Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthetic minority oversampling of vital statistics data with generative adversarial networks

Mikko Sairanen; Aki Koivu; Antti Airola; Tapio Pahikkala

Synthetic minority oversampling of vital statistics data with generative adversarial networks

Mikko Sairanen
Aki Koivu
Antti Airola
Tapio Pahikkala
Katso/Avaa
Publisher's PDF (406.4Kb)
Lataukset: 

Oxford University Press
doi:10.1093/jamia/ocaa127
URI
https://doi.org/10.1093/jamia/ocaa127
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042824359
Tiivistelmä
Objective

Minority oversampling is a standard approach used for adjusting the ratio between the classes on imbalanced data. However, established methods often provide modest improvements in classification performance when applied to data with extremely imbalanced class distribution and to mixed-type data. This is usual for vital statistics data, in which the outcome incidence dictates the amount of positive observations. In this article, we developed a novel neural network-based oversampling method called actGAN (activation-specific generative adversarial network) that can derive useful synthetic observations in terms of increasing prediction performance in this context.

Materials and Methods

From vital statistics data, the outcome of early stillbirth was chosen to be predicted based on demographics, pregnancy history, and infections. The data contained 363 560 live births and 139 early stillbirths, resulting in class imbalance of 99.96% and 0.04%. The hyperparameters of actGAN and a baseline method SMOTE-NC (Synthetic Minority Over-sampling Technique-Nominal Continuous) were tuned with Bayesian optimization, and both were compared against a cost-sensitive learning-only approach.

Results

While SMOTE-NC provided mixed results, actGAN was able to improve true positive rate at a clinically significant false positive rate and area under the curve from the receiver-operating characteristic curve consistently.

Discussion

Including an activation-specific output layer to a generator network of actGAN enables the addition of information about the underlying data structure, which overperforms the nominal mechanism of SMOTE-NC.

Conclusions

actGAN provides an improvement to the prediction performance for our learning task. Our developed method could be applied to other mixed-type data prediction tasks that are known to be afflicted by class imbalance and limited data availability.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste