Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Artificial Intelligence-Based Breast Cancer Diagnosis Using Ultrasound Images and Grid-Based Deep Feature Generator

Liu Haixia; Dogan Sengul; Subasi Abdulhamit; Tuncer Turker; Guo Yajie; Luo Yi; Zhao Lianli; Cui Guozhong; Wang Yueheng

Artificial Intelligence-Based Breast Cancer Diagnosis Using Ultrasound Images and Grid-Based Deep Feature Generator

Liu Haixia
Dogan Sengul
Subasi Abdulhamit
Tuncer Turker
Guo Yajie
Luo Yi
Zhao Lianli
Cui Guozhong
Wang Yueheng
Katso/Avaa
SubasiEtAl2022ArtificialIntelligence-BasedBreastCancer.pdf (2.951Mb)
Lataukset: 

DOVE MEDICAL PRESS LTD
doi:10.2147/IJGM.S347491
URI
https://www.dovepress.com/artificial-intelligence-based-breast-cancer-diagnosis-using-ultrasound-peer-reviewed-fulltext-article-IJGM
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2022081153985
Tiivistelmä

Purpose

Breast cancer is a prominent cancer type with high mortality. Early detection of breast cancer could serve to improve clinical outcomes. Ultrasonography is a digital imaging technique used to differentiate benign and malignant tumors. Several artificial intelligence techniques have been suggested in the literature for breast cancer detection using breast ultrasonography (BUS).

Patients and Methods

This work presents a new deep feature generation technique for breast cancer detection using BUS images. The widely known 16 pre-trained CNN models have been used in this framework as feature generators. In the feature generation phase, the used input image is divided into rows and columns, and these deep feature generators (pre-trained models) have applied to each row and column. Therefore, this method is called a grid-based deep feature generator. The proposed grid-based deep feature generator can calculate the error value of each deep feature generator, and then it selects the best three feature vectors as a final feature vector. In the feature selection phase, iterative neighborhood component analysis (INCA) chooses 980 features as an optimal number of features. Finally, these features are classified by using a deep neural network (DNN).

Results

The developed grid-based deep feature generation-based image classification model reached 97.18% classification accuracy on the ultrasonic images for three classes, namely malignant, benign, and normal.

Conclusion

The findings obviously denoted that the proposed grid deep feature generator and INCA-based feature selection model successfully classified breast ultrasonic images.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste