Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge
Bulten Wouter; Kartasalo Kimmo; Chen Po-Hsuan Cameron; Ström Peter; Pinckaers Hans; Nagpal Kunal; Cai Yuannan; Steiner David F.; van Boven Hester; Vink Robert; Hulsbergen-van de Kaa Christina; van der Laak Jeroen; Amin Mahul B.; Evans Andrew J.; van der Kwast Theodorus; Allan Robert; Humphrey Peter A.; Grönberg Henrik; Samaratunga Hemamali; Delahunt Brett; Tsuzuki Toyonori; Häkkinen Tomi; Egevad Lars; Demkin Maggie; Dane Sohier; Tan Fraser; Valkonen Masi; Corrado Greg S.; Peng Lily; Mermel Craig H.; Ruusuvuori Pekka; Litjens Geert; Eklund Martin; the PANDA challenge consortium
Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge
Bulten Wouter
Kartasalo Kimmo
Chen Po-Hsuan Cameron
Ström Peter
Pinckaers Hans
Nagpal Kunal
Cai Yuannan
Steiner David F.
van Boven Hester
Vink Robert
Hulsbergen-van de Kaa Christina
van der Laak Jeroen
Amin Mahul B.
Evans Andrew J.
van der Kwast Theodorus
Allan Robert
Humphrey Peter A.
Grönberg Henrik
Samaratunga Hemamali
Delahunt Brett
Tsuzuki Toyonori
Häkkinen Tomi
Egevad Lars
Demkin Maggie
Dane Sohier
Tan Fraser
Valkonen Masi
Corrado Greg S.
Peng Lily
Mermel Craig H.
Ruusuvuori Pekka
Litjens Geert
Eklund Martin
the PANDA challenge consortium
NATURE PORTFOLIO
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2022081154004
https://urn.fi/URN:NBN:fi-fe2022081154004
Tiivistelmä
Through a community-driven competition, the PANDA challenge provides a curated diverse dataset and a catalog of models for prostate cancer pathology, and represents a blueprint for evaluating AI algorithms in digital pathology.Artificial intelligence (AI) has shown promise for diagnosing prostate cancer in biopsies. However, results have been limited to individual studies, lacking validation in multinational settings. Competitions have been shown to be accelerators for medical imaging innovations, but their impact is hindered by lack of reproducibility and independent validation. With this in mind, we organized the PANDA challenge-the largest histopathology competition to date, joined by 1,290 developers-to catalyze development of reproducible AI algorithms for Gleason grading using 10,616 digitized prostate biopsies. We validated that a diverse set of submitted algorithms reached pathologist-level performance on independent cross-continental cohorts, fully blinded to the algorithm developers. On United States and European external validation sets, the algorithms achieved agreements of 0.862 (quadratically weighted kappa, 95% confidence interval (CI), 0.840-0.884) and 0.868 (95% CI, 0.835-0.900) with expert uropathologists. Successful generalization across different patient populations, laboratories and reference standards, achieved by a variety of algorithmic approaches, warrants evaluating AI-based Gleason grading in prospective clinical trials.
Kokoelmat
- Rinnakkaistallenteet [27094]
