Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

AutoCoEv-A High-Throughput In Silico Pipeline for Predicting Inter-Protein Coevolution

Mattila Pieta K.; Balc M. Özge; Petrov Petar B.; Awoniyi Luqman O.; Šuštar Vid

AutoCoEv-A High-Throughput In Silico Pipeline for Predicting Inter-Protein Coevolution

Mattila Pieta K.
Balc M. Özge
Petrov Petar B.
Awoniyi Luqman O.
Šuštar Vid
Katso/Avaa
ijms-23-03351.pdf (3.057Mb)
Lataukset: 

MDPI
doi:10.3390/ijms23063351
URI
https://www.mdpi.com/1422-0067/23/6/3351
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2022081154038
Tiivistelmä
Protein-protein interactions govern cellular processes via complex regulatory networks, which are still far from being understood. Thus, identifying and understanding connections between proteins can significantly facilitate our comprehension of the mechanistic principles of protein functions. Coevolution between proteins is a sign of functional communication and, as such, provides a powerful approach to search for novel direct or indirect molecular partners. However, an evolutionary analysis of large arrays of proteins in silico is a highly time-consuming effort that has limited the usage of this method for protein pairs or small protein groups. Here, we developed AutoCoEv, a user-friendly, open source, computational pipeline for the search of coevolution between a large number of proteins. By driving 15 individual programs, culminating in CAPS2 as the software for detecting coevolution, AutoCoEv achieves a seamless automation and parallelization of the workflow. Importantly, we provide a patch to the CAPS2 source code to strengthen its statistical output, allowing for multiple comparison corrections and an enhanced analysis of the results. We apply the pipeline to inspect coevolution among 324 proteins identified to be located at the vicinity of the lipid rafts of B lymphocytes. We successfully detected multiple coevolutionary relations between the proteins, predicting many novel partners and previously unidentified clusters of functionally related molecules. We conclude that AutoCoEv, can be used to predict functional interactions from large datasets in a time- and cost-efficient manner.
Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste