilizing kinome-wide drug-target profiles and gene expression data, we pinpointed a synergistic target interaction between Aurora B and ZAK kinase inhibition that led to enhanced growth inhibition and cytotoxicity, as validated by combinatorial siRNA, CRISPR/Cas9, and drug combination experiments. The mechanism of such a context-specific target interaction was elucidated using a dynamic simulation of MDA-MB-231 signaling network, suggesting a cross-talk between p53 and p38 pathways. Our results demonstrate the potential of polypharmacological modeling to systematically interrogate target interactions that may lead to clinically actionable and personalized treatment options.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste