Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Combining Sequence Analysis and Hidden Markov Models in the Analysis of Complex Life Sequence Data

Jouni Helske; Mervi Eerola; Satu Helske

Combining Sequence Analysis and Hidden Markov Models in the Analysis of Complex Life Sequence Data

Jouni Helske
Mervi Eerola
Satu Helske
Katso/Avaa
Publisher's version (664.9Kb)
Lataukset: 

Springer
doi:10.1007/978-3-319-95420-2
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042719958
Tiivistelmä

Life course data often consists of multiple parallel sequences, one for
each life domain of interest. Multichannel sequence analysis has been
used for computing pairwise dissimilarities and finding clusters in this
type of multichannel (or multidimensional) sequence data. Describing
and visualizing such data is, however, often challenging. We propose an
approach for compressing, interpreting, and visualizing the information
within multichannel sequences by finding (1) groups of similar
trajectories and (2) similar phases within trajectories belonging to the
same group. For these tasks we combine multichannel sequence analysis
and hidden Markov modelling. We illustrate this approach with an
empirical application to life course data but the proposed approach can
be useful in various longitudinal problems.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste